JPH09180708A - Alkaline dry cell - Google Patents

Alkaline dry cell

Info

Publication number
JPH09180708A
JPH09180708A JP34282495A JP34282495A JPH09180708A JP H09180708 A JPH09180708 A JP H09180708A JP 34282495 A JP34282495 A JP 34282495A JP 34282495 A JP34282495 A JP 34282495A JP H09180708 A JPH09180708 A JP H09180708A
Authority
JP
Japan
Prior art keywords
positive electrode
amount
alkaline dry
electrode material
material mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34282495A
Other languages
Japanese (ja)
Other versions
JP3651092B2 (en
Inventor
Jun Nunome
潤 布目
Koji Yoshizawa
浩司 芳澤
Takuya Nakajima
琢也 中嶋
Seiji Toge
成二 峠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP34282495A priority Critical patent/JP3651092B2/en
Publication of JPH09180708A publication Critical patent/JPH09180708A/en
Application granted granted Critical
Publication of JP3651092B2 publication Critical patent/JP3651092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve discharging performance of an alkaline dry cell by regulating the porosity of a cathode mix pellet and the amount of an electrolytic liquid with which the pores are impregnated. SOLUTION: A cathode mix pellet 2 prepared by mixing manganese dioxide, with acetylene black or ketjen black and pressure molding the mixture and having fine pores not less than 0.14cc/g and not more than 0.24cc/g is set in a battery case 1 and impregnated with an electrolytic liquid, and a gel-state zinc anode 4 is put in the inside while having a separator 3 between them to give a dry cell. Consequently, excellent characteristic such as relatively high load discharge can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は二酸化マンガンを正
極に用いたアルカリ乾電池に関するものである。
TECHNICAL FIELD The present invention relates to an alkaline dry battery using manganese dioxide as a positive electrode.

【0002】[0002]

【従来の技術】アルカリ乾電池は、従来、正極活物質と
しての二酸化マンガンと導電材としての黒鉛などの混合
物である正極合剤をペレットに成形し正極としている。
特に、円筒形アルカリ乾電池においては、正極合剤を幾
つかに分割したドーナツ型のペレットに成形した後、電
池ケース中に挿入して正極とする。あるいは、電池ケー
ス中に挿入後、再度成形し正極を構成する場合もある。
これらの時点において正極合剤ペレットの細孔量は、水
銀圧入法によって測定される細孔径3nm〜400μm
の細孔よりなる空孔率が20〜25%、細孔量にして
0.07〜0.09cc/gであった。このような細孔
量である理由は、合剤の組成と製造方法によって決まる
もので、このような正極の電解液吸収量は、正極合剤1
g当り0.06cc以下であるのが一般的である。
2. Description of the Related Art Conventionally, an alkaline dry battery is manufactured by forming a positive electrode mixture, which is a mixture of manganese dioxide as a positive electrode active material and graphite as a conductive material, into pellets to form a positive electrode.
In particular, in a cylindrical alkaline dry battery, a positive electrode mixture is molded into donut-shaped pellets divided into several pieces and then inserted into a battery case to form a positive electrode. Alternatively, it may be formed into a positive electrode after being inserted into the battery case and then molded again.
The amount of pores of the positive electrode material mixture pellets at these time points is 3 nm to 400 μm in pore diameter measured by mercury porosimetry.
The porosity of the pores was 20 to 25%, and the amount of the pores was 0.07 to 0.09 cc / g. The reason for such a pore amount is determined by the composition of the mixture and the manufacturing method.
It is generally 0.06 cc or less per gram.

【0003】[0003]

【発明が解決しようとする課題】アルカリ乾電池の正極
利用率を向上させようとする場合、正極合剤中の電解液
量を増加させることが有効であることは知られている。
特に、強負荷放電においては、正極の分極が大きく、電
解液量を増加させることは大変有効である。放電性能の
向上を図るために特開昭49−33128号公報のよう
に正極合剤中の水分量を9〜13%に規制したものがあ
るが(この値は、正極の電解液吸収量が正極合剤1g当
り0.06〜0.09ccに相当する)従来の正極合剤
ではそれ以上の電解液の吸収は困難であった。
It is known that it is effective to increase the amount of the electrolytic solution in the positive electrode mixture in order to improve the positive electrode utilization rate of the alkaline dry battery.
Particularly, in heavy load discharge, the polarization of the positive electrode is large, and increasing the amount of the electrolytic solution is very effective. In order to improve the discharge performance, there is one in which the amount of water in the positive electrode mixture is regulated to 9 to 13% as in JP-A-49-33128. It was difficult to absorb more electrolyte solution with the conventional positive electrode mixture (corresponding to 0.06 to 0.09 cc per 1 g of positive electrode mixture).

【0004】本発明は、上記のような課題を解決するも
ので、高負荷放電に適したアルカリ乾電池を提供するこ
とを目的とする。
The present invention solves the above problems, and an object thereof is to provide an alkaline dry battery suitable for high load discharge.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明では水銀圧入法によって測定される細孔径
3nm〜400μmの細孔よりなる正極合剤ペレットの
細孔量を0.14cc/g以上0.24cc/g以下と
した正極をアルカリ乾電池に使用するものである。さら
に具体的には、その細孔に含浸させる電解液量を0.0
9cc/g以上0.12cc/g以下に規制することに
よって、正極中の電解液量を最適化するものである。こ
の場合、二酸化マンガンと混合する導電材として、アセ
チレンブラック、あるいはケッチェンブラックが好まし
い。それは、それらの導電材の持つストラクチャーが高
い吸液性を有しているためである。
In order to solve the above problems, in the present invention, the positive electrode mixture pellets having a pore size of 3 nm to 400 μm as measured by mercury porosimetry have a pore volume of 0.14 cc. A positive electrode having a density of not less than / g and not more than 0.24 cc / g is used in an alkaline dry battery. More specifically, the amount of electrolytic solution impregnated into the pores is 0.0
The amount of the electrolytic solution in the positive electrode is optimized by limiting the amount to 9 cc / g or more and 0.12 cc / g or less. In this case, acetylene black or Ketjen black is preferable as the conductive material mixed with manganese dioxide. This is because the structure of those conductive materials has a high liquid absorbing property.

【0006】[0006]

【発明の実施の形態】本発明は正極合剤ペレットの細孔
径3nm〜400μmの細孔よりなる細孔量が0.14
〜0.24cc/gであるアルカリ乾電池としたもので
あり、従来に比べ、正極中に含浸させる電解液量を増加
させ、二酸化マンガンの近傍に存在する電解液量を増加
させることができる。従って、上記の合剤を成形し最適
量の空孔を持つ正極合剤ペレットを製造した場合、最適
量の電解液を含浸させることができる。このような条件
で、正極反応は従来の正極合剤よりも速やかに生じる。
すなわち、正極の放電反応に伴い生成した水酸化物イオ
ンの拡散、放電反応で消費される水の供給が速やかにな
り、特に高負荷での放電における分極を低減させること
ができるため正極利用率が大幅に向上する。また、この
ように多孔性かつ高吸液性の正極合剤を製造しようとし
た場合、二酸化マンガンと混合する導電材料として、ア
セチレンブラック、あるいはケッチェンブラックを用い
ることが好ましい。その理由としては、それらの持つス
トラクチャーが高い吸液性と多孔性を持っており、二酸
化マンガンと混合することにより、これらの導電材料は
二酸化マンガンの周囲に絡み、二酸化マンガン近傍に補
液層を形成し、電解液を供給するのに好ましい状態にな
るためである。一方、従来のリン片状黒鉛や膨張黒鉛を
用いた場合、その混合量やペレット成形圧を最適化して
もアセチレンブラック、あるいはケッチェンブラックを
用いた場合と同等な放電性能を得ることができない。こ
れは、黒鉛材料が持つ撥水性が電解液の供給を妨げるた
め、および上記のような高吸液性の正極合剤ペレットを
製造できないためによると考えられる。以上の理由によ
り、本発明の正極合剤ペレットを使用しアルカリ乾電池
を製造した場合、高負荷放電でのアルカリ乾電池の放電
性能が大幅に改善される。また、上記のアルカリ乾電池
は正極の利用率が画期的に改善されるため、導電材料の
混合量増加に伴う二酸化マンガン量の減少を高負荷領域
で補うことができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the positive electrode material mixture pellets have a pore amount of 0.14 with a pore size of 3 nm to 400 μm.
It is an alkaline dry battery of about 0.24 cc / g, and it is possible to increase the amount of electrolytic solution to be impregnated in the positive electrode and increase the amount of electrolytic solution existing in the vicinity of manganese dioxide, as compared with the conventional case. Therefore, when the above mixture is molded to produce the positive electrode mixture pellet having the optimum amount of pores, the optimum amount of the electrolytic solution can be impregnated. Under such conditions, the positive electrode reaction occurs more quickly than the conventional positive electrode mixture.
That is, the diffusion of hydroxide ions generated along with the discharge reaction of the positive electrode, the supply of water consumed in the discharge reaction becomes rapid, and the polarization during discharge under high load can be particularly reduced, so that the positive electrode utilization rate is high. Greatly improved. Further, when it is attempted to manufacture a porous positive electrode mixture having a high liquid absorption property, it is preferable to use acetylene black or Ketjen black as the conductive material mixed with manganese dioxide. The reason is that their structure has high liquid absorption and porosity, and when mixed with manganese dioxide, these conductive materials are entangled around manganese dioxide and form a liquid replacement layer near manganese dioxide. This is because it becomes a preferable state for supplying the electrolytic solution. On the other hand, when conventional flaky graphite or expanded graphite is used, even if the mixing amount and pellet molding pressure are optimized, it is not possible to obtain the same discharge performance as when acetylene black or Ketjen black is used. It is considered that this is because the water repellency of the graphite material hinders the supply of the electrolytic solution and that the above-described highly liquid-absorbent positive electrode material mixture pellets cannot be manufactured. For the above reasons, when an alkaline dry battery is manufactured using the positive electrode material mixture pellets of the present invention, the discharge performance of the alkaline dry battery under high load discharge is significantly improved. Further, in the above alkaline dry battery, since the utilization rate of the positive electrode is remarkably improved, it is possible to compensate for the decrease in the amount of manganese dioxide due to the increase in the amount of the conductive material mixed in the high load region.

【0007】[0007]

【実施例】以下図面を用いて本発明の実施例を示す。Embodiments of the present invention will be described below with reference to the drawings.

【0008】(実施例)図1はアルカリ乾電池の構成例
の断面図である。図中1は電池ケース兼正極集電体、2
は二酸化マンガンと導電材とからなる正極合剤ペレッ
ト、3はセパレータ、4はゲル状亜鉛負極、5は負極集
電体、6は樹脂封口体であり、単3型アルカリ乾電池で
実施した。
(Embodiment) FIG. 1 is a cross-sectional view of a constitutional example of an alkaline dry battery. In the figure, 1 is a battery case and a positive electrode current collector, 2
Is a positive electrode material mixture pellet made of manganese dioxide and a conductive material, 3 is a separator, 4 is a gelled zinc negative electrode, 5 is a negative electrode current collector, and 6 is a resin sealing body, and it was carried out in an AA alkaline battery.

【0009】上記正極合剤ペレット2は二酸化マンガン
と導電材としてアセチレンブラックを混合して、正極合
剤ペレットの細孔量を0.07cc/gから0.28c
c/gの範囲で検討し、正極合剤ペレットへの電解液の
注入は、真空注液法を用いて正極合剤ペレットの空孔部
の約25〜88%に電解液を含浸させた。図2は、細孔
量が0.07cc/gから0.28cc/gの正極合剤
ペレットを用い、その細孔体積の75%に電解液を含浸
させた単3型アルカリ乾電池の1A定電流放電での0.
9V終止までの放電容量と細孔量の関係を示したもので
ある。図に示されるように細孔量が小さいものでは十分
な放電容量の改善が得られない。一方、細孔量を0.2
4cc/g以上の正極合剤ペレットでは、二酸化マンガ
ンおよび導電剤粒子の接触が弱くなり、電池内部抵抗が
上昇し放電容量が低下する。また、図3は細孔量0.1
6cc/gの正極合剤ペレットに含浸させる電解液量を
変化させて製造した単3型アルカリ乾電池の1A定電流
放電での0.9V終止までの放電容量と電解液量の関係
を示したものである。このように、電解液量が正極ペレ
ット1gあたり0.09cc以上0.12cc以下の範
囲の時に大幅な放電容量の改善が得られる。これは電解
液量が最適量の時に、正極が理想的に反応できることを
示している。逆に、電解液量が少ない場合は上記の効果
が得られないばかりでなく内部抵抗の増大が生じ、一
方、電解液量が多すぎると合剤の緩みなどの問題が生じ
る。また、正極合剤ペレットの細孔量が0.12cc/
gから0.24cc/gの範囲のいずれの場合も、電解
液量が正極合剤ペレット1g当たり0.09ccから
0.12ccで優れた放電性能が得られる。つまり、正
極合剤ペレットの細孔に占める電解液の割合よりも、正
極合剤ペレットの細孔に含浸させる電解液の総量が放電
性能に大きく寄与している。なお、実施例の正極合剤ペ
レットは見かけ密度が2.6g/ccであることから、
優れた放電性能が得られる電解液量は、正極合剤ペレッ
ト1cc当たり0.23から0.31ccである。
The positive electrode material mixture pellet 2 is prepared by mixing manganese dioxide and acetylene black as a conductive material, and the positive electrode material mixture pellet has a pore amount of 0.07 cc / g to 0.28 c.
The range of c / g was examined, and the electrolyte solution was injected into the positive electrode mixture pellets by using a vacuum injection method to impregnate about 25 to 88% of the pores of the positive electrode mixture pellets with the electrolyte solution. FIG. 2 shows a 1A constant current of an AA alkaline battery in which 75% of the pore volume of a positive electrode material mixture pellet having a pore amount of 0.07 cc / g to 0.28 cc / g is impregnated with an electrolytic solution. 0 at discharge.
It shows the relationship between the discharge capacity and the amount of pores until the end of 9V. As shown in the figure, when the amount of pores is small, sufficient improvement in discharge capacity cannot be obtained. On the other hand, the pore volume is 0.2
In the case of the positive electrode material mixture pellets of 4 cc / g or more, the contact between manganese dioxide and the conductive material particles becomes weak, the internal resistance of the battery increases and the discharge capacity decreases. In addition, FIG. 3 shows a pore amount of 0.1.
The relation between the discharge capacity and the amount of the electrolyte solution until the end of 0.9V at 1A constant current discharge of the AA alkaline battery manufactured by changing the amount of the electrolyte solution impregnated into the 6 cc / g positive electrode mixture pellet. Is. As described above, when the amount of the electrolyte solution is in the range of 0.09 cc or more and 0.12 cc or less per 1 g of the positive electrode pellet, a significant improvement in discharge capacity can be obtained. This indicates that the positive electrode can ideally react when the amount of the electrolytic solution is the optimum amount. On the contrary, when the amount of the electrolytic solution is small, not only the above effect is not obtained but also the internal resistance is increased. On the other hand, when the amount of the electrolytic solution is too large, problems such as loosening of the mixture occur. In addition, the pore amount of the positive electrode material mixture pellets is 0.12 cc /
In any of the cases of g to 0.24 cc / g, excellent discharge performance can be obtained with the amount of the electrolytic solution being 0.09 cc to 0.12 cc per 1 g of the positive electrode material mixture pellets. That is, the total amount of the electrolytic solution impregnated into the pores of the positive electrode material mixture pellet contributes more to the discharge performance than the proportion of the electrolytic solution in the pores of the positive electrode material mixture pellet. In addition, since the apparent density of the positive electrode material mixture pellets of the examples is 2.6 g / cc,
The amount of the electrolytic solution that provides excellent discharge performance is 0.23 to 0.31 cc per 1 cc of the positive electrode material mixture pellets.

【0010】上記実施例において、正極合剤ペレットと
して、二酸化マンガン91重量%とアセチレンブラック
9重量%を混合し、みかけ密度2.6g/ccに成形し
た電池を実施例1、二酸化マンガン94重量%とケッチ
ェンブラック6重量%を混合し、みかけ密度2.6g/
ccに成形した電池を実施例2、二酸化マンガン96重
量%と黒鉛4重量%を混合し成形した電池を比較例とし
た電池を作成した。
In the above example, as a positive electrode mixture pellet, 91% by weight of manganese dioxide and 9% by weight of acetylene black were mixed to form a battery having an apparent density of 2.6 g / cc. Example 1, 94% by weight of manganese dioxide. And Ketjen Black 6% by weight are mixed to give an apparent density of 2.6 g /
A cc-molded battery was prepared in Example 2, 96% by weight of manganese dioxide and 4% by weight of graphite were mixed, and a molded battery was used as a comparative example.

【0011】上記電池の実施例および比較例の正極合剤
ペレットの細孔量(cc/g)、正極合剤ペレット1g
中に含浸させた電解液量、含浸した電解液量の正極空孔
体積に対する割合(電解液体積率(%))を示す。
Porosity (cc / g) of the positive electrode material mixture pellets and 1 g of the positive electrode material mixture pellets of Examples and Comparative Examples of the above batteries
The amount of the electrolytic solution impregnated therein and the ratio of the amount of the impregnated electrolytic solution to the positive electrode pore volume (electrolytic solution volume ratio (%)) are shown.

【0012】[0012]

【表1】 [Table 1]

【0013】通常、正極合剤ペレットとセパレータに含
浸させる電解液量を注液量としているが、ここで示す電
解液量とは正極合剤ペレットのみの吸収した量を示す。
この場合、細孔量および電解液量には最適値があり、細
孔量が大きすぎる正極合剤ペレットでは充填できるマン
ガン量が小さくなりすぎ、返って放電容量が小さくな
る。また、(表2)にそれらの正極合剤ペレットを用い
て製造した単3型アルカリ乾電池の室温での定電流放電
での0.9V終止における放電容量を示す。
Usually, the amount of the electrolytic solution with which the positive electrode material mixture pellets and the separator are impregnated is set as the liquid injection amount, but the amount of the electrolytic solution shown here indicates the amount absorbed by the positive electrode material mixture pellets only.
In this case, the amount of pores and the amount of electrolytic solution have optimum values, and the amount of manganese that can be filled in a positive electrode material mixture pellet having an excessively large amount of pores becomes too small, which in turn reduces the discharge capacity. In addition, (Table 2) shows the discharge capacity at the end of 0.9 V in constant current discharge at room temperature of AA alkaline batteries manufactured using the positive electrode material mixture pellets.

【0014】[0014]

【表2】 [Table 2]

【0015】(表2)より明らかなように、放電電流が
100mAと弱い場合は放電容量に差は見られないが、
1000mA,1500mAと強くなるに伴い、実施例
1,2と比較例とに優位差が認められる。実施例1およ
び2は、混合時にアセチレンブラックあるいはケッチェ
ンブラックのストラクチャーが一部切断され、カーボン
が二酸化マンガンの周りを取り巻いている状態であると
考えられる。これらの正極合剤ペレットは、成形前に正
極合剤に1〜10重量%の電解液を添加することにより
成形性を高めることができる。また、正極合剤を加圧成
形した後、電池ケース兼正極集電体1に挿入する。実施
例1,2の正極合剤ペレットは電解液注液後に膨張し電
池ケースに密着するので、従来の正極合剤のように挿入
後に再度成形する必要がない点も利点のひとつである。
As is clear from (Table 2), there is no difference in discharge capacity when the discharge current is as weak as 100 mA.
As the strength increases to 1000 mA and 1500 mA, a significant difference is observed between Examples 1 and 2 and Comparative Example. In Examples 1 and 2, it is considered that the structure of acetylene black or Ketjen black was partially cut during mixing, and carbon was surrounded by manganese dioxide. Moldability of these positive electrode material mixture pellets can be improved by adding 1 to 10% by weight of an electrolytic solution to the positive electrode material mixture before molding. Further, the positive electrode mixture is pressure-molded and then inserted into the battery case / positive electrode current collector 1. One of the advantages is that the positive electrode mixture pellets of Examples 1 and 2 do not need to be re-molded after being inserted unlike the conventional positive electrode mixture, because they expand and adhere to the battery case after the electrolyte solution is injected.

【0016】[0016]

【発明の効果】以上の結果から明らかなように、アルカ
リ乾電池において正極合剤ペレットの空孔率、正極合剤
ペレット中に含浸させる電解液量を規制することにより
放電性能に優れた電池を得ることができた。なお、本発
明の効果は二酸化マンガンの利用率を改善させることに
よるものであり、これにより正負極充填比率の最適化を
行い、比較的高負荷放電に適した乾電池を提供するもの
である。
As is clear from the above results, in alkaline dry batteries, by controlling the porosity of the positive electrode material mixture pellets and the amount of the electrolyte solution impregnated in the positive electrode material mixture pellets, a battery having excellent discharge performance can be obtained. I was able to. The effect of the present invention is to improve the utilization rate of manganese dioxide, thereby optimizing the filling ratio of the positive and negative electrodes to provide a dry battery suitable for relatively high load discharge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるアルカリ乾電池の断面
図。
FIG. 1 is a cross-sectional view of an alkaline dry battery according to an embodiment of the present invention.

【図2】正極合剤ペレットの細孔量と放電容量の関係を
示した図。
FIG. 2 is a diagram showing the relationship between the pore amount of positive electrode material mixture pellets and the discharge capacity.

【図3】正極合剤ペレットの細孔に含浸させる電解液量
と放電容量の関係を示した図。
FIG. 3 is a diagram showing the relationship between the amount of electrolytic solution impregnated in the pores of the positive electrode material mixture pellets and the discharge capacity.

【符号の説明】[Explanation of symbols]

1 電池ケース兼正極集電体 2 正極合剤ペレット 3 セパレータ 4 ゲル状亜鉛負極 5 負極集電体 6 樹脂封口体 1 Battery Case and Positive Electrode Current Collector 2 Positive Electrode Mixture Pellet 3 Separator 4 Gel Zinc Negative Electrode 5 Negative Electrode Current Collector 6 Resin Sealing Body

フロントページの続き (72)発明者 峠 成二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Seiji Toge, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】主成分として二酸化マンガンと導電材とか
らなる正極合剤を加圧成型してなる正極合剤ペレットを
用いたアルカリ乾電池において、正極合剤ペレットの細
孔径3nm〜400μmの細孔よりなる細孔量が0.1
4cc/g以上0.24cc/g以下であるアルカリ乾
電池。
1. An alkaline dry battery using a positive electrode material mixture pellet obtained by pressure-molding a positive electrode material mixture comprising manganese dioxide as a main component and a conductive material, wherein the positive electrode material mixture pellet has a pore size of 3 nm to 400 μm. The amount of pores is 0.1
An alkaline dry battery of 4 cc / g or more and 0.24 cc / g or less.
【請求項2】正極合剤1g当たり0.09cc以上0.
12cc以下の電解液を含浸させてなる請求項1記載の
アルカリ乾電池。
2. 0.09 cc or more per gram of positive electrode material mixture.
The alkaline dry battery according to claim 1, wherein the alkaline dry battery is impregnated with an electrolyte solution of 12 cc or less.
【請求項3】導電材として、アセチレンブラック,ケッ
チェンブラックの少なくとも一つを含む請求項1記載の
アルカリ乾電池。
3. The alkaline dry battery according to claim 1, wherein the conductive material contains at least one of acetylene black and Ketjen black.
JP34282495A 1995-12-28 1995-12-28 Alkaline battery Expired - Fee Related JP3651092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34282495A JP3651092B2 (en) 1995-12-28 1995-12-28 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34282495A JP3651092B2 (en) 1995-12-28 1995-12-28 Alkaline battery

Publications (2)

Publication Number Publication Date
JPH09180708A true JPH09180708A (en) 1997-07-11
JP3651092B2 JP3651092B2 (en) 2005-05-25

Family

ID=18356778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34282495A Expired - Fee Related JP3651092B2 (en) 1995-12-28 1995-12-28 Alkaline battery

Country Status (1)

Country Link
JP (1) JP3651092B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207322B1 (en) * 1998-11-16 2001-03-27 Duracell Inc Alkaline cell with semisolid cathode
JP2002500417A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Porous alkaline zinc / manganese oxide battery
JP2002500418A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Electrochemical cell balance
JP2005322613A (en) * 2004-04-09 2005-11-17 Hitachi Maxell Ltd Alkaline battery
EP2109168A2 (en) 2008-04-08 2009-10-14 Panasonic Corporation Alkaline dry battery and method for producing the same
WO2011001603A1 (en) 2009-06-29 2011-01-06 パナソニック株式会社 Alkali dry cell
US8206851B2 (en) 2008-04-18 2012-06-26 Panasonic Corporation AA alkaline battery and AAA alkaline battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500417A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Porous alkaline zinc / manganese oxide battery
JP2002500418A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Electrochemical cell balance
US6207322B1 (en) * 1998-11-16 2001-03-27 Duracell Inc Alkaline cell with semisolid cathode
JP2005322613A (en) * 2004-04-09 2005-11-17 Hitachi Maxell Ltd Alkaline battery
EP2109168A2 (en) 2008-04-08 2009-10-14 Panasonic Corporation Alkaline dry battery and method for producing the same
US8182941B2 (en) 2008-04-08 2012-05-22 Panasonic Corporation Alkaline dry battery and method for producing the same
US8206851B2 (en) 2008-04-18 2012-06-26 Panasonic Corporation AA alkaline battery and AAA alkaline battery
WO2011001603A1 (en) 2009-06-29 2011-01-06 パナソニック株式会社 Alkali dry cell
JPWO2011001603A1 (en) * 2009-06-29 2012-12-10 パナソニック株式会社 Alkaline battery

Also Published As

Publication number Publication date
JP3651092B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP3450894B2 (en) Alkaline manganese battery
JP5361712B2 (en) New silver positive electrode for alkaline storage batteries
CA1295364C (en) Rechargeable alkaline manganese cells with zinc anodes
US5077149A (en) Nickel/hydrogen storage battery and method of manufacturing the same
JP2004512632A (en) battery
US3536537A (en) Method of making electrode having improved gas-recombination properties
JPH09180708A (en) Alkaline dry cell
US3288642A (en) Rechargeable dry cell having gelled electrolyte
US3996068A (en) Primary dry cell
JP3022758B2 (en) Alkaline manganese battery
US3888699A (en) Primary dry cell
JP4253172B2 (en) Sealed nickel zinc primary battery
JP2003017079A (en) Zinc alkaline battery
JPS60202666A (en) Paste type cadmium anode plate for alkaline storage battery
JPH0443387B2 (en)
JP2005019349A (en) Zinc alkaline battery
JPH02148654A (en) Nonaqueous electrolytic battery
WO2006001302A1 (en) Alkaline cell
JPS5928025B2 (en) Alkaline battery manufacturing method
JPS63257182A (en) Manufacture of cathode for molten carbonate fuel cell
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPS60264049A (en) Alkali zinc battery
JPS60240056A (en) Alkaline-manganese cell
JP2525320B2 (en) Positive electrode for alkaline secondary battery
JPH08180857A (en) Electrode plate for lead-acid battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Effective date: 20041029

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090304

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees