JPS58119161A - Manufacture of electrode for fused salt fuel battery - Google Patents

Manufacture of electrode for fused salt fuel battery

Info

Publication number
JPS58119161A
JPS58119161A JP57001454A JP145482A JPS58119161A JP S58119161 A JPS58119161 A JP S58119161A JP 57001454 A JP57001454 A JP 57001454A JP 145482 A JP145482 A JP 145482A JP S58119161 A JPS58119161 A JP S58119161A
Authority
JP
Japan
Prior art keywords
electrode
lithium
nickel oxide
lithium hydroxide
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57001454A
Other languages
Japanese (ja)
Inventor
Junji Niikura
順二 新倉
Nobuyuki Yanagihara
伸行 柳原
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57001454A priority Critical patent/JPS58119161A/en
Publication of JPS58119161A publication Critical patent/JPS58119161A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain an electrode having superior mechanical strength, electric conductivity, and electric discharge characteristic by mixing at least one kind among lithium hydroxide, lithium carbonate, and lithium chloride with nickel oxide powder and treating said mixture with press molding and firing. CONSTITUTION:Lithium hydroxide is added in a molar ratio of 1:0.5 into the nickel oxide powder having an average particle diameter of 20mum or less, and a proper amount of water is further added into the above mixture so that an uniform mixture can be obtained. The slurry consisting of aqueous solution of lithium hydroxide and nickel oxide dispersed is dried and coagulated, and then molded to a plate form having a thickness of about 1mm. under a pressure of 300kg/cm<2>, and then said plate is baked at 1,100 deg.C in air for 4hr. Thus, the electrode having a sufficient corrosion resistance enough to stand the use over a long period, high mechanical strength, and superior electric discharge characteristic can be obtained.

Description

【発明の詳細な説明】 本発明は、炭酸リチウム、炭酸カリクム、炭酸ナトリウ
ム等のアルカリ金属炭酸塩を電解質とし、約500〜7
00 ’(:、で運転される溶融塩燃料電池の電極に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an alkali metal carbonate such as lithium carbonate, potassium carbonate, or sodium carbonate as an electrolyte, and uses
00'(:, relates to electrodes of molten salt fuel cells operated at 00').

現在、酸性あるいはアルカリ性溶液を電解液とし、常温
〜200 ’Cの比較的低温で運転される燃料電池は広
く知られている。その電極材料としてはカーボンや耐食
性金属等が使われている。−力漕融塩を電解質とする燃
料電池、特に溶融炭酸燃料電池においては、動作温度が
約660℃と非常に高いため、電極として使用し得る材
料には大きな制約がある。さらに溶融塩は一般に非常に
腐食性が強いため、長期間にわたって使用し得る電極材
料の選定は難しい。特にカソードは酸素存在下で高温と
なるため、強い酸化雰囲気に曝され、その上溶融塩とも
直接接触することになるため、電極材料は酸化物等の非
常に限られたものになってくる。
At present, fuel cells that use acidic or alkaline solutions as electrolytes and operate at relatively low temperatures of room temperature to 200'C are widely known. Carbon, corrosion-resistant metals, and the like are used as electrode materials. - In fuel cells using power tank molten salt as an electrolyte, especially in molten carbon dioxide fuel cells, the operating temperature is as high as about 660° C., so there are major restrictions on the materials that can be used as electrodes. Furthermore, since molten salt is generally very corrosive, it is difficult to select an electrode material that can be used for a long period of time. In particular, the cathode is exposed to a strong oxidizing atmosphere as it reaches a high temperature in the presence of oxygen, and also comes into direct contact with molten salt, so the electrode materials must be very limited, such as oxides.

従来、溶融塩を電解質とした燃料電池、特に溶融炭酸塩
燃料電池の電極としては、アノード(燃料極)としてニ
ッケル多°孔体、カソード(空気極)としてニッケル酸
化物多孔体が一般的に考えられてきた。
Conventionally, the electrodes of fuel cells using molten salt as an electrolyte, especially molten carbonate fuel cells, are generally considered to be porous nickel for the anode (fuel electrode) and porous nickel oxide for the cathode (air electrode). I've been exposed to it.

そして、このカソードであるニッケル酸化物多孔体の製
造は以下のような方法によっていた。すなわち、まずニ
ッケル粉末を焼結する等の方法でニッケル多孔質体を製
造し、これをカソードとして燃料電池に組み込む。燃料
電池組立後、温度を運転温度付近にまで上昇させ、アノ
ード側に燃料ガス(天然ガス、水素等)を、カソード側
に酸化剤(−素、空気等)を流し、動作状態で金属状の
ニラクル多孔質体を酸化ニラクル多孔質体へと酸化させ
、これをカソードとして使用するものである。
The porous nickel oxide material serving as the cathode was manufactured by the following method. That is, first, a nickel porous body is manufactured by a method such as sintering nickel powder, and this is incorporated into a fuel cell as a cathode. After assembling the fuel cell, the temperature is raised to around the operating temperature, and a fuel gas (natural gas, hydrogen, etc.) is flowed to the anode side and an oxidizer (-element, air, etc.) to the cathode side. A Niracle porous material is oxidized to an oxidized Niracle porous material, which is used as a cathode.

このように電気化学的に酸化をする時に、電解質中の炭
酸リチウムから酸化ニッケル中に一部リチウムがドープ
され、導電性を保つとされている。
When oxidizing electrochemically in this way, some lithium is doped into the nickel oxide from the lithium carbonate in the electrolyte, which is said to maintain electrical conductivity.

酸化される前のニラクル多孔体は金属粒子間のシンタリ
ングであるため、機械的強度や導電性も高いが、一度酸
化されて導電性の殆んどない酸化ニラクル多孔体に変化
すると、ニッケル粒子間のシンタリング部分はニッケル
から酸化ニッケルへの結晶構造1体積等の変化のために
結合が弱くなる。その結果、酸化ニラクル多孔体となっ
た場合の機械的強度は極端に低下し、数10時間の運転
においても電極は非常に脆イ′弱くなり、その形状を保
持した−1ま取り扱うことが不可能な程に劣化してしま
う。さらに酸化される際のリチウムのドープが十分かつ
均一でないことと、粒子間の結合力が弱いことのために
、電極自体の抵抗が大きくなってくる。電極の抵抗が増
大すれば、その抵抗損失により電池性能は低下する。以
上のように従来の二ソケ・ル多孔質体を動作状態で酸化
して電極として使用する方法は、電極の機械的強度、放
電特性から見て優れたものとは言えない。
Before being oxidized, Niracle porous material has high mechanical strength and electrical conductivity due to sintering between metal particles, but once it is oxidized and changes to Niracle oxide porous material, which has almost no conductivity, nickel particles In the sintered portion between the two, the bond becomes weaker due to a change in the volume of the crystal structure from nickel to nickel oxide. As a result, the mechanical strength of the Niracle oxide porous material is extremely reduced, and even after several tens of hours of operation, the electrode becomes extremely brittle and weak, and cannot be handled without retaining its shape. deteriorate as much as possible. Furthermore, the resistance of the electrode itself increases because the lithium doping during oxidation is not sufficient and uniform and the bonding force between particles is weak. If the resistance of the electrode increases, the battery performance will decrease due to resistance loss. As described above, the conventional method of oxidizing a two-cell porous material in an operating state and using it as an electrode cannot be said to be excellent in terms of the mechanical strength and discharge characteristics of the electrode.

本発明は、このような溶融塩を電解質とする燃料電池に
おいて、電極の改良をはかることにより長期間にわたっ
て使用に耐える十分な耐食性と機械的強度および良好な
放電特性を得ることを目的とする。
The object of the present invention is to obtain sufficient corrosion resistance, mechanical strength, and good discharge characteristics to withstand long-term use by improving the electrodes of a fuel cell using such a molten salt as an electrolyte.

すなわち、リチウムを均一かつ十分にドープさせた導電
性の高い酸化ニッケル多孔体電極を提供するもので、酸
化ニラクル粉末に、水酸化リチウム、炭酸リチウム及び
塩化リチウムよシなる群から選んだ少なくとも1種を混
合し、必要に応じて有機結着剤などを加えて、加圧成形
した後、これをたとえば600〜1200’Cで焼成し
て電極を製造することを特徴としている。
That is, it provides a porous nickel oxide electrode that is uniformly and sufficiently doped with lithium and has high conductivity, in which Niracle oxide powder is mixed with at least one member selected from the group consisting of lithium hydroxide, lithium carbonate, and lithium chloride. The method is characterized in that the electrodes are manufactured by mixing, adding an organic binder and the like as necessary, press-molding, and then firing the mixture at, for example, 600 to 1200'C.

つぎに、本発明を実施例にしたがって説明する。Next, the present invention will be explained based on examples.

平均粒径20μm以下の酸化ニッケル(Nip)粉末に
、水酸化リチウムをモル比率で1: 0.6+7)割合
になるように加え、さらに均一に混合されるように適量
の水゛を加え、水酸化リチウム水溶液に酸化千ツクルが
分散したスラリー状として、良く攪拌混合する。これを
乾燥させ、凝固したものは粉末状態にあシ、これに有機
結着剤、たとえばセルロース、合成樹脂を加えて300
 kg/ctMの圧力で厚さ約1mmの板状に成形する
。これを空気中において1000℃で4時間焼成する。
Add lithium hydroxide to nickel oxide (NIP) powder with an average particle size of 20 μm or less at a molar ratio of 1:0.6+7), add an appropriate amount of water to mix evenly, and add water. Make a slurry of lithium oxide dispersed in an aqueous lithium oxide solution and mix well with stirring. This is dried, and the solidified product is turned into a powder, and an organic binder such as cellulose or synthetic resin is added to it for 300 g.
It is molded into a plate shape with a thickness of about 1 mm under a pressure of kg/ctM. This is baked in air at 1000° C. for 4 hours.

焼成前は緑灰色のものが焼成後は黒色に変化しており、
機械的強度の強いリチウムを含んだ酸化ニッケル多孔質
電極を得た。このものはX線回析の結果、リチウムニッ
ケル酸化物(−例としてLi2Ni5014 )  が
主成分であることがわかった。
The greenish-gray color before firing turns black after firing.
A porous nickel oxide electrode containing lithium with strong mechanical strength was obtained. As a result of X-ray diffraction, it was found that the main component of this material was lithium nickel oxide (for example, Li2Ni5014).

つぎにこの電極の導電率を知るため、電極試料片の両面
に銀ペーストを塗布して導電率を測定したところ、次表
に示すように、高温で高い導電率を示すことを確認した
Next, in order to find out the electrical conductivity of this electrode, we applied silver paste to both sides of the electrode sample piece and measured the electrical conductivity, and as shown in the following table, we confirmed that it exhibited high electrical conductivity at high temperatures.

このようにして得たリチウムを含むニッケル酸化物多孔
質電極の放電性能を評価するため、上記電極をカソード
とし、既に公知のクロスを添加したニッケル多孔質電極
をアノードとして、燃料電池を構成した。なお、電解質
には支持体のアルミナ微粉末60重量部と、炭酸リチウ
ムと炭酸カリウムのモル比1′;1の混合物50重量部
との混合物を200kg/−の圧力で成形し、1000
℃で1時間焼成したものを用い、電極の作用面積は4 
X 5 c4とした。そして1気圧の水素を燃料ガスと
し、空気と二酸化炭素の混合気飾を酸化剤ガスとして、
温度650℃において作動試験を行りた。
In order to evaluate the discharge performance of the nickel oxide porous electrode containing lithium thus obtained, a fuel cell was constructed using the above electrode as a cathode and a known cloth-added nickel porous electrode as an anode. The electrolyte was prepared by molding a mixture of 60 parts by weight of fine alumina powder as a support and 50 parts by weight of a mixture of lithium carbonate and potassium carbonate in a molar ratio of 1':1 at a pressure of 200 kg/-.
The electrode was fired for 1 hour at ℃, and the active area of the electrode was 4
It was set as X 5 c4. Then, hydrogen at 1 atm is used as the fuel gas, and a mixture of air and carbon dioxide is used as the oxidizing gas.
An operation test was conducted at a temperature of 650°C.

上記の電池をAとし、従来の電極をカソードとした電池
をBとする。これらの電池の試験結果を図に示す。
The above battery is designated as A, and the battery in which the conventional electrode is used as a cathode is designated as B. The test results for these batteries are shown in the figure.

比較例の燃料電池Bは運転時間とともに性能が劣化して
いるが、本発明による燃料電池Aは性能劣化が大きく改
善されているのがわかる。また放電試験後にこのカンー
ドを取り出してみたところ、本発明の電極では形状もし
っかりしており、強度も使用前と変化がなかった。一方
、従来のカンードは電極破壊を起こし、特性低下の原因
となっている。この結果から本発明によりて製造した電
極は、溶融炭酸塩燃料電池用カンードとして優れた性能
を示すことがわかる。
It can be seen that the performance of the fuel cell B of the comparative example deteriorates as the operating time increases, but the performance deterioration of the fuel cell A according to the present invention is greatly improved. Further, when this cand was taken out after the discharge test, it was found that the electrode of the present invention had a solid shape and the strength had not changed from before use. On the other hand, conventional cands cause electrode breakage, which causes deterioration of characteristics. These results show that the electrode manufactured according to the present invention exhibits excellent performance as a cand for molten carbonate fuel cells.

なお、上記実施例においてはリチウム化合物として水酸
化リチウムを使用した例を示したが、炭酸リチウム、塩
化リチウムを使用した場合にも同様の結果が得られた。
In addition, in the above example, an example was shown in which lithium hydroxide was used as the lithium compound, but similar results were obtained when lithium carbonate and lithium chloride were used.

また酸化ニッケルに加えるリチウム化合物の割合は、モ
ル比率でニッケル1に対してリチウムが0.1にすると
リチウムとの合金化が不足するために良い導電性を示さ
ないで、NiOによる抵抗分極が大きくなる。また逆に
リチウムが1,5以上になるように添加すると酸化ニッ
ケルとの反応にあずからないリチウム化合物が多量に電
極内に残存することになり、ニッケル酸化物粒子間の焼
結が妨げられ強度が低下する。そのため加える°リチウ
ム化合物の比率はニッケル1に対しリチウム0.1〜1
.5となる範囲が最適な条件となる。また、添加するリ
チウム化合物は、水を添加してスラリー化する場合は、
多少粒径が大きくてもよいが、水に不溶の炭酸リチウム
を用いる場合には、できるだけ粒径の小さいものを使用
し、十分な攪拌とすり潰しを行う必要がある。
Furthermore, if the molar ratio of lithium compound added to nickel oxide is 0.1 lithium to 1 nickel, alloying with lithium will be insufficient and good conductivity will not be exhibited, resulting in large resistance polarization due to NiO. Become. Conversely, if lithium is added in an amount of 1.5 or more, a large amount of lithium compounds that do not participate in the reaction with nickel oxide will remain in the electrode, preventing sintering between nickel oxide particles and increasing the strength. decreases. Therefore, the ratio of the lithium compound added is 1 nickel to 0.1 to 1 lithium.
.. A range of 5 is the optimal condition. In addition, if the lithium compound to be added is made into a slurry by adding water,
Although the particle size may be somewhat large, when using lithium carbonate that is insoluble in water, it is necessary to use particles with a particle size as small as possible and to perform sufficient stirring and grinding.

焼成は空気中で行うが、温度が低いと焼結が起こらない
ため1000℃以上の温度が必要である。
Firing is performed in air, but a temperature of 1000° C. or higher is required because sintering does not occur at low temperatures.

焼成中はリチウム化合物の種類にもよるが、約500〜
800°Cでリチウム化合物と酸化ニッケルの反応が起
き、生成したリチウムニッケル酸化物は1000℃以上
の温度で焼結される。そのため焼成は、はじめ500〜
s o o ’Cの温度で3時間程度反応を行わせ、次
に1000〜1200’Cの、温度で1時間程度焼結す
るのが、よく、また、酸化ニッケル粉末の平均粒径11
20μm以下が粒子間の焼結が強固に形成する。2oI
im以上と粗くなると、焼結強度が低く、表面積の大き
い基板が出来ない。この点20μm以下が優れた電極が
得られる。
During firing, it depends on the type of lithium compound, but about 500~
A reaction between the lithium compound and nickel oxide occurs at 800°C, and the resulting lithium nickel oxide is sintered at a temperature of 1000°C or higher. Therefore, firing starts at 500~
It is best to carry out the reaction at a temperature of s o o'C for about 3 hours, and then sinter at a temperature of 1000 to 1200'C for about 1 hour.
When the particle size is 20 μm or less, sintering between particles is strongly formed. 2oI
If it becomes rougher than im, the sintering strength will be low and a substrate with a large surface area will not be produced. In this respect, when the thickness is 20 μm or less, an excellent electrode can be obtained.

以上のように本発明により製造される電極は、す÷ラム
を均一かつ十分にドープすることにより得られたリチウ
ムニッケル酸化物が主成分となり、粒子間のシンタ一部
分は強い酸化雰囲気下におかれても、また溶融炭酸塩等
が直接接触しても安定であシ、機械的強度が大きい。ま
た電気伝導性。
As described above, the electrode manufactured according to the present invention has lithium nickel oxide obtained by uniformly and sufficiently doping the aluminum oxide as the main component, and the sintered part between the particles is placed in a strong oxidizing atmosphere. It is stable even when exposed to direct contact with molten carbonate, etc., and has high mechanical strength. Also electrically conductive.

放電特性が優れ、かつこれらの性質は長期にわたって安
定である。
It has excellent discharge characteristics and these properties are stable over a long period of time.

【図面の簡単な説明】 図面は本発明の一実施例の溶融炭酸塩燃料電池の放電特
性と、従来の動作状態で酸化させるタイプの電極を用い
た溶融炭酸塩燃料電池の放電特性を示す図である。
[Brief Description of the Drawings] The drawings are diagrams showing the discharge characteristics of a molten carbonate fuel cell according to an embodiment of the present invention and the discharge characteristics of a molten carbonate fuel cell using a type of electrode that is oxidized under conventional operating conditions. It is.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化ニッケル粉末に、水酸化リチウム、炭酸リチ
ウム及び塩化リチウムよシなる群から選んだ少なくとも
1種のリチウム化合物を混合し、加圧成形後焼成するこ
とを特徴とする溶融塩燃料電池用電極の製造法。
(1) For a molten salt fuel cell, characterized in that nickel oxide powder is mixed with at least one lithium compound selected from the group consisting of lithium hydroxide, lithium carbonate, and lithium chloride, and the mixture is pressure-molded and then fired. Electrode manufacturing method.
(2)前記酸化ニッケル粉末が平均粒径20μm以下で
あり、かつ酸化ニッケルと前記リチウム化合物との混合
割合が、ニッケルとリチウムとのモル比で1:0.1〜
1.5である特許請求の範囲第1項記載の溶融塩燃料電
池用電極の製造法。
(2) The nickel oxide powder has an average particle size of 20 μm or less, and the mixing ratio of nickel oxide and the lithium compound is 1:0.1 to 1:0.1 in molar ratio of nickel to lithium.
1.5, the method for producing an electrode for a molten salt fuel cell according to claim 1.
JP57001454A 1982-01-07 1982-01-07 Manufacture of electrode for fused salt fuel battery Pending JPS58119161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57001454A JPS58119161A (en) 1982-01-07 1982-01-07 Manufacture of electrode for fused salt fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57001454A JPS58119161A (en) 1982-01-07 1982-01-07 Manufacture of electrode for fused salt fuel battery

Publications (1)

Publication Number Publication Date
JPS58119161A true JPS58119161A (en) 1983-07-15

Family

ID=11501889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57001454A Pending JPS58119161A (en) 1982-01-07 1982-01-07 Manufacture of electrode for fused salt fuel battery

Country Status (1)

Country Link
JP (1) JPS58119161A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951469A (en) * 1982-08-19 1984-03-24 エナジ−・リサ−チ・コ−ポレ−シヨン Electrode unit and method of producing same
JPS5987767A (en) * 1982-11-10 1984-05-21 Agency Of Ind Science & Technol Molten salt fuel cell
JPS62154574A (en) * 1985-12-27 1987-07-09 Fuji Electric Corp Res & Dev Ltd Manufacture of molten carbonate fuel cell
JPS6366858A (en) * 1986-09-08 1988-03-25 Matsushita Electric Ind Co Ltd Electrode for molten carbonate fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951469A (en) * 1982-08-19 1984-03-24 エナジ−・リサ−チ・コ−ポレ−シヨン Electrode unit and method of producing same
JPH0241142B2 (en) * 1982-08-19 1990-09-14 Energy Res Corp
JPS5987767A (en) * 1982-11-10 1984-05-21 Agency Of Ind Science & Technol Molten salt fuel cell
JPH0261095B2 (en) * 1982-11-10 1990-12-19 Kogyo Gijutsuin
JPS62154574A (en) * 1985-12-27 1987-07-09 Fuji Electric Corp Res & Dev Ltd Manufacture of molten carbonate fuel cell
JPH0548581B2 (en) * 1985-12-27 1993-07-21 Fuji Denki Sogo Kenkyusho Kk
JPS6366858A (en) * 1986-09-08 1988-03-25 Matsushita Electric Ind Co Ltd Electrode for molten carbonate fuel cell
JPH0760684B2 (en) * 1986-09-08 1995-06-28 松下電器産業株式会社 Method for manufacturing electrodes for molten carbonate fuel cells

Similar Documents

Publication Publication Date Title
CN104067437B (en) Zinc secondary cell
US7666812B2 (en) Method of diffusing a catalyst for electrochemical oxygen reduction
JPS6322023B2 (en)
EP0448517B1 (en) Carbonate fuel cell anodes
JPH0745291A (en) Solid electrolyte fuel cell
US3565691A (en) High energy density silver oxide-hydrogen battery
JPS58119161A (en) Manufacture of electrode for fused salt fuel battery
JPH0869804A (en) Anode for fused carbonate fuel cell and its preparation
US4448857A (en) Cathode composite for molten carbonate fuel cell
JPH02821B2 (en)
US4891280A (en) Cathode for molten carbonate fuel cell
US6585931B1 (en) Molten carbonate fuel cell anode and method for manufacturing the same
JP2948453B2 (en) Solid oxide fuel cell
JP3208935B2 (en) Method for producing electrode for molten carbonate fuel cell
JPH0412591B2 (en)
JPH0261095B2 (en)
US4939111A (en) Cathode for molten carbonate fuel cell
JPH0520866B2 (en)
US3554811A (en) Oxide cathode material for primary fuel cells for high temperatures
JPH10321239A (en) Electrode of fuel cell
JPS63257182A (en) Manufacture of cathode for molten carbonate fuel cell
JPS6216513B2 (en)
JPH07326364A (en) Fuel electrode for fuel cell using solid electrolyte
JPS60250565A (en) Fuel cell
JPH0548581B2 (en)