JPH09129252A - Highly durable solid electrlyte fuel cell and manufacture thereof - Google Patents

Highly durable solid electrlyte fuel cell and manufacture thereof

Info

Publication number
JPH09129252A
JPH09129252A JP7287184A JP28718495A JPH09129252A JP H09129252 A JPH09129252 A JP H09129252A JP 7287184 A JP7287184 A JP 7287184A JP 28718495 A JP28718495 A JP 28718495A JP H09129252 A JPH09129252 A JP H09129252A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel cell
layer
highly durable
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7287184A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuzaki
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP7287184A priority Critical patent/JPH09129252A/en
Publication of JPH09129252A publication Critical patent/JPH09129252A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a solid electrolyte fuel cell having high output density as well as good durability by reducing contact resistance between a solid electrolyte layer and an air electrode for a drop in the internal resistance of the battery. SOLUTION: Regarding a solid electrolyte fuel cell made of a cell having an air electrode and a fuel electrode respectively laid on both sides of a solid electrolyte layer, and a separator stacked on top of each other alternately, a layer (CeO2 )1-x (LnO1.5 )x is sandwiched between the solid electrolyte layer and the air electrode (La1-x Ax )y (Mn1-z Bz )O3 +δ. In this case, A stands for one of Sr, Ca, Ba and Y, or a combination of two or more of the elements, and B stands for one of Cr, Ni, Mg, Co, Zr, Ce, Fe and Al, or a combination of two or more of the elements. Furthermore, the value of (x) is between 0 and 0.5, and the value of (z) is between 0 and 0.5. Also, the value of (y) is between 0.7 and 1.2, and δ stands for excess oxygen. Ln stands for one of Sm, La, Nd, Gd, Ho, Dy, Y and Yb, or a combination of two or more of the elements. Also, the value of X is between 0 and 0.5. The fuel cell is manufactured to satisfy each of the above-mentioned conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高耐久性固体電解質
燃料電池およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a highly durable solid electrolyte fuel cell and a method for manufacturing the same.

【0002】[0002]

【従来の技術】最近、例えば空気と水素をそれぞれ、酸
化剤ガスおよび燃料ガスとして、燃料が本来持っている
化学エネルギーを直接電気エネルギーに変換する燃料電
池が、省資源、環境保護の観点から注目されており、特
に固体電解質燃料電池は発電効率が高く、廃熱を有効に
利用できるなど多くの利点を有するため研究、開発が進
んでいる。
2. Description of the Related Art Recently, fuel cells which directly convert chemical energy inherent in fuel into electric energy by using, for example, air and hydrogen as oxidizing gas and fuel gas, respectively, have attracted attention from the viewpoint of resource saving and environmental protection. Research and development are progressing because solid electrolyte fuel cells have many advantages such as high power generation efficiency and effective use of waste heat.

【0003】図5は固体電解質燃料電池の概略構成を示
す図である。
FIG. 5 is a diagram showing a schematic structure of a solid oxide fuel cell.

【0004】固体電解質燃料電池に水素やメタンなどの
燃料ガスと、空気や酸素などの酸化剤ガスとを供給する
ため、固体電解質燃料電池のセパレータおよび固体電解
質層1にそれぞれのガスの給排気孔を設け、この孔から
各単電池の各電極面に各ガスを給排気するようにしたも
のを内部マニホールド形式と称している。 平板型固体
電解質燃料電池は、イットリアなどをドープしたジルコ
ニア焼結体(YSZ)からなる平板型固体電解質層1の
両面に、それぞれ(La、Sr)MnO3 の空気極3
と、Ni/YSZサーメットの燃料極2とを配置してな
る平板状単電池と、隣接する単電池同士を電気的に直列
に接続し、かつ各単電池に燃料ガスと酸化剤ガスとを分
配するセパレータとを交互に積層し、燃料極2とセパレ
ータの燃料ガス流通路側との間に金属メッシュを介在
し、単電池の固体電解質層1とセパレータの間にそれぞ
れシール剤またはスペーサを介在してスタックに積層し
たものである。 各単電池の燃料極2の電極面に燃料ガ
スを接触させ、かつ空気極3に酸化剤ガスを接触させる
ことにより、固体電解質層1と燃料極2との界面4、固
体電解質層1と空気極3との界面5では、それぞれ反応
が起こり、この反応により両極間に起電力が発生し、負
荷6に電流が流れるように構成されており、電池性能は
電極の構造に大きく左右される。
In order to supply a fuel gas such as hydrogen and methane and an oxidant gas such as air and oxygen to the solid electrolyte fuel cell, each gas is supplied to and exhausted from the separator and the solid electrolyte layer 1 of the solid electrolyte fuel cell. Is provided, and each gas is supplied to and discharged from each electrode surface of each unit cell through this hole is called an internal manifold type. The flat plate type solid electrolyte fuel cell comprises a flat plate type solid electrolyte layer 1 made of a zirconia sintered body (YSZ) doped with yttria or the like and having (La, Sr) MnO 3 air electrodes 3 on both sides.
And a plate-shaped unit cell in which a fuel electrode 2 of Ni / YSZ cermet is arranged, and adjacent unit cells are electrically connected in series, and a fuel gas and an oxidant gas are distributed to each unit cell. The separators are alternately laminated, a metal mesh is interposed between the fuel electrode 2 and the fuel gas flow passage side of the separator, and a sealant or a spacer is interposed between the solid electrolyte layer 1 of the unit cell and the separator. It is stacked in a stack. The fuel gas is brought into contact with the electrode surface of the fuel electrode 2 of each unit cell, and the oxidant gas is brought into contact with the air electrode 3, whereby the interface 4 between the solid electrolyte layer 1 and the fuel electrode 2, the solid electrolyte layer 1 and the air. A reaction occurs at the interface 5 with the electrode 3, an electromotive force is generated between the electrodes due to this reaction, and a current flows through the load 6, and the battery performance is greatly influenced by the structure of the electrode.

【0005】空気極3には、通常、ペロブスカイト型の
導電性酸化物が用いられている。また、このような空気
極3を形成するには、前述の導電性酸化物の粉末を固体
電解質層1の表面上に塗布または印刷して後焼成する方
法が知られている。
For the air electrode 3, a perovskite type conductive oxide is usually used. Further, in order to form such an air electrode 3, there is known a method of applying or printing the above-mentioned conductive oxide powder on the surface of the solid electrolyte layer 1 and performing post-baking.

【0006】[0006]

【発明が解決しようとする課題】空気極3は電極活性自
体は良好であり、反応分極などは小さいが、固体電解質
層1とのオーミックな接触抵抗が大きいという欠点があ
った。また、LaMnO3 系酸化物は固体電解質層1の
ジルコニアと反応し、界面5(図5参照)にLa2 Zr
27 などの高抵抗反応層(導電率は約2×10-4Sc
-1である)を生成し、経時的に電池の内部抵抗を増大
してしまう欠点がある。この反応性を抑制するために、
Aサイト欠損させる方法もあるが、長時間の発電で、M
nがジルコニア中に拡散固溶し、結局はAサイト過剰と
なり反応層を生成してしまう。
The air electrode 3 has a good electrode activity itself and a small reaction polarization, but has a drawback that the ohmic contact resistance with the solid electrolyte layer 1 is large. Further, the LaMnO 3 based oxide reacts with zirconia of the solid electrolyte layer 1 to form La 2 Zr on the interface 5 (see FIG. 5).
High resistance reaction layer such as 2 O 7 (conductivity is about 2 × 10 -4 Sc
m −1 ), which increases the internal resistance of the battery over time. In order to suppress this reactivity,
There is also a method to make the A site defective, but with long-term power generation, M
n is diffused and solid-dissolved in zirconia, and eventually A site becomes excessive and a reaction layer is formed.

【0007】本発明は上述の点にかんがみてなされたも
ので、固体電解質層1と空気極3との接触抵抗を低減
し、電池の内部抵抗を低下させることにより、出力密度
が高く、かつ耐久性の良い固体電解質燃料電池およびこ
れを安価に製造する方法を提供することを目的とする。
The present invention has been made in view of the above points. The contact resistance between the solid electrolyte layer 1 and the air electrode 3 is reduced and the internal resistance of the battery is lowered, so that the output density is high and the durability is high. An object of the present invention is to provide a solid electrolyte fuel cell having good properties and a method for producing the same at low cost.

【0008】[0008]

【課題を解決するための手段】本発明は固体電解質層の
両面にそれぞれ空気極と燃料極とを配置してなる単電池
と、隣接する単電池同士を電気的に直列に接続しかつ各
単電池に燃料と酸化剤ガスとを分配するセパレータとを
交互に積層してなる固体電解質燃料電池において、前記
固体電解質層と前記空気極(La1-xxy (Mn
1-zz )O3 +δとの間に層(CeO21-X (Ln
1.5X を挟み、ここで、AはSr、Ca、Ba、Y
のうちのいずれか一つまたは二つ以上の組合わせ、 B
はCr、Ni、Mg、Co、Zr、Ce、Fe、Alの
うちのいずれか一つまたは二つ以上の組合わせ、0≦x
≦0.5、0≦z≦0.5、0.7≦y≦1.2、δは
過剰酸素、LnはSm、La、Nd、Gd、Ho、D
y、Y、Ybのうちのいずれか一つまたは二つ以上の組
合わせ、0≦X≦0.5であることを特徴とする。
DISCLOSURE OF THE INVENTION The present invention relates to a unit cell in which an air electrode and a fuel electrode are arranged on both sides of a solid electrolyte layer, and adjacent unit cells are electrically connected in series and In a solid electrolyte fuel cell in which fuel cells and separators that distribute an oxidant gas are alternately stacked in a cell, the solid electrolyte layer and the air electrode (La 1-x A x ) y (Mn
1-z B z ) O 3 + δ and the layer (CeO 2 ) 1-X (Ln
O 1.5 ) X is sandwiched, where A is Sr, Ca, Ba, Y
Any one of them or a combination of two or more thereof, B
Is any one of Cr, Ni, Mg, Co, Zr, Ce, Fe and Al, or a combination of two or more, 0 ≦ x
≦ 0.5, 0 ≦ z ≦ 0.5, 0.7 ≦ y ≦ 1.2, δ is excess oxygen, Ln is Sm, La, Nd, Gd, Ho, D
Any one of y, Y, and Yb, or a combination of two or more thereof, is characterized in that 0 ≦ X ≦ 0.5.

【0009】また、望ましくは(CeO21-X (Ln
1.5X が(CeO20.8 (SmO1.50.2 で、
かつy<1、AがSrである。
Preferably, (CeO 2 ) 1-X (Ln
O 1.5 ) X is (CeO 2 ) 0.8 (SmO 1.5 ) 0.2 ,
And y <1, A is Sr.

【0010】また、本発明は固体電解質層の表面に(C
eO21-X (LnO1.5X をスクリーン印刷して焼
成した後、その上に空気極(La1-xxy (Mn
1-zz )O3 + δを印刷して焼成するか、あるいは固
体電解質層と空気極(La1-xxy (Cr1-z
z )O3 + δとの間に層(CeO21-X (LnO
1.5X が介在するように、空気極(La1-xxy
(Mn1-zz )O3 + δおよび層(CeO21-X
(LnO1.5X を共燒結技術により固体電解質層の表
面に同時に焼成することにより得られる。
In addition, the present invention provides (C) on the surface of the solid electrolyte layer.
After eO 2 ) 1-X (LnO 1.5 ) X was screen-printed and fired, an air electrode (La 1-x A x ) y (Mn
1-z B z ) O 3 + δ is printed and baked, or the solid electrolyte layer and the air electrode (La 1-x A x ) y (Cr 1-z B
z ) O 3 + δ and the layer (CeO 2 ) 1-X (LnO
1.5 ) Air electrode (La 1-x A x ) y with X interposed
(Mn 1-z B z ) O 3 + δ and layer (CeO 2 ) 1-X
It is obtained by simultaneously firing (LnO 1.5 ) X on the surface of the solid electrolyte layer by a co-sintering technique.

【0011】[0011]

【発明の実施の形態】以下に本発明を図面に基づいて説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the drawings.

【0012】図1は本発明による固体電解質燃料電池の
概略構成を示す図である。
FIG. 1 is a diagram showing a schematic structure of a solid oxide fuel cell according to the present invention.

【0013】本発明による固体電解質燃料電池は、YS
Zからなる固体電解質層1の片面に(La1-xxy
(Mn1-zz )O3 + δの空気極3と、Ni/YSZ
サーメットの燃料極2とを配置してなる単電池と、隣接
する単電池同士を電気的に直列に接続し、かつ各単電池
に燃料ガスと酸化剤ガスとを分配するセパレータ(図示
せず)とを交互に積層してスタックにしたものである。
ここで、AはSr、Ca、Ba、Yのうちのいずれか一
つまたは二つ以上の組合わせ、 BはCr、Ni、M
g、Co、Zr、Ce、Fe、Alのうちのいずれか一
つまたは二つ以上の組合わせ、0≦x≦0.5、0≦z
≦0.5、0.7≦y≦1.2、δは過剰酸素である。
The solid electrolyte fuel cell according to the present invention has a YS
(La 1-x A x ) y on one surface of the solid electrolyte layer 1 made of Z
(Mn 1-z B z ) O 3 + δ air electrode 3 and Ni / YSZ
A separator (not shown) for electrically connecting a unit cell including the cermet fuel electrode 2 and adjacent cell units in series and distributing a fuel gas and an oxidant gas to each unit cell. And are alternately stacked to form a stack.
Here, A is any one or a combination of two or more of Sr, Ca, Ba and Y, and B is Cr, Ni and M.
Any one of g, Co, Zr, Ce, Fe and Al, or a combination of two or more thereof, 0 ≦ x ≦ 0.5, 0 ≦ z
≦ 0.5, 0.7 ≦ y ≦ 1.2, and δ are excess oxygen.

【0014】固体電解質層の代表的なもとして、テープ
キャストにより作成されたイットリア安定化ジルコニア
の板や、CVD/EVD法、イオンプレーティング法ま
たは共燒結法によりNi/YSZ基板上に成膜された1
00μm以下のイットリア安定化ジルコニアの膜があ
る。
As a typical solid electrolyte layer, a yttria-stabilized zirconia plate formed by tape casting, or a Ni / YSZ substrate is formed by CVD / EVD, ion plating or co-firing. 1
There is a film of yttria-stabilized zirconia below 00 μm.

【0015】なお、本発明によれば、YSZの固体電解
質層1と(La1-xxy (Mn1-zz )O3 + δ
の空気極3との間に、(CeO21-X (LnO1.5
X からなる層7を挟んでいる。(CeO21-X (Ln
1.5X を略してSDCと称している。ここで、Ln
はSm、La、Nd、Gd、Ho、Dy、Y、Ybのう
ちのいずれか一つまたは二つ以上の組合わせ、0≦X≦
0.5である。SDC層7の厚さは凡そ10μmであ
る。また、SDCは導電率が0.35Scm-1であり、
YSZの2〜6倍の導電性を有している。SDC層7の
原料は、この組成の粉体と金属有機化合物の混合体であ
る。
According to the present invention, the solid electrolyte layer 1 of YSZ and (La 1-x A x ) y (Mn 1-z B z ) O 3 + δ are formed.
(CeO 2 ) 1-X (LnO 1.5 ) between the air electrode 3 and
A layer 7 made of X is sandwiched. (CeO 2 ) 1-X (Ln
O 1.5 ) X is abbreviated as SDC. Where Ln
Is any one of Sm, La, Nd, Gd, Ho, Dy, Y, and Yb, or a combination of two or more, 0 ≦ X ≦
It is 0.5. The thickness of the SDC layer 7 is about 10 μm. SDC has a conductivity of 0.35 Scm -1 ,
It has a conductivity that is 2 to 6 times that of YSZ. The raw material of the SDC layer 7 is a mixture of the powder of this composition and the metal organic compound.

【0016】SDC層7を固体電解質層1にコーティン
グする方法には種々あるが、本発明ではスクリーン印刷
法と金属有機化合物の熱分解法の組合せにより安価にコ
ーティングを行う。また、SDC層7を固体電解質層1
の上に単独に焼成し、その後SDC層7の上に空気極3
を焼成してもよいが、SDC層7と空気極3を同時に固
体電解質層1の上に焼成する共燒結技術を用いることも
できる。果を示す図である。
There are various methods for coating the SDC layer 7 on the solid electrolyte layer 1, but in the present invention, the coating is carried out at a low cost by the combination of the screen printing method and the thermal decomposition method of the metal organic compound. In addition, the SDC layer 7 is replaced by the solid electrolyte layer 1
On the SDC layer 7 and then the air electrode 3
However, it is also possible to use a co-firing technology in which the SDC layer 7 and the air electrode 3 are simultaneously fired on the solid electrolyte layer 1. It is a figure showing a result.

【0017】図2は本発明の固体電解質燃料電池および
従来の固体電解質燃料電池の耐久性能試験結果を示す図
である。
FIG. 2 is a diagram showing the results of durability performance tests of the solid electrolyte fuel cell of the present invention and the conventional solid electrolyte fuel cell.

【0018】図2はSDC層を有する本発明の固体電解
質燃料電池(曲線Aで示す)と、SDC層を有しない従
来の固体電解質燃料電池(曲線Bで示す)のそれぞれの
燃料極2の電極面に燃料ガスを接触させ、かつ空気極3
に酸化剤ガスを接触させて、両極間に起電力を発生さ
せ、負荷6に電流0.3アンペアが流れたときの発生電
圧(単位:V)を縦軸に、作動時間(単位:hr)を横
軸にとった耐久性能試験の結果を示している。図2か
ら、曲線Bは作動時間が経過するにつれてだんだんと電
圧が低下しているが、曲線Aでは電圧が低下せずほぼ水
平を保っていることが判る。換言すれば、本発明の固体
電解質燃料電池の耐久性能は従来のものに比較して明ら
かに向上している。これはSDC層の作用によるものと
思われる。
FIG. 2 shows the electrodes of the respective anodes 2 of the solid electrolyte fuel cell of the present invention having an SDC layer (shown by curve A) and the conventional solid electrolyte fuel cell having no SDC layer (shown by curve B). The fuel gas is brought into contact with the surface and the air electrode 3
Is contacted with an oxidizer gas to generate an electromotive force between both electrodes, and the generated voltage (unit: V) when a current of 0.3 amps flows through the load 6 is plotted on the vertical axis, and the operating time (unit: hr) The horizontal axis represents the result of the durability performance test. From FIG. 2, it can be seen that the voltage of the curve B gradually decreases as the operating time elapses, but the voltage of the curve A does not decrease and remains substantially horizontal. In other words, the durability performance of the solid oxide fuel cell of the present invention is clearly improved as compared with the conventional one. This is probably due to the action of the SDC layer.

【0019】[0019]

【実施例】厚さ100μmの3YSZ((ZrO2
0.97(Y230.03)の電解質板の片面に厚さ30μ
mのNiO/YSZの燃料極を形成後、SDCをこの電
解質板の反対面にスクリーン印刷し、1450℃で焼成
した。スクリーン印刷に用いたスラリーは(CeO2
0.8 (SmO1.50.2 組成の粉体とCeのオクチル酸
塩の混合物であった。その後、(La0.85Sr0.15
0.98MnO3 + δ組成の空気極を印刷し、1150℃で
焼成した。このようにして作った単電池の部分断面構造
を次の電子顕微鏡写真写真に示す。
Example: 3YSZ ((ZrO 2 ) having a thickness of 100 μm
0.97 (Y 2 O 3 ) 0.03 ) 30μ thickness on one side of the electrolyte plate
After forming m NiO / YSZ fuel electrode, SDC was screen-printed on the opposite surface of the electrolyte plate and fired at 1450 ° C. The slurry used for screen printing is (CeO 2 )
It was a mixture of powder of 0.8 (SmO 1.5 ) 0.2 composition and octylate salt of Ce. After that, (La 0.85 Sr 0.15 )
An air electrode having a composition of 0.98 MnO 3 + δ was printed and fired at 1150 ° C. The partial cross-sectional structure of the unit cell thus produced is shown in the following electron micrograph photograph.

【0020】図3は本発明の実施例の方法により製作し
た固体電解質燃料電池と従来の固体電解質燃料電池の性
能試験結果を示す図である。
FIG. 3 is a graph showing the performance test results of the solid electrolyte fuel cell manufactured by the method of the embodiment of the present invention and the conventional solid electrolyte fuel cell.

【0021】図3はSDC層を有する本発明の固体電解
質燃料電池(曲線Cで示す)と、SDC層を有しない従
来の固体電解質燃料電池(曲線Dで示す)のそれぞれの
燃料極2の電極面に燃料ガスを接触させ、かつ空気極3
に酸化剤ガスを接触させて、両極間に起電力を発生さ
せ、負荷6に電流が流れたときの発生電圧(単位:V)
を縦軸に、電流密度(単位:A/cm2 )を横軸にとっ
た性能試験の結果を示している。曲線C、曲線Dともに
電流密度の増大につれて発生電圧が低下しているが、曲
線Cの方が低下の度合いが少ない。すなわち、SDC層
を有する本発明の固体電解質燃料電池がSDC層を有し
ない従来の固体電解質燃料電池に比較して、内部抵抗が
少なく、性能が優秀なこと示している。
FIG. 3 shows the electrodes of the anode 2 of the solid electrolyte fuel cell of the present invention having an SDC layer (shown by curve C) and the conventional solid electrolyte fuel cell having no SDC layer (shown by curve D). The fuel gas is brought into contact with the surface and the air electrode 3
Voltage generated when the oxidant gas is brought into contact with the electrodes to generate an electromotive force between both electrodes and a current flows through the load 6 (unit: V)
The vertical axis represents the current density (unit: A / cm 2 ) and the horizontal axis represents the result of the performance test. In both the curves C and D, the generated voltage decreases as the current density increases, but the curve C decreases less. That is, it is shown that the solid electrolyte fuel cell of the present invention having the SDC layer has lower internal resistance and excellent performance as compared with the conventional solid electrolyte fuel cell having no SDC layer.

【0022】図4は本発明の固体電解質燃料電池に使用
する単電池の一部断面の電子顕微鏡写真である。
FIG. 4 is an electron micrograph of a partial cross section of a unit cell used in the solid oxide fuel cell of the present invention.

【0023】図4の電子顕微鏡写真において、一番上の
層Aは空気極、その下の層BはSDC層、一番下の層C
は固体電解質層である。この写真から緻密で均一な組織
のSDC層が固体電解質層と空気極の間にコーティング
されていることがわかる。
In the electron micrograph of FIG. 4, the uppermost layer A is the air electrode, the lower layer B is the SDC layer, and the lowermost layer C.
Is a solid electrolyte layer. From this photograph, it can be seen that the SDC layer having a dense and uniform structure is coated between the solid electrolyte layer and the air electrode.

【0024】[0024]

【発明の効果】以上説明したように、本発明は固体電解
質層の両面にそれぞれ空気極と燃料極とを配置してなる
単電池と、隣接する単電池同士を電気的に直列に接続し
かつ各単電池に燃料と酸化剤ガスとを分配するセパレー
タとを交互に積層してなる固体電解質燃料電池におい
て、前記固体電解質層と前記空気極(La1-xxy
(Mn1-zz )O3 + δとの間に層(CeO21-X
(LnO1.5X を挟み、ここで、AはSr、Ca、B
a、Yのうちのいずれか一つまたは二つ以上の組合わ
せ、 BはCr、Ni、Mg、Co、Zr、Ce、F
e、Alのうちのいずれか一つまたは二つ以上の組合わ
せ、0≦x≦0.5、0≦z≦0.5、0.7≦y≦
1.2、δは過剰酸素、LnはSm、La、Nd、G
d、Ho、Dy、Y、Ybのうちのいずれか一つまたは
二つ以上の組合わせ、0≦X≦0.5としたので、次の
ような優れた効果が得られる。 (1)単電池内の接触抵抗の低減により固体電解質燃料
電池の内部抵抗が低減し、その出力密度が向上した。 (2)固体電解質層と空気極との界面にLa2 Zr2
7 などの高抵抗反応層を生成しないので、固体電解質燃
料電池の耐久性能が向上した。 (3)スクリーン印刷法と金属有機化合物の熱分解法を
組み合わせにより、安価にSDCのコーティングが可能
となった。
As described above, according to the present invention, a single cell in which an air electrode and a fuel electrode are arranged on both sides of a solid electrolyte layer and adjacent cells are electrically connected in series and In a solid electrolyte fuel cell in which fuel cells and separators that distribute an oxidant gas are alternately stacked in each cell, the solid electrolyte layer and the air electrode (La 1-x A x ) y
A layer (CeO 2 ) 1-X between (Mn 1-z B z ) O 3 + δ
(LnO 1.5 ) X is sandwiched, where A is Sr, Ca, B
Any one of a and Y or a combination of two or more, B is Cr, Ni, Mg, Co, Zr, Ce, F
e, one or a combination of two or more of Al, 0 ≦ x ≦ 0.5, 0 ≦ z ≦ 0.5, 0.7 ≦ y ≦
1.2, δ is excess oxygen, Ln is Sm, La, Nd, G
Since any one or a combination of two or more of d, Ho, Dy, Y, and Yb is set to 0 ≦ X ≦ 0.5, the following excellent effects can be obtained. (1) The internal resistance of the solid electrolyte fuel cell is reduced by the reduction of the contact resistance in the unit cell, and the output density thereof is improved. (2) La 2 Zr 2 O is formed at the interface between the solid electrolyte layer and the air electrode.
Since a high resistance reaction layer such as 7 is not formed, the durability performance of the solid electrolyte fuel cell is improved. (3) By combining the screen printing method and the thermal decomposition method of a metal organic compound, SDC coating can be inexpensively performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による固体電解質燃料電池の概略構成を
示す図である。
FIG. 1 is a diagram showing a schematic configuration of a solid oxide fuel cell according to the present invention.

【図2】本発明の固体電解質燃料電池および従来の固体
電解質燃料電池の耐久性能試験結果を示す図である。
FIG. 2 is a diagram showing results of durability performance tests of the solid electrolyte fuel cell of the present invention and the conventional solid electrolyte fuel cell.

【図3】本発明の実施例の方法により製作した固体電解
質燃料電池と従来の固体電解質燃料電池の性能試験結果
を示す図である。
FIG. 3 is a diagram showing performance test results of a solid oxide fuel cell manufactured by a method of an example of the present invention and a conventional solid oxide fuel cell.

【図4】本発明の固体電解質燃料電池に使用する単電池
の一部断面の粒子構造の電子顕微鏡写真である。
FIG. 4 is an electron micrograph showing a particle structure of a partial cross section of a unit cell used in the solid oxide fuel cell of the present invention.

【図5】固体電解質燃料電池の概略構成を示す図であ
る。
FIG. 5 is a diagram showing a schematic configuration of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1 固体電解質層 2 燃料極 3 空気極 4 界面 5 界面 6 負荷 7 SDC層 1 Solid Electrolyte Layer 2 Fuel Electrode 3 Air Electrode 4 Interface 5 Interface 6 Load 7 SDC Layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 8/12 H01M 8/12 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01M 8/12 H01M 8/12

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質層の両面にそれぞれ空気極と
燃料極とを配置してなる単電池と、隣接する単電池同士
を電気的に直列に接続しかつ各単電池に燃料と酸化剤ガ
スとを分配するセパレータとを交互に積層してなる固体
電解質燃料電池において、前記固体電解質層と前記空気
極(La1-xxy (Mn1-zz)O3 + δとの間
に層(CeO21-X (LnO1.5X を挟んだことを
特徴とする高耐久性固体電解質燃料電池。ここで、Aは
Sr、Ca、Ba、Yのうちのいずれか一つまたは二つ
以上の組合わせ、 BはCr、Ni、Mg、Co、Z
r、Ce、Fe、Alのうちのいずれか一つまたは二つ
以上の組合わせ、0≦x≦0.5、0≦z≦0.5、
0.7≦y≦1.2、δは過剰酸素、LnはSm、L
a、Nd、Gd、Ho、Dy、Y、Ybのうちのいずれ
か一つまたは二つ以上の組合わせ、0≦X≦0.5であ
る。
1. A unit cell in which an air electrode and a fuel electrode are arranged on both sides of a solid electrolyte layer, and adjacent unit cells are electrically connected in series, and a fuel and an oxidant gas are connected to each unit cell. In a solid electrolyte fuel cell in which separators that distribute and are alternately stacked, the solid electrolyte layer and the air electrode (La 1-x A x ) y (Mn 1-z B z ) O 3 + δ A highly durable solid electrolyte fuel cell, comprising a layer (CeO 2 ) 1-X (LnO 1.5 ) X sandwiched therebetween. Here, A is any one or a combination of two or more of Sr, Ca, Ba and Y, and B is Cr, Ni, Mg, Co and Z.
any one of r, Ce, Fe and Al or a combination of two or more thereof, 0 ≦ x ≦ 0.5, 0 ≦ z ≦ 0.5,
0.7 ≦ y ≦ 1.2, δ is excess oxygen, Ln is Sm, L
Any one or a combination of two or more of a, Nd, Gd, Ho, Dy, Y, and Yb is 0 ≦ X ≦ 0.5.
【請求項2】 前記(CeO21-X (LnO1.5X
が(CeO20.8(SmO1.50.2 であることを特
徴とする請求項1に記載の高耐久性固体電解質燃料電
池。
2. The (CeO 2 ) 1-X (LnO 1.5 ) X
Is (CeO 2 ) 0.8 (SmO 1.5 ) 0.2 . The highly durable solid electrolyte fuel cell according to claim 1, wherein
【請求項3】 前記(La1-xxy (Mn1-z
z )O3 + δにおいてy<1、AがSrであることを特
徴とする請求項1に記載の高耐久性固体電解質燃料電
池。
3. The (La 1-x A x ) y (Mn 1-z B
z ) O 3 + δ, y <1, A is Sr, The highly durable solid electrolyte fuel cell according to claim 1.
【請求項4】 請求項1に記載の高耐久性固体電解質燃
料電池の製造方法において、前記固体電解質層の表面に
(CeO21-X (LnO1.5X をスクリーン印刷し
て焼成した後、その上に前記空気極(La1-xxy
(Mn1-zz )O3 + δを印刷して焼成することを特
徴とする高耐久性固体電解質燃料電池の製造方法。
4. The method for producing a highly durable solid electrolyte fuel cell according to claim 1, wherein (CeO 2 ) 1-X (LnO 1.5 ) X is screen-printed and baked on the surface of the solid electrolyte layer. , On which the air electrode (La 1-x A x ) y
A method for producing a highly durable solid electrolyte fuel cell, which comprises printing (Mn 1-z B z ) O 3 + δ and firing.
【請求項5】 請求項1に記載の高耐久性固体電解質燃
料電池の製造方法において、前記固体電解質層と前記空
気極(La1-xxy (Mn1-zz )O3 + δとの
間に層(CeO21-X (LnO1.5X が介在するよ
うに、前記空気極(La1-xxy (Mn1-zz
3 + δおよび層(CeO21-X (LnO1.5X
共燒結技術により前記固体電解質層の表面に同時に焼成
することを特徴とする高耐久性固体電解質燃料電池の製
造方法。
5. The method for producing a highly durable solid electrolyte fuel cell according to claim 1, wherein the solid electrolyte layer and the air electrode (La 1-x A x ) y (Mn 1-z B z ) O 3 are included. The air electrode (La 1-x A x ) y (Mn 1-z B z ), so that the layer (CeO 2 ) 1-x (LnO 1.5 ) x is interposed between the positive electrode and + δ.
A method for producing a highly durable solid electrolyte fuel cell, which comprises simultaneously sintering O 3 + δ and a layer (CeO 2 ) 1-X (LnO 1.5 ) X on the surface of the solid electrolyte layer by a co-sintering technique.
【請求項6】 前記固体電解質層がテープキャストによ
り作成されたイットリア安定化ジルコニアの板であるこ
とを特徴とする請求項1に記載の高耐久性固体電解質燃
料電池。
6. The highly durable solid electrolyte fuel cell according to claim 1, wherein the solid electrolyte layer is a yttria-stabilized zirconia plate prepared by tape casting.
【請求項7】 前記固体電解質層がCVD/EVD法、
イオンプレーティング法または共燒結法によりNi/Y
SZ基板上に成膜された100μm以下のイットリア安
定化ジルコニアの膜であることを特徴とする請求項1に
記載の高耐久性固体電解質燃料電池。
7. The solid electrolyte layer is a CVD / EVD method,
Ni / Y by ion plating method or co-firing method
The highly durable solid electrolyte fuel cell according to claim 1, which is a film of yttria-stabilized zirconia having a thickness of 100 μm or less formed on an SZ substrate.
【請求項8】 前記(CeO21-X (LnO1.5X
の原料が、この組成の粉体と金属有機化合物の混合体で
あることを特徴とする請求項1に記載の高耐久性固体電
解質燃料電池。
8. The (CeO 2 ) 1-X (LnO 1.5 ) X
The high-durability solid electrolyte fuel cell according to claim 1, wherein the raw material is a mixture of powder having this composition and a metal organic compound.
【請求項9】 前記金属有機化合物がCeのオクチル酸
塩であり、前記粉体が(CeO20.8 (SmO1.5
0.2 の組成であり、この粉体と金属有機化合物の混合物
を電解質上にスクリーン印刷することを特徴とする請求
項1に記載の高耐久性固体電解質燃料電池。
9. The metal organic compound is Ce octylate, and the powder is (CeO 2 ) 0.8 (SmO 1.5 ).
The highly durable solid electrolyte fuel cell according to claim 1, wherein the composition is 0.2 and the mixture of the powder and the metal organic compound is screen-printed on the electrolyte.
JP7287184A 1995-11-06 1995-11-06 Highly durable solid electrlyte fuel cell and manufacture thereof Pending JPH09129252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7287184A JPH09129252A (en) 1995-11-06 1995-11-06 Highly durable solid electrlyte fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7287184A JPH09129252A (en) 1995-11-06 1995-11-06 Highly durable solid electrlyte fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09129252A true JPH09129252A (en) 1997-05-16

Family

ID=17714171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7287184A Pending JPH09129252A (en) 1995-11-06 1995-11-06 Highly durable solid electrlyte fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09129252A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283876A (en) * 2000-04-03 2001-10-12 Tokyo Gas Co Ltd Unit cell of solid electrolytic fuel battery
JP2001283877A (en) * 2000-04-03 2001-10-12 Tokyo Gas Co Ltd Unit cell for solid electrolytic fuel battery and its manufacturing method
JP2001351646A (en) * 2000-06-07 2001-12-21 Tokyo Gas Co Ltd LaGaO3 SOLID ELECTROLYTE FUEL CELL
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
JP2005100816A (en) * 2003-09-25 2005-04-14 Kyocera Corp Manufacturing method of cell of fuel cell
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2006286403A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Solid oxide fuel cell
JP2006302602A (en) * 2005-04-19 2006-11-02 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
WO2007061043A1 (en) * 2005-11-25 2007-05-31 Nippon Telegraph And Telephone Corporation Solid oxide fuel cell
KR100886239B1 (en) * 2007-12-12 2009-02-27 한국생산기술연구원 Preventing method of generating by-product and solid oxide fuel cell using the preventing method and method of the solid oxide fuel cell
WO2011052692A1 (en) * 2009-10-28 2011-05-05 京セラ株式会社 Fuel cell, cell stack, fuel cell module, and fuel cell device
RU2791726C1 (en) * 2022-09-27 2023-03-13 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) Solid oxide electrolyte material with proton conductivity based on neodymium barium indate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283877A (en) * 2000-04-03 2001-10-12 Tokyo Gas Co Ltd Unit cell for solid electrolytic fuel battery and its manufacturing method
JP2001283876A (en) * 2000-04-03 2001-10-12 Tokyo Gas Co Ltd Unit cell of solid electrolytic fuel battery
JP2001351646A (en) * 2000-06-07 2001-12-21 Tokyo Gas Co Ltd LaGaO3 SOLID ELECTROLYTE FUEL CELL
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
JP2005100816A (en) * 2003-09-25 2005-04-14 Kyocera Corp Manufacturing method of cell of fuel cell
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2006286403A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Solid oxide fuel cell
JP4592484B2 (en) * 2005-04-19 2010-12-01 三菱重工業株式会社 Solid oxide fuel cell and method for producing solid oxide fuel cell
JP2006302602A (en) * 2005-04-19 2006-11-02 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
WO2007061043A1 (en) * 2005-11-25 2007-05-31 Nippon Telegraph And Telephone Corporation Solid oxide fuel cell
JP5065046B2 (en) * 2005-11-25 2012-10-31 日本電信電話株式会社 Solid oxide fuel cell
KR100886239B1 (en) * 2007-12-12 2009-02-27 한국생산기술연구원 Preventing method of generating by-product and solid oxide fuel cell using the preventing method and method of the solid oxide fuel cell
WO2011052692A1 (en) * 2009-10-28 2011-05-05 京セラ株式会社 Fuel cell, cell stack, fuel cell module, and fuel cell device
JPWO2011052692A1 (en) * 2009-10-28 2013-03-21 京セラ株式会社 FUEL CELL, CELL STACK, FUEL CELL MODULE, AND FUEL CELL DEVICE
JP5523472B2 (en) * 2009-10-28 2014-06-18 京セラ株式会社 FUEL CELL, CELL STACK, FUEL CELL MODULE, AND FUEL CELL DEVICE
US8993194B2 (en) 2009-10-28 2015-03-31 Kyocera Corporation Fuel cell, cell stack, fuel cell module, and fuel cell device
RU2791726C1 (en) * 2022-09-27 2023-03-13 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) Solid oxide electrolyte material with proton conductivity based on neodymium barium indate
RU2800229C1 (en) * 2023-01-12 2023-07-19 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) Solid oxide electrolyte material with proton conductivity based on praseodymium-substituted barium-lanthanum indate

Similar Documents

Publication Publication Date Title
US20090291346A1 (en) Solid oxide reversible fuel cell with improved electrode composition
Matsuzaki et al. Electrochemical properties of reduced-temperature SOFCs with mixed ionic–electronic conductors in electrodes and/or interlayers
US20080254336A1 (en) Composite anode showing low performance loss with time
US20060216575A1 (en) Perovskite materials with combined Pr, La, Sr, &#34;A&#34; site doping for improved cathode durability
US20090035635A1 (en) Combination Structure Between Single Cell and Interconnect of Solid Oxide Fuel Cell
JPH11307114A (en) Solid electrolyte fuel battery
KR20110022907A (en) Flat tube type solid oxide fuel cell module
JP5671196B2 (en) Reinforced electrode-supported ceramic fuel cell and manufacturing method
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
JPH10189017A (en) Gas seal structure of honeycomb structure solid electrolyte fuel cell
JPH11297344A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
JP5481611B2 (en) High temperature steam electrolysis cell
JPH0927330A (en) Fuel electrode of solid electrolyte fuel cell
JP6748518B2 (en) Method for manufacturing electrochemical reaction cell
JPH10255832A (en) Composite air electrode material for solid fuel cell for low temperature operation
JP3244310B2 (en) Solid oxide fuel cell
JPH10189024A (en) Solid electrolyte fuel cell having honeycomb monolithic structure
JPH07320756A (en) Solid electrolytic fuel cell
EP3584865A1 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
KR20200072002A (en) Electrolyte for solid oxide fuel cell, solid oxide fuel cell and method of preparing solid oxide fuel cell
JPH11297342A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
JP2948441B2 (en) Flat solid electrolyte fuel cell
TWI788078B (en) Solid oxide electrolyzer cell including electrolysis-tolerant air-side electrode

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030715