JPS63257182A - Manufacture of cathode for molten carbonate fuel cell - Google Patents

Manufacture of cathode for molten carbonate fuel cell

Info

Publication number
JPS63257182A
JPS63257182A JP62090151A JP9015187A JPS63257182A JP S63257182 A JPS63257182 A JP S63257182A JP 62090151 A JP62090151 A JP 62090151A JP 9015187 A JP9015187 A JP 9015187A JP S63257182 A JPS63257182 A JP S63257182A
Authority
JP
Japan
Prior art keywords
cathode
nickel oxide
sintered plate
back side
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62090151A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Yoshiaki Sotoike
嘉朗 外池
Yasuhiko Ito
靖彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62090151A priority Critical patent/JPS63257182A/en
Publication of JPS63257182A publication Critical patent/JPS63257182A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To smooth a cathode electrode reaction by a method wherein a dispersed solution or a paste containing lithium nickel oxide powder is uniformly distributed on the surface of a porous nickel sintered plate and lithium nickel oxide is filled up into the sintered plate by vacuum suction from the back side of the sintered plate. CONSTITUTION:A dispersed solution or a paste containing lithium nickel oxide powder is uniformly distributed on the surface of a porous nickel sintered plate and at the same time the lithium nickel oxide powder is filled up into the sintered plate by vacuum suction from the back side to form a cathode. Thereby the mechanical strength of the cathode is improved and on the cathode surface side where there is much fillers, pores of comparatively small diameters are produced and on the back side where there is not much fillers, pores of comparatively large diameters are produced. By making the cathode surface side abut on an electrolytic solution and making the back side abut on a oxidizer gas, three-phase band reaction area is secured and gas diffusion is improved, thus the cathode electrode reaction is made smooth.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は溶融炭酸塩を電解質として用いる燃料電池用カ
ソードの製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a cathode for a fuel cell using a molten carbonate as an electrolyte.

(ロ) 従来の技術 溶融炭酸塩燃料電池のカソードは、その一方の面が溶融
炭M塩に触れ他方の面が酸化雰囲気に触れしかも電池の
作動温度が高温であるから、酸素のイオン化能は勿論耐
食性が要求される。
(b) The cathode of a conventional molten carbonate fuel cell has one surface in contact with molten carbonate and the other surface in contact with an oxidizing atmosphere, and the operating temperature of the cell is high, so the ability to ionize oxygen is low. Of course, corrosion resistance is required.

カソード材としての有望な材料は、リチウム化したニッ
ケル酸化物であり、その多孔体が一般に用いられる。リ
チウム化酸化ニッケルをカソードとして用いるには、ニ
ッケル焼結板のま〜で電池に組込み電解質に含まれてい
る炭酸リチウムと反応ガス中の酸素によって電池作動温
度下でニッケル焼結板のリチウム化と酸化とを同時に行
わしめる方法と、予めニッケル粉末をリチウム化酸化さ
せ、この粉末を焼結させる方法とがある。
A promising material as a cathode material is lithiated nickel oxide, of which porous forms are commonly used. To use lithiated nickel oxide as a cathode, a sintered nickel plate is incorporated into the battery, and the sintered nickel plate is lithiated at the operating temperature of the battery using lithium carbonate contained in the electrolyte and oxygen in the reaction gas. There is a method in which oxidation and oxidation are performed at the same time, and a method in which nickel powder is lithiated and oxidized in advance and this powder is sintered.

しかし前者の方法では二・Vケル焼結板のリチウム化に
より電解質である炭酸リチウムの一部を消費することに
なるので電池寿命の点において不利であり、後者の方法
ではリチウム化酸化ニッケルの焼結強度が充分でない、
またこれらいづれの方法においても、カソード内にガス
拡散のための比較的大きな気孔と、電極・気体・寛解質
による三相反応領域を形成させるための比較的小さな気
孔との分布を効果的に確保する、いわゆるバイモダル構
造を形成することが困難であった。
However, the former method is disadvantageous in terms of battery life because a part of the lithium carbonate that is the electrolyte is consumed by lithiation of the 2.V Kel sintered plate, and the latter method is disadvantageous in terms of battery life. The binding strength is not sufficient,
In addition, both of these methods effectively ensure the distribution of relatively large pores for gas diffusion within the cathode and relatively small pores for forming a three-phase reaction region of the electrode, gas, and toxin. It has been difficult to form a so-called bimodal structure.

(ハ)発明が解決しようとする問題点 本発明はか〜る点に鑑みバイモダル構造を可能とするカ
ソードの製法を提供し、電池特性の向上と長寿命化を図
るものである。
(c) Problems to be Solved by the Invention In view of the above points, the present invention provides a method for manufacturing a cathode that enables a bimodal structure, thereby improving battery characteristics and extending life.

(ニ)問題点を解決するための手段 本発明は多孔質ニッケル焼結板の表面にリチウム化酸化
ニッケル微粉末を含む分散液もしくはペーストを均一に
分布きせると同時に裏面から真空吸引して前記リチウム
化酸化ニッケル微粉末を前記焼結板に充填せしめてカソ
ードを構成するものである。
(d) Means for Solving the Problems The present invention involves uniformly distributing a dispersion or paste containing fine lithiated nickel oxide powder on the surface of a porous sintered nickel plate, and at the same time vacuum suctioning the lithiated nickel oxide from the back surface. The cathode is constructed by filling the sintered plate with fine nickel oxide powder.

(ホ)作用 本発明ではリチウム化酸化ニッケル微粉末を多孔質ニッ
ケル焼結板に充填しているためカソードとしての機械的
強度が高くなるは勿論、その充填はニッケル焼結板の表
面より裏面に真空吸引することにより行われるので、充
填量の多いカソード表面側に比較的小さい孔径の気孔が
、又充填量の少い裏面側に比較的大きい孔径の気孔が夫
々形成され、前記カソード表面側を電解質に、裏面側を
酸化剤ガスに夫々接することにより、三相帯反応領域の
確保とガスの拡散とが良好となりカソード電極反応が円
滑化される。
(E) Function In the present invention, since the porous nickel sintered plate is filled with lithiated nickel oxide fine powder, the mechanical strength as a cathode is increased, and the filling is carried out on the back side of the nickel sintered plate rather than the front side. Since this is carried out by vacuum suction, pores with a relatively small pore size are formed on the front side of the cathode where there is a large amount of filling, and pores with a relatively large pore size are formed on the back side where there is a small amount of filling. By contacting the electrolyte and the back side with the oxidizing gas, a three-phase reaction region is ensured and the gas is diffused well, thereby facilitating the cathode electrode reaction.

(へ) 実施例 以下本発明によるカソードの作成例を説明する。(f) Examples An example of creating a cathode according to the present invention will be described below.

カソード微粉末の原材質としてカーボニルニッケル粉末
を飽和濃度の50%水酸化リブすウム水溶液に浸漬し、
液より引上げた粉末をアルミナ製平皿に押え固めること
なく入れ、これを空気中900℃2時間焼成する。焼成
体は空気中の酸素と化合しリチウム化酸化ニッケルの黒
色塊となっているが結合力が弱いため容易に粉砕でき、
粒径1〜3μの微粉末になるまで微粉砕する。
Carbonyl nickel powder as the raw material for cathode fine powder is immersed in a 50% saturated aqueous solution of ribum hydroxide.
The powder pulled up from the liquid is placed in an alumina flat plate without being compressed, and is fired in air at 900°C for 2 hours. The fired product combines with oxygen in the air to form a black mass of lithiated nickel oxide, but because the bonding strength is weak, it can be easily crushed.
Pulverize until it becomes a fine powder with a particle size of 1 to 3 μm.

一方多孔質ニッケル焼結板はカーボニルニッケル粉末を
厚さ1.0〜1.5fflllに均一にならし、これを
不活性雰囲気中で700〜900°Cで30〜60分間
焼結し、多孔度70〜90%の焼結体とする。この焼結
板の表面に、前記リチウム化酸化ニッケル微粉末をエチ
ルアルコールに分散したペースト状のものを均一に分布
きせ、ついで焼結板の裏面から真空吸引して微粉末をψ
給板に充填して後乾燥する。尚ペースト作成時ポリビニ
ールブチラールなどの結着剤を1〜5重量%程度混合し
てもよい。
On the other hand, porous nickel sintered plates are made by uniformly leveling carbonyl nickel powder to a thickness of 1.0 to 1.5 fflll and sintering it at 700 to 900°C for 30 to 60 minutes in an inert atmosphere. The sintered body is 70 to 90%. A paste obtained by dispersing the fine lithiated nickel oxide powder in ethyl alcohol is uniformly distributed on the surface of the sintered plate, and then the fine powder is removed by vacuum suction from the back side of the sintered plate.
Fill the feed plate and dry afterward. When preparing the paste, a binder such as polyvinyl butyral may be mixed in an amount of about 1 to 5% by weight.

乾燥後厚き方向に100〜150kg /Cm 2の圧
力で加圧しカソードを得る。リチウム化酸化ニッケル充
填後のニッケル焼結体の平均多孔度は50〜80%の範
囲にあるが、表面側は40〜60%裏面側は60〜80
%でバイモダル構成のカソードとなる。
After drying, pressure is applied in the thickness direction at a pressure of 100 to 150 kg/Cm 2 to obtain a cathode. The average porosity of the nickel sintered body after filling with lithiated nickel oxide is in the range of 50 to 80%, with the surface side having a porosity of 40 to 60% and the back side having a porosity of 60 to 80%.
%, it becomes a bimodal cathode.

このようにして得たカソードはその表面を電解質に、そ
の裏面を酸化剤ガスに接するように置いて電池に組立て
た。アノード゛は周知のニッケル焼結板を用い、電解質
体はLiCO3とKCO+(62:38重置部)の混合
炭酸塩粉末とアルミン酸リチウム粉末とを重量比2:3
の割合で混合した後、ホットプレスにより成型した。燃
料ガスとしてH2とC02(80:20容積%〉の混合
ガスを、酸化剤ガスとして空気とC02(70: 30
容積%)の混合ガスを夫々用い、電池の作am度は65
0〜660℃の範列に入るようにした。
The cathode thus obtained was assembled into a battery by placing its front side in contact with an electrolyte and its back side in contact with an oxidizing gas. The anode uses a well-known sintered nickel plate, and the electrolyte consists of mixed carbonate powder of LiCO3 and KCO+ (62:38 overlapping parts) and lithium aluminate powder at a weight ratio of 2:3.
After mixing in the ratio of , it was molded using a hot press. A mixed gas of H2 and C02 (80:20% by volume) was used as the fuel gas, and a mixed gas of air and C02 (70:30% by volume) was used as the oxidizing gas.
% by volume) of the mixed gases, the degree of am
It was set to fall within the range of 0 to 660°C.

尚ニッケル焼結板に対するリチウム化・酸化ニッケルの
真空引きによる充填効率を上げるため、カーボニルニッ
ケル粉末100部に孔形成剤として炭酸アンモニウム粉
末5部を加えて焼結板を作成することも可能である。
In addition, in order to increase the filling efficiency of lithiated nickel oxide into the nickel sintered plate by vacuuming, it is also possible to create a sintered plate by adding 5 parts of ammonium carbonate powder as a pore-forming agent to 100 parts of carbonyl nickel powder. .

本発明法によるカソードを備える電池(A)と比較のた
めニッケル焼結板のま〜電池に組込み電池作動温度でリ
チウム化と酸化を行わせた従来法によるカソードを備え
る電池(B)を夫々組立てた。
For comparison, a battery (A) with a cathode made by the method of the present invention and a battery (B) with a cathode made by the conventional method, which was assembled into a nickel sintered plate and lithiated and oxidized at the battery operating temperature, were assembled. Ta.

第1図はこれら電池(A )(B )の150mA/c
m2で300一時間作動後の放電(電流−電圧)特性図
であり、第2図(イ)及び(ロ)は同じ<15011I
A/clT12テ連続放電した際の電圧一時間及び内部
抵抗一時間の各関係図を示す。
Figure 1 shows the 150 mA/c of these batteries (A) and (B).
This is a discharge (current-voltage) characteristic diagram after 300 hours of operation at m2, and Figure 2 (a) and (b) are the same <15011I.
The graph shows the relationship between voltage and internal resistance for one hour during continuous discharge of A/clT12.

これら特性図から本電池(A)のカソードは、電極・気
体・電解質の三相帯による反応が、良好なガス拡散のも
とで行われ実質的な反応面積を大きくしているため、従
来電池(B)よりもす゛ぐれた特性を示すものと考えら
れる。
From these characteristic diagrams, the cathode of this battery (A) is different from conventional batteries because the reaction in the three-phase band of electrode, gas, and electrolyte takes place under good gas diffusion, increasing the effective reaction area. It is thought that it exhibits better characteristics than (B).

又従来電池(B)は時間の経過と共に電圧が低下し内部
抵抗が大きい値を示し工いるが、その原因はニッケルの
リチウム化が進んでt屏質の次酸リチウムが消費きれ電
解質量が減少するためと考えられる。
In addition, in the conventional battery (B), the voltage decreases with the passage of time and the internal resistance shows a large value, but this is because the lithium of the nickel progresses and the lithium suboxide in the t-layer is consumed and the electrolyte mass decreases. This is thought to be for the purpose of

第3図は本発明カソードの多孔度−放電寿命の関係を示
し、多孔度が80%以上であると強度の点で充分でなく
長時間放電に伴う電極構造の変化が起り、一方多孔度が
50%以下であるとガス拡散のための気孔が充分でなく
円滑な反応が進まず、いづれも特性低下をもたらす、か
−る点からカソードの多孔度は50〜80%の範囲好ま
しくは60〜70%である。
Figure 3 shows the relationship between porosity and discharge life of the cathode of the present invention.If the porosity is 80% or more, the strength is insufficient and the electrode structure changes due to long-term discharge. If it is less than 50%, there will be insufficient pores for gas diffusion, and the reaction will not proceed smoothly, resulting in deterioration of the characteristics.From this point of view, the porosity of the cathode is preferably in the range of 50 to 80%, preferably 60 to 80%. It is 70%.

(ト)発明の効果 以上のように本発明によればニッケル焼結体にリチウム
化酸化ニッケル微粉末を充填する際、微粉末を含むペー
スト状のものを表面より裏面に真空吸引することにより
行われ、カソードの表面側は充填量が多くなって比較的
多孔度が小さく、又逆に裏面側は充填量が少くなって比
較的多孔度が大きいので、カソード表面側を電解質体に
、裏面側を酸化剤ガスに夫々接することにより、三相反
応帯域の確゛保とガスの拡散が良好となりカソードTL
49反応が円滑化される。
(G) Effects of the Invention As described above, according to the present invention, when filling a nickel sintered body with lithiated nickel oxide fine powder, the paste-like material containing the fine powder is vacuum-suctioned from the front surface to the back surface. The surface side of the cathode has a large amount of filling and has a relatively small porosity, and the back side has a small amount of filling and has a relatively large porosity. By contacting the oxidant gas with the cathode TL, the three-phase reaction zone is ensured and gas diffusion is improved.
49 reaction is facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法によるカソードを儂える電池の放電特
性図、第2図(イ)及び(ロ)は連続放電時の電圧一時
間及び内部抵抗一時間の各関係を示す特性図である。第
3図はカソードの多孔度と電池寿命の関係を示す特性図
である。
Figure 1 is a discharge characteristic diagram of a battery whose cathode is turned on by the method of the present invention, and Figures 2 (a) and (b) are characteristic diagrams showing the relationship between voltage per hour and internal resistance per hour during continuous discharge. . FIG. 3 is a characteristic diagram showing the relationship between cathode porosity and battery life.

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質ニッケル焼結板の表面にリチウム化酸化ニ
ッケル微粉末を含む分散液もしくはペーストを均一に分
布させると共に前記焼結板の裏面から真空吸引して前記
リチウム化酸化ニッケルを前記焼結板に充填せしめるこ
とを特徴とする溶融炭酸塩燃料電池用カソードの製法。
(1) A dispersion or paste containing fine lithiated nickel oxide powder is uniformly distributed on the surface of a porous sintered nickel plate, and vacuum is sucked from the back side of the sintered plate to sinter the lithiated nickel oxide. A method for producing a cathode for a molten carbonate fuel cell, characterized by filling a plate.
(2)前記リチウム化酸化ニッケル充填後の前記焼結板
の多孔度が50〜80%であることを特徴とする特許請
求の範囲第1項記載の溶融炭酸塩燃料電池用カソードの
製法。
(2) The method for producing a cathode for a molten carbonate fuel cell according to claim 1, wherein the porosity of the sintered plate after being filled with the lithiated nickel oxide is 50 to 80%.
JP62090151A 1987-04-13 1987-04-13 Manufacture of cathode for molten carbonate fuel cell Pending JPS63257182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62090151A JPS63257182A (en) 1987-04-13 1987-04-13 Manufacture of cathode for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090151A JPS63257182A (en) 1987-04-13 1987-04-13 Manufacture of cathode for molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPS63257182A true JPS63257182A (en) 1988-10-25

Family

ID=13990497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090151A Pending JPS63257182A (en) 1987-04-13 1987-04-13 Manufacture of cathode for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS63257182A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166195A (en) * 2006-12-28 2008-07-17 Doosan Heavy Industries & Construction Co Ltd Manufacturing method of electrolyte impregnating air pole of fused carbonate fuel cell
KR101008091B1 (en) 2008-12-30 2011-01-13 두산중공업 주식회사 A methode of ceramic coating of porous electrode for molten carbonate fuel cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166195A (en) * 2006-12-28 2008-07-17 Doosan Heavy Industries & Construction Co Ltd Manufacturing method of electrolyte impregnating air pole of fused carbonate fuel cell
KR101008091B1 (en) 2008-12-30 2011-01-13 두산중공업 주식회사 A methode of ceramic coating of porous electrode for molten carbonate fuel cells

Similar Documents

Publication Publication Date Title
US4792505A (en) Electrodes made from mixed silver-silver oxides
GB1383282A (en) Rechargeable cell with cadmium anode
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
US3960600A (en) Anode construction
US3565691A (en) High energy density silver oxide-hydrogen battery
JP3022758B2 (en) Alkaline manganese battery
JPS63257182A (en) Manufacture of cathode for molten carbonate fuel cell
JPH09180708A (en) Alkaline dry cell
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH0760684B2 (en) Method for manufacturing electrodes for molten carbonate fuel cells
JPS58119161A (en) Manufacture of electrode for fused salt fuel battery
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH0714575A (en) Iron electrode plate for alkaline storage battery
JPH0474833B2 (en)
JPS60115165A (en) Manufacture of cathode for fused salt fuel cell
JP2568624B2 (en) Cadmium negative electrode for alkaline storage battery and method for producing the same
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPS60212963A (en) Manufacture of electrolyte of molten carbonate fuel cell
JPH0365624B2 (en)
JPS60167270A (en) Oxidation electrode for molten salt fuel cell
JP3978549B2 (en) Method for manufacturing electrode of molten carbonate fuel cell
JPS6114636B2 (en)
JPS63124370A (en) Nonsintered nickel electrode for alkaline storage battery
JPH06176764A (en) Electrode provided with rib for fuel cell and manufacture thereof