JPH07326364A - Fuel electrode for fuel cell using solid electrolyte - Google Patents

Fuel electrode for fuel cell using solid electrolyte

Info

Publication number
JPH07326364A
JPH07326364A JP6119900A JP11990094A JPH07326364A JP H07326364 A JPH07326364 A JP H07326364A JP 6119900 A JP6119900 A JP 6119900A JP 11990094 A JP11990094 A JP 11990094A JP H07326364 A JPH07326364 A JP H07326364A
Authority
JP
Japan
Prior art keywords
fuel electrode
electrode
oxygen ion
solid electrolyte
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6119900A
Other languages
Japanese (ja)
Inventor
Naoya Nakanishi
直哉 中西
Shiyouten Kadowaki
正天 門脇
Hiroyuki Kawamura
博行 河村
Shunsuke Taniguchi
俊輔 谷口
Koji Yasuo
耕司 安尾
Yukinori Akiyama
幸徳 秋山
Yasuo Miyake
泰夫 三宅
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6119900A priority Critical patent/JPH07326364A/en
Publication of JPH07326364A publication Critical patent/JPH07326364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a high power generation function and restrain a drop in function over long-time operation by reforming the particle surface of a fuel electrode material made of a metal and a ceramic using oxygen ion and electron mixed conductive oxide, and thereby preparing a fuel electrode. CONSTITUTION:A fuel electrode for a solid electrolytic fuel cell is mainly formed out of metal 3 and surface reformed ceramic with an oxygen ion and electron mixed conductor 2 having both functions of oxygen ion conductivity and electron conductivity attached to the surface of a ceramic particle 1. The oxygen ion and electron mixed conductor 2 is cerium oxide, and composed of one substance selected from groups of (CeO2)0.8 (Sm2O3)0.2 (CeO2)0.8 (Y2O3)0.2 and (CeO2)0.8 (La2O3)0.2, or a mixture of two or more substances selected from the groups.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質燃料電池の燃
料極に関し、詳しくはそのような燃料極の改良に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel electrode of a solid oxide fuel cell, and more particularly to improvement of such a fuel electrode.

【0002】[0002]

【従来の技術】燃料電池は、供給されるガスの化学エネ
ルギーを直接電気エネルギーに変換するので、高い発電
効率が期待される。その中にあって高温型固体電解質燃
料電池は、約1000℃という高温で作動する電池であ
るため、廃熱の有効利用を図ることにより発電効率をリ
ン酸型燃料電池、溶融炭酸塩型燃料電池に比べ一層向上
させることができる等の利点があり、第三世代の燃料電
池として、近年、注目されている。
2. Description of the Related Art A fuel cell is expected to have high power generation efficiency because it directly converts chemical energy of supplied gas into electric energy. Among them, the high temperature type solid electrolyte fuel cell is a cell that operates at a high temperature of about 1000 ° C. Therefore, by effectively utilizing the waste heat, the power generation efficiency can be improved by the phosphoric acid type fuel cell and the molten carbonate type fuel cell. It has the advantage that it can be further improved as compared with the above, and has recently attracted attention as a third generation fuel cell.

【0003】この種の固体電解質燃料電池は、酸化剤極
側より酸素イオンを電解質中を通過させて燃料極側に移
動させ、そこで燃料ガスと反応させ水と電子(e- )を
生成させる一連の電池反応を介して電流を外部に取り出
す原理の電池である。したがって、燃料極を構成する電
極基材は、熱的安定性に優れかつ電子導電性、ガス透過
性、酸素イオン導電性を有するものであることが望まれ
る。このような特性を備える電極基材として従来より、
Ni−YSZ(イットリアで安定化したジルコニア)サ
ーメットが用いられており、このようなサーメット材料
は好適に電極反応を営むことができる電極基材として有
用である。
In this type of solid electrolyte fuel cell, oxygen ions are passed from the oxidant electrode side through the electrolyte and moved to the fuel electrode side, where they are reacted with fuel gas to generate water and electrons (e ). The battery is based on the principle that electric current is taken out to the outside through the battery reaction. Therefore, it is desired that the electrode base material forming the fuel electrode is excellent in thermal stability and has electronic conductivity, gas permeability, and oxygen ion conductivity. Conventionally, as an electrode base material having such characteristics,
Ni-YSZ (yttria-stabilized zirconia) cermet is used, and such a cermet material is useful as an electrode base material capable of suitably conducting an electrode reaction.

【0004】ところで、このような電極基材で構成され
た燃料極において、アノード反応が実際に起こっている
のは、第4図に示すように、電子電導体であるニッケル
(3)と酸素イオン導電体であるYSZ(1)とアノー
ドガスとの三者が一同に会する三相界面であると考えら
れている。
By the way, as shown in FIG. 4, the anode reaction actually takes place in the fuel electrode composed of such an electrode base material as shown in FIG. It is considered to be a three-phase interface where the conductors YSZ (1) and the anode gas meet together.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記電極基
材を用いた従来の燃料極は、三相界面が限定されている
ために、充分な発電能力が得られていなかった。また、
固体電解質燃料極は1000℃という高い動作温度で運
転されるため、従来の燃料極では、電池運転時間の経過
とともに電極基材であるNi−YSZサーメット中のニ
ッケルが半溶融状態となり、次第に凝集し粗大粒子化す
る。このため、NiとYSZとの接触面積が減少し、三
相界面が縮少する。よって、電池運転の長期化とともに
電極性能が低下するという問題があった。
However, in the conventional fuel electrode using the above electrode base material, the three-phase interface is limited, so that a sufficient power generation capacity has not been obtained. Also,
Since the solid electrolyte fuel electrode is operated at a high operating temperature of 1000 ° C., in the conventional fuel electrode, nickel in the Ni-YSZ cermet, which is the electrode base material, becomes a semi-molten state with the lapse of cell operation time, and gradually agglomerates. Coarse particles. Therefore, the contact area between Ni and YSZ is reduced, and the three-phase interface is reduced. Therefore, there is a problem that the electrode performance is deteriorated as the battery operation is extended.

【0006】本発明はかかる問題点を解消し、高い発電
能力を有するとともに、長時間の運転においても電極反
応面積の減少に伴う電極性能の低下を抑制し得た優れた
燃料極を提供することを目的とする。
The present invention solves the above problems and provides an excellent fuel electrode which has a high power generation capacity and can suppress the deterioration of the electrode performance due to the decrease of the electrode reaction area even during long-term operation. With the goal.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、酸素イオン導電性及び電子導電
性の両方の性質を有する酸素イオン・電子混合導電体が
セラミックス粒子の表面に添着されてなる表面改質セラ
ミックスと、金属とを主構成材料とする固体電解質燃料
電池用燃料極であることを特徴とする。
In order to achieve the above object, the invention according to claim 1 provides an oxygen ion / electron mixed conductor having both oxygen ion conductivity and electron conductivity properties on the surface of ceramic particles. It is a fuel electrode for a solid electrolyte fuel cell, which is mainly composed of a surface-modified ceramics adhered to and a metal.

【0008】請求項2の発明は、請求項1記載の固体電
解質燃料電池用燃料極において、前記酸素イオン・電子
混合導電体が、Ce系酸化物であることを特徴とする。
請求項3の発明は、請求項2記載の固体電解質燃料電池
用燃料極において、前記Ce系酸化物が、(CeO2)
0.8(Sm2 3)0.2 、(CeO2)0.8(Y2 3)0. 2
(CeO2)0.8(La2 3)0.2 よりなる群から1つ選択
された物質、または前記群から選択される2以上の物質
の混合物であることを特徴とする。
According to a second aspect of the present invention, in the fuel electrode for a solid oxide fuel cell according to the first aspect, the oxygen ion / electron mixed conductor is a Ce-based oxide.
According to a third aspect of the present invention, in the fuel electrode for a solid electrolyte fuel cell according to the second aspect , the Ce-based oxide is (CeO 2 ).
0.8 (Sm 2 O 3) 0.2 , (CeO 2) 0.8 (Y 2 O 3) 0. 2,
It is characterized in that it is a substance selected from the group consisting of (CeO 2 ) 0.8 (La 2 O 3 ) 0.2 or a mixture of two or more substances selected from the group.

【0009】請求項4の発明は、請求項1記載の固体電
解質燃料電池用燃料極において、前記酸素イオン・電子
混合導電体が、プラセオジウム酸化物であることを特徴
とする。請求項5の発明は、請求項4記載の固体電解質
燃料電池用燃料極において、前記プラセオジウム酸化物
が、PrOx (0<x≦3)であることを特徴とする。
According to a fourth aspect of the present invention, in the fuel electrode for a solid electrolyte fuel cell according to the first aspect, the mixed oxygen ion / electron conductor is praseodymium oxide. According to a fifth aspect of the present invention, in the fuel electrode for a solid electrolyte fuel cell according to the fourth aspect, the praseodymium oxide is PrO x (0 <x ≦ 3).

【0010】[0010]

【作用】上記構成の本発明では、酸素イオン導電性及び
電子導電性の両方の性質を有する酸素イオン・電子混合
導電性酸化物が表面に添着された表面改質セラミックス
と、金属とを主構成材料とする電極基材を用いて燃料極
を構成した。このような構成の電極基材を用いると、N
iとYSZとアノードガスが会合する所謂三相界面の周
囲に存在する酸素イオン・電子混合導電性酸化物におい
ても、電極反応(アノード反応)が進行する。つまり、
本発明にかかる燃料極では、従来三相界面のみで行われ
ていた電極反応をセラミックス表面に添着された酸素イ
オン・電子混合導電性酸化物域まで拡大することができ
るので、発電性能が顕著に向上する。
According to the present invention having the above-described structure, the main constituents are the surface-modified ceramics having the oxygen ion / electron mixed conductive oxide having the properties of both oxygen ion conductivity and electron conductivity attached to the surface, and a metal. A fuel electrode was constructed using an electrode base material as a material. When the electrode substrate having such a structure is used, N
The electrode reaction (anode reaction) proceeds also in the oxygen ion / electron mixed conductive oxide existing around the so-called three-phase interface where i, YSZ and the anode gas associate. That is,
In the fuel electrode according to the present invention, the electrode reaction, which was conventionally performed only at the three-phase interface, can be expanded to the oxygen ion / electron mixed conductive oxide region attached to the ceramic surface, so that the power generation performance is remarkably increased. improves.

【0011】更に、熱的影響によりNiの凝集・粗大化
が進行し、それに起因して三相界面が減少しても、アノ
ード反応の反応サイトが酸素イオン・電子混合導電性酸
化物域まで拡大しているため、反応サイトが減少しな
い。よって優れた発電能力を長期にわたって維持でき
る。以上のような酸素イオン・電子混合導電性酸化物の
作用により、本発明によれば、高い発電能力を有し、か
つ電極性能の低下の少ない燃料極と成し得る。
Further, even if Ni agglomerates and coarsens due to thermal effects and the three-phase interface decreases due to it, the reaction site of the anode reaction expands to the oxygen ion / electron mixed conductive oxide region. Therefore, the reaction sites do not decrease. Therefore, excellent power generation capacity can be maintained for a long period of time. According to the present invention, due to the action of the oxygen ion / electron mixed conductive oxide as described above, it is possible to form a fuel electrode having a high power generation capacity and a small decrease in electrode performance.

【0012】ここで、酸素イオン・電子混合導電性酸化
物は、還元雰囲気中で、酸素イオン導電性と電子導電性
を有するものであればよいが、このような物質として例
えば、Ce系酸化物やプラセオジウム酸化物を挙げるこ
とができる。Ce系酸化物の具体例としては、(CeO
2)0.8(Sm2 3)0.2 、(CeO2)0.8(Y2 3)0.2
(CeO2)0.8(La2 3)0.2 などを挙げることがで
き、このうち(CeO2) 0.8(Sm2 3)0.2 が、コスト
の点で好ましい。また、好ましいプラセオジウム酸化物
としては、PrOx (0<x≦3)が挙げらる。
Here, oxygen ion / electron mixed conductive oxidation
The material is oxygen ion conductive and electronic conductive in a reducing atmosphere.
Any substance that has
Examples include Ce-based oxides and praseodymium oxides.
You can Specific examples of the Ce-based oxide include (CeO
2)0.8(Sm2O3)0.2, (CeO2)0.8(Y2O3)0.2,
(CeO2)0.8(La2O3)0.2Etc.
Out of this (CeO2) 0.8(Sm2O3)0.2But the cost
In terms of Also preferred praseodymium oxide
As PrOx(0 <x ≦ 3).

【0013】なお、前記した各種の酸素イオン・電子混
合導電性酸化物は、それぞれ単独で使用してもよく、ま
た2種以上を混合して使用してもよい。また、セラミッ
クスと酸素イオン・電子混合導電性酸化物の配合比率は
特に限定されるものではない。但し、Ce系酸化物は前
記YSZに比べて価格が高いので、コストの面からYS
Z等を全てCe系酸化物に代替することは実用に適さな
い。よって、コスト面及び表面改質効果を勘案して、セ
ラミックスの表面改質の目的が充分発揮できる範囲の量
を適当に設定するのがよい。例えば下記実施例の記載の
方法によれば、10%以下の添着量で充分にその作用効
果を発揮させることができる。
The above various kinds of oxygen ion / electron mixed conductive oxides may be used alone or in combination of two or more kinds. Further, the compounding ratio of the ceramics and the oxygen ion / electron mixed conductive oxide is not particularly limited. However, since the Ce-based oxide is more expensive than the YSZ, the YSZ is costly.
It is not suitable for practical use to substitute all Ce and the like for Z and the like. Therefore, considering the cost and the surface modification effect, it is preferable to appropriately set the amount within the range in which the purpose of surface modification of ceramics can be sufficiently exerted. For example, according to the methods described in the following examples, the function and effect can be sufficiently exerted with an impregnated amount of 10% or less.

【0014】[0014]

【実施例】本発明にかかる固体電解質燃料電池用燃料極
基材は、次の方法により作製できる。 〔燃料極基材の作製〕CeとSmのモル比が8:2とな
るように、蓚酸セリウムと蓚酸サマリウムとを混合し、
この混合溶液の中に3%イットリアで安定化したジルコ
ニア(以下、YSZという)粉末を入れ混合した後、乾
燥する。この乾燥粉末を1300〜1500℃の炉に入
れ、数時間焼成した。このようにして、YSZ粒子表面
に約10重量%の(CeO2)0.8(Sm2 3)0.2 (酸素
イオン・電子混合導電体)を添着せしめた表面改質セラ
ミックスを作製した。
EXAMPLES A fuel electrode base material for a solid electrolyte fuel cell according to the present invention can be manufactured by the following method. [Fabrication of Fuel Electrode Base Material] Cerium oxalate and samarium oxalate were mixed so that the molar ratio of Ce and Sm was 8: 2,
Zirconia (hereinafter referred to as YSZ) powder stabilized with 3% yttria is put into this mixed solution, mixed, and then dried. This dry powder was placed in a furnace at 1300 to 1500 ° C. and fired for several hours. In this way, a surface-modified ceramic was prepared in which about 10 wt% of (CeO 2 ) 0.8 (Sm 2 O 3 ) 0.2 (oxygen ion / electron mixed conductor) was attached to the surface of the YSZ particles.

【0015】次に、200重量部の前記表面改質セラミ
ックスと、150重量部の酸化ニッケル(NiO)粉末
と、5重量部のバインダ(ポリビニルブチラール樹脂)
と、100重量部の溶媒(テルピネオール)とを混合し
て、燃料極用のスラリーを調製した。このスラリーを8
%イットリアで安定化したジルコニアの緻密な焼成体か
ら成る固体電解質(外寸150mm×150mm、厚さ0.2
mm)の一方の面に塗布し焼成して、前記固体電解質表面
に燃料極を作製した。
Next, 200 parts by weight of the surface-modified ceramic, 150 parts by weight of nickel oxide (NiO) powder, and 5 parts by weight of binder (polyvinyl butyral resin).
And 100 parts by weight of a solvent (terpineol) were mixed to prepare a slurry for a fuel electrode. 8 this slurry
% Solid electrolyte composed of dense yttria-stabilized zirconia sintered body (outer dimensions 150 mm x 150 mm, thickness 0.2)
mm) was applied to one surface and baked to prepare a fuel electrode on the surface of the solid electrolyte.

【0016】以下、このようにして表面改質セラミック
スを燃料極基材として用いて構成された燃料極を本発明
例燃料極Aとし、本発明例燃料極Aと固体電解質が一体
となったものを便宜上、発明例燃料極・電解質接合体と
称することにする。 〔比較例〕燃料極基材として、表面改質を行わないYS
Zを用いたこと以外は、上記実施例と同様にして燃料極
・固体電解質接合体を作製した。このようにして固体電
解質の一方の面に作製した燃料極を比較例燃料極Xと
し、比較例燃料極Xと固体電解質が一体となったものを
便宜上、比較例燃料極・電解質接合体と称することにす
る。
Hereinafter, the fuel electrode constituted by using the surface-modified ceramics as the fuel electrode base material in this manner is referred to as the fuel electrode A of the present invention, and the fuel electrode A of the present invention and the solid electrolyte are integrated. Will be referred to as an invention example fuel electrode / electrolyte assembly for convenience. [Comparative Example] YS without surface modification as the fuel electrode base material
A fuel electrode / solid electrolyte assembly was prepared in the same manner as in the above-mentioned example except that Z was used. The fuel electrode thus formed on one surface of the solid electrolyte is referred to as a comparative fuel electrode X, and the one in which the comparative fuel electrode X and the solid electrolyte are integrated is referred to as a comparative fuel electrode / electrolyte assembly for convenience. I will decide.

【0017】〔実験〕上記実施例で作製した本発明例燃
料極・電解質接合体及び比較例燃料極・電解質接合体に
ついて、下記製法でそれぞれの燃料極の他方の面に酸化
剤極を作製するとともに、公知の他の電池構成部材を組
み込んで、図3に示すような固体電解質燃料電池を構成
した。そして、これらの電池の特性を調べ、本発明例燃
料極Aの性能を評価した。
[Experiment] For the fuel electrode / electrolyte assembly of the present invention and the comparative fuel electrode / electrolyte assembly of the present invention produced in the above-mentioned examples, an oxidant electrode was produced on the other surface of each fuel electrode by the following production method. At the same time, other known cell constituent members were incorporated to form a solid electrolyte fuel cell as shown in FIG. Then, the characteristics of these batteries were examined to evaluate the performance of the fuel electrode A of the present invention.

【0018】(酸化剤極の作製)400重量部のLa
0.9 Sr0.MnO3 粉末と、100重量部のYSZ粉末
と、5重量部のバインダ(ポリビニルブチラール樹脂)
と、70重量部の溶媒(テルピネオール)とを混合して
なる酸化剤極用スラリーを、前記それぞれの燃料極・電
解質接合体の他方の面に塗布し、焼成した。なお、この
焼成は、前記燃料極の焼成と同時であってもよい。
(Preparation of oxidizer electrode) 400 parts by weight of La
0.9 Sr 0. MnO 3 powder, 100 parts by weight YSZ powder, and 5 parts by weight binder (polyvinyl butyral resin)
And 70 parts by weight of a solvent (terpineol) were mixed, and the oxidant electrode slurry was applied to the other surface of each of the fuel electrode / electrolyte bonded bodies and baked. The firing may be the same as the firing of the fuel electrode.

【0019】(電池の構造)図3に示す断面模式図を元
に実験に用いた電池構造の概要を説明する。固体電解質
10(外寸150mm×150mm、厚さ0.2mm)の各々の
面に、燃料極12と酸化剤極13が配置されてセル14
が形成されている。そして、固体電解質10の電極形成
面にはそれぞれ燃料極側集電体17、酸化剤極側集電体
18が配置され、また固体電解質10の電極非塗布面に
はシール材19が配置され、それらを一対のセパレータ
15、16が挟持するように配置された構造をしてい
る。なお、前記燃料極側集電体17にはNiフェルト
を、酸化剤極側集電体18には繊維状インコネル合金を
それぞれ使用した。
(Battery Structure) An outline of the battery structure used in the experiment will be described based on the schematic sectional view shown in FIG. A fuel electrode 12 and an oxidizer electrode 13 are arranged on each surface of the solid electrolyte 10 (outer dimensions 150 mm × 150 mm, thickness 0.2 mm) to form a cell 14
Are formed. Then, a fuel electrode side current collector 17 and an oxidant electrode side current collector 18 are arranged on the electrode forming surface of the solid electrolyte 10, respectively, and a sealing material 19 is arranged on the electrode non-coated surface of the solid electrolyte 10, It has a structure in which a pair of separators 15 and 16 are arranged so as to sandwich them. In addition, Ni felt was used for the fuel electrode side current collector 17, and fibrous Inconel alloy was used for the oxidizer electrode side current collector 18.

【0020】以下、本発明例燃料極Aを使用した電池を
本発明適用電池Acell、比較例燃料極Xを使用した電池
を比較例電池Xcellと称する。 (実験条件)電池作動温度1000℃、放電電流密度3
00mA/cm2 で1000時間連続運転し、経時的に
電池電圧を測定した。なお、この電池作動温度中では、
燃料極基材の作製時に使用した酸化ニッケルは、高温水
素雰囲気下で金属であるニッケルに還元された状態で存
在している。
Hereinafter, a battery using the fuel electrode A of the present invention is referred to as a battery A cell of the present invention, and a battery using the fuel electrode X of the comparative example is referred to as a comparative battery X cell . (Experimental conditions) Battery operating temperature 1000 ° C, discharge current density 3
The battery voltage was measured over time by continuous operation at 00 mA / cm 2 for 1000 hours. In addition, at this battery operating temperature,
The nickel oxide used in the preparation of the fuel electrode base material is present in a state reduced to nickel which is a metal under a high temperature hydrogen atmosphere.

【0021】測定結果を図2に示す。図2から明らかな
ように、本発明適用電池Acellは、電池運転当初から1
000時間経過後まで全く電池電圧の低下が認められな
かった。これに対し比較例電池Xcellは、運転当初の電
池電圧が本発明適用電池Ace llより低いとともに、運転
時間の経過とともに電池電圧が低下する傾向が認められ
た。
The measurement results are shown in FIG. As is clear from FIG. 2, the battery A cell according to the present invention has a 1
No decrease in battery voltage was observed until after 000 hours. Comparative Example battery X cell contrast is the initial battery voltage operation with less than the present invention applies the battery A ce ll, the battery voltage with the lapse of operation time tended to decrease.

【0022】ここにおいて、本発明適用電池Acellと比
較例電池Xcellとは、Acellが表面改質セラミックス
(YSZ)を電極材料として用いて構成した燃料極であ
り、X cellが表面改質を行わないセラミックス(YS
Z)を用いた燃料極である点のみが異なる。よって上記
実験結果は、表面改質の有無による差であり、本発明に
かかる燃料極は、従来の燃料極(比較例)に比べ電極性
能に優れていると結論できる。この理由を燃料極での電
気化学反応の機構を示す模式図を用い説明する。
Here, the battery A to which the present invention is appliedcellAnd ratio
Comparative battery XcellIs AcellIs surface-modified ceramics
A fuel electrode formed by using (YSZ) as an electrode material.
X cellDoes not perform surface modification (YS
The only difference is that it is a fuel electrode using Z). So above
The experimental result is a difference depending on the presence or absence of surface modification,
Such a fuel electrode has a higher electrode property than the conventional fuel electrode (comparative example).
You can conclude that it is excellent in Noh. The reason for this is
It will be described using a schematic diagram showing the mechanism of the gas-chemical reaction.

【0023】図4は、従来の燃料極におけるアノード反
応を模式的に示す図である。アノード反応は、燃料極全
体で起きるのではなく、図4に示すが如く、Niなどの
電子導電体(3)と、YSZなどの酸素イオン導電体
(1)と、燃料ガスが会合する所謂三相界面において生
じている。ところが、従来の燃料極では必ずしも三相界
面が多くなく、またNiとYSZとは互いに濡れ性が悪
いため、電池を長時間運転した場合、1000℃程の高
温によりNiが半溶融状態となり次第に凝集・粗大粒子
化して、YSZとの接触面積を減少させ三相界面を減縮
させる。
FIG. 4 is a diagram schematically showing an anode reaction in a conventional fuel electrode. The anodic reaction does not occur in the entire fuel electrode, but as shown in FIG. 4, the so-called three-point structure in which the fuel gas is associated with the electronic conductor (3) such as Ni and the oxygen ion conductor (1) such as YSZ. It occurs at the phase interface. However, the conventional fuel electrode does not necessarily have many three-phase interfaces, and Ni and YSZ have poor wettability with each other. Therefore, when the battery is operated for a long time, Ni becomes a semi-molten state due to a high temperature of about 1000 ° C. and gradually aggregates. -Coarse particles are formed to reduce the contact area with YSZ and reduce the three-phase interface.

【0024】即ち、比較例電池Xcellでは、燃料極の三
相界面が少ないため、運転当初においても電池電圧が低
く、また電池運転経過に伴い三相界面が減縮するため、
電池電圧の低下傾向が見られたものと考えられる。一
方、酸素イオン・電子混合導電体を表面に添着した表面
改質セラミックスを用いてなる本発明例燃料極Aでは、
YSZ(1)表面に添着された酸素イオン・電子混合導
電体が酸素イオンと電子を導電し得るためこの領域にお
いても三相界面と同様に電極反応が行われると考えられ
る。つまり、従来の燃料極では三相界面に限定されてい
たアノード反応面積が図1の斜線部分(反応部4)にま
で拡大するので、その分発電能力が向上する。またNi
の凝集・粗大化により三相界面が減少しても、酸素イオ
ン・電子混合導電体が反応サイトを維持しているので、
高い発電能力が維持される。
That is, in the comparative cell X cell , since the number of three-phase interfaces of the fuel electrode is small, the cell voltage is low even at the beginning of operation, and the three-phase interfaces are contracted with the progress of the cell operation.
It is probable that there was a tendency for the battery voltage to drop. On the other hand, in the fuel electrode A of the present invention, which uses the surface-modified ceramics having the oxygen ion / electron mixed conductor attached to the surface,
Since the oxygen ion / electron mixed conductor attached to the surface of the YSZ (1) can conduct oxygen ions and electrons, it is considered that the electrode reaction occurs in this region as well as the three-phase interface. That is, in the conventional fuel electrode, the anode reaction area, which was limited to the three-phase interface, is expanded to the shaded area (reaction part 4) in FIG. 1, and the power generation capacity is improved accordingly. Also Ni
Even if the three-phase interface is reduced due to the aggregation and coarsening of oxygen, the oxygen ion / electron mixed conductor maintains the reaction site.
High power generation capacity is maintained.

【0025】このようにセラミックス表面に添着された
酸素イオン・電子混合導電体が、アノード反応面積の拡
大と電極劣化の防止という2つの作用効果を発揮するこ
とにより、本発明例燃料極Aは、比較例燃料極Xに比べ
電極性能が高いとともに、長期にわたりその性能が維持
できる。よって、本発明適用電池Acellでは、電池運転
当初から高い電池電圧が得られるとともに、長時間の運
転においても電池電圧の低下がなかったものと考えられ
る。
In this way, the oxygen ion / electron mixed conductor attached to the ceramic surface exerts two functions of expanding the anode reaction area and preventing electrode deterioration. The electrode performance is higher than that of the fuel electrode X of the comparative example, and the performance can be maintained for a long time. Therefore, it is considered that the battery A cell according to the present invention obtained a high battery voltage from the beginning of the battery operation and did not have a decrease in the battery voltage even after a long time operation.

【0026】〔その他の事項〕上記実施例では、表面改
質セラミックス燃料極基材とは固体燃料電池用の燃料極
を構成するための材料であって、上記表面改質セラミッ
クス以外の構成材料を含むものであってもよい。また表
面改質セラミックスの作製方法は上記方法に限られるも
のではない。要はセラミックス粒子表面に(CeO2)
0.8(Sm2 3)0. 2 等の酸素イオン・電子混合導電体を
添着できる方法であればよく、例えばCeやSm等の酸
素イオン・電子混合導電体を構成する元素と有機物との
錯体化合物を作製し、または有機物のカルボニル末端に
前記元素を付加した化合物を作製し、これらの化合物の
適当量をNiO(酸化ニッケル)−YSZスラリーに添
加して焼結する方法によっても表面改質セラミックスを
作製することができる。
[Other Matters] In the above embodiments, the surface-modified ceramic fuel electrode base material is a material for forming a fuel electrode for a solid fuel cell, and is made of a constituent material other than the surface-modified ceramics. It may include one. The method for producing the surface-modified ceramic is not limited to the above method. In short, on the surface of ceramic particles (CeO 2 )
0.8 (Sm 2 O 3) as long as it is a method capable impregnated oxygen ion and electronic mixing conductors such as 0.2 may, for example, complexes of elements and organic substances which constitute the oxygen ion and electronic mixing conductive material such as Ce and Sm Surface-modified ceramics can also be prepared by preparing a compound or a compound in which the above element is added to the carbonyl end of an organic substance, and adding an appropriate amount of these compounds to a NiO (nickel oxide) -YSZ slurry and sintering. Can be produced.

【0027】更に、上記実施例では表面改質物質を(C
eO2)0.8(Sm2 3)0.2 としたが、表面改質物質は、
固体電解質燃料電池の動作温度において、酸素イオン・
電子混合導電体を有する物質であればよく、このような
物質として例えば、(CeO 2)0.8(Sm2 3)0.2
(CeO2)0.8(Y2 3)0.2 、(CeO2)0.8(La2
3)0.2 、PrOx (但し、0<x≦3)よりなる群か
ら1つ選択された物質、または前記群から選択される2
以上の物質の混合物が挙げられる。
Further, in the above embodiment, the surface modifying substance (C
eO2)0.8(Sm2O3)0.2However, the surface modifier is
At the operating temperature of the solid electrolyte fuel cell, oxygen ions
Any substance having an electronic mixed conductor may be used.
As the substance, for example, (CeO 2)0.8(Sm2O3)0.2,
(CeO2)0.8(Y2O3)0.2 , (CeO2)0.8(La2
O3)0.2, PrOx(However, 0 <x ≦ 3)
One selected from the above, or two selected from the above group
A mixture of the above substances may be mentioned.

【0028】[0028]

【発明の効果】以上の本発明によれば、電解質と一対の
電極からなる固体電解質燃料電池において、金属とセラ
ミックスよりなる燃料極材料の粒子の表面を酸素イオン
・電子混合導電性酸化物にて改質し、それを燃料極とし
て用いることにより、従来の反応部に加え、改質酸化物
相−ガス相間でも反応が起こるため、反応面積及び反応
性が増加し電池特性が向上する。また長期の作動に際し
てのNi粒子の焼結による反応面積の減少を抑制するこ
とにより、電池寿命が向上する。
As described above, according to the present invention, in the solid electrolyte fuel cell comprising the electrolyte and the pair of electrodes, the surface of the particles of the fuel electrode material composed of the metal and the ceramic is made of the oxygen ion / electron mixed conductive oxide. By reforming and using it as a fuel electrode, a reaction occurs between the reformed oxide phase and the gas phase in addition to the conventional reaction part, so that the reaction area and reactivity are increased and the cell characteristics are improved. Further, by suppressing the reduction of the reaction area due to the sintering of Ni particles during long-term operation, the battery life is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる固体電解質燃料電池用燃料極の
主要部の拡大模式図である。
FIG. 1 is an enlarged schematic view of a main part of a fuel electrode for a solid oxide fuel cell according to the present invention.

【図2】本発明にかかる固体電解質燃料電池用燃料極A
を用いた燃料電池Acellと、比較例燃料極Xを用いて構
成した比較電池Xcellについての、電池特性を示すグラ
フである。
FIG. 2 Fuel electrode A for solid electrolyte fuel cell according to the present invention
3 is a graph showing the cell characteristics of a fuel cell A cell using the above and a comparative cell X cell configured using the comparative fuel electrode X.

【図3】燃料極性能を調べるために組み立てられた実験
用燃料電池の断面模式図である。
FIG. 3 is a schematic cross-sectional view of an experimental fuel cell assembled to examine the fuel electrode performance.

【図4】比較例燃料極(従来例)の主要部の拡大模式図
である。
FIG. 4 is an enlarged schematic view of a main part of a fuel electrode of a comparative example (conventional example).

【符号の説明】[Explanation of symbols]

1 イットリア安定化ジルコニア(セラミックス粒
子) 2 (CeO2)0.8(Sm2 3)0.2 (酸素イオン・電子
混合導電体) 3 ニッケル(金属) 4 電極反応部
1 Yttria-stabilized zirconia (ceramic particles) 2 (CeO 2 ) 0.8 (Sm 2 O 3 ) 0.2 (oxygen ion / electron mixed conductor) 3 nickel (metal) 4 electrode reaction part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 俊輔 守口市京阪本通2丁目5番5号 三洋電機 株式会社内 (72)発明者 安尾 耕司 守口市京阪本通2丁目5番5号 三洋電機 株式会社内 (72)発明者 秋山 幸徳 守口市京阪本通2丁目5番5号 三洋電機 株式会社内 (72)発明者 三宅 泰夫 守口市京阪本通2丁目5番5号 三洋電機 株式会社内 (72)発明者 齋藤 俊彦 守口市京阪本通2丁目5番5号 三洋電機 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunsuke Taniguchi 2-5-5 Keihanhondori, Moriguchi-shi Sanyo Electric Co., Ltd. (72) Inventor Koji Yasou 2-5-5 Keihanhondori, Moriguchi-shi Sanyo Denki Co., Ltd. (72) Inventor Kotoku Akiyama 2-5-5 Keihan Hondori, Moriguchi Sanyo Denki Co., Ltd. (72) Inventor Yasio Miyake 2-5-5 Keihan Hondori, Moriguchi Sanyo Denki Co., Ltd. (72) Inventor Toshihiko Saito 2-5-5 Keihan Hondori, Moriguchi City Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン導電性及び電子導電性の両方
の性質を有する酸素イオン・電子混合導電体がセラミッ
クス粒子の表面に添着されてなる表面改質セラミックス
と、金属と、を主構成材料とする固体電解質燃料電池用
燃料極。
1. A main constituent material comprising a surface-modified ceramic in which an oxygen ion / electron mixed conductor having both oxygen ion conductivity and electron conductivity is attached to the surface of ceramic particles, and a metal. Fuel electrode for solid electrolyte fuel cell.
【請求項2】 前記酸素イオン・電子混合導電体が、C
e系酸化物であることを特徴とする請求項1記載の固体
電解質燃料電池用燃料極。
2. The oxygen-ion / electron mixed conductor is C
The fuel electrode for a solid electrolyte fuel cell according to claim 1, which is an e-based oxide.
【請求項3】 前記Ce系酸化物が、(CeO2)0.8(S
2 3)0.2 、(CeO2)0.8(Y2 3)0.2 、(CeO
2)0.8(La2 3)0.2 よりなる群から1つ選択された物
質、または前記群から選択される2以上の物質の混合物
であることを特徴とする請求項2記載の固体電解質燃料
電池用燃料極。
3. The Ce-based oxide is (CeO 2 ) 0.8 (S
m 2 O 3 ) 0.2 , (CeO 2 ) 0.8 (Y 2 O 3 ) 0.2 , (CeO
2. The solid electrolyte fuel cell according to claim 2, wherein the solid electrolyte fuel cell is a substance selected from the group consisting of 2 ) 0.8 (La 2 O 3 ) 0.2 , or a mixture of two or more substances selected from the group. Fuel electrode.
【請求項4】 前記酸素イオン・電子混合導電体が、プ
ラセオジウム酸化物であることを特徴とする請求項1記
載の固体電解質燃料電池用燃料極。
4. The fuel electrode for a solid oxide fuel cell according to claim 1, wherein the oxygen ion / electron mixed conductor is praseodymium oxide.
【請求項5】 前記プラセオジウム酸化物が、PrOx
(0<x≦3)であることを特徴とする請求項4記載の
固体電解質燃料電池用燃料極。
5. The praseodymium oxide is PrO x.
The fuel electrode for a solid electrolyte fuel cell according to claim 4, wherein (0 <x ≦ 3).
JP6119900A 1994-06-01 1994-06-01 Fuel electrode for fuel cell using solid electrolyte Pending JPH07326364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6119900A JPH07326364A (en) 1994-06-01 1994-06-01 Fuel electrode for fuel cell using solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6119900A JPH07326364A (en) 1994-06-01 1994-06-01 Fuel electrode for fuel cell using solid electrolyte

Publications (1)

Publication Number Publication Date
JPH07326364A true JPH07326364A (en) 1995-12-12

Family

ID=14773005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6119900A Pending JPH07326364A (en) 1994-06-01 1994-06-01 Fuel electrode for fuel cell using solid electrolyte

Country Status (1)

Country Link
JP (1) JPH07326364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028808A1 (en) * 1996-12-20 1998-07-02 Tokyo Gas Co., Ltd. Fuel electrode of solid electrolyte type fuel cell and process for the preparation of the same
JP2001351646A (en) * 2000-06-07 2001-12-21 Tokyo Gas Co Ltd LaGaO3 SOLID ELECTROLYTE FUEL CELL
KR101531993B1 (en) * 2014-04-17 2015-06-26 한국과학기술연구원 Cathode for molten carbonate fuel cells having structure providing new electrochemical reaction sites, method for preparing the same, and method for improving cathode performance by wettability control on molten carbonate electrolyte for molten carbonate fuel cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028808A1 (en) * 1996-12-20 1998-07-02 Tokyo Gas Co., Ltd. Fuel electrode of solid electrolyte type fuel cell and process for the preparation of the same
US6790474B1 (en) 1996-12-20 2004-09-14 Tokyo Gas Co., Ltd. Fuel electrode of solid oxide fuel cell and process for the production of the same
JP2001351646A (en) * 2000-06-07 2001-12-21 Tokyo Gas Co Ltd LaGaO3 SOLID ELECTROLYTE FUEL CELL
KR101531993B1 (en) * 2014-04-17 2015-06-26 한국과학기술연구원 Cathode for molten carbonate fuel cells having structure providing new electrochemical reaction sites, method for preparing the same, and method for improving cathode performance by wettability control on molten carbonate electrolyte for molten carbonate fuel cells

Similar Documents

Publication Publication Date Title
Xia et al. Novel cathodes for low‐temperature solid oxide fuel cells
JP3827209B2 (en) Method for producing composite air electrode for solid oxide fuel cell
JP2008538543A (en) Precursor material infiltration and coating methods
JP3786402B2 (en) Method for introducing electrode active oxide into air electrode for solid oxide fuel cell
JP3924772B2 (en) Air electrode current collector of solid oxide fuel cell
JP2000133280A (en) Anode for high performance solid oxide fuel cell
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
JP5226656B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP2002280026A (en) Air electrode current collector for solid electrolyte fuel cell
JP4390530B2 (en) Electrolyte / electrode assembly and method for producing the same
JP2003308846A (en) Perovskite oxide and air electrode for fuel cell
JP3448242B2 (en) Solid electrolyte fuel cell
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JPH09180731A (en) Solid electrolyte fuel cell
JP2003217597A (en) Solid electrolyte type fuel cell
KR20190028340A (en) Solid oxide fuel cell and a battery module comprising the same
JPH07326364A (en) Fuel electrode for fuel cell using solid electrolyte
JP2008234915A (en) Collector material of solid oxide fuel cell, air electrode collector, and the solid oxide fuel cell
KR102137988B1 (en) symmetrical solid oxide fuel cell having perovskite structure, method of manufacturing the same and symmetrical solid oxide electrolyzer cell having the perovskite structure
JPH0381959A (en) Solid electrolyte fuel cell
JP3162881B2 (en) Solid oxide fuel cell
JP3351865B2 (en) Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode
JP2001072465A (en) Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same
JP3336171B2 (en) Solid oxide fuel cell
JP2016115415A (en) Electrode material and solid oxide type fuel battery