WO2017034037A1 - A/f sensor and method of manufacturing same - Google Patents

A/f sensor and method of manufacturing same Download PDF

Info

Publication number
WO2017034037A1
WO2017034037A1 PCT/JP2016/075136 JP2016075136W WO2017034037A1 WO 2017034037 A1 WO2017034037 A1 WO 2017034037A1 JP 2016075136 W JP2016075136 W JP 2016075136W WO 2017034037 A1 WO2017034037 A1 WO 2017034037A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection unit
solid electrolyte
sensor
electrolyte body
exhaust gas
Prior art date
Application number
PCT/JP2016/075136
Other languages
French (fr)
Japanese (ja)
Inventor
竜己 宇治山
鈴木 康文
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016113841A external-priority patent/JP6443397B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/754,373 priority Critical patent/US10801989B2/en
Priority to DE112016003882.8T priority patent/DE112016003882B4/en
Publication of WO2017034037A1 publication Critical patent/WO2017034037A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells

Definitions

  • the present disclosure relates to an A / F sensor for measuring an air-fuel ratio of exhaust gas and a manufacturing method thereof.
  • a / F sensor for measuring the air-fuel ratio of exhaust gas a configuration including a solid electrolyte body having oxygen ion conductivity is known (see Patent Document 1).
  • the solid electrolyte body is made of, for example, zirconia and is formed in a plate shape or a cup shape.
  • a measurement electrode that contacts the exhaust gas is provided on one surface of the solid electrolyte body.
  • a reference electrode that contacts a reference gas such as the atmosphere is provided.
  • Part of the solid electrolyte body is a detection part sandwiched between the measurement electrode and the reference electrode.
  • the detection unit when the detection unit is heated to the activation temperature, oxygen ions move in the detection unit from the reference electrode to the measurement electrode or from the measurement electrode to the reference electrode. By measuring the current generated at this time, the oxygen concentration in the exhaust gas is measured, and the air-fuel ratio is calculated.
  • the A / F sensor is used in an engine control system such as a vehicle.
  • feedback control of the engine is performed using the air-fuel ratio value measured by the A / F sensor.
  • the air-fuel ratio of the exhaust gas is controlled to reduce harmful substances in the exhaust gas.
  • the A / F sensor is attached to the exhaust pipe of the engine.
  • the exhaust pipe is provided with a purification device for purifying the exhaust gas.
  • the A / F sensor is often provided on the upstream side of the exhaust gas from the purification device.
  • an A / F sensor is provided not only on the upstream side of the purification device but also on the downstream side, and the A / F sensor on the downstream side is used to control the air-fuel ratio of the exhaust gas that has passed through the purification device with higher accuracy. To do. Thereby, it has been studied to further reduce harmful substances contained in the exhaust gas that has passed through the purification device.
  • the conventional A / F sensor has a relatively high electrical resistance of the detection unit.
  • the electric resistance of the detection unit is high, the value of the electric resistance tends to vary from one A / F sensor to another. For this reason, the value of the current flowing through the detection unit is likely to vary for each A / F sensor, and the air-fuel ratio measurement accuracy is likely to be lowered.
  • the present disclosure aims to provide an A / F sensor provided on the downstream side of the exhaust gas purifying device and capable of more accurately measuring the air-fuel ratio of the exhaust gas, and a manufacturing method thereof.
  • a first aspect of the technology of the present disclosure is an A / F sensor (1) that is provided on the downstream side of the exhaust gas with respect to the purification device (10) that purifies the exhaust gas and measures the air-fuel ratio of the exhaust gas,
  • a cup-shaped solid electrolyte body (2) whose front end is closed and whose base end is open, a reference gas chamber (3) formed inside the solid electrolyte body and into which a reference gas is introduced, and an outer surface of the solid electrolyte body
  • a heater (6) for heating the solid electrolyte body wherein the solid electrolyte body is composed of zirconia, and the solid electrolyte body is interposed between the measurement electrode and the reference electrode,
  • Detection unit (20) that conducts oxygen ions Includes, ⁇ knowledge unit, the proportion of the cubic phase is not
  • a second aspect of the technology of the present disclosure is a method for manufacturing the A / F sensor, in which a fired body (29) is manufactured by firing the unfired body (28) of the solid electrolyte body. Performing a firing step, and an energization step of causing a ratio of the cubic phase in the detection unit to be 88 mol% or more by flowing a current between the measurement electrode and the reference electrode formed on the fired body. .
  • zirconia crystals include a cubic phase (hereinafter also referred to as “C phase”), a monoclinic phase (hereinafter also referred to as “M phase”), and a tetragonal phase (hereinafter also referred to as “T phase”).
  • C phase cubic phase
  • M phase monoclinic phase
  • T phase tetragonal phase
  • the M phase and the T phase have high electric resistance, but the C phase has low electric resistance.
  • the electrical resistance of the detection unit can be lowered by sufficiently increasing the amount of the C phase in the detection unit. Therefore, variation in electrical resistance in the detection unit can be reduced, and variation in current flowing in the detection unit can be reduced. Thereby, the air-fuel ratio of exhaust gas can be measured with high accuracy. Therefore, in the A / F sensor of the present disclosure, the air-fuel ratio of the exhaust gas can be controlled with higher accuracy, and harmful substances in the exhaust gas can be further reduced.
  • the said baking process and the said electricity supply process are performed. It is difficult to make the proportion of the C phase of the detection part 88 mol% or more only by performing the firing step. However, if the energization process in which a current is passed between the measurement electrode and the reference electrode is performed, the C phase of the detection unit can be easily increased to 88 mol% or more. Therefore, in the sensor manufacturing method of the present disclosure, the A / F sensor can be easily manufactured.
  • FIG. 1 is an enlarged cross-sectional view of a main part of a solid electrolyte body in the first embodiment.
  • FIG. 2 is a side view of the solid electrolyte body in the first embodiment.
  • FIG. 3 is a cross-sectional view of the A / F sensor according to the first embodiment.
  • FIG. 4 is a view for explaining the mounting position of the A / F sensor in the first embodiment.
  • FIG. 5 is a diagram for explaining a manufacturing process of each sample in the first embodiment.
  • FIG. 6 is a graph showing the relationship between the C phase ratio of the detection unit and the electrical resistance of the detection unit in Experimental Example 1.
  • FIG. 7 shows the XRD analysis results of the detection unit in the range of 20 to 90 ° when 2 ⁇ is in the range of 20 to 90 °, where ⁇ is the incident angle of X-rays (CuK ⁇ rays) in Experimental Example 1.
  • FIG. 8 is a graph showing the relationship between the electrical resistance of the detection unit, the ratio of the C phase, and the temperature of the detection unit in Experimental Example 2.
  • FIG. 9 is a graph showing the relationship between the electrical resistance of the detection unit, the ratio of the C phase, and the area of the detection unit in Experimental Example 3.
  • FIG. 10 is a graph showing the relationship between the electrical resistance of the detection unit, the ratio of the C phase, and the thickness of the detection unit in Experimental Example 4.
  • FIG. 11 is a graph showing the relationship between the bending strength of the solid electrolyte body and the temperature for each fracture probability in Experimental Example 5.
  • the A / F sensor of the present disclosure can be applied to an in-vehicle sensor for measuring an air-fuel ratio of exhaust gas discharged from a vehicle engine.
  • the “front end side” is one side of the A / F sensor in the axial direction (Z1 side in the Z direction) and refers to the side where the sensor is exposed to the exhaust gas that is the gas to be measured.
  • the “base end side” refers to the opposite side (Z2 side in the Z direction).
  • the A / F sensor 1 of the present embodiment is provided on the downstream side of the exhaust gas g with respect to the purification device 10 that purifies the exhaust gas g in the flow path of the exhaust gas g.
  • the A / F sensor 1 is provided for measuring the air-fuel ratio of the exhaust gas g.
  • the A / F sensor 1 includes a solid electrolyte body 2 and a heater 6.
  • the solid electrolyte body 2 is formed in a cup shape in which the distal end is closed and the proximal end is opened.
  • a reference gas chamber 3 into which a reference gas such as the atmosphere is introduced is formed inside the solid electrolyte body 2.
  • a heater 6 is disposed in the reference gas chamber 3.
  • a measurement electrode 4 that contacts the exhaust gas g is formed on the outer surface 21 of the solid electrolyte body 2.
  • a reference electrode 5 in contact with the reference gas is formed on the inner surface 22 of the solid electrolyte body 2.
  • the solid electrolyte body 2 is composed of zirconia (ZrO 2 ).
  • the solid electrolyte body 2 includes a detection unit 20 that is interposed between the measurement electrode 4 and the reference electrode 5 and that conducts oxygen ions.
  • the detector 20 has a cubic phase ratio of 88 mol% or more.
  • the A / F sensor 1 of the present embodiment is an in-vehicle sensor for measuring the air-fuel ratio of exhaust gas generated from a vehicle engine.
  • the solid electrolyte body 2 includes a diameter-enlarged portion 25 that is partially enlarged.
  • a portion 23 located on the distal end side (Z1 side in the Z direction) with respect to the enlarged diameter portion 25 is exposed to the exhaust gas g.
  • an output extraction portion 24 is formed at a position closer to the base end side (Z2 side in the Z direction) than the enlarged diameter portion 25.
  • the output extraction part 24 is not exposed to the exhaust gas g.
  • a terminal portion 42 is formed on the outer surface of the output extraction portion 24.
  • the measurement electrode 4 and the terminal part 42 are connected by a lead part 41.
  • the measurement electrode 4 is formed in an annular shape so as to surround the solid electrolyte body 2.
  • the length L (see FIG. 1) of the measurement electrode 4 in the axial direction (Z direction) of the solid electrolyte body 2 is set to 3 mm or less.
  • the reference electrode 5 is formed on the entire inner surface 22 of the solid electrolyte body 2.
  • the measurement electrode 4 and the reference electrode 5 are each made of platinum (Pt).
  • a diffusion layer 211 and a trap layer 212 are formed on the outer surface 21 of the solid electrolyte body 2.
  • the diffusion layer 211 and the trap layer 212 cover the measurement electrode 4.
  • the diffusion layer 211 is made of aluminum oxide, magnesium oxide, and spinel (alumina-magnesia-spinel), and the trap layer 212 is made of porous alumina.
  • the exhaust gas g contacts the measurement electrode 4 through the diffusion layer 211 and the trap layer 212.
  • the diffusion layer 211 is provided to control the diffusion rate of the exhaust gas g.
  • the trap layer 212 is provided to collect poisonous substances in the exhaust gas g.
  • the A / F sensor 1 when the temperature of the detection unit 20 is raised to the activation temperature using the heater 6 (see FIG. 3), oxygen ions are converted into the interior of the solid electrolyte body 2 when the exhaust gas g is in a rich atmosphere. Is moved from the reference electrode 5 to the measurement electrode 4. On the other hand, when the exhaust gas g is in a lean atmosphere, oxygen ions move from the measurement electrode 4 to the reference electrode 5. At this time, the A / F sensor 1 measures the oxygen concentration in the exhaust gas g by measuring the value of the current flowing between the measurement electrode 4 and the reference electrode 5, and calculates the air-fuel ratio of the exhaust gas g. It is configured.
  • the C phase is 88 mol% or more.
  • the C phase is less than 88 mol%. More specifically, it is 87 mol% or less.
  • the solid electrolyte body 2 of the present embodiment contains yttrium oxide (Y 2 O 3 ) in the range of 4.5 to 6 mol%.
  • the area of the detection unit 20 is in the range of 20 to 40 mm 2
  • the thickness Th of the detection unit 20 is in the range of 0.5 to 2 mm.
  • a method for manufacturing the solid electrolyte body 2 In order to manufacture the solid electrolyte body 2, a process as shown in FIG. 5 is performed. In this manufacturing method, first, ZrO 2 powder and Y 2 O 3 powder are mixed and formed into a cup shape, and the green body 28 of the solid electrolyte body 2 is produced. Thereafter, the green body 28 is fired (firing step). Then, the measurement electrode 4 and the reference electrode 5 are formed on the fired body 29 by plating. Thereafter, the diffusion layer 211 is plasma sprayed on the surface of the fired body 29, and further a slurry that becomes the trap layer 212 is applied, followed by drying and firing.
  • the proportion of the C phase is usually 87 mol% or less in all the parts.
  • a fired body 29 can be formed by the following method, for example. Specifically, when the composition of the unfired body 28 is 94% ZrO 2 and 6% Y 2 O 3 and fired at 1100 ° C. for about 24 hours, the proportion of the C phase is 87 mol% in all parts. A fired body 29 is formed.
  • the heater 6 is disposed inside the fired body 29, and a current is passed between the measurement electrode 4 and the reference electrode 5 while the fired body 29 is heated by the heater 6 (energization process).
  • the temperature of the detection unit 20 is set to 850 ° C., and a current of 260 mA is passed between the measurement electrode 4 and the reference electrode 5. If it does in this way, the crystal structure of the detection part 20 will change and the ratio of C phase will increase.
  • the ratio of the C phase in the detection unit 20 can be 88 mol% or more by performing the energization process for a predetermined time.
  • the heater 20 is used to heat the detection unit 20 within the range of 600 to 1000 ° C.
  • the current flowing through the detection unit 20 is very small (the flowing current is small). Therefore, the ratio of the C phase does not change while measuring the air-fuel ratio.
  • the temperature of the detection unit 20 is set to 850 ° C., and a larger current (a current of about several hundred mA) is passed through the detection unit 20 than when the air-fuel ratio is measured.
  • a large current is passed, the crystal structure of the detection unit 20 changes, and the proportion of the C phase increases.
  • the A / F sensor 1 includes the solid electrolyte body 2, the housing 14, the wiring 15 (15a, 15b), the heater wiring 16, the cover 17 (17a, 17b), and the atmosphere.
  • a side cover 18 (18a to 18c) and a seal portion 19 are provided.
  • the solid electrolyte body 2 is fixed in the housing 14.
  • one wire 15a is electrically connected to the terminal portion 42 (see FIG. 2).
  • the other wiring 15 b is electrically connected to the reference electrode 5 formed on the inner surface of the output extraction portion 24.
  • the heater wiring 16 is electrically connected to the heater 6.
  • the tip of the solid electrolyte body 2 is protected by two covers 17 (17a, 17b). Openings 170 are respectively formed in the covers 17a and 17b.
  • the exhaust gas g enters the inside of the cover 17 through the opening 170.
  • a shoulder 140 is formed at a portion located on the base end side (Z2 side in the Z direction) of the housing 14 in the axial direction (Z direction).
  • a spring member 141 is arranged at a position on the tip side of the shoulder 140 (Z1 side in the Z direction).
  • the shoulder portion 140 is caulked to pressurize the solid electrolyte body 2 toward the distal end side in the axial direction (Z direction) and press the expanded diameter portion 25 against the housing 14. Thereby, the exhaust gas g is prevented from leaking from between the enlarged diameter portion 25 and the housing 14.
  • Three atmosphere side covers 18 are provided at a position on the base end side of the housing 14 in the axial direction (Z direction).
  • a seal portion 19 is disposed at a base end side portion of the atmosphere side covers 18b and 18c.
  • the wiring 15 and the heater wiring 16 pass through the inside of the seal portion 19.
  • the seal portion 19 is fixed by caulking the atmosphere side covers 18b and 18c.
  • a through portion 180 is formed in the atmosphere side covers 18b and 18c.
  • the atmospheric air which is a reference gas, is introduced into the reference gas chamber 3 inside from the outside of the A / F sensor 1 through the penetration part 180.
  • the A / F sensor 1 of this embodiment is attached to the exhaust pipe 12.
  • the exhaust pipe 12 is connected to the engine 11 (internal combustion engine).
  • the exhaust pipe 12 is provided with a purification device 10 that purifies the exhaust gas g.
  • the exhaust pipe 12 includes an upstream portion 12a that connects between the purification device 10 and the engine 11 and a downstream portion 12b that is provided on the downstream side of the purification device 10 in the flow path of the exhaust gas g.
  • the A / F sensor 1 is attached to the downstream portion 12 b of the exhaust pipe 12.
  • An upstream air-fuel ratio sensor 8 is attached to the upstream portion 12a.
  • the A / F sensor 1 and the upstream air-fuel ratio sensor 8 are connected to the control circuit unit 13.
  • the A / F sensor 1, the upstream air-fuel ratio sensor 8, and the control circuit unit 13 constitute an engine control system 100 that controls the engine 11.
  • the control circuit unit 13 calculates the air-fuel ratio of the exhaust gas g upstream of the purifier 10 based on the output signal of the upstream air-fuel ratio sensor 8.
  • the control circuit unit 13 calculates the air-fuel ratio of the exhaust gas g on the downstream side of the purification device 10 based on the output signal of the A / F sensor 1.
  • the control circuit unit 13 performs feedback control of the engine 11 using these measured values of the air-fuel ratio.
  • the engine 11 is roughly controlled using the value of the air-fuel ratio measured by the upstream air-fuel ratio sensor 8. Further, the engine 11 is precisely controlled using the air-fuel ratio value measured by the A / F sensor 1.
  • the engine control system 100 accurately controls the air-fuel ratio of the exhaust gas g.
  • the A / F sensor 1 of the present embodiment is required to have high air / fuel ratio measurement accuracy.
  • the purification device 10 includes a honeycomb structure 101 and a catalyst layer formed on the surface of the honeycomb structure 101.
  • the honeycomb structure 101 is made of cordierite or the like, and has a plurality of cells through which the exhaust gas g passes.
  • the catalyst layer contains a noble metal catalyst such as Pt or palladium (Pd).
  • the exhaust gas g comes into contact with the noble metal catalyst when passing through the cell.
  • the engine control system 100 of the present embodiment is configured to purify harmful substances such as NOx and CO contained in the exhaust gas g.
  • the detection unit 20 in the A / F sensor 1 of the present embodiment has a C phase ratio of 88 mol% or more. If it does in this way, in A / F sensor 1, the electrical resistance of detection part 20 in solid electrolyte object 2 can be reduced significantly, and the variation in this electrical resistance can be reduced. That is, zirconia crystals include a C phase, an M phase, and a T phase. The M phase and the T phase have high electric resistance, but the C phase has low electric resistance. Therefore, in the A / F sensor 1, the electrical resistance of the detection unit 20 can be lowered by sufficiently increasing the amount of the C phase in the detection unit 20.
  • the air-fuel ratio of the exhaust gas g can be measured with high accuracy. Therefore, in the A / F sensor 1 of the present embodiment, the air-fuel ratio of the exhaust gas g can be controlled with higher accuracy, and harmful substances in the exhaust gas g can be further reduced.
  • the length L (refer FIG. 1) of the measurement electrode 4 in the axial direction (Z direction) of the solid electrolyte body 2 is 3 mm or less. Therefore, in this embodiment, the usage-amount of the noble metal which comprises the measurement electrode 4 can be reduced, and the manufacturing cost of the A / F sensor 1 can be reduced. If the length L is shortened, the measurement accuracy of the air-fuel ratio tends to be lowered, but in this embodiment, the amount of phase C is set to 88 mol% or more, so that the measurement accuracy of the air-fuel ratio can be improved. Therefore, in the present embodiment, it is possible to achieve both a reduction in manufacturing cost of the A / F sensor 1 and an improvement in air-fuel ratio measurement accuracy.
  • the detection part 20 of this embodiment has 1 mol% or more C phases more than parts other than the detection part 20 among the solid electrolyte bodies 2.
  • FIG. Therefore, in this embodiment, the solid electrolyte body 2 can be manufactured easily. That is, when the solid electrolyte body 2 is manufactured, as described above, the unfired body 28 (see FIG. 5) is fired to create the fired body 29. However, it is difficult to obtain a fired body 29 having a C phase ratio of 88 mol% or more. On the other hand, it is relatively easy to obtain a fired body 29 having a C phase ratio of 87 mol% or less.
  • a fired body 29 having a C phase ratio of 87 mol% is created, and then the above energization process is performed to increase the C phase in the detection unit 20 by 1 mol% or more.
  • the solid electrolyte body 2 whose C phase of the detection part 20 is 88 mol% or more can be manufactured easily.
  • the electrical resistance of the detection unit 20 is greatly reduced (see FIG. 6). Therefore, if the proportion of the C phase in the detection unit 20 is increased by 1 mol% or more from 87 mol%, which is the proportion of other parts, the electrical resistance of the detection unit 20 can be greatly reduced.
  • the solid electrolyte body 2 of the present embodiment contains Y 2 O 3 in the range of 4.5 to 6 mol%.
  • the thermal expansion coefficient of the solid electrolyte body 2 can be made substantially equal to the thermal expansion coefficient of the porous alumina constituting the diffusion layer 211 (see FIG. 1) and the trap layer 212. Therefore, in the present embodiment, when the solid electrolyte body 2 is heated by the heater 6, it is difficult for thermal stress to be applied to the solid electrolyte body 2.
  • the ratio of C phase shall be 95 mol% or less.
  • the ratio of the C phase is desirably 95 mol% or less.
  • the A / F sensor 1 of the present embodiment is configured to heat the detection unit 20 within the range of 600 to 1000 ° C. by the heater 6 when measuring the air-fuel ratio of the exhaust gas g.
  • the temperature of the detection unit 20 is less than 600 ° C.
  • the electrical resistance of the detection unit 20 cannot be sufficiently reduced as will be described later.
  • temperature is too high and the intensity
  • the temperature of the detection part 20 exceeds 1000 degreeC, the problem that the power consumption of the heater 6 becomes high also arises. Therefore, when measuring the air-fuel ratio, it is preferable to set the temperature of the detection unit 20 within the range of 600 to 1000 ° C. It is more preferable that the temperature of the detection unit 20 when measuring the air-fuel ratio is in the range of 650 to 800 ° C.
  • the area of the detection unit 20 (the area of the measurement electrode 4) is set to 40 mm 2 or less.
  • the area of the detection unit 20 exceeds 40 mm 2 , the area is too large, so that the amount of noble metal used for the measurement electrode 4 is likely to increase. Therefore, the manufacturing cost of the A / F sensor 1 is likely to increase. Therefore, the area of the detection unit 20 is preferably 40 mm 2 or less.
  • the area of the detection unit 20 (the area of the measurement electrode 4) is set to 20 mm 2 or more. Since the area of the measurement electrode 4 varies in size (manufacturing variation), if the area is reduced to less than 20 mm 2 , the influence of this variation increases. For this reason, the variation in electric resistance in the detection unit 20 becomes large, and the measurement accuracy of the air-fuel ratio tends to be lowered. Therefore, the area of the detection unit 20 is preferably 20 mm 2 or more.
  • the thickness Th of the detection unit 20 is 2 mm or less.
  • the thickness Th of the detection unit 20 is preferably 2 mm or less.
  • the thickness Th of the detection unit 20 is set to 0.5 mm or more.
  • the thickness Th of the detection unit 20 is preferably 0.5 mm or more.
  • the said baking process and the said electricity supply process are performed.
  • the unfired body 28 (see FIG. 5) of the solid electrolyte body 2 is fired to produce a fired body 29.
  • a current is passed between the measurement electrode 4 and the reference electrode 5 formed on the fired body 29 so that the ratio of the C phase in the detection unit 20 is 88 mol% or more.
  • the solid electrolyte body 2 is formed.
  • the ratio of the C phase in the detection part 20 can be increased easily by performing the said electricity supply process. Therefore, it is easy to manufacture the solid electrolyte body 2 in the manufacturing method of the present embodiment.
  • the ratio of the C phase in the detection unit 20 is more preferably 88.5 mol% or more. In the case of 88.5 mol% or more, the variation in the electrical resistance of the detection unit 20 can be further suppressed (see FIG. 6).
  • an A / F sensor 1 that is provided on the downstream side of the exhaust gas purification device 10 and that can more accurately measure the air-fuel ratio of the exhaust gas, and a manufacturing method thereof.
  • Example 1 An experiment was conducted to confirm the operational effects of the A / F sensor 1 of the present embodiment. First, in this experiment, as shown in Table 1 below, five types of A / F sensor 1 samples (samples 1 to 5) having different C phase ratios in the detection unit 20 were manufactured. And the electrical resistance of each detection part 20 was measured for these samples. Thereby, in this experiment, the relationship between the ratio of C phase and the variation in electrical resistance was investigated.
  • a firing step was performed in the above-described sample manufacturing method.
  • the green body 28 was fired within the range of 1100 to 1185 ° C. for 24 hours.
  • Sample 1 was fired at the same temperature for 6 hours. Thereby, the fired body 29 was created.
  • the firing step is performed under the above conditions, the sample 1 has a C phase ratio of 86 mol% in the fired body 29.
  • the ratio of the C phase of the fired body 29 is 87 mol%.
  • the measurement electrode 4 and the reference electrode 5 were formed by plating. Thereafter, the diffusion layer 211 was plasma sprayed on the surface of the fired body 29, and a slurry to be the trap layer 212 was applied, followed by drying and firing.
  • the fired body 29 was not subjected to an energization step, and the fired body 29 was used as the solid electrolyte body 2 as it was.
  • the fired body 29 was subjected to an energization process.
  • the ratio of the C phase in the detection unit 20 was adjusted. For example, for sample 5, a current of 260 mA was passed between measurement electrode 4 and reference electrode 5 for 25 seconds while heating fired body 29 to 850 ° C. using heater 6 (first energization). Thereafter, at the same temperature, the direction of current was reversed, and a current of 260 mA was applied for 25 seconds (second energization).
  • the intensity of the peak corresponding to each crystal plane of the M phase, the T phase, and the C phase is measured, and the following equations [1] to [3] are used to determine the phase of each phase in the detection unit 20.
  • the percentage was calculated.
  • m represents the peak intensity of the M phase
  • t represents the peak intensity of the T phase
  • c represents the peak intensity of the C phase
  • the numerical value in () represents the Miller index of the crystal plane.
  • M means the proportion of the M phase
  • T means the proportion of the T phase
  • C means the proportion of the C phase.
  • M ⁇ m (111) + m ( ⁇ 111) ⁇ / ⁇ m (111) + m ( ⁇ 111) + t (111) + c (111) ⁇ ⁇ 100 (1)
  • T (100 ⁇ M) ⁇ ⁇ t (400) + t (004) ⁇ / ⁇ t (400) + t (004) + c (400) ⁇ [2]
  • C (100 ⁇ M) ⁇ c (400) / ⁇ t (400) + t (004) + c (400) ⁇ [3]
  • the electrical resistance of the detection unit 20 was measured.
  • the temperature of the detection unit 20 was set to 700 ° C. using the heater 6, and the electrical resistance of the detection unit 20 was measured in this state.
  • Table 1 shows the average value of electrical resistance and 3 ⁇ , which are the measurement results of this experiment.
  • the relationship between the ratio of C phase and electrical resistance is shown in FIG.
  • the area of the detection unit 20 was 28.26 mm 2 and the thickness of the detection unit 20 was 0.5 mm.
  • the thickness of the measurement electrode 4 was 1.6 ⁇ m.
  • FIG. 6 is a graph in which the horizontal axis represents the C phase ratio and the vertical axis represents the electrical resistance.
  • the relationship between the ratio of the C phase and the electric resistance is indicated by plot points, and the maximum value and the minimum value of the electric resistance are indicated by error bars.
  • the measurement results of this experiment are shown in FIG. From FIG. 6, it can be seen that if the proportion of the C phase in the detection unit 20 is 88 mol% or more, the electrical resistance is sufficiently low and the variation in the electrical resistance is also small.
  • the A / F sensor 1 having a C phase ratio of 88 mol% or more in the detection unit 20 is used, the variation in the current flowing through the detection unit 20 is measured when the air-fuel ratio is measured. It can be seen that the air-fuel ratio can be accurately measured. Therefore, it can be seen that the A / F sensor 1 of the present embodiment can accurately control the air-fuel ratio of the exhaust gas g and can reduce harmful substances in the exhaust gas g.
  • Example 2 Next, an experiment for confirming the relationship between the temperature of the detection unit 20 and the electrical resistance in the A / F sensor 1 was performed.
  • a plurality of samples of the A / F sensor 1 were prepared by performing the same process as in Experimental Example 1.
  • the ratio of the C phase in the detection part 20 of each sample was 85, 85.5, 86, 86.5, 87, 87.5, 88, 88.5, 89 mol%.
  • these samples were heated to 500 degreeC, 600 degreeC, 700 degreeC, 800 degreeC, 900 degreeC, 1000 degreeC using the heater 6, and the electrical resistance of the detection part 20 in each temperature was measured.
  • each sample, the area of the detection unit 20 is set to 28.26 mm 2, the thickness of the detecting portion 20 was set to 0.5 mm.
  • the measurement results of this experiment are shown in FIG. As shown in FIG. 8, when the temperature of the detection unit 20 is 500 ° C., the electric resistance of the detection unit 20 is high regardless of the proportion of the C phase. On the other hand, when the temperature of the detection unit 20 is 600 ° C. or higher, the electrical resistance of the detection unit 20 can be greatly reduced by setting the ratio of the C phase to 88 mol% or higher.
  • FIG. 8 shows that the electrical resistance of the detection unit 20 is almost the same at 900 ° C. and 1000 ° C.
  • the electrical resistance cannot be greatly reduced.
  • problems such as a decrease in strength of the detection unit 20 and an increase in power consumption of the heater 6 are likely to occur. Therefore, when measuring the air-fuel ratio, it is preferable to set the temperature of the detection unit 20 to 1000 ° C. or less.
  • FIG. 9 shows that the electrical resistance of the detection unit 20 can be reduced as the area of the detection unit 20 is increased.
  • the area of the measurement electrode 4 is increased as described above, and the amount of noble metal used to configure the measurement electrode 4 is increased. Therefore, the manufacturing cost of the A / F sensor 1 increases.
  • the area of the measurement electrode 4 has variations (manufacturing variations). Therefore, when the area of the detection unit 20 (the area of the measurement electrode 4) is smaller than 20 mm 2 , the influence of this variation becomes large. As a result, the variation in the electrical resistance of the detection unit 20 becomes large, and the measurement accuracy of the air-fuel ratio tends to decrease. Therefore, the area of the detection unit 20 is preferably in the range of 20 to 40 mm 2 .
  • Example 4 Next, an experiment for confirming the relationship between the thickness of the detection unit 20 and the electrical resistance in the A / F sensor 1 was performed.
  • a plurality of samples of the A / F sensor 1 were created by performing the same process as in Experimental Example 1.
  • the ratio of the C phase was set to 85, 85.5, 86, 86.5, 87, 87.5, 88, 88.5, and 89 mol%, as in Experimental Example 2.
  • the thickness of the detection part 20 was 0.5, 0.8, 1.0, 1.5, 2.0 mm.
  • the heater 6 of each sample was heated and the temperature of the detection part 20 was 700 degreeC. In this state, the electrical resistance of the detection unit 20 was measured.
  • the area of the detection portion 20 was set to 28.26 mm 2.
  • the measurement results of this experiment are shown in FIG. From FIG. 10, it can be seen that the electrical resistance of the detection unit 20 increases when the detection unit 20 is thickened. When the thickness of the detection unit 20 exceeds 2 mm, the electrical resistance of the detection unit 20 and the variation thereof are too large. For this reason, it becomes difficult to accurately measure the air-fuel ratio of the exhaust gas g. Moreover, when the thickness of the detection unit 20 is less than 0.5 mm, the strength of the detection unit 20 tends to decrease. Therefore, the thickness of the detection unit 20 is preferably in the range of 0.5 to 2 mm.
  • Example 5 an experiment for confirming the relationship between the bending strength of the solid electrolyte body 2 and the temperature in the A / F sensor 1 was performed.
  • a plurality of samples of the solid electrolyte body 2 were prepared by performing the same process as in Experimental Example 1.
  • the thickness of the solid electrolyte body 2 was 0.5 mm.
  • a four-point bending test of each solid electrolyte body 2 was performed on these samples.
  • the maximum stress (bending strength) applied to the solid electrolyte body 2 before the solid electrolyte body 2 was broken was measured.
  • this experiment was performed at room temperature (about 25 degreeC), 600 degreeC, 800 degreeC, and 1000 degreeC.
  • the calculation result of this experiment is shown in FIG. From FIG. 11, it can be seen that the bending strength decreases as the temperature of the solid electrolyte body 2 increases. In particular, it can be seen that when the temperature of the solid electrolyte body 2 is around 1000 ° C., it becomes half or less of room temperature. Therefore, when measuring the air-fuel ratio using the A / F sensor 1, the temperature of the solid electrolyte body 2 is preferably set to 1000 ° C. or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

An A/F sensor 1 is provided with a solid electrolyte body 2 and a heater 6. The A/F sensor 1 is provided downstream, in exhaust gas g, of a purifying device 10 which purifies the exhaust gas g. The solid electrolyte body 2 is formed in the shape of a cup. A measuring electrode 4 which comes into contact with the exhaust gas g is formed on the outer surface 21 of the solid electrolyte body 2, and a reference electrode which comes into contact with a reference gas is formed on the inner surface 22 of the solid electrolyte body 2. The solid electrolyte body 2 is formed from zirconia. The solid electrolyte body 2 is provided with a detecting portion 20 which is sandwiched between the measuring electrode 4 and the reference electrode 5, and through which oxygen ions are conducted. The detecting portion 20 has a cubic phase proportion of at least 88 mol%.

Description

A/Fセンサ、及びその製造方法A / F sensor and manufacturing method thereof
 本開示は、排ガスの空燃比を測定するためのA/Fセンサと、その製造方法に関する。 The present disclosure relates to an A / F sensor for measuring an air-fuel ratio of exhaust gas and a manufacturing method thereof.
 排ガスの空燃比を測定するためのA/Fセンサとしては、酸素イオン伝導性を有する固体電解質体を備える構成が知られている(特許文献1参照)。固体電解質体は、例えばジルコニアで構成され、板型またはコップ型に形成されている。固体電解質体の一方の表面には、上記排ガスに接触する測定電極が設けられている。他方の表面には、大気等の基準ガスに接触する基準電極が設けられている。 As an A / F sensor for measuring the air-fuel ratio of exhaust gas, a configuration including a solid electrolyte body having oxygen ion conductivity is known (see Patent Document 1). The solid electrolyte body is made of, for example, zirconia and is formed in a plate shape or a cup shape. A measurement electrode that contacts the exhaust gas is provided on one surface of the solid electrolyte body. On the other surface, a reference electrode that contacts a reference gas such as the atmosphere is provided.
 固体電解質体の一部は、上記測定電極と上記基準電極とに挟まれた検知部になっている。A/Fセンサでは、この検知部を活性化温度まで加熱すると、酸素イオンが、検知部内を、基準電極から測定電極、又は、測定電極から基準電極に移動する。このときに生じる電流を測定することにより、排ガス中の酸素濃度を測定し、空燃比を算出するよう構成されている。 Part of the solid electrolyte body is a detection part sandwiched between the measurement electrode and the reference electrode. In the A / F sensor, when the detection unit is heated to the activation temperature, oxygen ions move in the detection unit from the reference electrode to the measurement electrode or from the measurement electrode to the reference electrode. By measuring the current generated at this time, the oxygen concentration in the exhaust gas is measured, and the air-fuel ratio is calculated.
 A/Fセンサは、車両等のエンジン制御システムに用いられる。エンジン制御システムでは、A/Fセンサによって測定した空燃比の値を用いて、エンジンをフィードバック制御する。これにより、排ガスの空燃比を制御し、排ガス中の有害物質を低減するよう構成されている。 The A / F sensor is used in an engine control system such as a vehicle. In the engine control system, feedback control of the engine is performed using the air-fuel ratio value measured by the A / F sensor. Thus, the air-fuel ratio of the exhaust gas is controlled to reduce harmful substances in the exhaust gas.
 また、A/Fセンサは、エンジンの排気管に取り付けられる。この排気管には、排ガスを浄化するための浄化装置が設けられている。A/Fセンサは、浄化装置よりも排ガスの上流側に設けられることが多い。 Also, the A / F sensor is attached to the exhaust pipe of the engine. The exhaust pipe is provided with a purification device for purifying the exhaust gas. The A / F sensor is often provided on the upstream side of the exhaust gas from the purification device.
 近年、排ガス中の有害物質をさらに低減するための開発が進められている。この目的のためには、排ガスの空燃比を、より高精度に制御することが有効と考えられている。例えば、A/Fセンサを浄化装置の上流側だけでなく、下流側にも設け、この下流側のA/Fセンサを用いて、浄化装置を通過した排ガスの空燃比を、より高い精度で制御する。これにより、浄化装置を通過した排ガスに含まれる有害物質を、より低減することが検討されている。 In recent years, developments have been made to further reduce harmful substances in exhaust gas. For this purpose, it is considered effective to control the air-fuel ratio of exhaust gas with higher accuracy. For example, an A / F sensor is provided not only on the upstream side of the purification device but also on the downstream side, and the A / F sensor on the downstream side is used to control the air-fuel ratio of the exhaust gas that has passed through the purification device with higher accuracy. To do. Thereby, it has been studied to further reduce harmful substances contained in the exhaust gas that has passed through the purification device.
特開2014-122878号公報JP 2014-122878 A
 しかしながら、従来のA/Fセンサでは、下流側に設けるA/Fセンサに対して求められる、空燃比の高い測定精度を得ることが困難であった。すなわち、従来のA/Fセンサは、検知部の電気抵抗が比較的高い。検知部の電気抵抗が高いと、この電気抵抗の値が、A/Fセンサごとにばらつきやすくなる。そのため、検知部に流れる電流の値が、A/Fセンサごとにばらつきやすくなり、空燃比の測定精度が低下しやすくなる。 However, with the conventional A / F sensor, it is difficult to obtain a high air-fuel ratio measurement accuracy required for the A / F sensor provided on the downstream side. That is, the conventional A / F sensor has a relatively high electrical resistance of the detection unit. When the electric resistance of the detection unit is high, the value of the electric resistance tends to vary from one A / F sensor to another. For this reason, the value of the current flowing through the detection unit is likely to vary for each A / F sensor, and the air-fuel ratio measurement accuracy is likely to be lowered.
 本開示は、排ガスの浄化装置よりも下流側に設けられ、排ガスの空燃比をより正確に測定できるA/Fセンサと、その製造方法を提供することを目的とする。 The present disclosure aims to provide an A / F sensor provided on the downstream side of the exhaust gas purifying device and capable of more accurately measuring the air-fuel ratio of the exhaust gas, and a manufacturing method thereof.
 本開示の技術における第1の態様は、排ガスを浄化する浄化装置(10)よりも前記排ガスの下流側に設けられ、前記排ガスの空燃比を測定するA/Fセンサ(1)であって、先端が閉塞し基端が開放したコップ型の固体電解質体(2)と、該固体電解質体の内側に形成され、基準ガスが導入される基準ガス室(3)と、前記固体電解質体の外面(21)に形成され、前記排ガスに接触する測定電極(4)と、前記固体電解質体の内面(22)に形成され、前記基準ガスに接触する基準電極(5)と、前記基準ガス室に配置され、前記固体電解質体を加熱するヒータ(6)と、を備え、前記固体電解質体は、ジルコニアで構成され、前記固体電解質体は、前記測定電極と前記基準電極との間に介在し、酸素イオンが伝導する検知部(20)を備え、該検知部は、キュービック相の割合が88mol%以上である。 A first aspect of the technology of the present disclosure is an A / F sensor (1) that is provided on the downstream side of the exhaust gas with respect to the purification device (10) that purifies the exhaust gas and measures the air-fuel ratio of the exhaust gas, A cup-shaped solid electrolyte body (2) whose front end is closed and whose base end is open, a reference gas chamber (3) formed inside the solid electrolyte body and into which a reference gas is introduced, and an outer surface of the solid electrolyte body The measurement electrode (4) formed in (21) and in contact with the exhaust gas, the reference electrode (5) formed in the inner surface (22) of the solid electrolyte body and in contact with the reference gas, and the reference gas chamber And a heater (6) for heating the solid electrolyte body, wherein the solid electrolyte body is composed of zirconia, and the solid electrolyte body is interposed between the measurement electrode and the reference electrode, Detection unit (20) that conducts oxygen ions Includes, 該検 knowledge unit, the proportion of the cubic phase is not less than 88 mol%.
 また、本開示の技術における第2の態様は、前記A/Fセンサを製造する方法であって、前記固体電解質体の未焼成体(28)を焼成することにより、焼成体(29)を製造する焼成工程と、前記焼成体に形成された前記測定電極と前記基準電極との間に電流を流すことにより、前記検知部における前記キュービック相の割合を88mol%以上にする通電工程と、を行う。 A second aspect of the technology of the present disclosure is a method for manufacturing the A / F sensor, in which a fired body (29) is manufactured by firing the unfired body (28) of the solid electrolyte body. Performing a firing step, and an energization step of causing a ratio of the cubic phase in the detection unit to be 88 mol% or more by flowing a current between the measurement electrode and the reference electrode formed on the fired body. .
 本発明者らは、上記課題を解決するために鋭意検討した結果、上記検知部におけるキュービック相の割合を88mol%以上にすると、検知部の電気抵抗を大幅に低下でき、この電気抵抗のばらつきを低減できることを見出した。すなわち、ジルコニアの結晶には、キュービック相(以下「C相」とも記す)と、モノクリニック相(以下「M相」とも記す)と、テトラゴナル相(以下「T相」とも記す)とがある。M相とT相は電気抵抗が高いが、C相は電気抵抗が低い。そのため、本開示のA/Fセンサでは、検知部におけるC相の量を充分に増やすことにより、検知部の電気抵抗を下げられる。したがって、検知部における電気抵抗のばらつきを低減でき、検知部に流れる電流のばらつきを低減できる。これにより、排ガスの空燃比を、高い精度で測定できる。したがって、本開示のA/Fセンサでは、排ガスの空燃比をより高い精度で制御でき、排ガス中の有害物質をより低減できる。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention can greatly reduce the electrical resistance of the detection unit when the proportion of the cubic phase in the detection unit is 88 mol% or more. We found that it can be reduced. That is, zirconia crystals include a cubic phase (hereinafter also referred to as “C phase”), a monoclinic phase (hereinafter also referred to as “M phase”), and a tetragonal phase (hereinafter also referred to as “T phase”). The M phase and the T phase have high electric resistance, but the C phase has low electric resistance. Therefore, in the A / F sensor of the present disclosure, the electrical resistance of the detection unit can be lowered by sufficiently increasing the amount of the C phase in the detection unit. Therefore, variation in electrical resistance in the detection unit can be reduced, and variation in current flowing in the detection unit can be reduced. Thereby, the air-fuel ratio of exhaust gas can be measured with high accuracy. Therefore, in the A / F sensor of the present disclosure, the air-fuel ratio of the exhaust gas can be controlled with higher accuracy, and harmful substances in the exhaust gas can be further reduced.
 また、本開示の技術における上記第2の態様では、上記焼成工程と上記通電工程とを行う。
 焼成工程を行っただけでは、検知部のC相の割合を88mol%以上にすることは困難である。しかし、上記測定電極と上記基準電極との間に電流を流す上記通電工程を行えば、検知部のC相を容易に88mol%以上にできる。そのため、本開示のセンサの製造方法では、上記A/Fセンサを容易に製造できる。
Moreover, in the said 2nd aspect in the technique of this indication, the said baking process and the said electricity supply process are performed.
It is difficult to make the proportion of the C phase of the detection part 88 mol% or more only by performing the firing step. However, if the energization process in which a current is passed between the measurement electrode and the reference electrode is performed, the C phase of the detection unit can be easily increased to 88 mol% or more. Therefore, in the sensor manufacturing method of the present disclosure, the A / F sensor can be easily manufactured.
 以上のように、本開示の技術によれば、排ガスの浄化装置よりも下流側に設けられ、排ガスの空燃比をより正確に測定できるA/Fセンサと、その製造方法を提供できる。
 なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。よって、これらの符号は、本開示の技術的範囲を限定するものではない。
As described above, according to the technology of the present disclosure, it is possible to provide an A / F sensor that is provided on the downstream side of the exhaust gas purification device and that can more accurately measure the air-fuel ratio of the exhaust gas, and a method for manufacturing the A / F sensor.
In addition, the code | symbol in the parenthesis described in the means to solve a claim and a subject shows the correspondence with the specific means as described in embodiment mentioned later. Therefore, these codes do not limit the technical scope of the present disclosure.
図1は実施形態1における、固体電解質体の要部拡大断面図である。FIG. 1 is an enlarged cross-sectional view of a main part of a solid electrolyte body in the first embodiment. 図2は実施形態1における、固体電解質体の側面図である。FIG. 2 is a side view of the solid electrolyte body in the first embodiment. 図3は実施形態1における、A/Fセンサの断面図である。FIG. 3 is a cross-sectional view of the A / F sensor according to the first embodiment. 図4は実施形態1における、A/Fセンサの取り付け位置を説明するための図である。FIG. 4 is a view for explaining the mounting position of the A / F sensor in the first embodiment. 図5は実施形態1における、各サンプルの製造工程を説明するための図である。FIG. 5 is a diagram for explaining a manufacturing process of each sample in the first embodiment. 図6は実験例1における、検知部のC相の割合と、検知部の電気抵抗との関係を表したグラフである。FIG. 6 is a graph showing the relationship between the C phase ratio of the detection unit and the electrical resistance of the detection unit in Experimental Example 1. 図7は実験例1における、X線(CuKα線)の入射角をθとした際に、2θが20~90°の範囲内での、検知部のXRDによる分析結果である。FIG. 7 shows the XRD analysis results of the detection unit in the range of 20 to 90 ° when 2θ is in the range of 20 to 90 °, where θ is the incident angle of X-rays (CuKα rays) in Experimental Example 1. 図8は実験例2における、検知部の電気抵抗と、C相の割合と、検知部の温度との関係を表したグラフである。FIG. 8 is a graph showing the relationship between the electrical resistance of the detection unit, the ratio of the C phase, and the temperature of the detection unit in Experimental Example 2. 図9は実験例3における、検知部の電気抵抗と、C相の割合と、検知部の面積との関係を表したグラフである。FIG. 9 is a graph showing the relationship between the electrical resistance of the detection unit, the ratio of the C phase, and the area of the detection unit in Experimental Example 3. 図10は実験例4における、検知部の電気抵抗と、C相の割合と、検知部の厚さとの関係を表したグラフである。FIG. 10 is a graph showing the relationship between the electrical resistance of the detection unit, the ratio of the C phase, and the thickness of the detection unit in Experimental Example 4. 図11は実験例5における、固体電解質体の曲げ強さと温度との関係を、破壊確率ごとに記したグラフである。FIG. 11 is a graph showing the relationship between the bending strength of the solid electrolyte body and the temperature for each fracture probability in Experimental Example 5.
 本開示のA/Fセンサは、車両のエンジンから排出される排ガスの空燃比を測定するための、車載用センサに適用できる。 The A / F sensor of the present disclosure can be applied to an in-vehicle sensor for measuring an air-fuel ratio of exhaust gas discharged from a vehicle engine.
(実施形態1)
 本開示のA/Fセンサに係る実施形態について、図1~図5を用いて説明する。なお、以降の説明では、「先端側」とは、A/Fセンサの軸方向の一方側(Z方向のZ1側)であり、センサが被測定ガスである排ガスに曝される側をいう。また、「基端側」とは、その反対側(Z方向のZ2側)をいう。図4に示すように、本実施形態のA/Fセンサ1は、排ガスgの流通経路において、排ガスgを浄化する浄化装置10よりも排ガスgの下流側に設けられる。A/Fセンサ1は、排ガスgの空燃比を測定するために設けられている。
(Embodiment 1)
An embodiment according to the A / F sensor of the present disclosure will be described with reference to FIGS. In the following description, the “front end side” is one side of the A / F sensor in the axial direction (Z1 side in the Z direction) and refers to the side where the sensor is exposed to the exhaust gas that is the gas to be measured. The “base end side” refers to the opposite side (Z2 side in the Z direction). As shown in FIG. 4, the A / F sensor 1 of the present embodiment is provided on the downstream side of the exhaust gas g with respect to the purification device 10 that purifies the exhaust gas g in the flow path of the exhaust gas g. The A / F sensor 1 is provided for measuring the air-fuel ratio of the exhaust gas g.
 図3に示すように、A/Fセンサ1は、固体電解質体2と、ヒータ6とを備える。固体電解質体2は、先端が閉塞し基端が開放したコップ型に形成されている。固体電解質体2の内側には、大気等の基準ガスが導入される基準ガス室3が形成されている。この基準ガス室3には、ヒータ6が配置されている。 As shown in FIG. 3, the A / F sensor 1 includes a solid electrolyte body 2 and a heater 6. The solid electrolyte body 2 is formed in a cup shape in which the distal end is closed and the proximal end is opened. A reference gas chamber 3 into which a reference gas such as the atmosphere is introduced is formed inside the solid electrolyte body 2. A heater 6 is disposed in the reference gas chamber 3.
 図1に示すように、固体電解質体2の外面21には、排ガスgに接触する測定電極4が形成されている。固体電解質体2の内面22には、基準ガスに接触する基準電極5が形成されている。 As shown in FIG. 1, a measurement electrode 4 that contacts the exhaust gas g is formed on the outer surface 21 of the solid electrolyte body 2. A reference electrode 5 in contact with the reference gas is formed on the inner surface 22 of the solid electrolyte body 2.
 固体電解質体2は、ジルコニア(ZrO)で構成される。固体電解質体2は、測定電極4と基準電極5との間に介在し、酸素イオンが伝導する検知部20を備える。検知部20は、キュービック相の割合が88mol%以上とされている。 The solid electrolyte body 2 is composed of zirconia (ZrO 2 ). The solid electrolyte body 2 includes a detection unit 20 that is interposed between the measurement electrode 4 and the reference electrode 5 and that conducts oxygen ions. The detector 20 has a cubic phase ratio of 88 mol% or more.
 本実施形態のA/Fセンサ1は、車両のエンジンから発生する排ガスの空燃比を測定するための、車載用センサである。 The A / F sensor 1 of the present embodiment is an in-vehicle sensor for measuring the air-fuel ratio of exhaust gas generated from a vehicle engine.
 図2に示すように、固体電解質体2は、部分的に拡径した拡径部25を備える。この拡径部25よりも先端側(Z方向のZ1側)に位置する部位23は、排ガスgに曝される。一方、拡径部25よりも基端側(Z方向のZ2側)の位置には、出力取出部24が形成されている。出力取出部24は、排ガスgに曝されない。出力取出部24の外面には、ターミナル部42が形成されている。測定電極4とターミナル部42とは、リード部41によって接続されている。 As shown in FIG. 2, the solid electrolyte body 2 includes a diameter-enlarged portion 25 that is partially enlarged. A portion 23 located on the distal end side (Z1 side in the Z direction) with respect to the enlarged diameter portion 25 is exposed to the exhaust gas g. On the other hand, an output extraction portion 24 is formed at a position closer to the base end side (Z2 side in the Z direction) than the enlarged diameter portion 25. The output extraction part 24 is not exposed to the exhaust gas g. A terminal portion 42 is formed on the outer surface of the output extraction portion 24. The measurement electrode 4 and the terminal part 42 are connected by a lead part 41.
 測定電極4は、固体電解質体2を取り囲むように環状に形成されている。固体電解質体2の軸方向(Z方向)における測定電極4の長さL(図1参照)は、3mm以下にされている。また、本実施形態では、基準電極5を、固体電解質体2の内面22の全面に形成している。測定電極4および基準電極5は、それぞれ白金(Pt)で構成される。 The measurement electrode 4 is formed in an annular shape so as to surround the solid electrolyte body 2. The length L (see FIG. 1) of the measurement electrode 4 in the axial direction (Z direction) of the solid electrolyte body 2 is set to 3 mm or less. In the present embodiment, the reference electrode 5 is formed on the entire inner surface 22 of the solid electrolyte body 2. The measurement electrode 4 and the reference electrode 5 are each made of platinum (Pt).
 図1に示すように、固体電解質体2の外面21には、拡散層211とトラップ層212とが形成されている。これら拡散層211及びトラップ層212は、測定電極4を覆っている。拡散層211は、酸化アルミニウム、酸化マグネシウム、及び尖晶石(アルミナ-マグネシア-スピネル)で構成され、トラップ層212は、多孔質アルミナで構成される。排ガスgは、拡散層211及びトラップ層212を通って、測定電極4に接触する。拡散層211は、排ガスgの拡散速度を律速させるために設けられている。トラップ層212は、排ガスg中の被毒物質を捕集するために設けられている。 As shown in FIG. 1, a diffusion layer 211 and a trap layer 212 are formed on the outer surface 21 of the solid electrolyte body 2. The diffusion layer 211 and the trap layer 212 cover the measurement electrode 4. The diffusion layer 211 is made of aluminum oxide, magnesium oxide, and spinel (alumina-magnesia-spinel), and the trap layer 212 is made of porous alumina. The exhaust gas g contacts the measurement electrode 4 through the diffusion layer 211 and the trap layer 212. The diffusion layer 211 is provided to control the diffusion rate of the exhaust gas g. The trap layer 212 is provided to collect poisonous substances in the exhaust gas g.
 A/Fセンサ1では、ヒータ6(図3参照)を用いて、検知部20の温度を活性化温度まで上昇させると、排ガスgがリッチ雰囲気のときには、酸素イオンが、固体電解質体2の内部を、基準電極5から測定電極4に移動する。一方、排ガスgがリーン雰囲気のときには、酸素イオンが、測定電極4から基準電極5に移動する。このときに、A/Fセンサ1では、測定電極4と基準電極5との間に流れる電流値を測定することにより、排ガスg中の酸素濃度を測定し、排ガスgの空燃比を算出するように構成されている。 In the A / F sensor 1, when the temperature of the detection unit 20 is raised to the activation temperature using the heater 6 (see FIG. 3), oxygen ions are converted into the interior of the solid electrolyte body 2 when the exhaust gas g is in a rich atmosphere. Is moved from the reference electrode 5 to the measurement electrode 4. On the other hand, when the exhaust gas g is in a lean atmosphere, oxygen ions move from the measurement electrode 4 to the reference electrode 5. At this time, the A / F sensor 1 measures the oxygen concentration in the exhaust gas g by measuring the value of the current flowing between the measurement electrode 4 and the reference electrode 5, and calculates the air-fuel ratio of the exhaust gas g. It is configured.
 上述したように、本実施形態の検知部20は、C相が88mol%以上とされている。固体電解質体2のうち検知部20以外の部位は、C相が88mol%未満である。より詳しくは、87mol%以下である。また、本実施形態の固体電解質体2は、酸化イットリウム(Y)を4.5~6mol%の範囲内で含有する。 As described above, in the detection unit 20 of the present embodiment, the C phase is 88 mol% or more. In the solid electrolyte body 2 other than the detection unit 20, the C phase is less than 88 mol%. More specifically, it is 87 mol% or less. Further, the solid electrolyte body 2 of the present embodiment contains yttrium oxide (Y 2 O 3 ) in the range of 4.5 to 6 mol%.
 また、本実施形態では、検知部20の面積を20~40mmの範囲内にし、検知部20の厚さThを0.5~2mmの範囲内にしている。 In this embodiment, the area of the detection unit 20 is in the range of 20 to 40 mm 2 , and the thickness Th of the detection unit 20 is in the range of 0.5 to 2 mm.
 次に、固体電解質体2の製造方法について説明する。固体電解質体2を製造するには、図5に示すような工程を実施する。本製造方法では、まず、ZrO粉末とY粉末とを混合し、コップ型に成形して、固体電解質体2の未焼成体28を作製する。その後、この未焼成体28を焼成する(焼成工程)。そして、この焼成体29に、測定電極4および基準電極5をメッキ形成する。その後、焼成体29の表面に、拡散層211をプラズマ溶射し、さらにトラップ層212となるスラリーを塗布して、乾燥後に焼成する。 Next, a method for manufacturing the solid electrolyte body 2 will be described. In order to manufacture the solid electrolyte body 2, a process as shown in FIG. 5 is performed. In this manufacturing method, first, ZrO 2 powder and Y 2 O 3 powder are mixed and formed into a cup shape, and the green body 28 of the solid electrolyte body 2 is produced. Thereafter, the green body 28 is fired (firing step). Then, the measurement electrode 4 and the reference electrode 5 are formed on the fired body 29 by plating. Thereafter, the diffusion layer 211 is plasma sprayed on the surface of the fired body 29, and further a slurry that becomes the trap layer 212 is applied, followed by drying and firing.
 焼成体29は通常、C相の割合が全ての部位において87mol%以下になる。このような焼成体29は、例えば、次のような方法で形成できる。具体的には、未焼成体28の組成を、ZrOが94%及びYが6%とし、1100℃で約24時間焼成すると、C相の割合が、全ての部位において87mol%である焼成体29が形成される。 In the fired body 29, the proportion of the C phase is usually 87 mol% or less in all the parts. Such a fired body 29 can be formed by the following method, for example. Specifically, when the composition of the unfired body 28 is 94% ZrO 2 and 6% Y 2 O 3 and fired at 1100 ° C. for about 24 hours, the proportion of the C phase is 87 mol% in all parts. A fired body 29 is formed.
 次に、本製造方法では、焼成体29の内部にヒータ6を配置し、ヒータ6によって焼成体29を加熱しながら、測定電極4と基準電極5との間に電流を流す(通電工程)。通電工程では、例えば、検知部20の温度を850℃にし、測定電極4と基準電極5との間に260mAの電流を流す。このようにすると、検知部20の結晶構造が変化し、C相の割合が増加する。本製造方法では、通電工程を所定の時間行うことにより、検知部20におけるC相の割合を88mol%以上にできる。 Next, in this manufacturing method, the heater 6 is disposed inside the fired body 29, and a current is passed between the measurement electrode 4 and the reference electrode 5 while the fired body 29 is heated by the heater 6 (energization process). In the energization process, for example, the temperature of the detection unit 20 is set to 850 ° C., and a current of 260 mA is passed between the measurement electrode 4 and the reference electrode 5. If it does in this way, the crystal structure of the detection part 20 will change and the ratio of C phase will increase. In this manufacturing method, the ratio of the C phase in the detection unit 20 can be 88 mol% or more by performing the energization process for a predetermined time.
 なお、A/Fセンサ1を用いて排ガスgの空燃比を測定する際には、ヒータ6を用いて、検知部20を600~1000℃の範囲内で加熱する。空燃比を測定するときには、検知部20に流れる電流は僅かである(流れる電流は小さい)。そのため、空燃比を測定している間に、C相の割合は変化しない。これに対して、上記通電工程では、検知部20の温度を850℃にし、空燃比を測定するときよりも大きい電流(数100mA程度の電流)を検知部20に流す。このように、値の大きい電流を流すと、検知部20の結晶構造が変化し、C相の割合が増加する。 When the air / fuel ratio of the exhaust gas g is measured using the A / F sensor 1, the heater 20 is used to heat the detection unit 20 within the range of 600 to 1000 ° C. When measuring the air-fuel ratio, the current flowing through the detection unit 20 is very small (the flowing current is small). Therefore, the ratio of the C phase does not change while measuring the air-fuel ratio. In contrast, in the energization step, the temperature of the detection unit 20 is set to 850 ° C., and a larger current (a current of about several hundred mA) is passed through the detection unit 20 than when the air-fuel ratio is measured. As described above, when a large current is passed, the crystal structure of the detection unit 20 changes, and the proportion of the C phase increases.
 次に、A/Fセンサ1の全体の構造について説明する。図3に示すように、A/Fセンサ1は、上記固体電解質体2と、ハウジング14と、配線15(15a,15b)と、ヒータ用配線16と、カバー17(17a,17b)と、大気側カバー18(18a~18c)と、シール部19とを備える。固体電解質体2は、ハウジング14内に固定されている。 Next, the overall structure of the A / F sensor 1 will be described. As shown in FIG. 3, the A / F sensor 1 includes the solid electrolyte body 2, the housing 14, the wiring 15 (15a, 15b), the heater wiring 16, the cover 17 (17a, 17b), and the atmosphere. A side cover 18 (18a to 18c) and a seal portion 19 are provided. The solid electrolyte body 2 is fixed in the housing 14.
 2本の配線15(15a,15b)のうち、一方の配線15aは、上記ターミナル部42(図2参照)に電気的に接続している。他方の配線15bは、上記出力取出部24の内面に形成された基準電極5に電気的に接続している。ヒータ用配線16は、ヒータ6に電気的に接続している。 Of the two wires 15 (15a, 15b), one wire 15a is electrically connected to the terminal portion 42 (see FIG. 2). The other wiring 15 b is electrically connected to the reference electrode 5 formed on the inner surface of the output extraction portion 24. The heater wiring 16 is electrically connected to the heater 6.
 固体電解質体2の先端は、2つのカバー17(17a,17b)によって保護されている。カバー17a,17bには、それぞれ開口部170が形成されている。排ガスgは、この開口部170を通ってカバー17の内部に入る。 The tip of the solid electrolyte body 2 is protected by two covers 17 (17a, 17b). Openings 170 are respectively formed in the covers 17a and 17b. The exhaust gas g enters the inside of the cover 17 through the opening 170.
 また、軸方向(Z方向)における、ハウジング14の基端側(Z方向のZ2側)に位置する部位には、肩部140が形成されている。肩部140よりも先端側の位置(Z方向のZ1側)には、ばね部材141が配置されている。本実施形態では、肩部140をかしめることにより、軸方向(Z方向)の先端側に固体電解質体2を加圧し、拡径部25をハウジング14に押し当てている。これにより、拡径部25とハウジング14との間から、排ガスgが漏れないようにしている。 Further, a shoulder 140 is formed at a portion located on the base end side (Z2 side in the Z direction) of the housing 14 in the axial direction (Z direction). A spring member 141 is arranged at a position on the tip side of the shoulder 140 (Z1 side in the Z direction). In the present embodiment, the shoulder portion 140 is caulked to pressurize the solid electrolyte body 2 toward the distal end side in the axial direction (Z direction) and press the expanded diameter portion 25 against the housing 14. Thereby, the exhaust gas g is prevented from leaking from between the enlarged diameter portion 25 and the housing 14.
 軸方向(Z方向)における、ハウジング14の基端側の位置には、3つの大気側カバー18(18a,18b,18c)が設けられている。大気側カバー18b,18cの基端側の部位には、シール部19が配されている。上記の配線15とヒータ用配線16とは、このシール部19の内部を通っている。本実施形態では、大気側カバー18b,18cをかしめることにより、シール部19を固定している。また、大気側カバー18b,18cには、貫通部180が形成されている。本実施形態では、この貫通部180を通って、基準ガスである大気が、A/Fセンサ1の外部から内部の基準ガス室3内に導入される。 Three atmosphere side covers 18 (18a, 18b, 18c) are provided at a position on the base end side of the housing 14 in the axial direction (Z direction). A seal portion 19 is disposed at a base end side portion of the atmosphere side covers 18b and 18c. The wiring 15 and the heater wiring 16 pass through the inside of the seal portion 19. In the present embodiment, the seal portion 19 is fixed by caulking the atmosphere side covers 18b and 18c. In addition, a through portion 180 is formed in the atmosphere side covers 18b and 18c. In the present embodiment, the atmospheric air, which is a reference gas, is introduced into the reference gas chamber 3 inside from the outside of the A / F sensor 1 through the penetration part 180.
 次に、A/Fセンサ1の取り付け位置について説明する。図4に示すように、本実施形態のA/Fセンサ1は、排気管12に取り付けられる。排気管12は、エンジン11(内燃機関)に接続している。排気管12には、排ガスgを浄化する浄化装置10が設けられている。 Next, the mounting position of the A / F sensor 1 will be described. As shown in FIG. 4, the A / F sensor 1 of this embodiment is attached to the exhaust pipe 12. The exhaust pipe 12 is connected to the engine 11 (internal combustion engine). The exhaust pipe 12 is provided with a purification device 10 that purifies the exhaust gas g.
 排気管12は、排ガスgの流通経路において、浄化装置10とエンジン11との間を接続する上流部分12aと、浄化装置10よりも下流側に設けられた下流部分12bとを備える。A/Fセンサ1は、排気管12の下流部分12bに取り付けられている。また、上流部分12aには、上流用空燃比センサ8が取り付けられている。 The exhaust pipe 12 includes an upstream portion 12a that connects between the purification device 10 and the engine 11 and a downstream portion 12b that is provided on the downstream side of the purification device 10 in the flow path of the exhaust gas g. The A / F sensor 1 is attached to the downstream portion 12 b of the exhaust pipe 12. An upstream air-fuel ratio sensor 8 is attached to the upstream portion 12a.
 A/Fセンサ1と上流用空燃比センサ8とは、制御回路部13に接続している。このように、本実施形態では、A/Fセンサ1と上流用空燃比センサ8と制御回路部13とにより、エンジン11を制御するエンジン制御システム100が構成されている。 The A / F sensor 1 and the upstream air-fuel ratio sensor 8 are connected to the control circuit unit 13. Thus, in the present embodiment, the A / F sensor 1, the upstream air-fuel ratio sensor 8, and the control circuit unit 13 constitute an engine control system 100 that controls the engine 11.
 制御回路部13は、上流用空燃比センサ8の出力信号に基づいて、浄化装置10よりも上流側の排ガスgの空燃比を算出する。制御回路部13は、A/Fセンサ1の出力信号に基づいて、浄化装置10よりも下流側の排ガスgの空燃比を算出する。制御回路部13は、これらの空燃比の測定値を用いて、エンジン11のフィードバック制御を行う。本実施形態のエンジン制御システム100では、上流用空燃比センサ8によって測定した空燃比の値を用いて、エンジン11を大まかに制御している。また、A/Fセンサ1によって測定した空燃比の値を用いて、エンジン11を精密に制御している。これにより、エンジン制御システム100では、排ガスgの空燃比を正確に制御している。そのため、本実施形態のA/Fセンサ1には、空燃比の高い測定精度が要求される。 The control circuit unit 13 calculates the air-fuel ratio of the exhaust gas g upstream of the purifier 10 based on the output signal of the upstream air-fuel ratio sensor 8. The control circuit unit 13 calculates the air-fuel ratio of the exhaust gas g on the downstream side of the purification device 10 based on the output signal of the A / F sensor 1. The control circuit unit 13 performs feedback control of the engine 11 using these measured values of the air-fuel ratio. In the engine control system 100 of the present embodiment, the engine 11 is roughly controlled using the value of the air-fuel ratio measured by the upstream air-fuel ratio sensor 8. Further, the engine 11 is precisely controlled using the air-fuel ratio value measured by the A / F sensor 1. As a result, the engine control system 100 accurately controls the air-fuel ratio of the exhaust gas g. For this reason, the A / F sensor 1 of the present embodiment is required to have high air / fuel ratio measurement accuracy.
 浄化装置10は、ハニカム構造体101と、該ハニカム構造体101の表面に形成された触媒層とを備える。ハニカム構造体101は、コージェライト等で構成され、排ガスgが通過する複数のセルを有する。触媒層は、Ptやパラジウム(Pd)等の貴金属触媒を含有している。排ガスgは、上記セル内を通過する際に、貴金属触媒に接触する。これにより、本実施形態のエンジン制御システム100では、排ガスgに含まれるNOxやCO等の有害物質を浄化するよう構成されている。 The purification device 10 includes a honeycomb structure 101 and a catalyst layer formed on the surface of the honeycomb structure 101. The honeycomb structure 101 is made of cordierite or the like, and has a plurality of cells through which the exhaust gas g passes. The catalyst layer contains a noble metal catalyst such as Pt or palladium (Pd). The exhaust gas g comes into contact with the noble metal catalyst when passing through the cell. Thereby, the engine control system 100 of the present embodiment is configured to purify harmful substances such as NOx and CO contained in the exhaust gas g.
 本実施形態のA/Fセンサ1における作用効果について説明する。上述したように、本実施形態のA/Fセンサ1における検知部20は、C相の割合が88mol%以上にされている。このようにすると、A/Fセンサ1では、固体電解質体2における検知部20の電気抵抗を大幅に低下でき、この電気抵抗のばらつきを低減できる。すなわち、ジルコニアの結晶には、C相と、M相と、T相とがある。M相とT相は電気抵抗が高いが、C相は電気抵抗が低い。そのため、A/Fセンサ1では、検知部20におけるC相の量を充分に増やすことにより、検知部20の電気抵抗を下げられる。したがって、検知部20における電気抵抗のばらつきを低減でき、検知部20に流れる電流のばらつきを低減できる。これにより、排ガスgの空燃比を、高い精度で測定できる。したがって、本実施形態のA/Fセンサ1では、排ガスgの空燃比をより高い精度で制御でき、排ガスg中の有害物質をより低減できる。 The effect of the A / F sensor 1 of the present embodiment will be described. As described above, the detection unit 20 in the A / F sensor 1 of the present embodiment has a C phase ratio of 88 mol% or more. If it does in this way, in A / F sensor 1, the electrical resistance of detection part 20 in solid electrolyte object 2 can be reduced significantly, and the variation in this electrical resistance can be reduced. That is, zirconia crystals include a C phase, an M phase, and a T phase. The M phase and the T phase have high electric resistance, but the C phase has low electric resistance. Therefore, in the A / F sensor 1, the electrical resistance of the detection unit 20 can be lowered by sufficiently increasing the amount of the C phase in the detection unit 20. Therefore, variation in electrical resistance in the detection unit 20 can be reduced, and variation in current flowing in the detection unit 20 can be reduced. Thereby, the air-fuel ratio of the exhaust gas g can be measured with high accuracy. Therefore, in the A / F sensor 1 of the present embodiment, the air-fuel ratio of the exhaust gas g can be controlled with higher accuracy, and harmful substances in the exhaust gas g can be further reduced.
 また、本実施形態では、固体電解質体2の軸方向(Z方向)における測定電極4の長さL(図1参照)を3mm以下にしている。
 そのため、本実施形態では、測定電極4を構成する貴金属の使用量を低減でき、A/Fセンサ1の製造コストを低減できる。上記長さLを短くすると、空燃比の測定精度が低下しやすいが、本実施形態では、C相の量を88mol%以上にしているため、空燃比の測定精度を高められる。したがって、本実施形態では、A/Fセンサ1の製造コスト低減と、空燃比の測定精度向上とを両立させられる。
Moreover, in this embodiment, the length L (refer FIG. 1) of the measurement electrode 4 in the axial direction (Z direction) of the solid electrolyte body 2 is 3 mm or less.
Therefore, in this embodiment, the usage-amount of the noble metal which comprises the measurement electrode 4 can be reduced, and the manufacturing cost of the A / F sensor 1 can be reduced. If the length L is shortened, the measurement accuracy of the air-fuel ratio tends to be lowered, but in this embodiment, the amount of phase C is set to 88 mol% or more, so that the measurement accuracy of the air-fuel ratio can be improved. Therefore, in the present embodiment, it is possible to achieve both a reduction in manufacturing cost of the A / F sensor 1 and an improvement in air-fuel ratio measurement accuracy.
 また、本実施形態の検知部20は、固体電解質体2のうち、検知部20以外の部位よりも、C相が1mol%以上多い。
 そのため、本実施形態では、固体電解質体2を容易に製造できる。すなわち、固体電解質体2を製造する際には、上述したように、未焼成体28(図5参照)を焼成し、焼成体29を作成する。しかしながら、C相の割合が88mol%以上の焼成体29を得ることは困難である。これに対して、C相の割合が87mol%以下の焼成体29を得ることは比較的容易である。そのため、本実施形態では、例えばC相の割合が87mol%の焼成体29を作成し、その後、上記通電工程を行って、検知部20のみC相を1mol%以上増やしている。これにより、本実施形態では、検知部20のC相が88mol%以上である固体電解質体2を容易に製造できる。
 また、後述するように、C相を87mol%から88mol%以上にすると、検知部20の電気抵抗は、大きく低下する(図6参照)。したがって、検知部20におけるC相の割合を、その他の部位の割合である87mol%よりも1mol%以上増やせば、検知部20の電気抵抗を大きく低下させられる。
Moreover, the detection part 20 of this embodiment has 1 mol% or more C phases more than parts other than the detection part 20 among the solid electrolyte bodies 2. FIG.
Therefore, in this embodiment, the solid electrolyte body 2 can be manufactured easily. That is, when the solid electrolyte body 2 is manufactured, as described above, the unfired body 28 (see FIG. 5) is fired to create the fired body 29. However, it is difficult to obtain a fired body 29 having a C phase ratio of 88 mol% or more. On the other hand, it is relatively easy to obtain a fired body 29 having a C phase ratio of 87 mol% or less. Therefore, in the present embodiment, for example, a fired body 29 having a C phase ratio of 87 mol% is created, and then the above energization process is performed to increase the C phase in the detection unit 20 by 1 mol% or more. Thereby, in this embodiment, the solid electrolyte body 2 whose C phase of the detection part 20 is 88 mol% or more can be manufactured easily.
As will be described later, when the C phase is increased from 87 mol% to 88 mol% or more, the electrical resistance of the detection unit 20 is greatly reduced (see FIG. 6). Therefore, if the proportion of the C phase in the detection unit 20 is increased by 1 mol% or more from 87 mol%, which is the proportion of other parts, the electrical resistance of the detection unit 20 can be greatly reduced.
 また、本実施形態の固体電解質体2は、Yを4.5~6mol%の範囲内で含有する。このようにすると、A/Fセンサ1では、固体電解質体2の熱膨張率を、拡散層211(図1参照)及びトラップ層212を構成する多孔質アルミナの熱膨張率と、略等しくできる。そのため、本実施形態では、ヒータ6によって固体電解質体2を加熱したときに、固体電解質体2に熱応力が加わりにくくなる。 Further, the solid electrolyte body 2 of the present embodiment contains Y 2 O 3 in the range of 4.5 to 6 mol%. In this way, in the A / F sensor 1, the thermal expansion coefficient of the solid electrolyte body 2 can be made substantially equal to the thermal expansion coefficient of the porous alumina constituting the diffusion layer 211 (see FIG. 1) and the trap layer 212. Therefore, in the present embodiment, when the solid electrolyte body 2 is heated by the heater 6, it is difficult for thermal stress to be applied to the solid electrolyte body 2.
 また、本実施形態の検知部20では、C相の割合を95mol%以下とすることが好ましい。
 固体電解質体2を製造する際には、検知部20に流す電流の量を増やすと、C相の割合が増える。しかし、C相を95mol%以上にしようとすると、ZrOがジルコニウム(Zr)に還元される等の問題が生じる。そのため、C相の割合は、95mol%以下にすることが望ましい。
Moreover, in the detection part 20 of this embodiment, it is preferable that the ratio of C phase shall be 95 mol% or less.
When the solid electrolyte body 2 is manufactured, if the amount of current flowing through the detection unit 20 is increased, the proportion of the C phase increases. However, if the C phase is increased to 95 mol% or more, problems such as reduction of ZrO 2 to zirconium (Zr) occur. Therefore, the ratio of the C phase is desirably 95 mol% or less.
 また、本実施形態のA/Fセンサ1は、排ガスgの空燃比を測定するときに、ヒータ6によって、検知部20を600~1000℃の範囲内で加熱するように構成されている。
 検知部20の温度が600℃未満の場合は、後述するように、検知部20の電気抵抗を充分に小さくできない。また、1000℃を超える場合は、温度が高すぎて、固体電解質体2の強度が低下しやすくなる。さらに、検知部20の温度が1000℃を超える場合は、ヒータ6の消費電力が高くなりすぎるという問題も生じる。したがって、空燃比を測定する際には、検知部20の温度を600~1000℃の範囲内にすることが好ましい。なお、空燃比を測定する際の検知部20の温度は、650~800℃の範囲内にすることが、より好ましい。
Further, the A / F sensor 1 of the present embodiment is configured to heat the detection unit 20 within the range of 600 to 1000 ° C. by the heater 6 when measuring the air-fuel ratio of the exhaust gas g.
When the temperature of the detection unit 20 is less than 600 ° C., the electrical resistance of the detection unit 20 cannot be sufficiently reduced as will be described later. Moreover, when exceeding 1000 degreeC, temperature is too high and the intensity | strength of the solid electrolyte body 2 will fall easily. Furthermore, when the temperature of the detection part 20 exceeds 1000 degreeC, the problem that the power consumption of the heater 6 becomes high also arises. Therefore, when measuring the air-fuel ratio, it is preferable to set the temperature of the detection unit 20 within the range of 600 to 1000 ° C. It is more preferable that the temperature of the detection unit 20 when measuring the air-fuel ratio is in the range of 650 to 800 ° C.
 また、本実施形態では、検知部20の面積(測定電極4の面積)を、40mm以下にしている。検知部20の面積が40mmを超える場合は、面積が大きすぎるため、測定電極4を構成する貴金属の使用量が増加しやすくなる。そのため、A/Fセンサ1の製造コストは上昇しやすくなる。したがって、検知部20の面積は、40mm以下にすることが好ましい。 In the present embodiment, the area of the detection unit 20 (the area of the measurement electrode 4) is set to 40 mm 2 or less. When the area of the detection unit 20 exceeds 40 mm 2 , the area is too large, so that the amount of noble metal used for the measurement electrode 4 is likely to increase. Therefore, the manufacturing cost of the A / F sensor 1 is likely to increase. Therefore, the area of the detection unit 20 is preferably 40 mm 2 or less.
 また、本実施形態では、検知部20の面積(測定電極4の面積)を、20mm以上にしている。測定電極4の面積には、その大きさにばらつき(製造上のばらつき)があるため、面積を小さくし、20mm未満にすると、このばらつきの影響が大きくなる。そのため、検知部20における電気抵抗のばらつきは大きくなり、空燃比の測定精度は低下しやすくなる。したがって、検知部20の面積は、20mm以上にすることが好ましい。 In the present embodiment, the area of the detection unit 20 (the area of the measurement electrode 4) is set to 20 mm 2 or more. Since the area of the measurement electrode 4 varies in size (manufacturing variation), if the area is reduced to less than 20 mm 2 , the influence of this variation increases. For this reason, the variation in electric resistance in the detection unit 20 becomes large, and the measurement accuracy of the air-fuel ratio tends to be lowered. Therefore, the area of the detection unit 20 is preferably 20 mm 2 or more.
 また、本実施形態では、検知部20の厚さThを2mm以下にしている。検知部20の厚さThが2mmを超える場合は、検知部20の電気抵抗が高くなりすぎ、空燃比の測定精度が低下しやすくなる。したがって、検知部20の厚さThは、2mm以下にすることが好ましい。 In the present embodiment, the thickness Th of the detection unit 20 is 2 mm or less. When the thickness Th of the detection unit 20 exceeds 2 mm, the electrical resistance of the detection unit 20 becomes too high, and the measurement accuracy of the air-fuel ratio tends to decrease. Therefore, the thickness Th of the detection unit 20 is preferably 2 mm or less.
 また、本実施形態では、検知部20の厚さThを0.5mm以上にしている。検知部20の厚さThが0.5mm未満の場合は、後述するように、検知部20の強度が低下しやすくなる。したがって、検知部20の厚さThは、0.5mm以上にすることが好ましい。 In this embodiment, the thickness Th of the detection unit 20 is set to 0.5 mm or more. When the thickness Th of the detection unit 20 is less than 0.5 mm, the strength of the detection unit 20 tends to decrease as will be described later. Therefore, the thickness Th of the detection unit 20 is preferably 0.5 mm or more.
 また、本実施形態では、A/Fセンサ1を製造するにあたり、上記焼成工程と、上記通電工程とを行う。焼成工程では、固体電解質体2の未焼成体28(図5参照)を焼成し、焼成体29を生成する。また、通電工程では、焼成体29に形成された測定電極4と基準電極5との間に電流を流し、検知部20におけるC相の割合を88mol%以上にする。これにより、固体電解質体2を形成する。
 このように、本実施形態では、上記通電工程を行うことにより、検知部20におけるC相の割合を容易に増やせる。そのため、本実施形態の製造方法では、固体電解質体2を製造しやすい。
Moreover, in this embodiment, when manufacturing the A / F sensor 1, the said baking process and the said electricity supply process are performed. In the firing step, the unfired body 28 (see FIG. 5) of the solid electrolyte body 2 is fired to produce a fired body 29. In the energization process, a current is passed between the measurement electrode 4 and the reference electrode 5 formed on the fired body 29 so that the ratio of the C phase in the detection unit 20 is 88 mol% or more. Thereby, the solid electrolyte body 2 is formed.
Thus, in this embodiment, the ratio of the C phase in the detection part 20 can be increased easily by performing the said electricity supply process. Therefore, it is easy to manufacture the solid electrolyte body 2 in the manufacturing method of the present embodiment.
 また、上記検知部20におけるC相の割合は、88.5mol%以上であることが、より好ましい。88.5mol%以上の場合は、検知部20の電気抵抗のばらつきを、より抑制できる(図6参照)。 In addition, the ratio of the C phase in the detection unit 20 is more preferably 88.5 mol% or more. In the case of 88.5 mol% or more, the variation in the electrical resistance of the detection unit 20 can be further suppressed (see FIG. 6).
 以上のように、本実施形態によれば、排ガスの浄化装置10よりも下流側に設けられ、排ガスの空燃比をより正確に測定できるA/Fセンサ1と、その製造方法を提供できる。 As described above, according to the present embodiment, it is possible to provide an A / F sensor 1 that is provided on the downstream side of the exhaust gas purification device 10 and that can more accurately measure the air-fuel ratio of the exhaust gas, and a manufacturing method thereof.
(実験例1)
 本実施形態のA/Fセンサ1における作用効果を確認するための実験を行った。まず、本実験では、下記表1に示すように、検知部20におけるC相の割合が互いに異なる、5種類のA/Fセンサ1のサンプル(サンプル1~5)を製造した。そして、これらのサンプルを対象に、それぞれの検知部20の電気抵抗を測定した。これにより、本実験では、C相の割合と、電気抵抗のばらつきとの関係を調査した。
(Experimental example 1)
An experiment was conducted to confirm the operational effects of the A / F sensor 1 of the present embodiment. First, in this experiment, as shown in Table 1 below, five types of A / F sensor 1 samples (samples 1 to 5) having different C phase ratios in the detection unit 20 were manufactured. And the electrical resistance of each detection part 20 was measured for these samples. Thereby, in this experiment, the relationship between the ratio of C phase and the variation in electrical resistance was investigated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 まず、上記サンプルの製造方法について説明する。サンプル1~5を製造するにあたり、まず、ZrO粉末とY粉末とを混合し、コップ型に成形した。これにより、固体電解質体2の未焼成体28(図5参照)を製造した。未焼成体28の組成は、ZrOが94mol%、Yが6mol%となるようにした。 First, a method for manufacturing the sample will be described. In producing Samples 1 to 5, first, ZrO 2 powder and Y 2 O 3 powder were mixed and formed into a cup shape. Thereby, the unsintered body 28 (refer FIG. 5) of the solid electrolyte body 2 was manufactured. The composition of the green body 28 was such that ZrO 2 was 94 mol% and Y 2 O 3 was 6 mol%.
 その後、上記サンプルの製造方法では、焼成工程を行った。サンプル2~5については、未焼成体28を1100~1185℃の範囲内で24時間焼成した。これに対して、サンプル1については、同じ温度で6時間焼成した。これにより、焼成体29を作成した。上記条件で焼成工程を行うと、サンプル1については、焼成体29のC相の割合が86mol%となる。一方、サンプル2~5については、焼成体29のC相の割合が87mol%となる。 Thereafter, a firing step was performed in the above-described sample manufacturing method. For Samples 2 to 5, the green body 28 was fired within the range of 1100 to 1185 ° C. for 24 hours. On the other hand, Sample 1 was fired at the same temperature for 6 hours. Thereby, the fired body 29 was created. When the firing step is performed under the above conditions, the sample 1 has a C phase ratio of 86 mol% in the fired body 29. On the other hand, in the samples 2 to 5, the ratio of the C phase of the fired body 29 is 87 mol%.
 上記サンプルの製造方法では、未焼成体28を焼成した後、測定電極4および基準電極5をメッキ形成した。その後、焼成体29の表面に、拡散層211をプラズマ溶射し、さらにトラップ層212となるスラリーを塗布し、乾燥後に焼成した。 In the above sample manufacturing method, after firing the unfired body 28, the measurement electrode 4 and the reference electrode 5 were formed by plating. Thereafter, the diffusion layer 211 was plasma sprayed on the surface of the fired body 29, and a slurry to be the trap layer 212 was applied, followed by drying and firing.
 サンプル1、2については、焼成体29に通電工程を行わず、焼成体29をそのまま固体電解質体2として使用した。一方、サンプル3~5については、焼成体29に通電工程を行った。これにより、上記サンプルの製造方法では、検知部20におけるC相の割合を調整した。例えば、サンプル5については、ヒータ6を用いて焼成体29を850℃に加熱しながら、測定電極4と基準電極5との間に260mAの電流を25秒流した(1回目の通電)。その後、同じ温度で、電流の向きを逆にして、260mAの電流を25秒流した(2回目の通電)。その後、電流を流さない状態で、ヒータ6を用いて850℃で5分間加熱した。この条件で通電工程を行うと、電流によって検知部20におけるC相の割合は増加し、88.5%となる。このようにして、サンプル5を作成した。サンプル3、4については、温度および電流値をサンプル5と同一にし、電流を流す時間を表1に示す値にした。これにより、サンプル3、4を作成した。 For Samples 1 and 2, the fired body 29 was not subjected to an energization step, and the fired body 29 was used as the solid electrolyte body 2 as it was. On the other hand, for Samples 3 to 5, the fired body 29 was subjected to an energization process. Thereby, in the sample manufacturing method, the ratio of the C phase in the detection unit 20 was adjusted. For example, for sample 5, a current of 260 mA was passed between measurement electrode 4 and reference electrode 5 for 25 seconds while heating fired body 29 to 850 ° C. using heater 6 (first energization). Thereafter, at the same temperature, the direction of current was reversed, and a current of 260 mA was applied for 25 seconds (second energization). Then, it heated at 850 degreeC for 5 minutes using the heater 6 in the state which does not flow an electric current. When the energization process is performed under these conditions, the ratio of the C phase in the detection unit 20 is increased by the current and becomes 88.5%. In this way, Sample 5 was prepared. For samples 3 and 4, the temperature and current values were the same as in sample 5, and the current flow time was set to the values shown in Table 1. Thereby, samples 3 and 4 were prepared.
 本実験では、サンプル1~5を作成した後、各サンプルの、検知部20におけるC相の割合を、X線回折法(XRD)により測定した。測定には、波長0.15418nmのX線(CuKα線)を用いた。そして、このX線をサンプル1~5の検知部20に照射し、入射角θを、2θ=20~90°の範囲内で変化させて、回折強度を測定した。その結果、図7に示すように、C相、M相、T相の各結晶面に対応するピークが、所定の角度2θに現れる。 In this experiment, after preparing Samples 1 to 5, the ratio of the C phase in the detection unit 20 of each sample was measured by X-ray diffraction (XRD). For the measurement, X-rays (CuKα rays) having a wavelength of 0.15418 nm were used. Then, the X-rays were applied to the detectors 20 of the samples 1 to 5, and the diffraction angle was measured by changing the incident angle θ within the range of 2θ = 20 to 90 °. As a result, as shown in FIG. 7, peaks corresponding to the crystal planes of the C phase, the M phase, and the T phase appear at a predetermined angle 2θ.
 そして、本実験では、M相、T相、C相の、各結晶面に対応するピークの強度を測定し、下記式[1]~[3]を用いて、検知部20中における各相の割合を算出した。下記式において、mはM相のピーク強度、tはT相のピーク強度、cはC相のピーク強度を意味し、()内の数値は、結晶面のミラー指数を意味する。また、MはM相の割合、TはT相の割合、CはC相の割合を意味する。
M={m(111)+m(-111)}/{m(111)+m(-111)+t(111)+c(111)}×100 ・・・[1]
T=(100-M)×{t(400)+t(004)}/{t(400)+t(004)+c(400)} ・・・[2]
C=(100-M)×c(400)/{t(400)+t(004)+c(400)} ・・・[3]
In this experiment, the intensity of the peak corresponding to each crystal plane of the M phase, the T phase, and the C phase is measured, and the following equations [1] to [3] are used to determine the phase of each phase in the detection unit 20. The percentage was calculated. In the following formula, m represents the peak intensity of the M phase, t represents the peak intensity of the T phase, c represents the peak intensity of the C phase, and the numerical value in () represents the Miller index of the crystal plane. Moreover, M means the proportion of the M phase, T means the proportion of the T phase, and C means the proportion of the C phase.
M = {m (111) + m (−111)} / {m (111) + m (−111) + t (111) + c (111)} × 100 (1)
T = (100−M) × {t (400) + t (004)} / {t (400) + t (004) + c (400)} [2]
C = (100−M) × c (400) / {t (400) + t (004) + c (400)} [3]
 本実験では、検知部20におけるC相の割合を測定した後、検知部20の電気抵抗を測定した。この際、ヒータ6を用いて、検知部20の温度を700℃にし、この状態で、検知部20の電気抵抗を測定した。本実験の測定結果である電気抵抗の平均値および3σを表1に示す。また、C相の割合と電気抵抗との関係を図6に示す。なお、本実験では、検知部20の面積は28.26mmであり、検知部20の厚さは0.5mmであった。また、測定電極4の厚さは1.6μmであった。 In this experiment, after measuring the ratio of the C phase in the detection unit 20, the electrical resistance of the detection unit 20 was measured. At this time, the temperature of the detection unit 20 was set to 700 ° C. using the heater 6, and the electrical resistance of the detection unit 20 was measured in this state. Table 1 shows the average value of electrical resistance and 3σ, which are the measurement results of this experiment. Moreover, the relationship between the ratio of C phase and electrical resistance is shown in FIG. In this experiment, the area of the detection unit 20 was 28.26 mm 2 and the thickness of the detection unit 20 was 0.5 mm. The thickness of the measurement electrode 4 was 1.6 μm.
 図6は、横軸がC相の割合を表し、縦軸が電気抵抗を表すグラフである。図6には、C相の割合と電気抵抗との関係がプロット点により示されており、電気抵抗の最大値と最小値とがエラーバーによって示されている。本実験の測定結果を図6に示す。図6からは、検知部20におけるC相の割合が88mol%以上であれば、電気抵抗が充分に低く、かつ、電気抵抗のばらつきも小さくなることが分かる。このように、本実験の測定結果からは、検知部20におけるC相の割合が88mol%以上のA/Fセンサ1を用いれば、空燃比を測定する際、検知部20に流れる電流のばらつきを低減でき、空燃比を正確に測定できることが分かる。したがって、本実施形態のA/Fセンサ1は、排ガスgの空燃比を正確に制御でき、排ガスg中の有害物質を低減できることが分かる。 FIG. 6 is a graph in which the horizontal axis represents the C phase ratio and the vertical axis represents the electrical resistance. In FIG. 6, the relationship between the ratio of the C phase and the electric resistance is indicated by plot points, and the maximum value and the minimum value of the electric resistance are indicated by error bars. The measurement results of this experiment are shown in FIG. From FIG. 6, it can be seen that if the proportion of the C phase in the detection unit 20 is 88 mol% or more, the electrical resistance is sufficiently low and the variation in the electrical resistance is also small. As described above, from the measurement result of this experiment, when the A / F sensor 1 having a C phase ratio of 88 mol% or more in the detection unit 20 is used, the variation in the current flowing through the detection unit 20 is measured when the air-fuel ratio is measured. It can be seen that the air-fuel ratio can be accurately measured. Therefore, it can be seen that the A / F sensor 1 of the present embodiment can accurately control the air-fuel ratio of the exhaust gas g and can reduce harmful substances in the exhaust gas g.
(実験例2)
 次に、A/Fセンサ1における検知部20の温度と電気抵抗との関係を確認するための実験を行った。まず、本実験では、実験例1と同様の工程を行って、A/Fセンサ1のサンプルを複数個作成した。各サンプルの、検知部20におけるC相の割合は、85,85.5,86,86.5,87,87.5,88,88.5,89mol%にした。そして、これらのサンプルを、ヒータ6を用いて、500℃、600℃、700℃、800℃、900℃、1000℃に加熱し、各温度における検知部20の電気抵抗を測定した。なお、各サンプルの、検知部20の面積は28.26mmとし、検知部20の厚さは0.5mmとした。
(Experimental example 2)
Next, an experiment for confirming the relationship between the temperature of the detection unit 20 and the electrical resistance in the A / F sensor 1 was performed. First, in this experiment, a plurality of samples of the A / F sensor 1 were prepared by performing the same process as in Experimental Example 1. The ratio of the C phase in the detection part 20 of each sample was 85, 85.5, 86, 86.5, 87, 87.5, 88, 88.5, 89 mol%. And these samples were heated to 500 degreeC, 600 degreeC, 700 degreeC, 800 degreeC, 900 degreeC, 1000 degreeC using the heater 6, and the electrical resistance of the detection part 20 in each temperature was measured. Incidentally, each sample, the area of the detection unit 20 is set to 28.26 mm 2, the thickness of the detecting portion 20 was set to 0.5 mm.
 本実験の測定結果を図8に示す。図8に示すように、検知部20の温度が500℃の場合は、C相の割合に関わらず、検知部20の電気抵抗が高い。これに対して、検知部20の温度が600℃以上の場合には、C相の割合を88mol%以上とすることにより、検知部20の電気抵抗を大きく低減できる。 The measurement results of this experiment are shown in FIG. As shown in FIG. 8, when the temperature of the detection unit 20 is 500 ° C., the electric resistance of the detection unit 20 is high regardless of the proportion of the C phase. On the other hand, when the temperature of the detection unit 20 is 600 ° C. or higher, the electrical resistance of the detection unit 20 can be greatly reduced by setting the ratio of the C phase to 88 mol% or higher.
 なお、図8からは、900℃と1000℃とでは、検知部20の電気抵抗が殆ど同じであることが分かる。このように、本実験の測定結果からは、検知部20を1000℃以上に加熱しても、これ以上、大きく電気抵抗を低減できないことが分かる。また、上述したように、検知部20の温度を1000℃より高くすると、検知部20の強度が低下したり、ヒータ6の消費電力が増大したりする等の問題が生じやすい。したがって、空燃比を測定するときには、検知部20の温度を1000℃以下にすることが好ましい。 Note that FIG. 8 shows that the electrical resistance of the detection unit 20 is almost the same at 900 ° C. and 1000 ° C. Thus, from the measurement results of this experiment, it can be seen that even if the detection unit 20 is heated to 1000 ° C. or higher, the electrical resistance cannot be greatly reduced. Further, as described above, when the temperature of the detection unit 20 is higher than 1000 ° C., problems such as a decrease in strength of the detection unit 20 and an increase in power consumption of the heater 6 are likely to occur. Therefore, when measuring the air-fuel ratio, it is preferable to set the temperature of the detection unit 20 to 1000 ° C. or less.
(実験例3)
 次に、A/Fセンサ1における検知部20の面積と電気抵抗との関係を確認するための実験を行った。まず、本実験では、実験例1と同様の工程を行って、A/Fセンサ1の複数のサンプルを作成した。各サンプルの、検知部20におけるC相の割合と、検知部20の面積とを、次のような条件とした。C相の割合は、実験例2と同様に、85,85.5,86,86.5,87,87.5,88,88.5,89mol%にした。また、検知部20の面積は、20,25,28,30,40mmにした。そして、各サンプルのヒータ6を加熱して、検知部20の温度を700℃にした。この状態で、検知部20の電気抵抗を測定した。なお、各サンプルの、検知部20の厚さは0.5mmにした。
(Experimental example 3)
Next, an experiment for confirming the relationship between the area of the detection unit 20 and the electrical resistance in the A / F sensor 1 was performed. First, in this experiment, a plurality of samples of the A / F sensor 1 were created by performing the same process as in Experimental Example 1. For each sample, the ratio of the C phase in the detection unit 20 and the area of the detection unit 20 were as follows. The ratio of the C phase was set to 85, 85.5, 86, 86.5, 87, 87.5, 88, 88.5, and 89 mol%, as in Experimental Example 2. The area of the detection unit 20 was set to 20, 25, 28, 30, 40 mm 2 . And the heater 6 of each sample was heated and the temperature of the detection part 20 was 700 degreeC. In this state, the electrical resistance of the detection unit 20 was measured. In addition, the thickness of the detection part 20 of each sample was 0.5 mm.
 本実験の測定結果を図9に示す。図9からは、検知部20の面積を大きくするほど、検知部20の電気抵抗を低減できることが分かる。しかしながら、検知部20の面積を40mmより大きくすると、上述したように、測定電極4の面積が大きくなり、測定電極4を構成する貴金属の使用量が増大する。そのため、A/Fセンサ1の製造コストが上昇する。また、上述したように、測定電極4の面積にはばらつき(製造上のばらつき)がある。そのため、検知部20の面積(測定電極4の面積)が20mmより小さくなると、このばらつきの影響が大きくなる。その結果、検知部20の電気抵抗のばらつきが大きくなり、空燃比の測定精度が低下しやすい。したがって、検知部20の面積は、20~40mmの範囲内にすることが好ましい。 The measurement results of this experiment are shown in FIG. FIG. 9 shows that the electrical resistance of the detection unit 20 can be reduced as the area of the detection unit 20 is increased. However, when the area of the detection unit 20 is larger than 40 mm 2 , the area of the measurement electrode 4 is increased as described above, and the amount of noble metal used to configure the measurement electrode 4 is increased. Therefore, the manufacturing cost of the A / F sensor 1 increases. Further, as described above, the area of the measurement electrode 4 has variations (manufacturing variations). Therefore, when the area of the detection unit 20 (the area of the measurement electrode 4) is smaller than 20 mm 2 , the influence of this variation becomes large. As a result, the variation in the electrical resistance of the detection unit 20 becomes large, and the measurement accuracy of the air-fuel ratio tends to decrease. Therefore, the area of the detection unit 20 is preferably in the range of 20 to 40 mm 2 .
(実験例4)
 次に、A/Fセンサ1における検知部20の厚さと電気抵抗との関係を確認するための実験を行った。まず、本実験では、実験例1と同様の工程を行って、A/Fセンサ1の複数のサンプルを作成した。各サンプルの、検知部20におけるC相の割合と、検知部20の厚さとを、次のような条件とした。C相の割合は、実験例2と同様に、85,85.5,86,86.5,87,87.5,88,88.5,89mol%にした。また、検知部20の厚さは、0.5,0.8,1.0,1.5,2.0mmにした。そして、各サンプルのヒータ6を加熱して、検知部20の温度を700℃にした。この状態で、検知部20の電気抵抗を測定した。なお、各サンプルの、検知部20の面積は、28.26mmとした。
(Experimental example 4)
Next, an experiment for confirming the relationship between the thickness of the detection unit 20 and the electrical resistance in the A / F sensor 1 was performed. First, in this experiment, a plurality of samples of the A / F sensor 1 were created by performing the same process as in Experimental Example 1. For each sample, the ratio of the C phase in the detection unit 20 and the thickness of the detection unit 20 were as follows. The ratio of the C phase was set to 85, 85.5, 86, 86.5, 87, 87.5, 88, 88.5, and 89 mol%, as in Experimental Example 2. Moreover, the thickness of the detection part 20 was 0.5, 0.8, 1.0, 1.5, 2.0 mm. And the heater 6 of each sample was heated and the temperature of the detection part 20 was 700 degreeC. In this state, the electrical resistance of the detection unit 20 was measured. Incidentally, each sample, the area of the detection portion 20 was set to 28.26 mm 2.
 本実験の測定結果を図10に示す。図10からは、検知部20を厚くすると、検知部20の電気抵抗が大きくなることが分かる。検知部20の厚さが2mmを超える場合は、検知部20の電気抵抗、及び、そのばらつきが大きくなりすぎる。そのため、排ガスgの空燃比を正確に測定しにくくなる。また、検知部20の厚さが0.5mm未満の場合は、検知部20の強度が低下しやすくなる。そのため、検知部20の厚さは、0.5~2mmの範囲内にすることが好ましい。 The measurement results of this experiment are shown in FIG. From FIG. 10, it can be seen that the electrical resistance of the detection unit 20 increases when the detection unit 20 is thickened. When the thickness of the detection unit 20 exceeds 2 mm, the electrical resistance of the detection unit 20 and the variation thereof are too large. For this reason, it becomes difficult to accurately measure the air-fuel ratio of the exhaust gas g. Moreover, when the thickness of the detection unit 20 is less than 0.5 mm, the strength of the detection unit 20 tends to decrease. Therefore, the thickness of the detection unit 20 is preferably in the range of 0.5 to 2 mm.
(実験例5)
 次に、A/Fセンサ1における固体電解質体2の曲げ強さと温度との関係を確認するための実験を行った。まず、本実験では、実験例1と同様の工程を行って、固体電解質体2のサンプルを複数個作成した。固体電解質体2の厚さは0.5mmにした。これらのサンプルを対象に、それぞれの固体電解質体2の4点曲げ試験を行った。これにより、本実験では、固体電解質体2が破壊するまでに、固体電解質体2に加わる最大応力(曲げ強さ)を測定した。なお、本実験は、室温(約25℃)、600℃、800℃、1000℃において行った。
(Experimental example 5)
Next, an experiment for confirming the relationship between the bending strength of the solid electrolyte body 2 and the temperature in the A / F sensor 1 was performed. First, in this experiment, a plurality of samples of the solid electrolyte body 2 were prepared by performing the same process as in Experimental Example 1. The thickness of the solid electrolyte body 2 was 0.5 mm. A four-point bending test of each solid electrolyte body 2 was performed on these samples. Thus, in this experiment, the maximum stress (bending strength) applied to the solid electrolyte body 2 before the solid electrolyte body 2 was broken was measured. In addition, this experiment was performed at room temperature (about 25 degreeC), 600 degreeC, 800 degreeC, and 1000 degreeC.
 また、本実験では、各温度において、8個のサンプルを用いた。そして、各温度における曲げ強さを評価し、ワイブルプロットから、破壊確率が90%、50%、10%、1%、0.1%、0.01%、0.001%、0.0001%であるときの、曲げ強さの値を算出した。そして、この算出結果をグラフにした。 In this experiment, 8 samples were used at each temperature. Then, the bending strength at each temperature was evaluated, and the failure probability was 90%, 50%, 10%, 1%, 0.1%, 0.01%, 0.001%, 0.0001% from the Weibull plot. The value of bending strength was calculated. And this calculation result was made into the graph.
 本実験の算出結果を図11に示す。図11からは、固体電解質体2の温度が上昇するほど、曲げ強さが低下することが分かる。特に、固体電解質体2の温度が1000℃付近では、常温の半分以下になることが分かる。そのため、A/Fセンサ1を用いて空燃比を測定するときは、固体電解質体2の温度を1000℃以下にすることが好ましい。 The calculation result of this experiment is shown in FIG. From FIG. 11, it can be seen that the bending strength decreases as the temperature of the solid electrolyte body 2 increases. In particular, it can be seen that when the temperature of the solid electrolyte body 2 is around 1000 ° C., it becomes half or less of room temperature. Therefore, when measuring the air-fuel ratio using the A / F sensor 1, the temperature of the solid electrolyte body 2 is preferably set to 1000 ° C. or less.
 1 A/Fセンサ
10 浄化装置
 2 固体電解質体
20 検知部
 3 基準ガス室
 4 測定電極
 5 基準電極
 6 ヒータ
 
DESCRIPTION OF SYMBOLS 1 A / F sensor 10 Purification apparatus 2 Solid electrolyte body 20 Detection part 3 Reference gas chamber 4 Measurement electrode 5 Reference electrode 6 Heater

Claims (9)

  1.  排ガスを浄化する浄化装置(10)よりも前記排ガスの下流側に設けられ、前記排ガスの空燃比を測定するA/Fセンサ(1)であって、
     先端が閉塞し基端が開放したコップ型の固体電解質体(2)と、
     該固体電解質体の内側に形成され、基準ガスが導入される基準ガス室(3)と、
     前記固体電解質体の外面(21)に形成され、前記排ガスに接触する測定電極(4)と、
     前記固体電解質体の内面(22)に形成され、前記基準ガスに接触する基準電極(5)と、
     前記基準ガス室に配され、前記固体電解質体を加熱するヒータ(6)と、を備え、
     前記固体電解質体はジルコニアで構成され、前記固体電解質体は、前記測定電極と前記基準電極との間に介在し、酸素イオンが伝導する検知部(20)を備え、該検知部は、キュービック相の割合が88mol%以上である、A/Fセンサ。
    An A / F sensor (1) that is provided on the downstream side of the exhaust gas with respect to the purification device (10) that purifies the exhaust gas and measures the air-fuel ratio of the exhaust gas,
    A cup-shaped solid electrolyte body (2) having a closed end and an open proximal end;
    A reference gas chamber (3) formed inside the solid electrolyte body and into which a reference gas is introduced;
    A measuring electrode (4) formed on the outer surface (21) of the solid electrolyte body and in contact with the exhaust gas;
    A reference electrode (5) formed on the inner surface (22) of the solid electrolyte body and in contact with the reference gas;
    A heater (6) disposed in the reference gas chamber and heating the solid electrolyte body,
    The solid electrolyte body is composed of zirconia, and the solid electrolyte body includes a detection unit (20) that is interposed between the measurement electrode and the reference electrode and conducts oxygen ions, and the detection unit includes a cubic phase. A / F sensor whose ratio is 88 mol% or more.
  2.  前記検知部は、前記固体電解質体のうち、前記検知部以外の部位よりも、前記キュービック相が1mol%以上多い、請求項1に記載のA/Fセンサ。 The A / F sensor according to claim 1, wherein the detection unit includes the cubic phase in an amount of 1 mol% or more in the solid electrolyte body than the portion other than the detection unit.
  3.  前記固体電解質体の軸方向における前記測定電極の長さは3mm以下である、請求項1又は請求項2に記載のA/Fセンサ。 The A / F sensor according to claim 1 or 2, wherein a length of the measurement electrode in the axial direction of the solid electrolyte body is 3 mm or less.
  4.  前記固体電解質体は、Yを4.5~6mol%の範囲内で含有する、請求項1乃至請求項3のいずれか一項に記載のA/Fセンサ。 The A / F sensor according to any one of claims 1 to 3, wherein the solid electrolyte body contains Y 2 O 3 in a range of 4.5 to 6 mol%.
  5.  前記検知部は、前記キュービック相が95mol%以下である、請求項1乃至請求項4のいずれか一項に記載のA/Fセンサ。 The A / F sensor according to any one of claims 1 to 4, wherein the detection unit has a cubic phase of 95 mol% or less.
  6.  前記排ガスの空燃比を測定するときに、前記ヒータによって、前記検知部を600~1000℃の範囲内で加熱するように構成されている、請求項1乃至請求項5のいずれか一項に記載のA/Fセンサ。 6. The apparatus according to claim 1, wherein when the air-fuel ratio of the exhaust gas is measured, the detector is heated by the heater within a range of 600 to 1000 ° C. A / F sensor.
  7.  前記検知部の面積は40mm以下である、請求項1乃至請求項6のいずれか一項に記載のA/Fセンサ。 The area of the sensing portion is 40 mm 2 or less, A / F sensor according to any one of claims 1 to 6.
  8.  前記検知部の厚さは2mm以下である、請求項1乃至請求項7のいずれか一項に記載のA/Fセンサ。 The A / F sensor according to any one of claims 1 to 7, wherein a thickness of the detection unit is 2 mm or less.
  9.  請求項1乃至請求項8のいずれか一項に記載のA/Fセンサを製造する方法であって、
     前記固体電解質体の未焼成体(28)を焼成することにより、焼成体(29)を製造する焼成工程と、
     前記焼成体に形成された前記測定電極と前記基準電極との間に電流を流すことにより、前記検知部における前記キュービック相の割合を88mol%以上にする通電工程と、
     を行う、A/Fセンサの製造方法。
     
    A method for manufacturing the A / F sensor according to any one of claims 1 to 8,
    A firing step for producing a fired body (29) by firing the unsintered body (28) of the solid electrolyte body;
    An energization step of bringing the ratio of the cubic phase in the detection unit to 88 mol% or more by flowing a current between the measurement electrode and the reference electrode formed on the fired body;
    A method for manufacturing an A / F sensor.
PCT/JP2016/075136 2015-08-27 2016-08-29 A/f sensor and method of manufacturing same WO2017034037A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/754,373 US10801989B2 (en) 2015-08-27 2016-08-29 A/F sensor and method of manufacturing the same
DE112016003882.8T DE112016003882B4 (en) 2015-08-27 2016-08-29 A/F sensor and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015168050 2015-08-27
JP2015-168050 2015-08-27
JP2016-113841 2016-06-07
JP2016113841A JP6443397B2 (en) 2015-08-27 2016-06-07 A / F sensor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2017034037A1 true WO2017034037A1 (en) 2017-03-02

Family

ID=58101231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075136 WO2017034037A1 (en) 2015-08-27 2016-08-29 A/f sensor and method of manufacturing same

Country Status (1)

Country Link
WO (1) WO2017034037A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179862U (en) * 1984-05-07 1985-11-29 株式会社デンソー oxygen concentration detector
JPH10177005A (en) * 1996-10-17 1998-06-30 Nippon Soken Inc Gas concentration detection element
JPH11240755A (en) * 1998-02-25 1999-09-07 Denso Corp Production of oxygen sensor element
JPH11316211A (en) * 1998-03-05 1999-11-16 Denso Corp Laminated air/fuel ratio sensor element
JP2001072465A (en) * 1999-08-30 2001-03-21 Nissan Motor Co Ltd Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same
JP2003004696A (en) * 2001-06-18 2003-01-08 Kyocera Corp Air/fuel ratio sensor element
JP2003247972A (en) * 2001-12-20 2003-09-05 Denso Corp Gas sensor element and method of manufacturing and reproducing the same
JP2009053108A (en) * 2007-08-28 2009-03-12 Toyota Motor Corp Method of controlling temperature in limiting-current type air-fuel ratio sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179862U (en) * 1984-05-07 1985-11-29 株式会社デンソー oxygen concentration detector
JPH10177005A (en) * 1996-10-17 1998-06-30 Nippon Soken Inc Gas concentration detection element
JPH11240755A (en) * 1998-02-25 1999-09-07 Denso Corp Production of oxygen sensor element
JPH11316211A (en) * 1998-03-05 1999-11-16 Denso Corp Laminated air/fuel ratio sensor element
JP2001072465A (en) * 1999-08-30 2001-03-21 Nissan Motor Co Ltd Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same
JP2003004696A (en) * 2001-06-18 2003-01-08 Kyocera Corp Air/fuel ratio sensor element
JP2003247972A (en) * 2001-12-20 2003-09-05 Denso Corp Gas sensor element and method of manufacturing and reproducing the same
JP2009053108A (en) * 2007-08-28 2009-03-12 Toyota Motor Corp Method of controlling temperature in limiting-current type air-fuel ratio sensor

Similar Documents

Publication Publication Date Title
US11085895B2 (en) Electrode for use in gas sensor and gas sensor element using the same
JP6824828B2 (en) Ammonia concentration measuring device, ammonia concentration measuring system, exhaust gas treatment system, and ammonia concentration measuring method
KR101440648B1 (en) Hydrogen sensitive composite material, tubular sensor for detecting hydrogen and other gases
JP3874947B2 (en) Sulfur dioxide gas sensor
US10267761B2 (en) Material for sensing electrode of NOX gas sensor
US10697926B2 (en) Sensor material and gas sensor element and gas sensor derived therefrom
WO2007044387A1 (en) Nox sensor and methods of using the same
JPH10239276A (en) Carbon monoxide gas sensor and measuring device using it
JP6867921B2 (en) Ammonia concentration measuring device, ammonia concentration measuring system, exhaust gas treatment system, and ammonia concentration measuring method
JP2000065789A (en) Carbon monoxide sensor, its production and its use
WO2008103311A2 (en) Nox sensor with improved selectivity and sensitivity
JP2011038953A (en) Gas sensor
JP6443397B2 (en) A / F sensor and manufacturing method thereof
JP6667192B2 (en) Ammonia sensor element
US20210247354A1 (en) Ammonia detector
JP2017167136A (en) Ammonia sensor detection electrode and ammonia sensor
CN110672697A (en) Gas sensor
JP2005091228A (en) Cell for nox detection, manufacturing method therefor, and nox detector equipped with the cell
JP2011069705A (en) Ammonia sensor element and manufacturing method of proton conductive solid electrolyte
WO2017034037A1 (en) A/f sensor and method of manufacturing same
JPH1172476A (en) Nitrogen oxide gas sensor
US20110210013A1 (en) Selective gas sensor device and associated method
KR101570281B1 (en) Manufacturing method for oxygen sensor
JP2000214130A (en) Method for measuring concentration of gas
JP2019049444A (en) NOx sensor element and NOx sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15754373

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016003882

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839384

Country of ref document: EP

Kind code of ref document: A1