JP2001072465A - Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same - Google Patents

Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same

Info

Publication number
JP2001072465A
JP2001072465A JP24381899A JP24381899A JP2001072465A JP 2001072465 A JP2001072465 A JP 2001072465A JP 24381899 A JP24381899 A JP 24381899A JP 24381899 A JP24381899 A JP 24381899A JP 2001072465 A JP2001072465 A JP 2001072465A
Authority
JP
Japan
Prior art keywords
solid electrolyte
rare earth
producing
electrolyte according
oxygen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24381899A
Other languages
Japanese (ja)
Inventor
Yoshio Akimune
淑雄 秋宗
Mikiya Shinohara
幹弥 篠原
Fumio Munakata
文男 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP24381899A priority Critical patent/JP2001072465A/en
Publication of JP2001072465A publication Critical patent/JP2001072465A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To obtain a solid electrolyte active over a wide temperature range, e.g. at >=600 deg.C, high in ionic conductivity, highly stable in crystal structure even at high temperatures and having high mechanical strength, to provide a method for producing such a solid electrolyte, and to provide an oxygen sensor or fuel cell using the above electrolyte. SOLUTION: This solid electrolyte is represented by the formula: (1-x) ZrO2-xLn2O3 (Ln is a rare earth element; x is 0.05-0.16); wherein Ln2O3 is at least two kinds selected from the group consisting of Y2O3, Gd2O3 and Yb2O3. The 2nd objective method for producing the above solid electrolyte comprises a mixing step for zirconia powder and at least two kinds of rare earth metal oxides, firing synthesis step for the mixture, grinding step for the resultant fired product, molding step for the resultant powder, and sintering step for the powder thus molded; wherein the firing synthesis is carried out at 900-1,150 deg.C for 2-8 h. This solid electrolyte is usable in the other objective oxygen sensors or fuel cells.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質その製
造方法及び該固体電解質を用いた酸素センサ又は燃料電
池に関し、特に、低温から高温まで幅広い温度範囲に渡
り活性を有する固体電解質、その製造方法及び該固体電
解質を用いた酸素センサ又は燃料電池に関する。
The present invention relates to a method for producing a solid electrolyte and an oxygen sensor or a fuel cell using the solid electrolyte, and more particularly, to a solid electrolyte having activity over a wide temperature range from low to high temperatures, and a method for producing the same. And an oxygen sensor or a fuel cell using the solid electrolyte.

【0002】[0002]

【従来の技術】固体電解質は、液漏れの心配がなく、伝
導に寄与するイオンが特定のものであることから、電
池、ガスセンサ等の各種素子の電子材料として極めて有
効であり、最近研究開発が積極的に進められている。
2. Description of the Related Art A solid electrolyte is extremely effective as an electronic material for various elements such as a battery and a gas sensor because a solid electrolyte has a specific ion that contributes to conduction without fear of liquid leakage. It is being actively promoted.

【0003】特に、セラミックス固体電解質燃料電池(S
OFC)は開発が進められ、数KWのジルコニア質セラミック
ス燃料電池が数千時間の運転実績を有している。SOFCは
高温(>1000℃)で運転されるために、炭化水素系燃料
を電池内で改質(internal reforming)することができ、
高い燃焼効率(>60%)を得ることが可能であると考え
られている。
In particular, ceramic solid electrolyte fuel cells (S
OFC) is being developed and several kW of zirconia ceramic fuel cells have been operating for thousands of hours. Since SOFCs are operated at high temperatures (> 1000 ° C), hydrocarbon-based fuels can be reformed (internal reforming) in the cell.
It is believed that high combustion efficiency (> 60%) can be obtained.

【0004】通常、SOFCの構成は、固体電解質、アノー
ド及びカソードからなる。全ての構成材料は酸化還元雰
囲気中で安定で、適度なイオン導電性を有する必要があ
り、且つ構成材料の熱膨張係数が近く、アノードとカソ
ードとは多孔体でガスが透過できることが必要である。
また、電池材料の強度と靱性が高く、安価であることが
望まれ、さらには運転時の安定性の観点から、導電体の
基本要件として同時に焼結された材料系が望ましい。
[0004] In general, a SOFC is composed of a solid electrolyte, an anode and a cathode. All constituent materials must be stable in an oxidation-reduction atmosphere, have an appropriate ionic conductivity, and have close thermal expansion coefficients, and the anode and cathode must be porous and gas permeable. .
In addition, it is desirable that the battery material has high strength and toughness and that it is inexpensive. Further, from the viewpoint of stability during operation, a material system that is simultaneously sintered as a basic requirement of the conductor is desirable.

【0005】現在、固体電解質に用いられる材料は、安
定化ZrO2が主流であり、安定化剤としては2価のアルカ
リ土類金属の酸化物、例えばCaO ,MgO ,Sc2O3 など
や、Y2O3などの希土類酸化物等が用いられている。アル
カリ土類金属のCaO をドープしたZrO2のイオン導電性特
性値は、800 ℃で0.01 (Ωcm) -1を示す。またH.Tannen
berger等の、Proc.Int'l Etude Piles Combust,19-26(1
965)に記載されているように、希土類酸化物、例えば、
Y2O3, b2O3 やGd2O3 を単独でドープしたZrO2のイオン
伝導度は、800 ℃で1×10-1から1×10-2S/cm程度であ
るが、650 ℃以下になると2×10-2S/cm以下にかなり減
少することが報告されている。
At present, stabilized ZrO 2 is mainly used as a material for a solid electrolyte, and divalent alkaline earth metal oxides such as CaO, MgO, Sc 2 O 3 and the like are used as stabilizers. Rare earth oxides such as Y 2 O 3 are used. The ionic conductivity characteristic value of ZrO 2 doped with the alkaline earth metal CaO shows 0.01 (Ωcm) −1 at 800 ° C. Also H.Tannen
Proc. Int'l Etude Piles Combust, 19-26 (1
965), rare earth oxides, for example,
The ion conductivity of ZrO 2 doped with Y 2 O 3 , b 2 O 3 or Gd 2 O 3 alone is about 1 × 10 −1 to 1 × 10 −2 S / cm at 800 ° C. It is reported that when the temperature is lowered below 2 ° C., it is considerably reduced to 2 × 10 −2 S / cm or less.

【0006】希土類およびアルカリ土類安定化ジルコニ
アに関しては、例えば特公昭57−50748 、特公昭57−50
749 に開示されているものがある。
As for rare earth and alkaline earth stabilized zirconia, for example, Japanese Patent Publication No. 57-50748 and Japanese Patent Publication No. 57-50
749.

【0007】また、酸素センサ用の固体電解質材料は、
上記温度域での粒界相の影響やエイジングの影響はさほ
ど重要ではないが、燃料電池用の固体電解質では酸化還
元雰囲気下、高温での結晶相の安定化や、高温での強度
低下防止が大きな問題となっている。
Further, a solid electrolyte material for an oxygen sensor is
The effects of the grain boundary phase and aging in the above temperature range are not so important, but in a solid electrolyte for fuel cells, stabilization of the crystal phase at high temperatures and prevention of strength reduction at high temperatures are performed in an oxidation-reduction atmosphere. It is a big problem.

【0008】このような従来の電池は、単電池の出力が
約1Vと限定されるため、高電力を得るには積層構造を
有することが必要である。このようなセラミックス電池
は大型になり、セラミックス材料のシステム選択や大型
電池の製造技術が非常に難しくなっている。このような
大型セラミックス電池の、燃焼器本体などの容器などに
は、経済的面よりフェライト系ステンレスなどの金属部
品の有効な利用が必要とされる。金属を有効に利用する
ためには、幅広い温度域で、特に低温 (600 〜800 ℃)
でも活性でイオン伝導率が高温(>1000℃)と同等であ
る固体電解質材料が必要とされている。
[0008] Since the output of a single cell is limited to about 1 V, such a conventional cell needs to have a laminated structure in order to obtain high power. Such ceramic batteries have become large in size, and it has become very difficult to select a ceramic material system and to manufacture large batteries. For such a large ceramic battery, a container such as a combustor body or the like requires effective use of metal parts such as ferritic stainless steel from the economical aspect. In order to make effective use of metals, a wide range of temperatures, especially at low temperatures (600-800 ° C)
However, there is a need for a solid electrolyte material that is active and has an ionic conductivity equivalent to high temperatures (> 1000 ° C.).

【0009】また、固体電解質は、温度約650 ℃付近で
結晶がこわれやすいので、幅広い温度域での結晶相の安
定化技術の確立や、高温での強度低下防止が大きな問題
となっている。これに関し、特開平5-225820号公報に
は、結晶構造の安定化のためAl2O 3 を添加する方法が開
示されている。
The solid electrolyte is heated at a temperature of about 650 ° C.
Since the crystals are easily broken, the crystal phase is low over a wide temperature range.
Establishing stabilization technology and preventing strength reduction at high temperatures are major issues
It has become. In this regard, Japanese Patent Application Laid-Open No. H5-225820 discloses
Is used to stabilize the crystal structure.TwoO Three The method of adding
It is shown.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、上記
従来の問題点を克服して、幅広い温度域、例えば600 ℃
以上の温度で活性を有し、イオン伝導率が高く、高温で
も結晶構造の安定性に優れかつ高強度を有する固体電解
質、その製造法及び該固体電解質を用いた酸素センサ又
は燃料電池を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned conventional problems and to provide a wide temperature range, for example, at 600 ° C.
Provided are a solid electrolyte having activity at the above temperature, high ionic conductivity, excellent stability of crystal structure even at high temperature, and high strength, a method for producing the same, and an oxygen sensor or a fuel cell using the solid electrolyte. It is in.

【0011】[0011]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、低温でのイオン伝導率は、 固体電解質材料中の
粒子内のイオン伝導率と粒界のイオン伝導率との制御が
重要であることを見い出し、安定化のために添加する希
土類元素と、粒界に流れるO2 - を減らす希土類元素との
2種以上の希土類元素を同時に添加することで、粒子内
によりO2 - が流れ、粒界によりO2 - が流れないようにで
きることを見出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that it is important to control the ionic conductivity at low temperatures in the solid electrolyte material between the ionic conductivity in the particles and the ionic conductivity in the grain boundary. It found that is, a rare earth element to be added for stabilization, O 2 flowing to the grain boundaries - by simultaneously adding two or more rare earth elements and rare earth elements to reduce, by the particle O 2 - is The present inventors have found that O 2 can be prevented from flowing due to flow and grain boundaries, and have reached the present invention.

【0012】請求項1記載の固体電解質は、一般式、(1
-x)ZrO2 ・xLn2O3( 式中:Lnは希土類元素、x=0.05〜
0.16を示す)で表されることを特徴とする。
The solid electrolyte according to claim 1 has a general formula: (1)
-x) ZrO 2 · xLn 2 O 3 (where: Ln is a rare earth element, x = 0.05 to
0.16).

【0013】請求項2記載の固体電解質は、請求項1記
載の固体電解質において、Ln2O3 が、Y2O3、Gd2O3 及び
Yb2O3 から成る群より選ばれる少なくとも2種であるこ
とを特徴とする。
According to a second aspect of the present invention, in the solid electrolyte according to the first aspect, Ln 2 O 3 comprises Y 2 O 3 , Gd 2 O 3 and
It is characterized by being at least two kinds selected from the group consisting of Yb 2 O 3 .

【0014】請求項3記載の固体電解質は、請求項2記
載の固体電解質において、Ln2O3 が、Y2O3とGd2O3 、Yb
2O3 とGd2O3 、及びY2O3とYb2O3 から成る群より選ばれ
る少なくとも2種であることを特徴とする。
The solid electrolyte according to a third aspect of the present invention is the solid electrolyte according to the second aspect , wherein Ln 2 O 3 comprises Y 2 O 3 , Gd 2 O 3 and Yb
It is characterized by being at least two members selected from the group consisting of 2 O 3 and Gd 2 O 3 , and Y 2 O 3 and Yb 2 O 3 .

【0015】請求項4記載の固体電解質は、請求項1〜
3いずれかの項記載の固体電解質おおいて、平均粒子径
が2〜12μm であることを特徴とする。
[0015] The solid electrolyte according to claim 4 is characterized in that:
The solid electrolyte according to any one of the three items, wherein the average particle diameter is 2 to 12 μm.

【0016】請求項5記載の固体電解質の製造方法は、
ジルコニア粉末と2種以上の希土類酸化物との混合工
程、焼成合成工程、粉砕工程、成形工程及び焼結工程を
含んで成り、焼成合成を温度900 〜1150℃で2〜8時間
行なうことを特徴とする。
According to a fifth aspect of the present invention, there is provided a method for producing a solid electrolyte, comprising:
It comprises a mixing step of zirconia powder and two or more rare earth oxides, a firing synthesis step, a pulverizing step, a forming step and a sintering step, wherein the firing synthesis is performed at a temperature of 900 to 1150 ° C. for 2 to 8 hours. And

【0017】請求項6記載の固体電解質の製造方法は、
請求項5記載の固体電解質の製造方法において、焼結工
程を、温度1400〜1600℃で2〜8時間で行なうことを特
徴とする。
[0017] The method for producing a solid electrolyte according to claim 6 comprises:
The method for producing a solid electrolyte according to claim 5, wherein the sintering step is performed at a temperature of 1400 to 1600C for 2 to 8 hours.

【0018】請求項7記載の固体電解質の製造方法は、
請求項5又は6記載の固体電解質の製造方法において、
上記焼成合成工程及び焼結工程を大気中で行なうことを
特徴とする。
[0018] The method for producing a solid electrolyte according to claim 7 comprises:
The method for producing a solid electrolyte according to claim 5,
The sintering and sintering steps are performed in the atmosphere.

【0019】請求項8記載の固体電解質の製造方法は、
請求項5〜7いずれかの項記載の固体電解質の製造方法
において、焼結工程には直径を0.5 〜0.8 μm に調整さ
れた粒子を用いることを特徴とする。
[0019] The method for producing a solid electrolyte according to claim 8 comprises:
The method for producing a solid electrolyte according to any one of claims 5 to 7, wherein the sintering step uses particles whose diameter is adjusted to 0.5 to 0.8 µm.

【0020】請求項9記載の酸素センサ又は燃料電池
は、請求項1〜4いずれかの項記載の固体電解質を用い
ることを特徴とする。
According to a ninth aspect of the present invention, an oxygen sensor or a fuel cell uses the solid electrolyte according to any one of the first to fourth aspects.

【0021】[0021]

【発明の実施の形態】本発明の固体電解質は、次の式 (1-x)ZrO2 ・xLn2O3 (式中、Lnは希土類元素、x=0.05〜0.16を示す)で表
される特に、Ln2O3 は、 Y2O3、Gd2O3 及びYb2O3 から
成る群より選ばれる少なくとも2種であることが好まし
く、Y2O3とGd2O3 、Y2O3とYb2O3 、Gd2O3 とYb2O3 及び
Yb2O3 とGd2O3 とYb2O3 の組み合わせを用いることがで
き、これは上記xの範囲で連続固溶体を形成する点から
好適だからである。
BEST MODE FOR CARRYING OUT THE INVENTION The solid electrolyte of the present invention is represented by the following formula (1-x) ZrO 2 .xLn 2 O 3 (where Ln is a rare earth element and x = 0.05 to 0.16) In particular, Ln 2 O 3 is preferably at least two kinds selected from the group consisting of Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 , and Y 2 O 3 and Gd 2 O 3 , Y 2 O 3 3 and Yb 2 O 3 , Gd 2 O 3 and Yb 2 O 3 and
A combination of Yb 2 O 3 , Gd 2 O 3, and Yb 2 O 3 can be used, because this is preferable from the viewpoint of forming a continuous solid solution in the above range of x.

【0022】このようにLn2O3 を2種以上ジルコニアに
添加することにより、固体電解質を安定にさせ、かつ粒
界に流れるO2 - を減少させ、粒子内により多くのO2 -
流れるようにすることができる。
By adding two or more kinds of Ln 2 O 3 to zirconia in this way, the solid electrolyte is stabilized and O 2 flowing to the grain boundaries is reduced, so that more O 2 flows in the particles. You can do so.

【0023】また、希土類酸化物を添加した固溶体は
「ホタル石」型構造をとる。添加した元素の原子半径に
依存した格子のひずみが生じ、元素ごとに添加量の最適
値が存在する。この最適値は巾がせまいので2種以上の
元素を添加してフラットな電気特性にすることが重要で
ある。添加元素の熱拡散で部分的に組成がずれた場合に
特性が大きく変化するため、結晶構造を維持することが
重要である。
The solid solution to which the rare earth oxide is added has a "fluorite" type structure. Lattice distortion depending on the atomic radius of the added element occurs, and there is an optimum value of the added amount for each element. Since the optimum value is narrow, it is important to add two or more elements to obtain flat electric characteristics. When the composition is partially deviated due to the thermal diffusion of the added element, the characteristics are greatly changed. Therefore, it is important to maintain the crystal structure.

【0024】上記式中、xは0.05〜0.16である。xが0.
05より少ないと、立方晶のジルコニアに正方晶のジルコ
ニアが混合せずに単一相となってしまい、一方0.16を超
えると立方晶のジルコニアの構造を有しているがオーダ
ー/ディスオーダー転移を起こしイオン伝導性能が落ち
てしまい好ましくない。
In the above formula, x is from 0.05 to 0.16. x is 0.
If it is less than 05, cubic zirconia will not be mixed with tetragonal zirconia and it will become a single phase, while if it exceeds 0.16, it will have a cubic zirconia structure, but will have an order / disorder transition. It is not preferable because the ion conduction performance is lowered.

【0025】本発明の上記式で表される固体電解質の合
成方法は、特に限定されるものではなく、公知及び慣用
の技術を用いて合成することができる。ジルコニア材料
の製造条件として中心となる技術は、固相による反応焼
成法が中心である。
The method for synthesizing the solid electrolyte represented by the above formula according to the present invention is not particularly limited, and the solid electrolyte can be synthesized using known and commonly used techniques. The main technology as a manufacturing condition of the zirconia material is a reaction firing method using a solid phase.

【0026】具体的に例えば、まずジルコニア粉末と、
希土類酸化物(安定化剤)(希土類酸化物:Y2O3,Gd2O3
及びYb2O3 から成る群より選ばれた2種もしくは3種)
を8〜16mol%となるように秤量して混合する。この時、
2種以上の希土類酸化物は、同時に添加することが、特
性を安定させる点から好ましい。次いでこの混合物を、
ボールミルで平均粒径が2μm 以下となるように水中で
粉砕してスラリーを得る。この時の粉末平均粒子径は2
μm 以下とすることが必要であり、2μm を超えると、
焼成合成工程における固相反応が不十分になるか、固溶
濃度にばらつきが生じ、特性値が安定しない。
Specifically, for example, first, zirconia powder,
Rare earth oxide (stabilizer) (Rare earth oxide: Y 2 O 3 , Gd 2 O 3
And two or three selected from the group consisting of Yb 2 O 3 )
Is weighed and mixed so as to be 8 to 16 mol%. At this time,
It is preferable to add two or more rare earth oxides at the same time from the viewpoint of stabilizing the characteristics. This mixture is then
A slurry is obtained by pulverizing in water so that the average particle size becomes 2 μm or less by a ball mill. The powder average particle size at this time was 2
μm or less, and if it exceeds 2 μm,
The solid-state reaction in the firing synthesis step becomes insufficient or the solid solution concentration varies, resulting in unstable characteristic values.

【0027】このスラリーを乾燥後、安定化剤の種類に
より異なるが、約900 〜1150℃で2〜8時間大気中で焼
成して、固相反応させる。固相反応後の材料を、再度ボ
ールミルで平均粒径が0.5 μm 以下となるように水中で
粉砕し、スプレードライア等で乾燥し、安定化ジルコニ
ア顆粒粉末とする。このときの粉末粒径は、レーザー光
により粒径を測定して、0.5 〜0.8 μm となっているこ
とが必要である。0.5 μm 未満ではプレス行程が行え
ず、0.8 μm を超えると焼結が不十分となり固体電解質
中に空孔が残留し強度低下の原因となる。
After the slurry is dried, the slurry is calcined at about 900 to 1150 ° C. for 2 to 8 hours in the atmosphere, depending on the type of the stabilizer, to cause a solid phase reaction. The material after the solid phase reaction is again pulverized in water so that the average particle size becomes 0.5 μm or less by a ball mill, and dried by a spray dryer or the like to obtain stabilized zirconia granular powder. The particle size of the powder at this time must be 0.5 to 0.8 μm as measured by a laser beam. If the thickness is less than 0.5 μm, the pressing process cannot be performed. If the thickness exceeds 0.8 μm, sintering becomes insufficient and pores remain in the solid electrolyte, causing a reduction in strength.

【0028】この安定化ジルコニア顆粒を、例えば金型
で圧粉し、静水圧プレスで2ton/cm 2 〜4ton/cm2の圧力
で成形し、所定の温度(1400 〜1600℃で2〜8時間)で
大気中で焼結することにより、固体電解質の焼結体を得
ることができる。焼結時には共生地のトチとアルミナ製
のサヤを用いることがよいが、トチはアルミナ製でもよ
い。
The stabilized zirconia granules are used, for example, in a mold
And 2 ton / cm with hydrostatic press Two ~ 4ton / cmTwoPressure
At a predetermined temperature (1400 to 1600 ° C for 2 to 8 hours)
Sintered solid electrolyte is obtained by sintering in air
Can be During sintering, co-fabric torch and alumina
It is preferable to use a sheath made of Aya, but Tochi may be made of alumina.
No.

【0029】焼結後の結晶粒子の大きさは、その平均粒
子径が2〜12μm 、好ましくは2〜10μm である。この
平均粒子径は、電子顕微鏡写真に平行直線10本(任意)
が横切る粒子長の平均を画像装置を用いて求めたもので
ある。平均粒子径を2〜12μm とすることで緻密で高強
度な固体電解質を提供できる。平均粒子径が>12μm な
ら強度低下が起き、<2μm なら高い靱性を得ることが
困難となる。より好ましくは2〜10μm である。
As for the size of the crystal grains after sintering, the average particle size is 2 to 12 μm, preferably 2 to 10 μm. The average particle size is 10 parallel straight lines in the electron micrograph (arbitrary)
The average of the particle lengths traversed by is determined using an imaging device. By setting the average particle diameter to 2 to 12 μm, a dense and high-strength solid electrolyte can be provided. If the average particle diameter is> 12 μm, the strength is reduced, and if it is <2 μm, it is difficult to obtain high toughness. More preferably, it is 2 to 10 μm.

【0030】また、本発明の固体電解質電池は、部位に
より温度が異なる燃料電池に用いた場合に安定した特性
を出せるものである。また、小型ながら自動車排気管の
中で用いられる酸素センサについても、温度変化が激し
く、結晶構造の経時変化が起き、性能が変わりやすい状
況下でも安定して特性を出せるデバイスとなりうる。
Further, the solid electrolyte battery of the present invention can exhibit stable characteristics when used in a fuel cell having different temperatures depending on the parts. In addition, a small-sized oxygen sensor used in an automobile exhaust pipe may be a device that can stably exhibit characteristics even under a situation where the temperature is drastically changed, the crystal structure changes with time, and the performance is easily changed.

【0031】また、本発明の固体電解質電池は、高温で
用いる燃料電池用の素材となりうる、高強度、高靱性を
有するものであり、電池の大型化に十分活用できるもの
である。一般に自動車の排気管に取り付けられる酸素セ
ンサ用素材としてだけでなく、金属溶湯中で用いる酸素
センサとしても活用できる。
Further, the solid electrolyte battery of the present invention has a high strength and a high toughness which can be used as a material for a fuel cell used at a high temperature, and can be sufficiently utilized for increasing the size of the battery. In general, it can be used not only as a material for an oxygen sensor attached to an exhaust pipe of an automobile but also as an oxygen sensor used in molten metal.

【0032】[0032]

【実施例】以下本発明とを次の実施例及び比較例により
説明する。実施例1〜8、比較例1〜4 市販のジルコニア粉末(EPグレード,第一希元素化学
工業製)と安定化剤(信越化学RUグレード 希土類酸化
物;Gd2O3 とY2O3とを表1に示す比率で)を5〜20mol%
となるように秤量して混合し、ボールミルで平均粒径が
2 μm 以下となるように水中で24時間粉砕した。次に該
スラリーを乾燥後、1100℃で4 時間焼成反応させ、再度
ボールミルで平均粒径が0.8 μm 以下となるように水中
で粉砕し、スプレードライア等で乾燥し、安定化ジルコ
ニア粉末とした。このときの粉末の一次粒子径は0.6μ
m であった。該粉末を金型で圧粉し、静水圧プイスで2
ton/cm2 の圧力で成形し、 表1に示す所定の温度(1300
〜1650℃で6時間)で焼結して、固体電解質を得た。
The present invention will be described below with reference to the following examples and comparative examples. Examples 1 to 8 and Comparative Examples 1 to 4 Commercially available zirconia powder (EP grade, manufactured by Daiichi Kagaku Kagaku Kogyo) and a stabilizer (Shin-Etsu Chemical RU grade rare earth oxide; Gd 2 O 3 and Y 2 O 3) 5 to 20 mol% at the ratio shown in Table 1)
And weighed so that the average particle size is
Grinding in water was carried out for 24 hours so as to be 2 μm or less. Next, after drying the slurry, a firing reaction was carried out at 1100 ° C. for 4 hours. The slurry was again pulverized in water so as to have an average particle diameter of 0.8 μm or less by a ball mill, and dried with a spray dryer or the like to obtain a stabilized zirconia powder. The primary particle size of the powder at this time was 0.6μ.
m. The powder is compacted in a mold, and
molded at a pressure of 1 ton / cm 2 , and a specified temperature (1300
で 1650 ° C. for 6 hours) to obtain a solid electrolyte.

【0033】実施例9〜16 、比較例5〜8 安定化剤をGd2O3 及びYb2O3 とした以外は、表2に示す
所用で、実施例1に準じて固体電解質を得た。
Examples 9 to 16 and Comparative Examples 5 to 8 Solid electrolytes were obtained in the same manner as in Example 1 except for using Gd 2 O 3 and Yb 2 O 3 as stabilizers. .

【0034】実施例17〜25 、比較例9〜12 安定化剤をY2O3とYb2O3 とした以外は、表3に示す所用
で、実施例1に準じて固体電解質を得た。
Examples 17 to 25, Comparative Examples 9 to 12 Solid electrolytes were obtained in the same manner as in Example 1 except that the stabilizers were changed to Y 2 O 3 and Yb 2 O 3 . .

【0035】実施例26〜34 、比較例13〜14 安定化剤をGd2O3 とY2O3とYb2O3 とした以外は、表4に
示す所用で、実施例1に準じて固体電解質を得た。
Examples 26 to 34, Comparative Examples 13 to 14 According to the same procedures as those in Example 1 except that the stabilizers were Gd 2 O 3 , Y 2 O 3 and Yb 2 O 3. A solid electrolyte was obtained.

【0036】比較例15〜23 表5に示す安定化剤を単独で用いた以外は、表 に示す
所用で、実施例1に準じて固体電解質を得た。
Comparative Examples 15 to 23 Solid electrolytes were obtained in the same manner as in Example 1 except that the stabilizers shown in Table 5 were used alone.

【0037】試験例 実施例1〜34,比較例1〜23で得られた固体電解質を各
々、JIS 規格の曲げ試験片形状に加工し、イオン伝導
度、曲げ強度、破壊靭性値の測定を行った。試験後電流
を1.0mA 流しながら800 ℃に保温した炉で100 時間の耐
久試験を行い、結晶相の変化をX線回折にて測定した。
Test Examples Each of the solid electrolytes obtained in Examples 1 to 34 and Comparative Examples 1 to 23 was processed into a JIS standard bending test piece, and ionic conductivity, bending strength, and fracture toughness were measured. Was. After the test, a durability test was performed for 100 hours in a furnace kept at 800 ° C. while flowing a current of 1.0 mA, and a change in crystal phase was measured by X-ray diffraction.

【0038】但し、特性評価は以下の方法で測定した。 (1) 曲げ強度:JIS-R1601 記載の4点曲げ試験を利用し
た。 (2) 破壊靭性値:JIS-R1607 記載のSEPB法を用いて測定
した。 (3) イオン伝導度:直流4端子法を用いた。JIS 曲げ試
験片を用い、白金線を等間隔に白金ペーストで固定した
後1000℃で焼成し、試験片とした。測定は所定温度に保
持した後、抵抗率を測定して逆数をイオン伝導度(σ)
とした。伝導は100 %酸素イオンの伝導と仮定した。計
算式は以下の式を用いた。 σ=電流(A) ×試験片断面積/ 電圧(V) ×有効試験片長
さ (4) 結晶相:立方晶と単斜晶ピークにおける立方晶ピー
クの割合 立方晶含有量=(IC111 )/IC111 )+IM
111 )+IM111 )×100 IC111 );立方晶(111) ピークの積分強度 IM111 );単斜晶(111) ピークの積分強度 IM111 );単斜晶(111) ピークの積分強度
However, the characteristic evaluation was measured by the following method. (1) Bending strength: A four-point bending test described in JIS-R1601 was used. (2) Fracture toughness: measured using the SEPB method described in JIS-R1607. (3) Ionic conductivity: DC four-terminal method was used. Using JIS bending test pieces, platinum wires were fixed at regular intervals with a platinum paste, and then fired at 1000 ° C. to obtain test pieces. After measuring at a predetermined temperature, the resistivity is measured, and the reciprocal is calculated as the ion conductivity (σ).
And Conduction was assumed to be 100% oxygen ion conduction. The following equation was used for the calculation. sigma = current (A) × specimen cross-sectional area / voltage (V) × effective specimen length (4) crystalline phase: cubic and percentage cubic content of cubic peak in monoclinic peak = (I C (111) / I C (111) + I M (
111) + I M (111) × 100 I C (111); cubic (111) integrated intensity of the peak I M (111); monoclinic (111) integrated intensity of the peak I M (111); monoclinic ( 111) Integrated intensity of peak

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】表中の総合評価は以下の基準による。 機械特性 曲げ強度(MPa) ?600MPa 破壊靭性値(MPa√m) ?6MPa√m 電気特性 イオン伝導度(S/cm) 600 ℃で?0.004、700 ℃?0.02 構造安定性 立方晶含有率 >95% 上記全ての条件を満足する場合には○、結晶構造、機械
特性、電気特性のいずれか2特性の上記条件を満足する
場合にはΔ、それ以外の場合には×として表中に示し
た。
The overall evaluation in the table is based on the following criteria. Mechanical properties Bending strength (MPa)? 600MPa Fracture toughness (MPa√m)? 6MPa√m Electrical properties Ion conductivity (S / cm)? 600, 700 ?? 0.02 at 600 ° C Structural stability Cubic content> 95 % When all the above conditions are satisfied, the results are shown in the table as 上 記, when the above two conditions of any one of the crystal structure, mechanical properties, and electrical characteristics are satisfied, Δ, and otherwise, ×. .

【0045】表中、組成範囲や製造条件は実施例では曲
げ強度、破壊靭性値、イオン伝導度が両立し、耐久後の
立方晶率が耐久前と変わらずに複数希土類の添加効果が
確認された。希土類の酸化物群が少ないと強度靭性は高
く高強度であるが、イオン伝導度が低く、一方量が多い
と強度靭性が下がり、かつ結晶の安定度も下がる。添加
希土類酸化物種の比を変えても特性値の両立が成り立
つ。焼結温度が1400〜1600℃の範囲よりも低いと、焼結
が不十分で強度靭性が低くかつイオン伝導度も低く、一
方、高いと結晶粒が大きくなりすぎ靭性強度が低下す
る。
In the table, the composition range and the production conditions are such that the bending strength, the fracture toughness value, and the ionic conductivity are compatible in the examples, and the effect of adding a plurality of rare earth elements is confirmed without changing the cubic crystal ratio after durability as before. Was. When the rare earth oxide group is small, the strength toughness is high and the strength is high, but the ionic conductivity is low. On the other hand, when the amount is large, the strength toughness is lowered and the stability of the crystal is also lowered. Even when the ratio of the type of the added rare earth oxide is changed, the compatibility of the characteristic values is satisfied. If the sintering temperature is lower than the range of 1400 to 1600 ° C., the sintering is insufficient and the strength toughness is low and the ionic conductivity is low. On the other hand, if the sintering temperature is high, the crystal grains become too large and the toughness decreases.

【0046】希土類の酸化物群が少ないと強度靭性が高
く高強度剤であるがイオン伝導度が低く、量が多いと強
度靭性が下がり、かつ結晶の安定度も下がる。Gd2O3
Y2O3の比を変えても特性値の両立が成り立つ。また、希
土類酸化物を1種とすると、耐久試験後の立方晶率が低
下し、結晶安定度が変動することが確認された。
When the amount of the rare earth oxide group is small, the toughness is high and the strength is high, but the ionic conductivity is low. When the amount is large, the strength toughness is lowered and the stability of the crystal is also lowered. Gd 2 O 3 and
Even if the ratio of Y 2 O 3 is changed, the compatibility of the characteristic values is satisfied. In addition, it was confirmed that when one rare earth oxide was used, the cubic crystal ratio after the durability test was reduced, and the crystal stability was changed.

【0047】[0047]

【発明の効果】本発明の固体電解質は、600 ℃の低温に
おいても活性を有し、イオン伝導率が高く、幅広い温度
域で有効であり、高温でも結晶構造の安定性に優れかつ
強度を有することができる。
The solid electrolyte of the present invention has activity even at a low temperature of 600 ° C., has a high ionic conductivity, is effective in a wide temperature range, has excellent crystal structure stability and strength even at a high temperature. be able to.

【0048】本発明の固体電解質の製造方法は、上記本
発明の固体電解質を有効にかつ経済的に製造することが
できる。
According to the method for producing a solid electrolyte of the present invention, the solid electrolyte of the present invention can be produced effectively and economically.

【0049】本発明の酸素センサ又は燃料電池は、上記
本発明の固体電解質をセンサーの材料又は電池材料に用
いているため、その容器本体にフェライト系ステンレス
等の金属部品を用いることができ、安価なものとするこ
とができる。
In the oxygen sensor or fuel cell of the present invention, since the solid electrolyte of the present invention is used as a sensor material or a battery material, metal parts such as ferrite stainless steel can be used for the container body, and the cost is low. It can be.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/02 H01M 8/12 8/12 G01N 27/58 A (72)発明者 宗像 文男 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 4G031 AA07 AA08 AA12 BA03 CA04 GA03 GA09 GA11 5G301 CA26 CA28 CA30 CD01 CE02 5H026 AA06 BB01 BB06 BB08 EE13 HH01 HH08 HH10 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/02 H01M 8/12 8/12 G01N 27/58 A (72) Inventor Fumio Munakata Yokohama-shi, Kanagawa 2F, Takaracho, Kanagawa-ku Nissan Motor Co., Ltd. F-term (reference) 4G031 AA07 AA08 AA12 BA03 CA04 GA03 GA09 GA11 5G301 CA26 CA28 CA30 CD01 CE02 5H026 AA06 BB01 BB06 BB08 EE13 HH01 HH08 HH10

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一般式、(1-x)ZrO2 ・xLn2O3( 式中、Ln
は希土類元素、x=0.05〜0.16を示す)で表されること
を特徴とする固体電解質。
1. The general formula: (1-x) ZrO 2 .xLn 2 O 3 (wherein, Ln
Is a rare earth element, x = 0.05 to 0.16).
【請求項2】 Ln2O3 は、Y2O3、Gd2O3 及びYb2O3 から
成る群より選ばれる少なくとも2種であることを特徴と
する請求項1記載の固体電解質。
2. The solid electrolyte according to claim 1, wherein Ln 2 O 3 is at least two members selected from the group consisting of Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 .
【請求項3】 Ln2O3 は、Y2O3とGd2O3 、Yb2O3 とGd2O
3 、及びY2O3とYb2O3 から成る群より選ばれることを特
徴とする請求項2記載の固体電解質。
3. Ln 2 O 3 includes Y 2 O 3 and Gd 2 O 3 , and Yb 2 O 3 and Gd 2 O
3. The solid electrolyte according to claim 2, wherein the solid electrolyte is selected from the group consisting of Y 2 O 3 and Yb 2 O 3 .
【請求項4】 平均粒子径が2〜12μm であることを特
徴とする請求項1〜3のいずれかの項記載の固体電解
質。
4. The solid electrolyte according to claim 1, wherein the average particle diameter is 2 to 12 μm.
【請求項5】 ジルコニア粉末と2種以上の希土類酸化
物との混合工程、焼成合成工程、粉砕工程、成形工程及
び焼結工程を含んで成り、焼成合成を温度900 〜1150℃
で2〜8時間行なうことを特徴とする固体電解質の製造
方法。
5. A method comprising the steps of mixing a zirconia powder and two or more rare earth oxides, firing and synthesizing, pulverizing, forming and sintering steps, wherein the firing and synthesis are performed at a temperature of 900 to 1150 ° C.
For 2 to 8 hours.
【請求項6】 上記焼結工程を、温度1400〜1600℃で2
〜8時間行なうことを特徴とする請求項5記載の固体電
解質の製造方法。
6. The sintering step is performed at a temperature of 1400 to 1600 ° C.
The method for producing a solid electrolyte according to claim 5, wherein the method is performed for up to 8 hours.
【請求項7】 上記焼成合成工程及び焼結工程を大気中
で行なうことを特徴とする請求項5又は6記載の固体電
解質の製造方法。
7. The method for producing a solid electrolyte according to claim 5, wherein the firing synthesis step and the sintering step are performed in the atmosphere.
【請求項8】 焼結工程には、直径0.5 〜0.8 μm に調
整された粒子を用いることを特徴とする請求項5〜7い
ずれかの項記載の固体電解質。
8. The solid electrolyte according to claim 5, wherein particles having a diameter of 0.5 to 0.8 μm are used in the sintering step.
【請求項9】 請求項1〜4いずれかの項記載の固体電
解質を用いた酸素センサ又は燃料電池。
9. An oxygen sensor or a fuel cell using the solid electrolyte according to claim 1.
JP24381899A 1999-08-30 1999-08-30 Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same Pending JP2001072465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24381899A JP2001072465A (en) 1999-08-30 1999-08-30 Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24381899A JP2001072465A (en) 1999-08-30 1999-08-30 Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same

Publications (1)

Publication Number Publication Date
JP2001072465A true JP2001072465A (en) 2001-03-21

Family

ID=17109395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24381899A Pending JP2001072465A (en) 1999-08-30 1999-08-30 Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same

Country Status (1)

Country Link
JP (1) JP2001072465A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505235A (en) * 2006-09-27 2010-02-18 コーニング インコーポレイテッド Electrolyte sheet with regions of different composition and fuel cell device comprising the same
WO2012105579A1 (en) * 2011-01-31 2012-08-09 Toto株式会社 Solid electrolyte material and solid oxide fuel cell provided with same
WO2012105580A1 (en) * 2011-01-31 2012-08-09 Toto株式会社 Solid oxide fuel cell
JP2017044684A (en) * 2015-08-27 2017-03-02 株式会社デンソー A/f sensor, and manufacturing method of the same
WO2017034037A1 (en) * 2015-08-27 2017-03-02 株式会社デンソー A/f sensor and method of manufacturing same
JP2018129215A (en) * 2017-02-09 2018-08-16 株式会社日本触媒 Zirconia electrolyte and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505235A (en) * 2006-09-27 2010-02-18 コーニング インコーポレイテッド Electrolyte sheet with regions of different composition and fuel cell device comprising the same
WO2012105579A1 (en) * 2011-01-31 2012-08-09 Toto株式会社 Solid electrolyte material and solid oxide fuel cell provided with same
WO2012105580A1 (en) * 2011-01-31 2012-08-09 Toto株式会社 Solid oxide fuel cell
JPWO2012105579A1 (en) * 2011-01-31 2014-07-03 Toto株式会社 Solid electrolyte material and solid oxide fuel cell having the same
JPWO2012105580A1 (en) * 2011-01-31 2014-07-03 Toto株式会社 Solid oxide fuel cell
JP5725449B2 (en) * 2011-01-31 2015-05-27 Toto株式会社 Solid oxide fuel cell
JP5729572B2 (en) * 2011-01-31 2015-06-03 Toto株式会社 Solid electrolyte material and solid oxide fuel cell having the same
US9799905B2 (en) 2011-01-31 2017-10-24 Toto Ltd. Solid oxide fuel cell
JP2017044684A (en) * 2015-08-27 2017-03-02 株式会社デンソー A/f sensor, and manufacturing method of the same
WO2017034037A1 (en) * 2015-08-27 2017-03-02 株式会社デンソー A/f sensor and method of manufacturing same
JP2018129215A (en) * 2017-02-09 2018-08-16 株式会社日本触媒 Zirconia electrolyte and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5689107B2 (en) Manufacturing method of NiO-ceramic composite powder and NiO-ceramic composite fuel electrode
JP5311913B2 (en) Method for producing high ion conductive solid electrolyte material
KR20130099704A (en) Functional layer material for solid oxide fuel cell, functional layer manufactured using the material and solid oxide fuel cell including the functional layer
WO2011081417A2 (en) Composite ceramic material and a production method therefor
KR20080010737A (en) The cubic scandia stabilized zirconia for electrolyte of solid oxide fuel cells, and the fabrication method the same
JP2000340240A (en) High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same
KR20130123189A (en) Anode support for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell including the anode support
KR20170027242A (en) Ceria electrolyte for low temperature sintering and solid oxide fuel cells using the same
JP4334894B2 (en) Method for producing solid electrolyte
JP2004339035A (en) Lanthanum gallate sintered compact, method for producing the same, and use of the same
JP3661676B2 (en) Solid oxide fuel cell
JP2001072465A (en) Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same
Xia et al. Co-doped Sr2FeNbO6 as cathode materials for intermediate-temperature solid oxide fuel cells
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JP4589683B2 (en) Mixed ionic conductor
JP3598956B2 (en) Gallate composite oxide solid electrolyte material and method for producing the same
JP2000044340A (en) Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JP2836852B2 (en) Solid oxide fuel cell separator
JP2003123789A (en) Solid electrolyte material, its manufacturing method, and solid electrolyte fuel cell using the same
JP3743230B2 (en) Solid electrolyte sintered body, method for producing the same, and fuel cell using the solid electrolyte sintered body
JP5436588B2 (en) High ion conductive solid electrolyte material and sintered body, and solid electrolyte fuel cell
JP2003323903A (en) Zirconia material containing scandia in form of solid solution, and solid electrolyte fuel cell using the same
JP2007012498A (en) Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
JP2005139024A (en) Mixed conductive ceramic material and solid oxide type fuel cell using this material
JP3389407B2 (en) Conductive ceramics and fuel cells