JP3162881B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JP3162881B2
JP3162881B2 JP19063593A JP19063593A JP3162881B2 JP 3162881 B2 JP3162881 B2 JP 3162881B2 JP 19063593 A JP19063593 A JP 19063593A JP 19063593 A JP19063593 A JP 19063593A JP 3162881 B2 JP3162881 B2 JP 3162881B2
Authority
JP
Japan
Prior art keywords
battery
current collector
electrode
fuel electrode
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19063593A
Other languages
Japanese (ja)
Other versions
JPH0745297A (en
Inventor
直哉 中西
正天 門脇
俊輔 谷口
耕司 安尾
幸徳 秋山
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19063593A priority Critical patent/JP3162881B2/en
Publication of JPH0745297A publication Critical patent/JPH0745297A/en
Application granted granted Critical
Publication of JP3162881B2 publication Critical patent/JP3162881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池に
関し、詳しくはその燃料極側集電体の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly, to an improvement in a fuel electrode side current collector.

【0002】[0002]

【従来の技術】燃料電池は、供給されるガスの化学エネ
ルギーを直接電気エネルギーに変換するので、高い発電
効率が期待できる。特に、固体電解質型燃料電池(SO
FC)は、約1000℃という高温で作動するため、廃
熱の利用を含めると発電効率をリン酸型燃料電池(PA
FC),溶融炭酸塩型燃料電池(MCFC)に比べて向
上させることができる等の利点がある。したがって、P
AFC,MCFCに次ぐ第三世代の燃料電池として注目
され、各分野で研究されている。
2. Description of the Related Art Since a fuel cell directly converts chemical energy of supplied gas into electric energy, high power generation efficiency can be expected. In particular, solid oxide fuel cells (SO
Since the FC operates at a high temperature of about 1000 ° C., the power generation efficiency including the use of waste heat is reduced by the phosphoric acid type fuel cell (PA).
FC) and a molten carbonate fuel cell (MCFC). Therefore, P
It is attracting attention as a third-generation fuel cell after AFC and MCFC, and is being studied in various fields.

【0003】一般に、固体電解質型燃料電池は、酸素イ
オン導電性の固体電解質を介して燃料極と酸化剤極とが
相対向するセルと,ガスを分離するセパレータとを積層
させた構造であり、電極とセパレータとの導電性は電極
とセパレータとの間に介在される集電体によって保たれ
ている。従来、燃料極側集電体としては、実開昭63−
106063号公報に示されているように、Niフェル
トが用いられている。一方、酸化剤極側集電体として
は、1000℃の酸化雰囲気下で、十分な導電性が得ら
れ、劣化の少ない白金網が使用されている。
In general, a solid oxide fuel cell has a structure in which a cell in which a fuel electrode and an oxidant electrode face each other via a solid electrolyte having oxygen ion conductivity and a separator for separating gas are laminated. The conductivity between the electrode and the separator is maintained by a current collector interposed between the electrode and the separator. Conventionally, as a fuel electrode side current collector,
As shown in 106063, Ni felt is used. On the other hand, as the oxidant-electrode-side current collector, a platinum net that has sufficient conductivity and is less deteriorated in an oxidizing atmosphere at 1000 ° C. is used.

【0004】[0004]

【発明が解決しようとする課題】ところが、固体電解質
型燃料電池の電池作動温度は1000℃前後と高温なた
め、長期の作動に際して燃料極側集電体であるNiフェ
ルトが焼結する。したがって、Niフェルトの繊維間の
隙間が小さくなり、ガス拡散性が悪くなるため、燃料ガ
スの通気率が低下するという問題がある。また、Niフ
ェルトの焼結によって集電体の厚みが小さくなり(かさ
密度が増大)、集電体とセパレータとの間に隙間が生じ
るので接触抵抗が増大するという問題がある。これらの
結果、電池性能が低下するという課題がある。
However, since the operating temperature of the solid oxide fuel cell is as high as about 1000 ° C., Ni felt, which is a fuel electrode current collector, sinters during long-term operation. Therefore, there is a problem that the gap between the fibers of the Ni felt becomes small and the gas diffusivity deteriorates, so that the permeability of the fuel gas decreases. Further, there is a problem that the thickness of the current collector is reduced (increased in bulk density) by sintering the Ni felt, and a gap is generated between the current collector and the separator, so that the contact resistance is increased. As a result, there is a problem that battery performance is reduced.

【0005】本発明は上記課題を解決するため、燃料極
側集電体であるNiフェルトの焼結を抑制して、電池性
能が向上した固体電解質型燃料電池を提供することを目
的とする。
[0005] In order to solve the above problems, an object of the present invention is to provide a solid oxide fuel cell having improved cell performance by suppressing sintering of Ni felt, which is a fuel electrode side current collector.

【0006】[0006]

【課題を解決するための手段】上記課題に鑑み、請求項
1の発明は、電解質を介して燃料極と酸化剤極とが相対
向するセルと,ガスを分離するセパレータとが積層さ
れ、且つ、各電極とセパレータとの間には集電体が介在
された構造の固体電解質型燃料電池において、前記燃料
極とセパレータとの間に介在する燃料極側集電体は、繊
維状ニッケルの表面に電解質材料が付着したニッケルフ
ェルトで構成されていることを特徴とする。
SUMMARY OF THE INVENTION In view of the above problems, a first aspect of the present invention provides a fuel cell system in which a fuel electrode and an oxidant electrode face each other via an electrolyte, and a separator for separating gas are laminated. In a solid oxide fuel cell having a structure in which a current collector is interposed between each electrode and a separator, the fuel electrode side current collector interposed between the fuel electrode and the separator has a surface of fibrous nickel. And a nickel felt to which an electrolyte material adheres.

【0007】また、請求項2の発明は、前記燃料極側集
電体と燃料極とは、サーメット化により一体化している
ことを特徴とする。
The invention according to claim 2 is characterized in that the fuel electrode side current collector and the fuel electrode are integrated by cermet formation.

【0008】[0008]

【作用】請求項1の如く、繊維状Niの表面に電解質材
料を付着すれば、特に繊維と繊維とが交差する部分に電
解質材料が集中するため、高温での長期運転の際にNi
フェルトの焼結を抑制して、繊維間の隙間を十分に確保
できる。したがって、燃料ガスの通気率の低下及び接触
抵抗の増大を抑制できるので、電池性能が向上する。
According to the present invention, if the electrolyte material is attached to the surface of the fibrous Ni, the electrolyte material concentrates particularly at a portion where the fiber intersects with each other.
Felt sintering is suppressed, and a sufficient gap between fibers can be secured. Therefore, a decrease in the permeability of the fuel gas and an increase in the contact resistance can be suppressed, so that the cell performance is improved.

【0009】また、繊維状Niの表面に電解質材料が存
在すれば、燃料極側集電部での三相界面(Ni・ガス・
電解質)の数が増加し、電極部を中心として起こる三相
界面での反応が集電部でも起こるため、電池性能が向上
する。加えて、請求項2の如く、燃料極側集電体と燃料
極とが、サーメット化により一体化していれば、燃料極
側集電体と燃料極との接触抵抗が低減するため、電池性
能が更に向上する。
Further, if an electrolyte material is present on the surface of the fibrous Ni, the three-phase interface (Ni.gas.
The number of electrolytes) increases, and the reaction at the three-phase interface, which occurs mainly in the electrode portion, also occurs in the current collecting portion, so that the battery performance is improved. In addition, when the fuel electrode side current collector and the fuel electrode are integrated by cermet formation as in claim 2, the contact resistance between the fuel electrode side current collector and the fuel electrode is reduced, so that the battery performance is improved. Is further improved.

【0010】[0010]

【実施例】 〔実施例1〕図1は本発明の一実施例に係る固体電解質
型燃料電池の断面図であり、8%イットリアで安定化し
たジルコニア(8YSZ)の緻密な焼成体から成る固体
電解質1(外寸150mm×150mm、厚さ0.2mm)を介
して、Ni−YSZサーメットから成る燃料極2と,L
aMnO3 等のペロブスカイト型酸化物から成る酸化剤
極3とが相対向するセル4を一対のセパレータ5・9で
挟持すると共に、燃料極2とセパレータ5との間には燃
料極側集電体6を、酸化剤極3とセパレータ9との間に
は酸化剤極側集電体7をそれぞれ介在させた構造であ
る。また、固体電解質1の電極非塗布面とセパレータ5
・9との間にはシール材8を介在させた。前記燃料極側
集電体6には、繊維状Niの表面にYSZを担持させて
成るNiフェルトを、酸化剤極側集電体7には白金網を
それぞれ使用した。
Embodiment 1 FIG. 1 is a cross-sectional view of a solid oxide fuel cell according to one embodiment of the present invention, which is a solid made of a dense sintered body of zirconia (8YSZ) stabilized with 8% yttria. A fuel electrode 2 made of Ni-YSZ cermet is connected through an electrolyte 1 (external size 150 mm × 150 mm, thickness 0.2 mm) to L
a cell 4 in which an oxidizer electrode 3 made of a perovskite oxide such as aMnO 3 is opposed to each other, is sandwiched between a pair of separators 5 and 9, and a fuel electrode-side current collector is provided between the fuel electrode 2 and the separator 5. 6 has a structure in which an oxidant electrode-side current collector 7 is interposed between the oxidant electrode 3 and the separator 9. Further, the surface of the solid electrolyte 1 where the electrodes are not coated and the separator 5
A seal material 8 was interposed between the seal material 9 and the seal material 9. As the fuel electrode-side current collector 6, Ni felt formed by carrying YSZ on the surface of fibrous Ni was used, and as the oxidant electrode-side current collector 7, a platinum net was used.

【0011】ここで、繊維状Ni表面へのYSZの担持
は、定量比のZrとYとのオクチル酸塩をグリセリンに
て粘度調整し、Niフェルトに略均一に含浸させること
により行った。以下、電池の作製について具体的に説明
する。先ず、NiO粉末200重量部と,Y2 3 安定
化ZrO2 150重量部と,バインダ(ポリビニルブチ
ラール樹脂)10重量部と,溶媒(テルピネオール)1
00重量部とを各々ボールミルにて十分混合し、スラリ
ー中に含まれた微小な気泡を減圧下で攪拌除去して、燃
料極用スラリーとした。
The loading of YSZ on the surface of the fibrous Ni was carried out by adjusting the viscosity of the octylate of Zr and Y at a quantitative ratio with glycerin and impregnating Ni felt almost uniformly. Hereinafter, the fabrication of the battery will be specifically described. First, 200 parts by weight of NiO powder, 150 parts by weight of Y 2 O 3 stabilized ZrO 2, 10 parts by weight of a binder (polyvinyl butyral resin), and 1 part of a solvent (terpineol)
And 100 parts by weight thereof were sufficiently mixed by a ball mill, and minute bubbles contained in the slurry were removed by stirring under reduced pressure to obtain a slurry for a fuel electrode.

【0012】一方、La0.9 Sr0.1 MnO3 粉末40
0重量部と,Y2 3 安定化ZrO 2 150重量部と,
バインダ(ポリビニルブチラール樹脂)10重量部と,
溶媒(テルピネオール)100重量部とを各々ボールミ
ルにて十分混合し、スラリー中に含まれた微小な気泡を
減圧下で攪拌除去して、酸化剤極用スラリーとした。そ
の後、前記固体電解質の一方の面に前記燃料極用スラリ
ーを厚さ50μmとなるように塗布し、乾燥させた後、
これを空気中1250℃で2時間焼成した。次に、前記
固体電解質の他方の面に前記酸化剤極用スラリーを同じ
く厚さ50μmとなるように塗布し、乾燥させた後、こ
れを空気中1100℃で4時間焼成した。
On the other hand, La0.9Sr0.1MnOThreePowder 40
0 parts by weight and YTwoOThreeStabilized ZrO Two150 parts by weight,
10 parts by weight of a binder (polyvinyl butyral resin),
100 parts by weight of a solvent (terpineol)
And thoroughly mix the small air bubbles contained in the slurry.
The mixture was stirred and removed under reduced pressure to obtain an oxidant electrode slurry. So
After that, the fuel electrode slurry is applied to one surface of the solid electrolyte.
Is applied to a thickness of 50 μm and dried,
This was fired in air at 1250 ° C. for 2 hours. Next,
On the other side of the solid electrolyte, apply the same oxidizer electrode slurry
After coating to a thickness of 50 μm and drying,
This was fired in air at 1100 ° C. for 4 hours.

【0013】最後に、電池を組み立てた後、1000℃
まで昇温し、燃料として加湿水素を、酸化剤として空気
をそれぞれ使用した。次に、窒素パージした後空気を導
入して酸化を行い、その後窒素パージし水素を導入して
還元を行い、燃料極側集電体をサーメット化し繊維状N
iとYSZとの密着性を高めると共に、燃料極側集電体
と燃料極とをサーメット化した。
Finally, after assembling the battery,
Humidified hydrogen as fuel and air as oxidant. Next, after purging with nitrogen, air is introduced to oxidize, then purging with nitrogen and reducing by introducing hydrogen, the cermet of the fuel electrode side current collector is converted to fibrous N.
The adhesion between i and YSZ was increased, and the anodic collector and the anode were made cermet.

【0014】このようにして作成した電池を、以下
(A)電池と称する。 〔比較例1〕 燃料極側集電体として、表面にYSZを担持していない
Niフェルトを用いる他は上記実施例1と同様にして電
池を作成した。 〔実験1〕 上記本発明の(A)電池と比較例の(X)電池(いずれ
も、外寸150mm×150mmの単セル)とを用い
て、連続放電を行ったので、その結果を図2に示す。
尚、実験は所定の条件で1000℃まで昇温した後、燃
料として水素を、酸化剤として空気をそれぞれ使用し
て、300mA/cm2 にて連続放電を行うという条件
である。また、図3及び図9は、連続放電後における本
発明の(A)電池と比較例の(X)電池との要部を示す
模式図であり、図の●はガスとNiとYSZとの三相界
面を示している。
The battery thus prepared is hereinafter referred to as battery (A). Comparative Example 1 A battery was produced in the same manner as in Example 1 except that Ni felt not carrying YSZ on the surface was used as the fuel electrode side current collector. [Experiment 1] Continuous discharge was performed using the battery (A) of the present invention and the battery (X) of the comparative example (both were single cells having an outer size of 150 mm × 150 mm). Shown in
In the experiment, the temperature was raised to 1000 ° C. under predetermined conditions, and then continuous discharge was performed at 300 mA / cm 2 using hydrogen as a fuel and air as an oxidant. FIGS. 3 and 9 are schematic diagrams showing the main parts of the battery (A) of the present invention and the battery (X) of the comparative example after continuous discharge. Shows a three-phase interface.

【0015】図2から明らかなように、本発明の(A)
電池は、比較例の(X)電池に比べて初期性能及び電池
寿命がいずれも向上していることが確認された。このよ
うに電池寿命のみならず電池の初期特性をも向上するの
は、図3及び図7から明らかなように、本発明の(A)
電池では比較例の(X)電池に比べて、集電部での三相
界面の数が増加しており、電極部を中心として起こる三
相界面での反応が集電部でも起こること、及び電池構成
後にNiフェルトを酸化・還元してサーメット化したた
め、Niフェルトと燃料極との接触抵抗が低減すること
に起因するものと思われる。 〔実施例2〕図4は本発明の一実施例に係る小型固体電
解質型燃料電池の模式図であり、3%で安定化したジル
コニア(YSZ)の緻密な焼成体から成る円盤状の固体
電解質11(直径25mm、厚さ0.2mm)を介して、Ni
−YSZサーメットから成る燃料極12(外寸6mm×1
2.5mm)と,LaMnO3 等のペロブスカイト型酸化物
から成る酸化剤極13(外寸6mm×12.5mm)とが相対
向した構造であり、固体電解質11とアルミナパイプ1
4との間には、シール材としてガラスリング15が介在
されている。また、酸化剤極13の横には比較として参
照電極16(外寸3mm×4mm)を配置すると共に、燃料
極12の通気性を阻害するためのアルミナ板19を配置
した。尚、参照電極16及びアルミナ板19は以下の実
験に使用するための部材であり、本発明の構成とは直接
関係がない。
As is apparent from FIG. 2, (A) of the present invention
It was confirmed that both the initial performance and the battery life of the battery were improved as compared with the battery (X) of the comparative example. It is clear from FIG. 3 and FIG. 7 that the improvement of not only the battery life but also the initial characteristics of the battery is achieved by the present invention.
In the battery, the number of three-phase interfaces at the current collector is increased as compared with the battery of the comparative example (X), and the reaction at the three-phase interface that occurs around the electrode also occurs at the current collector, and It is considered that this is due to the fact that the contact resistance between the Ni felt and the fuel electrode is reduced because the Ni felt was oxidized and reduced to form a cermet after the battery configuration. Embodiment 2 FIG. 4 is a schematic view of a small solid oxide fuel cell according to an embodiment of the present invention, and is a disk-shaped solid electrolyte made of a dense sintered body of zirconia (YSZ) stabilized at 3%. 11 (diameter 25 mm, thickness 0.2 mm), Ni
-Fuel electrode 12 made of YSZ cermet (external size 6 mm x 1
2.5 mm) and an oxidizer electrode 13 (external size 6 mm × 12.5 mm) made of a perovskite-type oxide such as LaMnO 3. The solid electrolyte 11 and the alumina pipe 1
4, a glass ring 15 is interposed as a sealing material. In addition, a reference electrode 16 (external size: 3 mm × 4 mm) was arranged next to the oxidizer electrode 13 for comparison, and an alumina plate 19 for inhibiting air permeability of the fuel electrode 12 was arranged. The reference electrode 16 and the alumina plate 19 are members to be used in the following experiments, and have no direct relation to the configuration of the present invention.

【0016】図5は図4の電極を示す要部拡大図であ
り、燃料極12の表面には燃料極側集電体17が、酸化
剤極13の表面には酸化剤極側集電体18がそれぞれ配
置されている。前記燃料極側集電体17には、繊維状N
iより成るNiフェルトに燃料極スラリーを薄めたもの
を含浸させたものを使用すると共に、前記酸化剤極側集
電体18には白金網をそれぞれ使用した。
FIG. 5 is an enlarged view of a main part showing the electrode of FIG. 4, wherein a fuel electrode side current collector 17 is provided on the surface of the fuel electrode 12, and an oxidant electrode side current collector is provided on the surface of the oxidant electrode 13. 18 are arranged respectively. The fuel electrode side current collector 17 has a fibrous N
The Ni-Felt made of i was impregnated with a thinned fuel electrode slurry, and the oxidant electrode-side current collector 18 was a platinum net.

【0017】ここで、前記電池を以下のようにして作製
した。先ず、前記実施例1と同様にして燃料極用スラリ
ー及び酸化剤極用スラリーを作製した。次に、固体電解
質の一方の面に燃料極と燃料極用集電体とを順次重ね合
わせ、燃料極用集電体の上から上記燃料極用スラリーを
薄めたものを塗布等することにより、燃料極用集電体及
び燃料極の何れにも燃料極用スラリーを含浸させた。一
方、固体電解質の他方の面に酸化剤極用スラリーを前記
実施例1と同様にして塗布等した。
Here, the battery was manufactured as follows. First, a fuel electrode slurry and an oxidant electrode slurry were prepared in the same manner as in Example 1. Next, a fuel electrode and a current collector for the fuel electrode are sequentially superimposed on one surface of the solid electrolyte, and a thinner of the slurry for the fuel electrode is applied from above the current collector for the fuel electrode, and the like. Both the anode current collector and the anode were impregnated with the anode slurry. On the other hand, the oxidant electrode slurry was applied to the other surface of the solid electrolyte in the same manner as in Example 1 above.

【0018】以下、上記実施例1と同様にして電池を作
製した。このように作成した電池を、以下(B)電池と
称する。 〔比較例2〕燃料極側集電体として、燃料極スラリーを
含浸させていないNiフェルトを用いる他は上記実施例
2と同様にして電池を作成した。
Thereafter, a battery was manufactured in the same manner as in Example 1. The battery thus created is hereinafter referred to as (B) battery. Comparative Example 2 A battery was prepared in the same manner as in Example 2 except that Ni felt not impregnated with the anode slurry was used as the anode-side current collector.

【0019】このようにして作成した電池を、以下
(Y)電池と称する。 〔実験2〕上記本発明の(B)電池と比較例の(Y)電
池とを用いて、燃料極の反応抵抗を測定したので、その
結果を図6に示す。尚、実験は燃料として加湿水素を、
酸化剤として空気をそれぞれ使用すると共に、高水蒸気
圧下(高燃料利用率状態下)における反応性を見るた
め、燃料ガスの加湿温度を変化させることにより燃料中
の水蒸気分圧を変化させ、それぞれの反応抵抗をカレン
トインタラプタ法により求めるという条件である。
The battery prepared in this manner is hereinafter referred to as (Y) battery. [Experiment 2] The reaction resistance of the fuel electrode was measured using the battery (B) of the present invention and the battery (Y) of the comparative example. The results are shown in FIG. The experiment used humidified hydrogen as fuel,
In order to use air as the oxidant and to observe the reactivity under high steam pressure (high fuel utilization state), the humidification temperature of the fuel gas was changed to change the partial pressure of steam in the fuel. The condition is that the reaction resistance is determined by the current interrupter method.

【0020】図6から明らかなように、本発明の(B)
電池における反応抵抗は各水蒸気分圧において略一定で
あり、しかも比較例の(Y)電池に比べて全体的に反応
抵抗が小さいことが確認された。尚、本発明(B)電池
における酸化・還元前と酸化・還元後の燃料極側抵抗を
測定したところ、酸化・還元前は42.3Ωであった燃料
極側抵抗が、酸化・還元後は0.8Ωへと著しく低減する
ことも確認された。したがって、燃料極集電体及び燃料
極をサーメット化することにより、燃料極側抵抗が減少
することがわかる。 〔実験3〕上記本発明の(B)電池と比較例の(Y)電
池とを使用して、加速劣化試験によってセル電圧の経時
的変化を測定したので、その結果を図7に示す。尚、加
速劣化試験は、燃料極集電体の両端をアルミナ板で押さ
えて2kgf/cm2 の荷重をかけ、1000℃の水素
雰囲気中で30時間保持・固定して、燃料極側の通気性
を阻害した後、水素の加湿温度を95℃(83%H
2 O)として高燃料利用率状態をつくり、電流密度30
0mA/cm2 一定で行うという条件である。
As is apparent from FIG. 6, (B) of the present invention
It was confirmed that the reaction resistance of the battery was substantially constant at each water vapor partial pressure, and that the overall reaction resistance was lower than that of the battery (Y) of the comparative example. In addition, when the fuel electrode side resistance before oxidation / reduction and after oxidation / reduction of the battery of the present invention (B) was measured, the fuel electrode side resistance before oxidation / reduction was 42.3Ω, but after oxidation / reduction. It was also confirmed that the resistance was significantly reduced to 0.8Ω. Therefore, it is understood that the cermet of the anode current collector and the anode reduces the anode resistance. [Experiment 3] Using the battery (B) of the present invention and the battery (Y) of the comparative example, a time-dependent change in cell voltage was measured by an accelerated deterioration test. The results are shown in FIG. In the accelerated deterioration test, the both ends of the anode current collector were pressed with an alumina plate, a load of 2 kgf / cm 2 was applied, and the anode current collector was held and fixed in a hydrogen atmosphere at 1000 ° C. for 30 hours. , The humidification temperature of hydrogen was raised to 95 ° C (83% H
2 O) to create a state of high fuel utilization and a current density of 30
The condition is that the measurement is performed at a constant value of 0 mA / cm 2 .

【0021】図7から明らかなように、本発明の(B)
電池は比較例の(Y)電池に比べて、初期性能及び電池
寿命がいずれも向上していることが確認された。また、
時間あたりの劣化率は本発明の(B)電池は約1.5mV
/hrであり、比較例の(Y)電池は約3.6mV/hr
であることから、本発明の(B)電池では時間あたりの
劣化率が半分以下に向上していることも確認された。 〔実験4〕上記本発明の(B)電池における燃料極用集
電体であるNiフェルトに、燃料極用スラリーが含浸さ
れているか否かを確認するため、水銀圧入法により気孔
径分布の測定を行ったので、その結果を図8に示す。
尚、比較材料として、比較例の(Y)電池における燃料
極用スラリーを含浸させていないNiフェルト、及び前
記(B) 電池における燃料極用スラリーを使用した。
As is apparent from FIG. 7, (B) of the present invention
It was confirmed that both the initial performance and the battery life of the battery were improved as compared with the battery (Y) of the comparative example. Also,
The deterioration rate per hour is about 1.5 mV for the battery (B) of the present invention.
/ Hr, and the battery of the comparative example (Y) was about 3.6 mV / hr.
Therefore, it was also confirmed that in the battery (B) of the present invention, the deterioration rate per unit time was improved by half or less. [Experiment 4] The pore size distribution was measured by a mercury intrusion method to confirm whether the anode slurry was impregnated in the Ni-Felt as the anode current collector in the battery (B) of the present invention. The results are shown in FIG.
As comparative materials, Ni felt not impregnated with the slurry for the anode in the battery (Y) of the comparative example and the slurry for the anode in the battery (B) were used.

【0022】図8から明らかなように、燃料極用スラリ
ーを含浸していないNiフェルトの気孔径は1〜10μ
mに多く分布しており、燃料極用スラリーのそれは0.0
04〜0.1μmに多く分布しているのに対して、本発明
の集電体における気孔径分布は前記Niフェルトと燃料
極用スラリーとの両方の分布が存在している。この結
果、本発明の集電体であるNiフェルトには、燃料極用
スラリーが含浸されていることが確認された。 〔その他の事項〕 燃料極側集電体である繊維状Niの表面に担持させ
る電解質材料としては、電解質材料として使用可能な材
料であれば如何なる材料でも良いが、特に以下の(a) 〜
(c) に挙げる材料が好ましい。
As is apparent from FIG. 8, the pore size of Ni felt not impregnated with the slurry for the anode has a pore size of 1 to 10 μm.
m, and that of the anode slurry is 0.0
While the pore size distribution in the current collector of the present invention is large in the range of 04 to 0.1 μm, both the Ni felt and the slurry for the fuel electrode exist in the pore size distribution. As a result, it was confirmed that the Ni electrode, which is the current collector of the present invention, was impregnated with the anode slurry. [Other Matters] As the electrolyte material to be supported on the surface of the fibrous Ni that is the fuel electrode side current collector, any material may be used as long as it can be used as an electrolyte material, and in particular, the following (a) to
The materials listed in (c) are preferred.

【0023】(a) 3mol %〜12mol %YSZ (b) Gd2 Zr2 7 系や、Ln(Zr0.8 Ti0.2
2 7 〔式中、LnはSm,Eu,Gd,Ho,Er,
Yb,Luを示す〕等で表されるランタニド系(希土類
系)酸化物 (c) BaCeO3 系セラミックス等のプロトン導電体 また、上記電解質材料として燃料極に添加可能なCeO
X 、(CeO2 0.8(Sm 1.5 0.2 、Pr x
を使用することも勿論可能である。 電解質材料の担持の方法としては、YSZ粉末を電
極用に用いた溶媒を用いてスラリー化し、略均一に含浸
させる等の方法も挙げられる。
(A) 3 mol% to 12 mol% YSZ (b) Gd 2 Zr 2 O 7 system or Ln (Zr 0.8 Ti 0.2 )
2 O 7 [where Ln is Sm, Eu, Gd, Ho, Er,
Lanthanide-based (rare-earth-based) oxide represented by Yb, Lu) or the like. (C) Proton conductor such as BaCeO 3 -based ceramics.
Of course, it is also possible to use X , (CeO 2 ) 0.8 (S m O 1.5 ) 0.2 , Pr O x or the like. Examples of a method for supporting the electrolyte material include a method in which the YSZ powder is slurried using the solvent used for the electrode, and is impregnated substantially uniformly.

【0024】[0024]

【発明の効果】以上の本発明によれば、特に繊維と繊維
とが交差する部分に電解質材料が集中するため、高温で
の長期運転の際にNiフェルトの焼結を抑制して、繊維
間の隙間を十分に確保できる。したがって、燃料ガスの
通気率の低下及び接触抵抗の増大を抑制できるので、電
池性能が向上する。
According to the present invention described above, since the electrolyte material is concentrated particularly at the portions where the fibers intersect, the sintering of Ni felt during long-term operation at high temperature is suppressed, and Gap can be sufficiently secured. Therefore, a decrease in the permeability of the fuel gas and an increase in the contact resistance can be suppressed, so that the cell performance is improved.

【0025】また、繊維状Niの表面に電解質材料が存
在すれば、燃料極側集電部での三相界面(Ni・ガス・
電解質)の数が増加し、電極部を中心として起こる三相
界面での反応が集電部でも起こるため、電池性能が向上
する。加えて、燃料極側集電体と燃料極とがサーメット
化により一体化していれば、燃料極側集電体と燃料極と
の接触抵抗が低減するため、電池性能が更に向上する。
If the electrolyte material is present on the surface of the fibrous Ni, the three-phase interface (Ni.gas.
The number of electrolytes) increases, and the reaction at the three-phase interface, which occurs mainly in the electrode portion, also occurs in the current collecting portion, so that the battery performance is improved. In addition, if the fuel electrode side current collector and the fuel electrode are integrated by cermet, the contact resistance between the fuel electrode side current collector and the fuel electrode is reduced, so that the cell performance is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る固体電解質型燃料電池
の断面図である。
FIG. 1 is a sectional view of a solid oxide fuel cell according to one embodiment of the present invention.

【図2】本発明の(A)電池と比較例の(X)電池とを
用いて連続放電を行った場合における、セル電圧の経時
的変化を示すグラフである。
FIG. 2 is a graph showing a change over time in cell voltage when continuous discharge is performed using the battery (A) of the present invention and the battery (X) of the comparative example.

【図3】本発明の(A)電池の要部を示す模式図であ
る。
FIG. 3 is a schematic view showing a main part of the battery (A) of the present invention.

【図4】本発明の一実施例に係る小型固体電解質型燃料
電池の模式図である。
FIG. 4 is a schematic diagram of a small solid oxide fuel cell according to one embodiment of the present invention.

【図5】図4の電極を示す要部拡大図である。FIG. 5 is an enlarged view of a main part showing the electrode of FIG. 4;

【図6】本発明の(B)電池と比較例の(Y)電池とを
用いた場合における、水蒸気分圧と燃料極の反応抵抗と
の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the partial pressure of water vapor and the reaction resistance of the fuel electrode when the battery (B) of the present invention and the battery (Y) of the comparative example are used.

【図7】本発明の(B)電池と比較例の(Y)電池とを
使用して加速劣化試験を行った場合における、セル電圧
の経時的変化を示すグラフである。
FIG. 7 is a graph showing a change over time of a cell voltage when an accelerated deterioration test is performed using the battery (B) of the present invention and the battery (Y) of the comparative example.

【図8】本発明の(B)電池における燃料極用スラリー
が含浸されたNiフェルトと、比較例の(Y)電池にお
ける燃料極用スラリーを含浸させていないNiフェルト
と、前記(B) 電池における燃料極用スラリーとを用い
た場合における、水銀圧入法による気孔径分布を示すグ
ラフである。
FIG. 8 shows (B) the Ni-Felt impregnated with the anode slurry in the battery of the present invention, (Y) the Ni-Felt not impregnated with the anode slurry in the (Y) battery of the comparative example, and the (B) battery. 4 is a graph showing a pore size distribution by a mercury intrusion method when the fuel electrode slurry is used.

【図9】比較例の(X)電池の要部を示す模式図であ
る。
FIG. 9 is a schematic diagram showing a main part of a battery (X) of a comparative example.

【符号の説明】[Explanation of symbols]

1 電解質 2 燃料極 3 酸化剤極 4 セル 5・9 セパレータ 6 燃料極用集電体 7 酸化剤極用集電体 DESCRIPTION OF SYMBOLS 1 Electrolyte 2 Fuel electrode 3 Oxidant electrode 4 Cell 5.9 Separator 6 Current collector for fuel electrode 7 Current collector for oxidant electrode

フロントページの続き (72)発明者 安尾 耕司 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (72)発明者 秋山 幸徳 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (72)発明者 齋藤 俊彦 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (56)参考文献 特開 平6−243873(JP,A) 特開 平6−36783(JP,A) 特開 平5−101836(JP,A) 特開 平5−343080(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/02 H01M 8/12 Continuing on the front page (72) Inventor Koji Yasuo 2--18 Keihanhondori, Moriguchi-shi Sanyo Electric Co., Ltd. (72) Inventor Yukinori Akiyama 2-18 Keihanhondori, Moriguchi-shi Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-18 Keihanhondori, Moriguchi-shi Sanyo Electric Co., Ltd. (56) References JP-A-6-243873 (JP, A) JP-A-6-36783 (JP, A) JP-A 5- 101836 (JP, A) JP-A-5-343080 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/02 H01M 8/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解質を介して燃料極と酸化剤極とが相
対向するセルと,ガスを分離するセパレータとが積層さ
れ、且つ、各電極とセパレータとの間には集電体が介在
された構造の固体電解質型燃料電池において、 前記燃料極とセパレータとの間に介在する燃料極側集電
体は、繊維状ニッケルの表面に電解質材料が付着したニ
ッケルフェルトで構成されていることを特徴とする固体
電解質型燃料電池。
1. A cell in which a fuel electrode and an oxidizer electrode face each other with an electrolyte interposed therebetween and a separator for separating gas, and a current collector is interposed between each electrode and the separator. In the solid oxide fuel cell having the above structure, the fuel electrode side current collector interposed between the fuel electrode and the separator is formed of nickel felt in which an electrolyte material is attached to a surface of fibrous nickel. Solid electrolyte fuel cell.
【請求項2】 前記燃料極側集電体と燃料極とは、サー
メット化により一体化していることを特徴とする請求項
1記載の固体電解質型燃料電池。
2. The solid oxide fuel cell according to claim 1, wherein the fuel electrode side current collector and the fuel electrode are integrated by cermet formation.
JP19063593A 1993-07-30 1993-07-30 Solid oxide fuel cell Expired - Fee Related JP3162881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19063593A JP3162881B2 (en) 1993-07-30 1993-07-30 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19063593A JP3162881B2 (en) 1993-07-30 1993-07-30 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH0745297A JPH0745297A (en) 1995-02-14
JP3162881B2 true JP3162881B2 (en) 2001-05-08

Family

ID=16261357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19063593A Expired - Fee Related JP3162881B2 (en) 1993-07-30 1993-07-30 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3162881B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841149B2 (en) 2001-05-01 2006-11-01 日産自動車株式会社 Single cell for solid oxide fuel cell
JP3734027B2 (en) 2001-11-30 2006-01-11 日産自動車株式会社 Single cell for solid oxide fuel cell
JP5035571B2 (en) * 2003-07-24 2012-09-26 日産自動車株式会社 Current collecting structure for fuel cell and solid oxide fuel cell stack
JP4832982B2 (en) * 2006-07-31 2011-12-07 東京瓦斯株式会社 Anode reduction method for solid oxide fuel cells
JP2013171754A (en) * 2012-02-22 2013-09-02 Nissan Motor Co Ltd Solid oxide fuel cell and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0745297A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
US20070015045A1 (en) High performance anode-supported solid oxide fuel cell
US20150255820A1 (en) Half cell for solid oxide fuel cell, and solid oxide fuel cell
JP2002134131A (en) Supporting membrane type solid electrolyte fuel cell
WO2013048654A1 (en) Composite solid oxide fuel cell electrolyte
JP2011119178A (en) Solid oxide fuel cell
JP2002352808A (en) Guiding method of electrode active oxide into aerial pole for solid electrolyte fuel cell
JP5443325B2 (en) Solid oxide fuel cell and single cell for solid oxide fuel cell
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
JP5481611B2 (en) High temperature steam electrolysis cell
JP3162881B2 (en) Solid oxide fuel cell
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
CA2665076C (en) High performance cathode with controlled operating temperature range
KR20190028340A (en) Solid oxide fuel cell and a battery module comprising the same
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
JP3108256B2 (en) Solid oxide fuel cell
JP3160993B2 (en) Solid oxide fuel cell
JP2948453B2 (en) Solid oxide fuel cell
JP4409925B2 (en) Fuel electrode for solid oxide fuel cell and method for producing the same
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JP7278241B2 (en) electrochemical reaction single cell
KR20200094416A (en) Direct Flame-Solid Oxide Fuel Cell under rapid start-up and shut-down condition
JP7245210B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7202172B2 (en) Anode and Solid Oxide Electrochemical Cell
JP3213400B2 (en) Method for manufacturing solid oxide fuel cell
JP2948441B2 (en) Flat solid electrolyte fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees