WO2005015671A1 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
WO2005015671A1
WO2005015671A1 PCT/JP2004/011368 JP2004011368W WO2005015671A1 WO 2005015671 A1 WO2005015671 A1 WO 2005015671A1 JP 2004011368 W JP2004011368 W JP 2004011368W WO 2005015671 A1 WO2005015671 A1 WO 2005015671A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fuel cell
electrolyte
solid oxide
mol
Prior art date
Application number
PCT/JP2004/011368
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Hiwatashi
Hironobu Murakami
Tomoyuki Nakamura
Mitsunobu Shiono
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to US10/567,239 priority Critical patent/US20070082254A1/en
Priority to CA002553074A priority patent/CA2553074A1/en
Priority to JP2005512974A priority patent/JP4362832B2/en
Publication of WO2005015671A1 publication Critical patent/WO2005015671A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell, and more particularly, to a solid oxide fuel cell excellent in output performance and durability.
  • Solid oxide fuel cells have high operating temperatures (900-1000 ° C) and are expected to be efficient fuel cells.
  • Various proposals have been made to realize a solid oxide fuel cell having excellent output performance and durability.
  • groups 4A, 5A, and 7A are used.
  • Japanese Patent Application Laid-Open Nos. 2003-22821 and 2003-22822 propose to add at least one oxide selected from the group consisting of Group 4B and Group 4B elements.
  • Japanese Patent Application Laid-Open No. 2003-187811 discloses that an oxygen gas generated in an air electrode and an electrolyte reacts with an electron to generate an oxygen ion. It has been proposed to provide a mixed material of a perovskite oxide having electronic conductivity and a high-melting dielectric oxide between electrolytes.
  • a representative of the perovskite-type oxide used here there is lanthanum manganite in which Sr or Ca is dissolved, and its composition is (La, Sr) MnO, (La, Ca) MnO, (La, Sr) (Mn Fe) 0
  • cerium containing SmO or GdO as a solid solution
  • JP-A-8-180886 discloses that a thin layer of zirconia in which yttria is dissolved as a solid solution is provided between an air electrode and an electrolyte to reduce the contact resistance between the air electrode and the electrolyte. It is disclosed that performance can be improved.
  • the cathode material used here is lanthanum manganite in which Sr is dissolved.
  • Japanese Patent Application Laid-Open No. 2000-44245 discloses a mixed powder of lanthanum manganite in which Ca and Z or Sr are formed as a solid solution between an air electrode and an electrolyte and zirconia in which yttria is formed as a solid solution. It has been proposed that a layer be provided to reduce the contact resistance between the air electrode and the electrolyte, thereby improving the output performance.
  • Japanese Patent Application Laid-Open No. 2003-173801 discloses that in a solid oxide fuel cell, in order to prevent a reaction between an electrolyte and a fuel electrode, Ce Ln ⁇ (porosity is 25% or less) is used.
  • Japanese Patent Application Laid-Open No. 2002-134132 discloses a solid oxide fuel cell in which an air electrode made of a perovskite-type oxide containing manganese and an electrolyte made of dinoreconia are co-sintered.
  • an air electrode made of a perovskite-type oxide containing manganese and an electrolyte made of dinoreconia are co-sintered.
  • oxides containing yttria, dinoreconia and ceria required a sintering temperature of around 1500 ° C to form an electrolyte with low sinterability and no gas permeability. For this reason, it seems difficult to control the amount of manganese that diffuses through the electrolyte to the fuel electrode.
  • the present inventors have recently found that in a solid oxide fuel cell having an air electrode made of a perovskite oxide containing at least manganese, a layer in contact with the fuel electrode is located on the fuel electrode side. It has been found that the manganese content on the surface has a significant effect on the performance of the fuel cell, and that by controlling the manganese content, an excellent fuel cell can be obtained.
  • the present invention is based on strong knowledge.
  • an object of the present invention is to provide a solid oxide fuel cell having excellent output performance and durability.
  • the fuel cell according to the present invention is a solid oxide fuel cell including at least an electrolyte, an air electrode, and a fuel electrode, wherein the air electrode includes at least manganese.
  • FIG. 1 is a diagram showing a cross section of a cylindrical solid oxide fuel cell.
  • FIG. 2 is an enlarged cross-sectional view illustrating a basic configuration of a solid oxide fuel cell according to the present invention.
  • the solid oxide fuel cell according to the present invention has a basic configuration including an air electrode support 1, an electrolyte 3, and an anode 4.
  • an air-side electrode reaction layer 5 as an embodiment of the air electrode is provided between the air electrode support 1 and the electrolyte 3, and between the electrolyte 3 and the fuel electrode 4.
  • a porous layer 6 is provided.
  • Air oxygen
  • fuel gas hydrogen, carbon monoxide, methane, etc.
  • FIG. 3 is an enlarged cross-sectional view of a solid oxide fuel cell in which the fuel-side electrode reaction layer 4a is provided between the electrolyte 3 without the porous layer 6 and the fuel electrode 4 in the structure of FIG. It is.
  • FIG. 4 is an enlarged view of a solid oxide fuel cell in which the air-side electrode reaction layer 5 has a plurality of layers (5a, 5b) in the structure of FIG.
  • FIG. 5 is an enlarged view of a solid oxide fuel cell in which a porous layer 6 is provided between a fuel-side electrode reaction layer 4a and an electrolyte 3 in addition to the structure of FIG.
  • FIG. 6 is an enlarged view of a solid oxide fuel cell in which the air-side electrode reaction layer 5 has a plurality of layers (5a, 5b) in the configuration of FIG.
  • FIG. 7 is a diagram showing a battery configuration for measuring a reaction overvoltage for evaluating electrode characteristics. Detailed description of the invention
  • the structure of the solid oxide fuel cell according to the present invention is not particularly limited as long as the structure and composition of the present invention described below are satisfied.
  • it may be either a flat plate type or a cylindrical type.
  • the solid oxide fuel cell of the present invention is of the microtube type (outer diameter
  • FIG. 1 is a diagram showing a cross section of a cylindrical solid oxide fuel cell.
  • a strip-shaped interconnector 2 an electrolyte 3, and a fuel electrode 4 are provided on a cylindrical air electrode support 1 so as not to contact the interconnector 2 on the electrolyte 3. It is configured.
  • air oxygen
  • fuel gas flows outside, oxygen ions are generated at the interface between the cathode and the electrolyte as shown below.
  • the oxygen ions reach the fuel electrode through the electrolyte. Then, at the fuel electrode near the electrolyte, the fuel gas and oxygen ions react to form water and carbon dioxide. These reactions are represented by the following equations.
  • FIG. 2 is an enlarged cross-sectional view illustrating a basic configuration of a solid oxide fuel cell according to the present invention.
  • the solid oxide fuel cell according to the present invention has a basic configuration including an air electrode support 1, an electrolyte 3, and an anode 4.
  • an air-side electrode reaction layer 5 as an embodiment of an air electrode is provided between the air electrode support 1 and the electrolyte 3, and between the electrolyte 3 and the fuel electrode 4.
  • a porous layer 6 is provided.
  • the air-side electrode reaction layer 5 and the porous layer 6 are not essential in the present invention, but are preferably provided.
  • the fuel-side electrode reaction layer 4a as one embodiment of the fuel electrode has Provided May be.
  • the air-side electrode reaction layer 5 has a plurality of layers (5a, 5b). May be constituted by
  • a solid oxide fuel cell provided with a porous layer 6 between a fuel electrode 4 (a concept including a fuel-side electrode reaction layer 4a) and an electrolyte 3 is provided. Is performed. Further, according to another aspect, there is provided a solid oxide fuel cell in which the air-side electrode reaction layer has a plurality of layers in the configuration shown in FIG.
  • the present invention is characterized in that the content of manganese on the surface of the layer in contact with the fuel electrode on the fuel electrode side is 0.334% by weight.
  • the content of manganese on the surface of the electrolyte on the fuel electrode side is 0.3 to 4% by weight.
  • the manganese content on the anode side of the electrolyte is 0.6-3.5% by weight, more preferably 0.9-3% by weight.
  • the manganese content on the air electrode side surface of the electrolyte is preferably less than about 10% by weight, more preferably less than 6% by weight.
  • it is preferable that the content of manganese on the surface of the electrolyte on the air electrode side is larger than the content of the manganese component on the surface of the electrolyte on the fuel electrode side.
  • the manganese content on the surface of the porous layer on the fuel electrode side is 0.3 to 4% by weight. is there.
  • the manganese content on the surface of the porous layer on the fuel electrode side is preferably 0.6-3.5% by weight, more preferably 0.93% by weight.
  • it is preferable that the manganese content on the air electrode side surface of the electrolyte is larger than the manganese content on the fuel electrode side surface of the porous layer. ,.
  • manganese content on the surface of the layer in “content of manganese on the surface of the layer in contact with the fuel electrode on the side of the fuel electrode” refers to a depth of 3 ⁇ m from the surface of the fuel electrode.
  • m Means the manganese content in the layer in contact with the fuel electrode within.
  • the measurement may be either analysis from the fuel electrode side, formation of a cross section, and analysis from the cross section direction.
  • the manganese content on the surface on the fuel electrode side is controlled in the layer in contact with the fuel electrode.
  • This manganese is considered to be diffused from perovskite oxide containing manganese constituting the air electrode during sintering during its production. By controlling the amount of this diffusion, it has excellent output characteristics.
  • the amount of manganese is within the above range at the interface between the fuel electrode and the layer in contact with it, the adhesion between the two layers is greatly improved by sufficient sintering, and the electrolyte ensures good ionic conductivity. It is thought that this contributes to the improvement of its properties.
  • control of the amount of manganese on the fuel electrode side surface of the layer in contact with the fuel electrode can be realized by controlling the composition and physical configuration of the battery and the manufacturing conditions.
  • the elements constituting the solid oxide fuel cell according to the present invention including the specific means for controlling the amount of manganese, will be described in detail.
  • the electrolyte is a layer showing high conductivity of oxygen ions (O 2 —) at high temperature and having no gas permeability, and a layer made of zirconium in which scandia and / or yttria are dissolved.
  • O 2 — oxygen ions
  • zirconium in which scandia and / or yttria are dissolved.
  • the solid solution amount of scandia in SSZ, the total solid solution amount of scandia and yttria in ScYSZ, and the solid solution amount of yttria in YSZ are as high as about 312 mol%.
  • a more preferable lower limit is preferably about 8 mol% because ionic conductivity can be realized.
  • At least one kind of oxide may be solid-dissolved in a total amount of about 5 mol% or less. Further, in order to enable sintering at a low temperature, Bi 2 O 3, Al 2 O 3, SiO 2 or the like may be added.
  • the electrolyte when the electrolyte has a 3% diameter of 3 am or more and a 97% diameter of 20 ⁇ m or less of the crystal grain size on the fuel electrode side membrane surface, It preferably has a certain particle size distribution. By being in this range, an electrolyte having no gas permeability due to good sinterability and having good adhesion to the fuel electrode can be realized.
  • the crystal grain size of the electrolyte surface on the fuel electrode side means a grain size distribution obtained by the Branimetric method. That is, first, a picture of the surface of the electrolyte is taken by SEM, and a circle with an approximate area (S) is drawn on this picture, and the number of particles in the circle, the force on the circumference, and the number of particles n Calculate the number of particles N per unit area.
  • N (n + l / 2n) / (S / m 2 )
  • m is the magnification of the photograph. 1 / N force This is the area occupied by SI particles.
  • the grain size is a circle-equivalent diameter, it is obtained as 2 / ⁇ ( ⁇ ), and if it is a square, it is obtained as ⁇ .
  • the 3% diameter of the crystal grain diameter of the electrolyte corresponds to the third diameter when 100 crystal grain diameters are measured by the Branimetric method and arranged in ascending order of the particle diameter.
  • the 97% diameter refers to the 97th particle diameter.
  • the fact that the electrolyte does not have gas permeability is specifically evaluated by providing a pressure difference between one side of the electrolyte and the opposite side thereof and measuring the gas permeation amount of N gas passing through the gap.
  • the electrolyte is a gas permeation amount Q is Q ⁇ 2.
  • Q is Q ⁇ 2.
  • 8 X 10- 9 ms- ⁇ more preferably it is preferred instrument is a- 1 Q ⁇ 2.
  • the thickness of the electrolyte may be appropriately determined.
  • the electrolyte according to the present invention may be prepared from raw material powder of zirconium in which scandia and / or yttria are dissolved. Able to form appropriate crystal grain size without gas permeability
  • the BET value is 0.5-20 m 2 g- 1
  • the 3% size is 0.1 / im or more
  • the 97% size is 2 ⁇ m or less
  • the average particle size is 0.
  • Raw material powder controlled to about 3-1 ⁇ m is more preferable.
  • the BET value is preferably a value obtained by measurement using a fluid type specific surface area measuring apparatus Flow Soap Model 2300 manufactured by Shimadzu Corporation.
  • the particle size distribution is preferably a value obtained by measurement using a laser diffraction type particle size distribution analyzer SA LD-2000 manufactured by Shimadzu Corporation. Further, the average particle diameter is preferably a value of a median diameter (50% diameter) obtained by using a laser diffraction particle size distribution analyzer SALD-2000 manufactured by Shimadzu Corporation.
  • the method for producing the electrolyte is not particularly limited, but a viewpoint of excellent mass productivity and low cost, a slurry coating method, a screen printing method, and a sheet bonding method are preferable.
  • the method for producing the raw material for the electrolyte is not particularly limited as long as it can uniformly dissolve the yttria and / or scandia, and the coprecipitation method is generally preferable.
  • the electrolyte is composed of at least two layers, a layer made of dinoreconia (YSZ) in which yttria is dissolved as a solid on the air-side electrode reaction layer side, and a fuel electrode side.
  • YSZ dinoreconia
  • SSZ zirconia
  • the electrolyte has at least a three-layer structure, and is formed by sequentially laminating a layer made of SSZ, a layer made of YSZ, and a layer made of SSZ. Can be.
  • the electrolyte may have a different composition ratio of SSZ / YSZ.
  • SSZZYSZ 3Zl
  • SSZ / YSZ 1/3
  • the air electrode is an oxygen gas having a high electron conductivity in an air atmosphere. It is preferable to efficiently generate oxygen ions having high permeability.
  • the air electrode is configured as an air electrode support having the function of the air electrode while maintaining the strength of the battery.
  • the air electrode contains a perovskite oxide containing at least manganese.
  • the cathode is (La A) M
  • the air electrode or the air electrode support is made of a mixed conductive material in which a perovskite oxide containing manganese and nickel and an oxide having oxygen ion conductivity are uniformly mixed. It can be configured to be made of a conductive ceramic material. Preferable examples are, for example, (La A) (Mn Ni) O (where A represents Ca or Sr
  • the proportion of the open bouskite-type oxide containing manganese and nickel is preferably 30 to 70% by weight.
  • the air electrode has an appropriate pore size and porosity from the viewpoint of oxygen gas permeability, and preferably has a pore size of 0.5 / im or more and a porosity of 5% or more. Further, a composition having a high effect of suppressing the diffusion of manganese into the electrolyte is more preferable from the viewpoint of improving the durability performance.
  • the composition of the perovskite-type oxide containing manganese and nickel is (Ln A) (Mn Ni) O (where Ln is Sc, Y, La, Ce, Pr, N
  • ⁇ ⁇ represents Ca or Sr , 0 ⁇ 15 ⁇ x ⁇ 0.3, 0.97 ⁇ y ⁇ 1, 0.02 ⁇ z ⁇ 0.10.
  • z is in the range of 0.02 ⁇ z ⁇ 0.10, the stability of solid solution is high.
  • The effect of suppressing the diffusion of manganese in the lobskite structure to other electrodes is greatest. .
  • X satisfies 0.15 ⁇ x ⁇ 0.3, it is possible to secure good electronic conductivity and efficiently generate oxygen ions.
  • the oxide having oxygen ion conductivity constituting the air electrode is preferably an oxide containing at least dinorecon, a cerium-containing oxide, or a lanthanum gallate-based oxide. Further, as the oxide containing zirconia, SSZ, ScYSZ, and YSZ are more preferable.
  • the solid solution amount of scandia in the SSZ as the air electrode is preferably in the range of 3 12 mol%. Further, the total solid solution amount of scandia and yttria in ScYSZ is preferably in the range of 3 to 12 mol%. Furthermore, the solid solution amount of yttria in YSZ is in the range of 312 mol%.
  • the amount of solid solution of scandia or yttria becomes excessive, rhombohedral crystals are formed in addition to the cubic crystal phase, and oxygen ion conductivity is reduced, and scandia and yttria are expensive materials and oxygen ion conductivity is low. Care must be taken because it is not practical to form a solid solution to a lower point.
  • SSZ and ScYSZ further include CeO, SmO, and Gd G
  • At least one oxide selected from the group consisting of YbO and ErO is solid solution of 5 mol% or less.
  • the cerium-containing oxide as the oxide having oxygen ion conductivity at the air electrode includes a general formula (CeO) Q ⁇ (where J is any one of Sm, Gd, and Y.
  • This compound requires a sintering temperature of 1500 ° C or more to form an electrolyte with low sinterability and no gas permeability, and the manganese-containing perovskite-type oxide is used for sintering at high temperatures. Manganese diffusion into the electrolyte is suppressed by the inclusion of nickel, which tends to increase the diffusion of manganese into the electrolyte.
  • lanthanum gallate-based oxide which is an oxide having oxygen ion conductivity at the air electrode, a general formula La D Ga E ⁇ or La D Ga E L O (where D
  • E represents one or more of Mg, Al, In
  • L represents one or more of Co, Fe, Ni, Cr
  • the fuel electrode is usually used as a fuel electrode of a solid oxide fuel cell. It may be. That is, the fuel electrode reacts with the fuel gas in the fuel gas atmosphere of the solid oxide fuel cell, which has moved through the electrolyte, which has high electron conductivity and high fuel gas permeability, to become water and carbon dioxide. It is only necessary that the reaction be carried out efficiently.
  • the fuel electrode is preferably formed by sintering nickel oxide and zirconia.
  • Nickel oxide is reduced in a fuel gas atmosphere to become nickel, and exhibits catalytic activity and electronic conductivity.
  • NiOZYSZ nickel oxide and a dinoreconia obtained by dissolving yttrium as a fuel electrode. This is because this substance has high electronic conductivity and can reduce IR loss.
  • the Ni ⁇ / YSZ ratio of 50/50 to 90/10 by weight is preferable because high electronic conductivity can be realized and durability performance can be effectively prevented from lowering due to aggregation of Ni particles.
  • NiO / CSZ zirconia in which Ni / SSZ or NiO / calcium is dissolved
  • YSZ is cheaper than SSZ, so YSZ is more preferred.
  • CSZ is even cheaper than YSZ, so NiO / CSZ is the most preferred in terms of cost.
  • Ni / CSZ also becomes Ni / CSZ under the fuel gas atmosphere of the solid oxide fuel cell.
  • the method of preparing the fuel electrode raw material is not particularly limited as long as the fuel electrode materials such as NiO / SSZ and NiO / YSZ are uniformly mixed, and examples thereof include a coprecipitation method and a spray drying method. .
  • An air-side electrode reaction layer should be provided between the air electrode and the electrolyte to promote the reaction of Is preferred.
  • the air-side electrode reaction layer preferably has high oxygen ion conductivity.
  • the composition further has electronic conductivity because the above reaction can be further promoted.
  • the material has a low coefficient of thermal expansion with the electrolyte and a material having low reactivity with the air electrode and good adhesion.
  • a lanthanum manganese represented by LaAMnO (where A is Ca or Sr)
  • the composition has a satisfactory composition. By being in this composition range, high electron conductivity can be secured, lanthanum hydroxide is prevented from being generated, and a high-output fuel cell can be realized.
  • the lanthanum manganite is dissolved in Ce, Sm, Gd, Pr, Nd, Co, Al, Fe, Cr, Ni, etc., in addition to Sr or Ca. Even if it is good.
  • those having the composition represented by (La, A) (Mn, Ni) O in which Ni is dissolved in solid form are La Zr O
  • the SSZ of the air-side electrode reaction layer in the present invention further includes Ce S, Sm ⁇ , GdO, Bi
  • O or the like may be dissolved in a solid solution of about 5 mol% or less. Also, two or more kinds may be dissolved. this
  • the solid solution of these materials is preferable because improvement in oxygen ion conductivity can be expected.
  • the solid solution amount of scandia in the SSZ of the air-side electrode reaction layer is about 312 mol%, more preferably about 812 mol% from the viewpoint of oxygen ion conductivity.
  • the air-side electrode reaction layer is composed of lanthanum manganite, S SZ, and a general formula (Ce ⁇ ) (BO) (where B is any one of Sm, Gd, and Y) Or X
  • cerium oxide represented by the formula: Presence of cerium oxide
  • the mixing amount of cerium oxide is
  • the air-side electrode reaction layer comprises a perovskite oxide containing manganese and nickel oxide, an oxide containing dinoreconia, a cerium oxide, or lanthanum and gallium. It is preferable to be made of a mixed conductive ceramic with a perovskite-type oxide containing, and to have open pores communicating with each other.
  • the perovskite-type oxide containing manganese and nickel is preferably (Ln
  • Group power consisting of Tb, Dy, Ho, Er, Tm, Yb, and Lu Any four or more of the selected powers, A represents either Ca or Sr, and X represents 0.15 ⁇ x ⁇ 0.3, y satisfies 0.97 ⁇ y ⁇ l, and z satisfies 0.02 ⁇ z ⁇ 0.10).
  • the oxide containing zirconia preferably refers to zirconia in which scandia is dissolved or zirconia in which scandia and yttria are dissolved.
  • cerium oxide is preferably a compound of the formula (Ce ⁇ ) Q Q) (where J is Sm
  • the content of the perovskite oxide containing manganese and nickel in the air-side electrode reaction layer is preferably about 30 to 70% by weight.
  • the air-side electrode reaction layer is composed of at least two layers: a first layer on the air electrode side and a second layer on the electrolyte side. It's preferable.
  • the first layer is a layer in which an oxide having electron conductivity and an oxide having oxygen ion conductivity are uniformly mixed and has open pores communicating with each other. .
  • the oxide having electronic conductivity is preferably an oxide having electronic conductivity and being stable in the air atmosphere of a solid oxide fuel cell. More specifically, Sr or Ca is preferably solidified. Melted Lantern manga night. Considering that the diffusion of manganese into the electrolyte is small, and that the electron conductivity is high, (La A) MnO (where A represents Ca or Sr,
  • the lanthanum manganite may be a solid solution of Ce, Sm, Pr, Nd, Co, Al, Fe, Ni, Cr and the like. In particular, it is preferable to dissolve Ni.
  • the displacement force which is 0.15 ⁇ x ⁇ 0.3, 0.97 ⁇ y ⁇ l, 0.02 ⁇ z ⁇ 0.10) is the force S preferred.
  • Examples of the oxide having oxygen ion conductivity in the first layer include oxygen ion conductivity, which may be stable as long as it is stable in an air atmosphere of a solid oxide fuel cell.
  • Examples thereof include SSZ, ScYSZ, YSZ, cerium-containing oxides, and perovskite-type oxides containing at least lanthanum and gallium (hereinafter referred to as lanthanum gallate-based oxides).
  • the solid solution amount of scandia in the SSZ as the first layer is preferably in the range of 3 to 12 mol%. Further, the total solid solution amount of scandia and yttria in ScYSZ as the first layer is preferably in the range of 3 to 12 mol%. Further, the preferred amount of yttria in YSZ for the first layer is in the range of 3 to 12 mol%. If the amount of solid solution of scandia or yttria becomes excessive, the crystal phase will generate rhombohedral crystals in addition to cubic, and oxygen ion conductivity will decrease.Scandia and yttria are expensive materials and oxygen ion conductivity. It should be noted that it is not practical to form a solid solution to the point where In addition, SSZ and ScYSZ include a small amount selected from Ce ⁇ , Sm ⁇ , Gd O Yb O, and Er O forces.
  • At least one kind of oxide may be dissolved in 5 mol% or less. Good oxygen ion conductivity can be ensured.
  • cerium-containing oxide as the first layer is represented by the general formula (Ce ⁇ ) Q ⁇ )
  • J is any one of Sm, Gd, and Y, and is represented by 0.05 ⁇ 1 ⁇ 0.15).
  • E ⁇ or La D Ga EL ⁇ (where D is one or more of Sr, Ca, Ba, E b 3 1 aa 1— b— cbc 3 Is preferably one or more of Mg, Al, and In, and L is one or more of Co, Fe, Ni, and Cr).
  • the oxide having preferable electron conductivity and the oxide having oxygen ion conductivity have been exemplified as the first layer.
  • the first layer has both electron conductivity and oxygen ion conductivity. May be. Examples thereof include a lanthanum cobaltite-based oxide which is an oxide containing at least lanthanum and cobalt.
  • the second layer has at least oxygen ion conductivity, has an action of suppressing the diffusion of a manganese component into the electrolyte, and has open pores communicating therewith.
  • the pore size is preferably 0.1 to 10 ⁇
  • the porosity is preferably 3 to 40%
  • the thickness is preferably 5 to 50 / im.
  • a material having high oxygen ion conductivity and low sinterability that is, a material that does not easily diffuse manganese into the electrolyte is preferable for the above reason.
  • a material having an action of absorbing manganese diffused from the air electrode is preferable.
  • SSZ and cerium-containing oxides are representative.
  • the sinterability is higher than that of SSZ, the use of ScYSZ is also preferable from the viewpoint of improving the adhesion between the first layer and the electrolyte.
  • manganese diffused from the air electrode has an action of absorbing manganese.
  • the SSZ and the cerium-containing oxide as the second layer may be the same as those described in the first layer.
  • ScYSZ may be the same as that of the first layer, but the ratio of scandia to the total amount of scandia and yttria in ScYSZ is preferably 20 mol% or more. If the scandium is too small, the effect of suppressing the diffusion of manganese is reduced.
  • ScYSZ contains Ce ⁇ and Sm O
  • At least one oxide selected is 5 mol% or less
  • the air-side electrode reaction layer of the present invention is composed of two layers
  • the first layer is a mixture of a perovskite-type oxide containing manganese and zirconia in which scandia and / or yttria are dissolved and has open pores communicating with each other.
  • the first layer is a mixture of a perovskite-type oxide containing manganese and a cerium-containing oxide and having open pores communicating with each other, and the second layer is a solid solution of scandia.
  • a zirconia which has a higher porosity than the electrolyte,
  • the first layer is a mixture of a perovskite-type oxide containing manganese and a perovskite-type oxide containing lanthanum and gallium and having open pores communicating with each other.
  • the first layer is a perovskite-type oxide containing lanthanum and cobalt and has open pores communicating with each other, and the second layer is dinorecoure in which scandia is dissolved as a solid solution. Also having a large porosity,
  • the first layer is a mixture of a perovskite-type oxide containing manganese and zirconia in which scandia and z or yttria are dissolved, and has a continuous open pore;
  • the second layer is made of cerium oxide having a higher porosity than the electrolyte.
  • the diameter dl of the pores of the air electrode and the diameter d2 of the pores of the first layer it is preferable to satisfy the relationship of the pore diameter d3 of the second layer and the force dl>d2> d3 from the viewpoint of realizing a fuel cell having excellent power output characteristics.
  • the thickness of the first layer and the thickness of the second layer may be determined as appropriate, but preferably the thickness of the second layer is 550 ⁇ m, and the thickness of the first layer is Is 550 ⁇ m.
  • a porous layer is provided between the fuel electrode and the electrolyte.
  • this porous layer is made of a fluorite-type oxide containing zirconia, has a thickness of 5-40 / im, and has a porosity larger than that of the electrolyte.
  • the manganese content on the surface of the porous layer on the fuel electrode side is 0.3 to 4% by weight. .
  • the content of the manganese component on the surface of the porous layer on the fuel electrode side is preferably 0.6 to 3.5% by weight, more preferably 0 to 3.5% by weight. 9-3% by weight.
  • the porous layer functions not only to suppress the diffusion of manganese to the fuel electrode, but also to efficiently move oxygen ions that have moved the electrolyte to the fuel electrode.
  • the porous layer preferably has high oxygen ion conductivity. It is also important to control the thickness of the porous layer so that manganese from the electrolyte is not diffused to the anode and the output performance is not reduced by the resistance of the material itself. According to a preferred embodiment of the present invention, the thickness of the porous layer is preferably 5 to 40 zm.
  • the porous layer preferably has a porosity of 330% from the viewpoint of output performance and durability performance, and the pore diameter of the porous layer is preferably about 0.05 to 2 zm.
  • the pore diameter of the porous layer is preferably about 0.05 to 2 zm.
  • the porosity al of the electrolyte, the porosity a2 of the porous layer made of the fluorite-type oxide, and the porosity a3 of the fuel electrode are & 1 ⁇ & 2.
  • ⁇ It is preferable to satisfy the relationship of & 3.
  • the fluorite-type oxide containing zirconia constituting the porous layer is stable under a fuel gas atmosphere of a solid oxide fuel cell and has an oxygen ion conductivity.
  • Higher materials are preferred SSZ, ScYSZ, and YSZ are preferred. These SSZ, ScYSZ, and YSZ may be the same as those constituting the air-side electrode reaction layer except for physical properties required for the porous layer. Further, the preferred embodiment may be the same.
  • a fuel-side electrode reaction layer between the electrolyte and the fuel electrode in order to efficiently perform the reaction at the fuel electrode and improve the output performance.
  • the meaning of the term “layer in contact with the fuel electrode” means that the fuel-side electrode reaction layer is provided. This means a layer in contact with the fuel-side electrode reaction layer.
  • NiO / SSZ or Ni / SSZ which has both excellent electron conductivity and oxygen ion conductivity, is preferably used.
  • NiO is reduced in a fuel atmosphere to become Ni, and the fuel-side electrode reaction layer becomes Ni / SSZ.
  • the ratio of NiO / SSZ is preferably 10 / 90-50 / 50 by weight, because good electronic conductivity and oxygen ion conductivity can be realized.
  • the solid solution amount of scandia in the SSZ constituting the fuel-side electrode reaction layer is preferably about 3 to 12 mol% because the reaction in the fuel electrode having high oxygen ion conductivity can be promoted.
  • Masire, This SSZ is further divided into Ce ⁇ ⁇ ⁇ , Sm ⁇ , Gd ⁇ , Bi ⁇
  • One, two or more of 2 2 3 2 3 2 3 may be dissolved in 5 mol% or less. By dissolving them, not only the improvement of oxygen ion conductivity but also the improvement of electron conductivity under fuel gas atmosphere can be expected.
  • NiO, SSZ, and cerium are used as the fuel-side electrode reaction layer.
  • a layer in which oxides are uniformly mixed at a predetermined weight ratio (hereinafter, NiO / SSZ / cerium oxide) can be preferably used.
  • This layer has the advantage of high oxygen ion conductivity and high electron conductivity in a fuel gas atmosphere.
  • Ni ⁇ is reduced to Ni in a fuel gas atmosphere, and this layer becomes Ni / SSZZ cerium oxide.
  • the cerium oxide is not particularly limited as long as it is an oxide containing cerium, but the general formula (CeO)
  • the interconnector of the solid oxide fuel cell according to the present invention has high electronic conductivity, no gas permeability, and redox atmosphere in the air atmosphere and fuel gas atmosphere at the power generation temperature of the solid oxide fuel cell. Those that are stable to are preferred. From this viewpoint, the use of lanthanum chromite is preferred.
  • (La Ax) is provided between the air electrode and the interconnector.
  • a dense pre-coat layer may be provided.
  • This precoat layer is advantageous because the calcium chromate component, which is a sintering aid component of lanthanum chromite in which Ca is dissolved, can be effectively prevented from diffusing into the air electrode.
  • the dense pre-coat layer means a pressure between one side of the pre-coat layer and the opposite side. When provided with a force difference, it is evaluated in a gas permeation quantity of transmitted therebetween, gas permeation Q ⁇ 1.4 X 10 - preferably those at 7 ms- ⁇ a- 1 or more.
  • the interconnector is called a separator, and the role is the same as that of the interconnector.
  • a separator a heat-resistant metal such as ferrite stainless steel may be used.
  • the solid oxide fuel cell according to the present invention can be manufactured by a suitable manufacturing method in consideration of its shape and the like. In the case of a cylindrical type as shown in FIG. 1, it can be manufactured as follows.
  • an air electrode portion serving as a support is mixed with a perovskite-type oxide containing at least manganese as a raw material and other components, preferably together with a binder, and the mixture is extruded and molded by a molding method. Then, after removing the binder at a temperature of about 300 to 500 ° C, baking is performed at about 1400 to 500 ° C to obtain a high strength porous air electrode support.
  • the firing method there are a hanging firing method and a horizontal firing method, but a horizontal firing method is preferable.
  • an air-side electrode reaction layer, an electrolyte, an interconnector, and a fuel electrode are formed on the surface of the obtained air electrode support.
  • a wet method is preferable from the viewpoint of cost.
  • a wet method a dipping method in which a slurry is prepared from a raw material powder, a binder, and a solvent, and immersed in the slurry to form an electrode, and a screen that forms a film through a screen using a paste having a higher viscosity than the slurry
  • Examples of the method include a printing method and a sheet bonding method in which a sheet formed on another substrate such as a pet film is attached to the cell surface.
  • the air-side electrode reaction layer and the electrolyte are interconnected and the fuel electrode are preferably selected by the diving method.
  • a screen printing method or a sheet bonding method which is a masking-less method, is preferable.
  • the cell formed by the above method is sintered at a temperature of about 1300 to 1500 ° C below the temperature of the air electrode support. Is preferably performed.
  • a synthesis method is preferable, in the present invention using a perovskite-type oxide containing at least manganese as the air electrode support, there is a possibility that the output performance may be significantly reduced due to the diffusion of manganese. There is also.
  • the surface of the electrolyte membrane was observed by SEM using S-4100 manufactured by Hitachi, Ltd., and the fuel electrode side surface of the electrolyte was photographed at a magnification of 300 times. Furthermore, the particle size distribution of the particles was calculated by the Branimetric method using the photographed images. The average crystal grain size was also measured. That is, a circle with a known area (A) is drawn on a photograph, and the number of particles N per unit area is obtained from the number of particles n in the circle and the number of particles n exerted on the circumference by the following formula.
  • N (n + l / 2n) / (A / m 2 )
  • the 3% diameter in the particle size distribution on the film surface refers to the third equivalent particle size when 100 crystal grain sizes are measured by the Branimetric method and arranged in ascending order of particle size.
  • the diameter refers to the particle size corresponding to the 97th. It should be noted that even when particles seemed to be joined by sintering, if a grain boundary was observed, the measurement was performed by regarding the particles as separate particles.
  • Power generation test A power generation test was performed using the prepared battery (fuel electrode effective area: 150 cm 2 ). The operating conditions were as follows.
  • the temperature was lowered to room temperature with the current density lowered to OAcm- 2, and then the temperature was raised again to 800 ° C and held for 500 hours under the same conditions. After the temperature was lowered to room temperature while the current density was lowered to OAcm- 2 again, the temperature was raised to 800 ° C and maintained for 500 hours under the same conditions. In this way, a total of 2,000 hours of durability tests including two heat cycles were performed.
  • the manganese content on the fuel electrode side surface of the electrolyte was examined.
  • the manganese content was measured using a Shimadzu electron beam microanalyzer EPMA-8705 manufactured by Shimadzu Corporation. The measurement conditions were as follows.
  • Electrolyte force A cross-sectional photograph of the fuel electrode was taken with an SEM, and the voids and particles were traced on a transparent film with different colors. It was determined by subjecting the color-coded film to image processing and calculating the ratio of voids.
  • the pore diameter was determined by the following method. Disconnect the battery and cut from the air electrode to the fuel electrode Polish the surface until a mirror surface appears. From the air electrode to the electrode reaction layer, take a cross-sectional photograph with SEM, and trace the gaps and particles on a transparent film by color coding. The size of the void is measured. For example, when the void is equivalent to a circle, the diameter is the pore diameter, and when the void is equivalent to a square, the length of one side is calculated as the pore diameter.
  • the pore diameter of 0.1 to 10 zm means that the pore diameter was measured in the third to 97th range when 100 pore diameters were measured by the above-described method and arranged in ascending order of diameter. It refers to the one corresponding to the second pore size. That is, it means that the pore diameter in the range of 3% to 97% and corresponding to the 50% diameter is 0.1 0 ⁇ .
  • a heat treatment was performed to obtain an air electrode raw material powder.
  • the average particle size was 30 / m.
  • a cylindrical molded body was produced by an extrusion molding method, and was further calcined at 1500 ° C to obtain an air electrode support.
  • This slurry was formed into a film on the above-mentioned air electrode support (outside diameter: 15 mm, wall thickness: 1.5 mm, effective length: 400 mm) by a slurry coating method, and then sintered at 1400 ° C.
  • the thickness was 20 ⁇ m.
  • the electrolyte was 90 mol% ZrO-10 mol% ScO.
  • the prepared slurry was formed into a film on the air-side electrode reaction layer by a slurry coating method and fired at 1400 ° C.
  • the thickness of the obtained electrolyte was 30 ⁇ m.
  • the portion where the interconnector film is formed in a later step is masked so that the film is not applied.
  • the fuel-side electrode reaction layer was NiO / 90 mol% ZrO-10 mol% ScO.
  • Types were made. The average particle diameter was 0.5 ⁇ in all cases.
  • 100 parts by weight of this powder 500 parts by weight of an organic solvent (ethanol), 10 parts by weight of Noku Inda (ethyl cellulose), 5 parts by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate)
  • ethanol organic solvent
  • Noku Inda ethyl cellulose
  • a dispersant polyoxyethylene alkyl phosphate
  • an antifoaming agent sorbitan sesquiolate
  • Each of the aqueous solutions of 222, Zr, and Y was mixed so as to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further, after heat treatment was performed to control the particle size, a raw material was obtained. The average particle size was 2 xm. 100 parts by weight of this powder, 500 parts by weight of an organic solvent (ethanol), 20 parts by weight of a binder (ethyl cellulose), 5 parts by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) 1 part by weight, plasticizer (DBP) 5 parts by weight After mixing the parts, the mixture was sufficiently stirred to prepare a slurry. The viscosity of this slurry was 250 mPas.
  • the thickness (after firing) was 10 ⁇ m.
  • a fuel electrode slurry was formed thereon by a slurry coating method.
  • the thickness (after firing) was 90 zm. Further, firing was performed at 1400 ° C.
  • the raw material powder was prepared by spray pyrolysis and then heat-treated.
  • the average particle size of the obtained powder was 1 ⁇ m.
  • 40 parts by weight of the powder are 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate) 1
  • the mixture was mixed sufficiently with the mixture and stirred sufficiently to prepare a slurry.
  • the viscosity of this slurry was 100 mPas.
  • An interconnector was formed by a slurry coating method and fired at 1400 ° C. The thickness after firing was 40 ⁇ m.
  • a solid oxide fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1360 ° C.
  • a fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1380 ° C.
  • a fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1420 ° C.
  • Example Al_5 A fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1440 ° C.
  • a fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1340 ° C.
  • a fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1460 ° C.
  • Example 2 Electrolyte Force A fuel cell which is a layer composed of YSZ.
  • Examples A1-1 and A-1 were the same except that the electrolyte composition was 90 mol% Zr ⁇ _10 mol% YO.
  • the composition of the electrolyte is 90 mol% Zr ⁇ -10 mol% YO, and the sintering temperature of the electrolyte is 135 mol%.
  • a fuel cell was obtained in the same manner as in Example A1-1 except that the temperature was 0 ° C.
  • the composition of the electrolyte is 90 mol% Zr ⁇ -10 mol% YO, and the firing temperature of the electrolyte is 138%.
  • a fuel cell was obtained in the same manner as in Example A1-1 except that the temperature was 0 ° C.
  • the composition of the electrolyte is 90 mol% Zr ⁇ -10 mol% YO, and the sintering temperature of the electrolyte is 141 mol%.
  • a fuel cell was obtained in the same manner as in Example A1-1 except that the temperature was 0 ° C.
  • the composition of the electrolyte is 90molQ /. Zr ⁇ -10 mol% Y O, and the sintering temperature of the electrolyte was 142
  • a fuel cell was obtained in the same manner as in Example A1-1 except that the temperature was 0 ° C.
  • the composition of the electrolyte is 90molQ /. Zr ⁇ -10 mol% Y O, and the sintering temperature of the electrolyte is 133
  • a fuel cell was obtained in the same manner as in Example A1-1 except that the temperature was 0 ° C.
  • Comparative Example A2-2 The composition of the electrolyte is 90 mol% Zr ⁇ -10 mol% YO, and the firing temperature of the electrolyte is
  • a fuel cell was obtained in the same manner as in Example Al-1, except that the temperature was 0 ° C.
  • Example 3 Fuel cell in which the electrolyte is a layer composed of SSZZYSZ
  • composition of the electrolyte is 90 mol% Zr ⁇ -5 mol% ScO -5 mol% YO
  • a fuel cell was obtained in the same manner as in Example A1-1.
  • composition of the electrolyte is 90 mol% ZrO -5 mol% ScO -5 mol% YO,
  • a fuel cell was obtained in the same manner as in Example Al-1, except that the firing temperature was 1350 ° C.
  • composition of the electrolyte is 90 mol% ZrO -5 mol% ScO -5 mol% YO,
  • a fuel cell was obtained in the same manner as in Example Al-1, except that the firing temperature was 1380 ° C.
  • composition of the electrolyte is 90 mol% ZrO_5 mol% ScO_5 mol% YO,
  • a fuel cell was obtained in the same manner as in Example Al-1, except that the firing temperature was 1420 ° C.
  • composition of the electrolyte is 90 mol% ZrO_5 mol% ScO_5 mol% YO,
  • a fuel cell was obtained in the same manner as in Example Al-1, except that the firing temperature was 1,430 ° C.
  • the fuel cell obtained as described above was subjected to a particle size distribution, a gas leak test, a power generation test, and a durability test. The results were as shown in the following display.
  • Example A4 Fuel cell having, as an electrolyte, a layer made of SSZ on the air electrode side and a layer made of YSZ on the fuel electrode side
  • a layer composed of SSZ of 90 mol% ZrO — 10 mol% ScO was formed by a slurry coating method.
  • a YSZ layer of 90 mol% ZrO -10 mol% Y ⁇ was formed thereon by a slurry coating method, and then fired at 1400 ° C.
  • the thickness of the obtained electrolyte was 30 ⁇ m (layer made of SSZ: 15 ⁇ m, layer made of YSZ: 15 / m). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a layer composed of 90 mol% ZrO and 10 mol% Sc ⁇ SSZ was formed by a slurry coating method.
  • a YSZ layer of 90 mol% ZrO-10 mol% Y 2 O was formed thereon by a slurry coating method, and then fired at 1350 ° C.
  • the thickness of the obtained electrolyte was a layer composed of SOzn ⁇ SSZ force: 15 ⁇ , a layer composed of YSZ: 15 ⁇ m). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a layer composed of SSZ of 90 mol% ZrO -10 mol% Sc ⁇ was formed by a slurry coating method.
  • a YSZ layer of 90 mol% ZrO -10 mol% Y ⁇ was formed thereon by a slurry coating method, and then fired at 1380 ° C.
  • the thickness was 30/1111 (332 layers: 15111, YSZ layer: 15 / im). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method. On top of this, 90 mol% ZrO -10 mol% Y ⁇ YSZ
  • Example A1-1 After forming a strong layer by a slurry coating method, it was baked at 1415 ° C. The thickness of the obtained electrolyte was a layer composed of SOzn ⁇ SSZ force: 15 x m, and a layer composed of YSZ: 15 ⁇ m). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method. On top of this, 90 mol% ZrO -10 mol% Y ⁇ YSZ
  • Example A1-1 After forming a strong layer by a slurry coating method, it was sintered at 1425 ° C. The thickness of the obtained electrolyte was 30 111 (a layer composed of 332: 15/1111, a layer composed of YSZ: 15 ⁇ m). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method. On top of this, 90 mol% ZrO _ 10 mol% Y ⁇ YSZ
  • Example A1-1 After forming a strong layer by the slurry coating method, it was baked at 1330 ° C. The thickness of the obtained electrolyte was 30/1 111 (a layer composed of 332: 15 111, a layer composed of YSZ: 15 / im). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method. On top of this, 90 mol% ZrO -10 mol% Y ⁇ YSZ
  • Example A1-1 After forming a strong layer by the slurry coating method, it was sintered at 1440 ° C. The thickness of the obtained electrolyte was 30 ⁇ m (SSZ force, layer composed of 15 ⁇ , layer composed of YSZ: 15 ⁇ m). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • Example A5 As an electrolyte, a fuel cell having a layer made of YSZ on the air electrode side and a layer made of SSZ on the fuel electrode side
  • a film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc ⁇ SSZ
  • Example A1-1 After a layer having a strength of 2 23 was formed by the slurry coating method, it was baked at 1400 ° C. The thickness of the obtained electrolyte was 30 111 ( ⁇ 32, a layer composed of 15111, a layer composed of SSZ: 15 ⁇ m). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • Example A5-2 On the air-side electrode reaction layer, a layer composed of 90 mol% ZrO and 10 mol% Y
  • a film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc ⁇ SSZ
  • Example A1-1 After forming a layer having a high strength by a slurry coating method, it was baked at 1350 ° C. The thickness of the obtained electrolyte was 30 ⁇ 111 ( ⁇ 32, a layer composed of 15 ⁇ 111, a layer composed of SSZ: 15 ⁇ m). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc ⁇ SSZ
  • Example A1-1 After forming a layer having a high strength by a slurry coating method, it was baked at 1380 ° C. The thickness of the obtained electrolyte was 30 ⁇ 111 ( ⁇ 32, a layer composed of 15 ⁇ 111, a layer composed of SSZ: 15 ⁇ m). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc ⁇ SSZ
  • Example A1-1 After forming a layer having a high strength by a slurry coating method, it was baked at 1420 ° C. The thickness of the obtained electrolyte was 30/1111 ( ⁇ 32 layers: 15/1111, SSZ layer: 15 / im). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc ⁇ SSZ
  • Example A1-1 After forming a layer having a high strength by a slurry coating method, it was baked at 1430 ° C. The thickness of the obtained electrolyte was 30 ⁇ 111 ( ⁇ 32, a layer composed of 15 ⁇ 111, a layer composed of SSZ: 15 ⁇ m). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc ⁇ SSZ
  • Example Al-1 After forming a layer having a high strength by a slurry coating method, it was baked at 1330 ° C. The thickness of the obtained electrolyte was 30 ⁇ 111 ( ⁇ 32, a layer composed of 15 ⁇ 111, a layer composed of SSZ: 15 ⁇ m). It A fuel cell was obtained in the same manner as in Example Al-1, except for the above.
  • a film was formed by a slurry coating method. On top of this, SSZ which is 90mol% ZrO _10mol% Sc O
  • Example A1-1 After a layer having a strength of 2 23 was formed by the slurry coating method, it was baked at 1450 ° C. The thickness of the obtained electrolyte was 30 ⁇ 111 ( ⁇ 32, a layer composed of 15 ⁇ 111, a layer composed of SSZ: 15 ⁇ m). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • the fuel cell obtained as described above was subjected to a particle size distribution, a gas leakage test, a power generation test, and a durability test. The results were as shown in the following display.
  • Example A6 Fuel cell in which the electrolyte has a three-layer structure
  • a film was formed by a slurry coating method.
  • the YSZ force which is 90 mol% ZrO _ 10 mol% Y ⁇
  • This layer was formed by a slurry coating method.
  • Example A1-1 After a layer of SSZ was formed by a slurry coating method, it was baked at 1400 ° C. The thickness of the obtained electrolyte was 30 ⁇ m (layer composed of SSZ on the air side: 10 ⁇ m, layer composed of YSZ: 10 ⁇ m, layer composed of SSZ on the fuel electrode side: 10 ⁇ m). Was. Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method.
  • the YSZ force which is 90 mol% ZrO _ 10 mol% Y ⁇
  • This layer was formed by a slurry coating method.
  • Example A1-1 After a layer of SSZ was formed by the slurry coating method, it was baked at 1360 ° C. The thickness of the obtained electrolyte was 30 ⁇ m (layer composed of SSZ on the air side: 10 ⁇ m, layer composed of YSZ: 10 / im, layer composed of SSZ on the fuel electrode side: 10 / m). Was. Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method. On top of this, 90 mol% ZrO _ 10 mol% Y ⁇
  • This layer was formed by a slurry coating method.
  • Example A1-1 After a layer of SSZ was formed by the slurry coating method, it was baked at 1380 ° C. The thickness of the obtained electrolyte was 30 ⁇ m (layer composed of SSZ on the air side: 10 ⁇ m, layer composed of YSZ: 10 ⁇ m, layer composed of SSZ on the fuel electrode side: 10 ⁇ m). Was. Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method.
  • the YSZ force which is 90 mol% ZrO _ 10 mol% Y ⁇
  • This layer was formed by a slurry coating method.
  • a film was formed by a slurry coating method.
  • the YSZ force which is 90 mol% ZrO _ 10 mol% Y ⁇
  • This layer was formed by a slurry coating method.
  • Example A1-1 After a layer of SSZ was formed by the slurry coating method, it was baked at 1440 ° C. The thickness of the obtained electrolyte was 30 ⁇ m (layer composed of SSZ on the air side: 10 ⁇ m, layer composed of YSZ: 10 ⁇ m, layer composed of SSZ on the fuel electrode side: 10 ⁇ m). Was. Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method. On top of this, 90 mol% ZrO _ 10 mol% Y ⁇
  • This layer was formed by a slurry coating method.
  • a layer made of SSZ was formed by a slurry coating method, it was sintered at 1330 ° C.
  • the thickness of the obtained electrolyte was 30 ⁇ m (the layer composed of SSZ on the air side: 10 ⁇ m, the layer composed of YSZ: 10 / im, the layer composed of SSZ on the fuel electrode side: 10 ⁇ ). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
  • a film was formed by a slurry coating method.
  • the YSZ force which is 90 mol% ZrO _ 10 mol% Y ⁇
  • This layer was formed by a slurry coating method.
  • Example A1-1 After a layer of SSZ was formed by the slurry coating method, it was sintered at 1450 ° C. The thickness of the obtained electrolyte was 30 ⁇ m (layer composed of SSZ on the air side: 10 ⁇ m, layer composed of YSZ: 10 ⁇ m, layer composed of SSZ on the fuel electrode side: 10 ⁇ m). Otherwise, as in Example A1-1 Thus, a fuel cell was obtained.
  • the fuel cell obtained as described above was subjected to a particle size distribution, a gas leak test, a power generation test, and a durability test. The results were as shown in the following display.
  • composition of the electrolyte membrane is 90 mol% Zr ⁇ -5 mol% ScO -5 mol% YO, 1420 ° C
  • Example A1-1 a fuel cell was obtained in the same manner as in Example A1-1, except that the thickness was 8 zm.
  • Example A7_2 The composition of the electrolyte membrane is 90 mol% Zr ⁇ -5 mol% ScO-5 mol% YO, 1420 ° C
  • Example Al-1 a fuel cell was obtained in the same manner as in Example Al-1, except that the thickness was 10 / m.
  • composition of the electrolyte membrane is 90 mol% Zr ⁇ -5 mol% Sc ⁇ -5 mol% YO, 1420 ° C
  • Example A1-1 a fuel cell was obtained in the same manner as in Example A1-1, except that the thickness was 15 zm.
  • composition of the electrolyte membrane is 90 mol% Zr ⁇ -5 mol% ScO -5 mol% Y ⁇ , 1420 ° C
  • Example Al-1 a fuel cell was obtained in the same manner as in Example Al-1, except that the thickness was 30 zm.
  • composition of the electrolyte membrane is 90 mol% Zr ⁇ -5 mol% ScO -5 mol% YO, 1420 ° C
  • Example A1-1 a fuel cell was obtained in the same manner as in Example A1-1, except that the thickness was 50 / m.
  • composition of the electrolyte membrane is 90 mol% Zr ⁇ -5 mol% ScO— 5 mol% YO, 1420 ° C
  • Example Al-1 a fuel cell was obtained in the same manner as in Example Al-1, except that the thickness was 80 / m.
  • composition of the electrolyte membrane is 90 mol% ZrO— 5 mol% ScO— 5 mol% Y ⁇ , 1420 ° C
  • Example Al-1 a fuel cell was obtained in the same manner as in Example Al-1, except that the thickness was 100 ⁇ .
  • composition of the electrolyte membrane is 90 mol% Zr ⁇ -5 mol% ScO -5 mol% Y ⁇ , 1420 ° C
  • Example A1-1 a fuel cell was obtained in the same manner as in Example A1-1, except that the thickness was 120 ⁇ .
  • An SSZ material represented by 90 mol% ZrO -10 mol% ScO was prepared as an electrolyte material.
  • Each nitrate aqueous solution was prepared so as to have the above composition, and oxalic acid aqueous solution was added thereto for coprecipitation.
  • the liquid obtained by co-precipitation was dried at about 200 ° C, pyrolyzed at 500 ° C, and heat-treated at 800 ° C to obtain a raw material powder.
  • the average particle size was 0.5 / im.
  • the powder After adding 1% by weight of the binder PVA to the SSZ material and kneading and drying the powder, the powder was uniaxially molded with a disk-shaped mold and pressed to 1000 kg / cm 2 to form the powder.
  • the pressed body was sintered at 1430 ° C. After sintering, it was ground to a thickness of Slmm.
  • the porosity of the fired pressed body was measured by the Archimedes method. The porosity was 0.8%, confirming that the electrolyte had no gas permeability.
  • a mixed conductive ceramic material was prepared by uniformly mixing a perovskite-type oxide containing manganese and nickel and an oxide having oxygen ion conductivity. Its composition is (La
  • a nitrate aqueous solution was obtained in the same manner.
  • Each nitrate aqueous solution was prepared so as to have the above-mentioned composition, and oxalic acid aqueous solution was collected and coprecipitated.
  • the solution obtained by coprecipitation was dried at about 200 ° C, pyrolyzed at 500 ° C, and heat-treated at 1200 ° C to obtain a raw material powder. Further, each raw material was mixed and heat-treated at 1300 ° C to obtain a raw material powder. By controlling the particle size, The average particle size of the powder was 2 ⁇ m.
  • the paste was applied to one surface of the electrolyte of the pressed body by a screen printing method so as to have a diameter of 6 mm, and sintered at 1400 ° C.
  • the thickness of the electrode after firing was 20 zm.
  • a platinum electrode was applied on the electrode and the opposite side of the pressed body by a screen printing method so as to have a diameter of 6 mm, and sintered at 1100 ° C to obtain a fuel cell test piece.
  • Example Bl Same as Example Bl except that it was prepared to be 50/50.
  • Example Bl Same as Example Bl except that it was prepared to be 50/50.
  • Example Bl Same as Example Bl except that it was prepared to be 50/50.
  • Example Bl Same as Example Bl except that it was prepared to be 50/50.
  • Example Bl Same as Example Bl except that it was prepared to be 50/50.
  • the test piece obtained as described above was configured as shown in FIG. 7, and the reaction overvoltage was measured. That is, an electrode 11 made of mixed conductive ceramics is formed on one surface of an electrolyte 13 made of an SSZ material, a platinum electrode 12 is formed on the surface of the electrode 11, and a counter electrode 14 made of platinum is formed on the opposite surface. A reference electrode 15 made of platinum is formed on the side surface of the electrolyte 13, and two lead wires 16 are attached to the platinum electrode 12, and one lead wire 17 and 18 are attached to the counter electrode and the reference electrode, respectively. ing. After raising the temperature of the battery to 800 ° C in the atmosphere, the overvoltage was measured by the current interruption method.
  • the current interruption method is a method of instantaneously interrupting the current flowing in the battery, and quantifying the overvoltage due to the reaction and the overvoltage due to the ohmic resistance from the voltage change at that time.
  • the reaction overvoltage under the condition of 0.2 Acm- 2 was calculated. Generally, it is said that the lower the reaction overpotential is measured, the better the electrode characteristics are.
  • Example B 1 Z value (mV) at Example B 1 0.05 25
  • Example B 2 0.01 70
  • Example B 3 0.02 45
  • Example B 4 0.08 24
  • Example B 5 0.10 38
  • Example B 6 0.13 60 Comparative example B 1 0 80
  • Example Bl Same as Example Bl except that it was prepared to be 50/50.
  • Example Bl Same as Example Bl except that it was prepared to be 50/50.
  • Example Bl Same as Example Bl except that it was prepared to be 50/50.
  • Example Bl Same as Example Bl except that it was prepared to be 50/50.
  • the weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
  • the weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
  • the weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
  • the weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
  • the weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
  • the weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
  • the mixed conductive ceramic electrode was adjusted to (La Sr) (Mn Ni) 0.
  • a fuel cell test piece was obtained in the same manner as in Example Bl, except that the average particle size after firing at 1300 ° C was controlled to 2 ⁇ m.
  • Example Bl except that the average particle size after firing at 1200 ° C was controlled to 2 ⁇ m using Z material. In the same manner as described above, a fuel cell test piece was obtained.
  • Ln could be Sm or Y when expressed as 1—xxynNi) ⁇ . This power Ln
  • a fuel cell test piece was obtained in the same manner as in B1.
  • the mixed conductive ceramic electrode is made of (La Sr) (Mn Ni) O and (CeO) (
  • Cerium-containing oxide represented by Sm 2 O 3 (hereinafter referred to as (La Sr) (Mn Ni
  • Cerium-containing oxide represented by O-10mol% ScO and (CeO) (Sm ⁇ )
  • a fuel cell test piece was obtained in the same manner as in Example Bl, except that it was fired.
  • the mixed conductive ceramic electrode is made of (La Sr) (Mn Ni) O and La Sr G
  • La Sr Ga Mg ⁇ is La O, SrCO, Ga ⁇ , Mg
  • Example B a fuel cell test piece was obtained in the same manner as in Example B1, except that the respective powders were mixed and fired at 1300 ° C.
  • % Y O 50/50 (weight ratio), except that it was prepared in the same manner as in Example Bl.
  • Example B22 The powder was mixed with Mn ⁇ and baked at 1300 ° C in the same manner as in Example B22.
  • Example B1 Heat treated at 200 ° C. Thereafter, a fuel cell test piece was obtained in the same manner as in Example B1, except that the respective powders were mixed and fired at 1300 ° C.
  • the average particle size was 30 zm.
  • a cylindrical molded body was produced by an extrusion molding method, and was baked at 1500 ° C to obtain an air electrode support.
  • the pore diameter of the cathode support is 14 zm, the porosity is 45%, The thickness was 1.5 mm.
  • the air-side electrode reaction layer is a layer in which a perovskite-type oxide containing manganese and nickel and YSZ are uniformly mixed, and the composition and its weight ratio are (La Sr) (Mn
  • nitrate aqueous solutions of La, Sr, Mn, Ni, Zr and Y they were prepared to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 xm. 40 parts by weight of this powder were mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate). After mixing, the slurry was sufficiently stirred to prepare a slurry.
  • a solvent ethanol
  • ethyl cellulose ethyl cellulose
  • a dispersant polyoxyethylene alkyl phosphate
  • an antifoaming agent sorbitan sesquiolate
  • the slurry viscosity was 100 mPas.
  • the slurry was formed on the surface of the above-prepared air electrode support (outside diameter: 15 mm, wall thickness: 1.5 mm, effective length: 400 mm) by a slurry coating method, and then sintered at 1400 ° C.
  • the pore size of the formed layer was 5 ⁇ m , the porosity was 28%, and the thickness was 30 ⁇ m.
  • the material of the electrolyte was YSZ, and its composition was 90 mol% ZrO_10 mol% YO.
  • Y was prepared by using each nitrate aqueous solution to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0.5 ⁇ m. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. This slurry had a viscosity of 140 mPas.
  • the prepared slurry was formed into a film by the slurry coating method on the surface of the air-side electrode reaction layer prepared in (2) above, and sintered at 1400 ° C.
  • the thickness of the obtained electrolyte was 30 x m.
  • the portion where the interconnector was to be formed in a later step was masked, and the film was not coated so as to be removed.
  • the diameters were all 0. 100 parts by weight of this powder and an organic solvent (ethanol) 5
  • the electrolyte layer prepared in (4) above is masked so that the effective area becomes 150 cm 2 , and the slurry NiO / (ZrO) prepared in (5) is coated on the electrolyte layer by a slurry coating method.
  • the film thickness (after sintering) was 10 ⁇ m.
  • the fuel electrode material was NiO / YSZ and the composition was NiO / (ZrO) (Y ().
  • the mixture was prepared to have the above-mentioned composition, and oxalic acid was precipitated. After the precipitate and the supernatant were dried, they were further subjected to a heat treatment to control the particle size and obtain a raw material. Its composition and its weight ratio is NiO / (ZrO) (
  • the slurry prepared in (7) was formed on the fuel-side electrode reaction layer prepared in (6) by a slurry coating method.
  • the film thickness (after sintering) was 90 xm.
  • the fuel-side electrode reaction The layer and anode were co-sintered at 1400 ° C.
  • Kuta was made. Powder was prepared by spray pyrolysis and then heat-treated. The average particle size of the obtained powder was 1 ⁇ m. 40 parts by weight of this powder are 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate) 1 After that, the mixture was mixed well with the mixture and stirred sufficiently to prepare a slurry. The slurry viscosity was 100 mPas. An interconnector was formed by a slurry coating method and sintered at 1400 ° C. The thickness after sintering was 40 x m.
  • the composition and weight ratio are La Sr MnO / 90mol% ZrO_1
  • the mixture was prepared so as to have the above composition, and then coprecipitation with oxalic acid was performed.
  • Table 7 shows the estimated potential after 40,000 hours, because the lifetime required for a stationary fuel cell is 40,000 hours. In general, it is considered that there is no problem if the potential decrease rate after 40,000 hours is 10% or less.
  • a fuel cell was obtained in the same manner as in Example 25 except that the thickness of the air-side electrode reaction layer was 3 ⁇ m.
  • a fuel cell was obtained in the same manner as in Example 25 except that the thickness of the air-side electrode reaction layer was set to 20 ⁇ m .
  • Example B30 A fuel cell was obtained in the same manner as in Example 25 except that the thickness of the air-side electrode reaction layer was 55 ⁇ m.
  • the thickness of the air-side electrode reaction layer is more preferably in the range of 5-50 / m from the viewpoint of output performance and durability performance.
  • the material of the second air-side electrode reaction layer is SSZ, and its composition is 90 mol% ZrO -lOmol
  • This slurry was formed into a film by slurry coating on the surface of the air-side electrode reaction layer obtained in Example B25 (2), and then sintered at 1400 ° C.
  • the pore size of the second layer was 1.5 zm, the porosity was 14%, and the thickness was 10 zm.
  • a fuel cell was obtained in the same manner as Example B25 except for the above.
  • a fuel cell was obtained in the same manner as in Example B31, except that the thickness of the second air-side electrode reaction layer was changed to 3 ⁇ m.
  • a fuel cell was obtained in the same manner as in Example B31, except that the thickness of the second air-side electrode reaction layer was set to 5 ⁇ m.
  • a fuel cell was obtained in the same manner as in Example B31, except that the thickness of the second air-side electrode reaction layer was set to 30 ⁇ m.
  • a fuel cell was obtained in the same manner as in Example B31, except that the thickness of the second air-side electrode reaction layer was set to 50 ⁇ m.
  • a fuel cell was obtained in the same manner as in Example B31, except that the thickness of the second air-side electrode reaction layer was set to 55 ⁇ m.
  • the thickness is in the range of 5-50 ⁇ .
  • the material of the electrolyte is ScYSZ, and its composition is 90 mol% ZrO_5 mol% ScO-5 mol%
  • Example B38 After combining, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0. A fuel cell was obtained in the same manner as Example B25 except for the above. [0251] Example B38
  • the material of the electrolyte was SSZ, and its composition was 90 mol% Zr ⁇ _10 mol% ScO.
  • the material of the electrolyte is SSZ with a composition of 90 mol% ZrO -10 mol% Sc ⁇ , and a composition of 90 mol%
  • YSZ of l% ZrO-10mol% YO was used. YSZ slurry on the surface of the air-side electrode reaction layer
  • Example B25 After the film was formed by one coat method, SSZ was formed on the YSZ surface by the slurry coat method and sintered at 1400 ° C. The thickness of each layer was 15 x m. A fuel cell was obtained in the same manner as Example B25 except for the above.
  • the material of the electrolyte was SSZ with a composition of 90 mol% ZrO_10 mol% ScS, and a composition of 90 mol%
  • YSZ was formed on the SSZ surface by the slurry coating method, and further, SSZ was formed on the YSZ surface by the slurry coating method.
  • Each layer was co-sintered at 1400 ° C. The thickness of each layer was 10 ⁇ m. Except for the above, the procedure was the same as that of Example B25.
  • Example B 25 0.57 0.57 0.57 0.57 0.54
  • Example B 37 0.60 0.60 0.60 0.57
  • Example B 38 0.61 0.61 0.61 0.61 0.58
  • Example B 39 0.61 0.61 0.61 0.61 0.58
  • Example B 40 0.62 0.62 0.62 0.62 0.59
  • the first layer is a layer in which (La A) MnO and YSZ are uniformly mixed, and its composition and
  • the aqueous solution of each of La, Sr, Mn, Zr and Y was mixed to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 zm.
  • 40 parts by weight of the powder of the first layer were mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and a defoamer (sorbitan). (Sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry.
  • the slurry viscosity was 100 mPas.
  • the slurry was formed on a surface of an air electrode support (outside diameter: 15 mm, wall thickness: 1.5 mm, effective length: 400 mm) by a slurry coating method, and then sintered at 1400 ° C.
  • the pore size of the first layer was 5 ⁇ , the porosity was 28%, and the thickness was 20 ⁇ .
  • the material of the second layer was SSZ, and the composition was 90 mol% ZrO-10 mol% ScO.
  • the respective compositions were prepared using the respective aqueous nitrate solutions of 230 r and Sc so as to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 2 ⁇ m. 40 parts by weight of this powder are mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate ester), and an antifoaming agent (sorbitan sesquiolate). After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry.
  • a solvent ethanol
  • a binder ethyl cellulose
  • a dispersant polyoxyethylene alkyl phosphate ester
  • an antifoaming agent sorbitan sesquiolate
  • the slurry viscosity was 100 mPas. This slurry was sintered at 1400 ° C. after forming a film on the surface of the first layer by a slurry coating method.
  • the pore size of the second layer was 1.5 ⁇ m, the porosity was 14%, and the thickness was 10 ⁇ m.
  • the material of the electrolyte was YSZ, and the composition was 90 mol% ZrO-10 mol% YO.
  • Y was prepared by using each nitrate aqueous solution to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0.5 ⁇ m. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and a defoamer (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 140 mPas.
  • the prepared slurry was formed on the second layer by a slurry coating method, and sintered at 1400 ° C.
  • the thickness of the obtained electrolyte was 30 / im.
  • the portion where the interconnector was to be formed was subjected to masking, so that the film was not applied.
  • the material of the fuel-side electrode reaction layer is Ni ⁇ / SSZ, and its composition is Ni ⁇ / (ZrO) (Sc
  • the electrolyte layer prepared in (5) above is masked so that the effective area becomes 150 cm 2 , and Ni ⁇ / (Zr ⁇ ) (Sc O) (average particle diameter) is applied onto the electrolyte layer by a slurry coating method.
  • Films were formed in the order of 20/80 (0.5 ⁇ m) and 50/50 (0.5 ⁇ m). The film thickness (after sintering) was 10 ⁇ m.
  • the fuel electrode material was Ni ⁇ / YSZ and its composition was Ni ⁇ / (Zr ⁇ ) (Y O).
  • a fuel electrode slurry was formed on the fuel-side electrode reaction layer by a slurry coating method.
  • the film thickness (after sintering) was 90 x m.
  • the fuel electrode reaction layer and the fuel electrode were co-sintered at 1400 ° C.
  • composition of lanthanum chromite with a solid solution of Ca whose composition is represented by La Ca CrO
  • Nectar was prepared. After being produced by the spray pyrolysis method, it was obtained by performing a heat treatment. The average particle size of the obtained powder was 1 ⁇ m. 40 parts by weight of this powder are mixed with 100 parts by weight of solvent (ethanol) Parts, a binder (ethyl cellulose) 2 parts by weight, a dispersant (polyoxyethylene alkyl phosphate) 1 part by weight, and an antifoaming agent (sorbitan sesquiolate) 1 part by weight, and then sufficiently stirred. To prepare a slurry. The slurry viscosity was 100 mPas. An interconnector was formed by a slurry coating method and sintered at 1400 ° C. The thickness after sintering was 40 xm.
  • the material of the air-side electrode reaction layer was YSZ, and its composition and weight ratio were 90 mol% ZrO-10 mol% YO. Using the respective nitrate aqueous solutions of Zr and Y,
  • This slurry was formed into a film on the surface of the air electrode support by a slurry coating method, and then sintered at 1400 ° C. The thickness was 30 / im. Except for the above, a fuel cell was obtained in the same manner as in Example C1.
  • the air-side electrode reaction layer is a layer in which (La A) MnO and YSZ are uniformly mixed,
  • What was 50 was prepared and used. Using the aqueous solutions of the respective nitrates of La, Sr, Mn, Zr, and Y, the mixture was prepared to have the above-mentioned composition, and then coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 zm.
  • the air-side electrode reaction layer is represented by (La A) MnO and the general formula (Ce ⁇ ) (Y ⁇ )
  • the mixture was heat-treated at 1400 ° C., and the particle size was controlled to obtain a raw material powder.
  • the average particle size was 5 x m. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry.
  • the slurry viscosity was 100 mPas.
  • the slurry was formed into a film on the surface of the cathode support by a slurry coating method and then sintered at 1400 ° C. The thickness was 30 ⁇ .
  • a fuel cell was obtained in the same manner as Example C1 except for the above.
  • a fuel cell was obtained in the same manner as in Comparative Example C3, except that the electrolyte was sintered at 1500 ° C.
  • the average particle diameter of the raw material of the second layer was set to 0, and the film was formed on the surface of the first layer by the slurry coating method, and then sintered at 1350 ° C. A fuel cell was obtained.
  • the average particle diameter of the raw material of the second layer was set to 0.5 ⁇ , and a film was formed on the surface of the first layer by a slurry coating method, and then sintered at 1380 ° C in the same manner as in Example C1. A fuel cell was obtained.
  • the average particle size of the raw material of the second layer is set to 0.5 ⁇ , and the slurry coating method Then, a fuel cell was obtained in the same manner as in Example C1, except that sintering was performed at 1400 ° C.
  • Example C1 In the same manner as in Example C1, except that the average particle diameter of the raw material of the second layer was set to 2 ⁇ m, a film was formed on the surface of the first layer by a slurry coating method, and then sintered at 1430 ° C. Thus, a fuel cell was obtained.
  • Example C1 In the same manner as in Example C1, except that the average particle diameter of the raw material of the second layer was set to 5 ⁇ m, and a film was formed on the surface of the first layer by a slurry coating method, and then sintered at 1430 ° C. Thus, a fuel cell was obtained.
  • Example C1 In the same manner as in Example C1, except that the average particle diameter of the raw material of the second layer was set to 5 ⁇ m, a film was formed on the surface of the first layer by a slurry coating method, and then sintered at 1450 ° C. Thus, a fuel cell was obtained.
  • Example 5-7 to compare the gas permeability of the electrolyte layer preferably Q ⁇ 2.8X10- 9 ms- ⁇ a- In 1 preferred than a force Q ⁇ 2.8X10- 1 ⁇ 3 ms- ⁇ a- 1 Not in the range.
  • Example C14 more preferable Q ⁇ 2.8X10— “s—Pa— 1 .
  • the pore diameter dl of the air electrode and the pore diameter d2 of the first layer are considered. It can be seen that the pore diameter d3 of the second layer is preferably dl>d2> d3.
  • the porosity of the second layer is more preferably 3-40%.
  • Example C9 A fuel cell was obtained in the same manner as in Example C1, except that the thickness of the second layer was 3 ⁇ m.
  • a fuel cell was obtained in the same manner as in Example C1, except that the thickness of the second layer was set to 5 ⁇ m.
  • a fuel cell was obtained in the same manner as in Example C1, except that the thickness of the second layer was 30 xm.
  • Example C 11 A fuel cell was obtained in the same manner as in Example CI, except that the thickness of the second layer was set to 50 ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

A solid oxide fuel cell is disclosed which is excellent in output performance and durability. The solid oxide fuel cell comprises at least an electrolyte, an air electrode and a fuel electrode, and the air electrode includes a perovskite oxide containing at least manganese. A layer which is in contact with the fuel electrode is formed to contain 0.3-4 weight% of manganese in the surface facing the fuel electrode. This invention has been made basing on the finding such that, in a solid oxide fuel cell having an air electrode composed of a perovskite oxide containing manganese, the manganese content in the fuel electrode side surface of a layer which is in contact with the fuel electrode greatly affects the performance of the fuel cell, and thus an excellent fuel cell can be obtained by controlling this manganese content.

Description

明 細 書  Specification
固体酸化物形燃料電池  Solid oxide fuel cell
発明の背景  Background of the Invention
[0001] ^^月の 里  [0001] ^^ Moon Village
本発明は、固体酸化物形燃料電池に関し、さらに詳しくは出力性能及び耐久性に 優れた固体酸化物形燃料電池に関する。  The present invention relates to a solid oxide fuel cell, and more particularly, to a solid oxide fuel cell excellent in output performance and durability.
[0002] 採干  [0002] sampling
固体酸化物形燃料電池は、作動温度が高く(900 1000°C)、効率の良い燃料電 池として期待されている。出力性能及び耐久性に優れた固体酸化物形燃料電池の 実現のため、種々の提案がなされている。  Solid oxide fuel cells have high operating temperatures (900-1000 ° C) and are expected to be efficient fuel cells. Various proposals have been made to realize a solid oxide fuel cell having excellent output performance and durability.
[0003] 例えば、固体酸化物形燃料電池において、スカンジァを固溶させたジノレコユアから なる電解質の、酸素イオン導電率安定性と高温強度安定性を向上させるために、 4A 族、 5A族、 7A族および 4B族元素よりなる群から選択される少なくとも 1種の酸化物 を添加するとの提案が特開 2003-22821号公報および特開 2003-22822号公報 になされている。  [0003] For example, in a solid oxide fuel cell, in order to improve oxygen ion conductivity stability and high-temperature strength stability of an electrolyte composed of dinorecoure in which scandia is dissolved, groups 4A, 5A, and 7A are used. Japanese Patent Application Laid-Open Nos. 2003-22821 and 2003-22822 propose to add at least one oxide selected from the group consisting of Group 4B and Group 4B elements.
[0004] し力 ながら、これら公報には、マンガンを含んだぺロブスカイト酸化物からなる空 気極との組み合わせの開示はなぐまたマンガンは 7A属の酸化物 Mn〇として添加  [0004] However, these publications do not disclose a combination with an air electrode composed of a lobskite oxide containing manganese, and manganese is added as an oxide Mn of the 7A group.
2 されるとされてレ、るが、その添加量は明確ではなレ、。  2 It is said that it will be added, but the amount added is not clear.
[0005] また、特開 2003-187811号公報には、空気極と電解質で生じる酸素ガスと電子 が反応し、酸素イオンを生成させる (1)式の反応を効率良く行わせるために空気極と 電解質の間に電子導電性を有するぺロブスカイト型酸化物と高融点誘電体酸化物 の混合材料を設けることが提案されている。ここで使用されるぺロブスカイト型酸化物 の代表として、 Srや Caを固溶させたランタンマンガナイトがあり、その組成としては(L a,Sr) MnO , (La, Ca) MnO 、 (La, Sr) (Mn Fe ) 0などが挙げられ [0005] Further, Japanese Patent Application Laid-Open No. 2003-187811 discloses that an oxygen gas generated in an air electrode and an electrolyte reacts with an electron to generate an oxygen ion. It has been proposed to provide a mixed material of a perovskite oxide having electronic conductivity and a high-melting dielectric oxide between electrolytes. As a representative of the perovskite-type oxide used here, there is lanthanum manganite in which Sr or Ca is dissolved, and its composition is (La, Sr) MnO, (La, Ca) MnO, (La, Sr) (Mn Fe) 0
1 δ 3 1 δ 3 1 δ y 1— y 3 る。また、高融点誘電体酸化物の代表として Sm Oや Gd Oを固溶させたセリウム含 1 δ 3 1 δ 3 1 δ y 1—y 3 In addition, cerium containing SmO or GdO as a solid solution
2 3 2 3  2 3 2 3
有酸化物が提案されている。  Oxides have been proposed.
[0006] また、特開平 8—41674号公幸艮 (こ ίま、 (La Sr ) Mn〇 (但し、 0. l≤xl≤0. 4)  [0006] In addition, Japanese Patent Application Laid-Open No. 8-41674 (Koyama, (La Sr) Mn〇 (However, 0.1 l≤xl≤0.4)
1-xl xl 3  1-xl xl 3
で表されるランタンマンガナイトにイットリアを固溶させたジルコユアを 40 60重量部 混合させた材料を固体酸化物形燃料電池の空気極に使用することで空気極と電解 質の間の電極反応を向上させるだけでなく耐久性にも優れるとした提案がなされてい る。 40 to 60 parts by weight of zirconia obtained by dissolving yttria in lanthanum manganite represented by It has been proposed that the use of the mixed material for the air electrode of a solid oxide fuel cell not only improves the electrode reaction between the air electrode and the electrolyte but also excels in durability.
[0007] 特開平 8— 180886号公報には、空気極と電解質との間にイットリアを固溶させたジ ルコユアの薄層を設けて、空気極と電解質の接触抵抗を減らすことができ、出力性能 を向上させることができるという開示がなされている。ここで使用されている空気極材 料は Srを固溶させたランタンマンガナイトである。  [0007] JP-A-8-180886 discloses that a thin layer of zirconia in which yttria is dissolved as a solid solution is provided between an air electrode and an electrolyte to reduce the contact resistance between the air electrode and the electrolyte. It is disclosed that performance can be improved. The cathode material used here is lanthanum manganite in which Sr is dissolved.
[0008] さらに、特開 2000—44245号公報には、空気極と電解質の間に Caおよび Zまた は Srを固溶させたランタンマンガナイトとイットリアを固溶させたジルコユアの混合粉 末力 なる層を設け、空気極と電解質の接触抵抗を減らすことができ、出力性能を向 上させることができるとする提案がなされている。  [0008] Further, Japanese Patent Application Laid-Open No. 2000-44245 discloses a mixed powder of lanthanum manganite in which Ca and Z or Sr are formed as a solid solution between an air electrode and an electrolyte and zirconia in which yttria is formed as a solid solution. It has been proposed that a layer be provided to reduce the contact resistance between the air electrode and the electrolyte, thereby improving the output performance.
[0009] また、特開 2003—173801号公報には、固体酸化物形燃料電池において、電解 質と燃料極の間での反応を防止するために、気孔率が 25%以下の Ce Ln〇 (  [0009] Also, Japanese Patent Application Laid-Open No. 2003-173801 discloses that in a solid oxide fuel cell, in order to prevent a reaction between an electrolyte and a fuel electrode, Ce Ln〇 (porosity is 25% or less) is used.
1-x x 2- δ 但し、 Ln :希土類元素、 0. 05≤x≤0. 3)で表されるセリウム含有酸化物からなる層 を設けることが提案されている。  1-x x 2-δ However, it has been proposed to provide a layer made of a cerium-containing oxide represented by Ln: a rare earth element and 0.05 ≦ x ≦ 0.3).
[0010] し力しながら、これら従来技術にあっても、本発明者らの知る限りでは、電解質を介 してのマンガンの拡散を制御するとの開示も示唆もなされていない。  [0010] However, even in these prior arts, to the knowledge of the present inventors, there is no disclosure or suggestion of controlling the diffusion of manganese through an electrolyte.
[0011] 一方、特開 2002-134132号公報には、マンガンを含むぺロブスカイト型酸化物か らなる空気極とジノレコニァからなる電解質を共焼結させた固体酸化物形燃料電池に おいて、空気極と電解質との間にイットリア、ジノレコニァおよびセリアを含有する酸化 物層を設けることによって燃料極へのマンガン拡散を抑制させるという提案がある。し かし、イットリア、ジルコユアおよびセリアを含有する酸化物は焼結性が低ぐガス透過 性が無い電解質を形成させるのに 1500°C程度の焼結温度が必要であった。このため 、電解質を介して燃料極へ拡散するマンガンの量を制御することは難しいと思われる 発明の概要  On the other hand, Japanese Patent Application Laid-Open No. 2002-134132 discloses a solid oxide fuel cell in which an air electrode made of a perovskite-type oxide containing manganese and an electrolyte made of dinoreconia are co-sintered. There is a proposal to suppress the diffusion of manganese into the fuel electrode by providing an oxide layer containing yttria, dinoreconia and ceria between the electrode and the electrolyte. However, oxides containing yttria, zirconia and ceria required a sintering temperature of around 1500 ° C to form an electrolyte with low sinterability and no gas permeability. For this reason, it seems difficult to control the amount of manganese that diffuses through the electrolyte to the fuel electrode.
[0012] 本発明者らは、今般、少なくともマンガンを含むぺロブスカイト型酸化物からなる空 気極を有する固体酸化物形燃料電池において、燃料極が接する層の、燃料極側の 表面におけるマンガンの含有量が燃料電池の性能に大きな影響を与え、このマンガ ンの含有量を制御することで優れた燃料電池が得られるとの知見を得た。本発明は 力かる知見に基づくものである。 [0012] The present inventors have recently found that in a solid oxide fuel cell having an air electrode made of a perovskite oxide containing at least manganese, a layer in contact with the fuel electrode is located on the fuel electrode side. It has been found that the manganese content on the surface has a significant effect on the performance of the fuel cell, and that by controlling the manganese content, an excellent fuel cell can be obtained. The present invention is based on strong knowledge.
[0013] よって、本発明は、出力性能、耐久性に優れた固体酸化物形燃料電池の提供をそ の目的としている。  Accordingly, an object of the present invention is to provide a solid oxide fuel cell having excellent output performance and durability.
[0014] そして、本発明による燃料電池は、電解質と、空気極と、燃料極とを少なくとも備え てなる固体酸化物形燃料電池であって、前記空気極が、少なくともマンガンを含むぺ 口ブスカイト型酸化物を含んでなり、前記燃料極に接する層の、燃料極側の表面に おけるマンガンの含有量が 0. 3 4重量%であることを特徴とするものである。  [0014] The fuel cell according to the present invention is a solid oxide fuel cell including at least an electrolyte, an air electrode, and a fuel electrode, wherein the air electrode includes at least manganese. The layer containing an oxide, wherein the manganese content in the surface of the layer in contact with the fuel electrode on the side of the fuel electrode is 0.34% by weight.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]は、円筒タイプの固体酸化物形燃料電池の断面を示す図である。  FIG. 1 is a diagram showing a cross section of a cylindrical solid oxide fuel cell.
[図 2]は、本発明による固体酸化物形燃料電池の基本構成を表す拡大断面図である 。本発明による固体酸化物形燃料電池は、空気極支持体 1と、電解質 3と、燃料極 4 とを備えた基本構成を有する。この図にあっては、空気極支持体 1と、電解質 3との間 に、空気極の一態様としての空気側電極反応層 5が設けられ、また電解質 3と、燃料 極 4との間に多孔質層 6が設けられてなる。空気支持体 1の内部の矢印の方向に空 気 (酸素)を流し、燃料極 4に沿った矢印の方向に燃料ガス (水素、一酸化炭素、メタ ン等)を流し、それぞれ空気極および燃料極に接触させる。  FIG. 2 is an enlarged cross-sectional view illustrating a basic configuration of a solid oxide fuel cell according to the present invention. The solid oxide fuel cell according to the present invention has a basic configuration including an air electrode support 1, an electrolyte 3, and an anode 4. In this figure, an air-side electrode reaction layer 5 as an embodiment of the air electrode is provided between the air electrode support 1 and the electrolyte 3, and between the electrolyte 3 and the fuel electrode 4. A porous layer 6 is provided. Air (oxygen) flows in the direction of the arrow inside the air support 1, and fuel gas (hydrogen, carbon monoxide, methane, etc.) flows in the direction of the arrow along the anode 4, and the air electrode and the fuel respectively flow. Make contact with poles.
[図 3]は、図 2の構造において、多孔質層 6が無ぐ電解質 3と、燃料極 4との間に燃料 側電極反応層 4aが設けられた固体酸化物形燃料電池の拡大断面図である。  [FIG. 3] is an enlarged cross-sectional view of a solid oxide fuel cell in which the fuel-side electrode reaction layer 4a is provided between the electrolyte 3 without the porous layer 6 and the fuel electrode 4 in the structure of FIG. It is.
[図 4]は、図 3の構造において、空気側電極反応層 5を複数層(5a、 5b)により構成し た固体酸化物形燃料電池の拡大図である。  FIG. 4 is an enlarged view of a solid oxide fuel cell in which the air-side electrode reaction layer 5 has a plurality of layers (5a, 5b) in the structure of FIG.
[図 5]は、図 3の構造に加えて、燃料側電極反応層 4aと、電解質 3との間に、多孔質 層 6を設けた固体酸化物形燃料電池の拡大図である。  FIG. 5 is an enlarged view of a solid oxide fuel cell in which a porous layer 6 is provided between a fuel-side electrode reaction layer 4a and an electrolyte 3 in addition to the structure of FIG.
[図 6]は、図 5の構成において、空気側電極反応層 5を複数層(5a、 5b)により構成し た固体酸化物形燃料電池の拡大図である。  FIG. 6 is an enlarged view of a solid oxide fuel cell in which the air-side electrode reaction layer 5 has a plurality of layers (5a, 5b) in the configuration of FIG.
[図 7]は、電極特性評価のための反応過電圧を測定するための電池構成を示す図で める。 発明の具体的説明 FIG. 7 is a diagram showing a battery configuration for measuring a reaction overvoltage for evaluating electrode characteristics. Detailed description of the invention
[0016] 目{本 )开'燃 池,の ネ冓  [0016] Eyes
本発明による固体酸化物形燃料電池の構造は、以下に述べる本発明の構成およ び組成を満足する限り特に限定されなレ、。例えば、平板型、円筒型いずれであって も良い。本発明における固体酸化物形燃料電池はマイクロチューブのタイプ (外径 The structure of the solid oxide fuel cell according to the present invention is not particularly limited as long as the structure and composition of the present invention described below are satisfied. For example, it may be either a flat plate type or a cylindrical type. The solid oxide fuel cell of the present invention is of the microtube type (outer diameter
10mm以下より好ましくは 5mm以下)にも適応可能である。例えば円筒型に構成した 場合について述べれば以下のとおりである。すなわち、図 1は、円筒タイプの固体酸 化物形燃料電池の断面を示す図である。この固体酸化物形燃料電池は、円筒状の 空気極支持体 1上に、帯状のインターコネクター 2、電解質 3、さらに電解質 3の上に インターコネクター 2と接触しないように燃料極 4が設けられて構成されている。空気 極支持体の内側に空気(酸素)を流し、外側に燃料ガスを流すと、酸素が空気極と電 解質の界面で、以下の反応のとおり、酸素イオンが生じる。 10 mm or less, more preferably 5 mm or less). For example, the case of a cylindrical configuration is as follows. That is, FIG. 1 is a diagram showing a cross section of a cylindrical solid oxide fuel cell. In this solid oxide fuel cell, a strip-shaped interconnector 2, an electrolyte 3, and a fuel electrode 4 are provided on a cylindrical air electrode support 1 so as not to contact the interconnector 2 on the electrolyte 3. It is configured. When air (oxygen) flows inside the cathode support and fuel gas flows outside, oxygen ions are generated at the interface between the cathode and the electrolyte as shown below.
1/20 + 2e—→〇2 (1) 1/20 + 2e— → 〇 2 (1)
2  2
この酸素イオンが電解質を通って燃料極に達する。そして、電解質近傍の燃料極 において、燃料ガスと酸素イオンが反応して水および二酸化炭素になる。これらの反 応は以下の式で示される。  The oxygen ions reach the fuel electrode through the electrolyte. Then, at the fuel electrode near the electrolyte, the fuel gas and oxygen ions react to form water and carbon dioxide. These reactions are represented by the following equations.
H + 0 →H 0 + 2e (2)  H + 0 → H 0 + 2e (2)
2 2  twenty two
CO + O2→CO + 2e— (3) CO + O 2 → CO + 2e— (3)
2  2
燃料極 4とインターコネクター 2を接続することによって外部へ電気を取り出すことが できる。  By connecting the fuel electrode 4 and the interconnector 2, electricity can be extracted to the outside.
[0017] 図 2は、本発明による固体酸化物形燃料電池の基本構成を表す拡大断面図である 。本発明による固体酸化物形燃料電池は、空気極支持体 1と、電解質 3と、燃料極 4 とを備えた基本構成を有する。図 2にあっては、空気極支持体 1と、電解質 3との間に 、空気極の一態様としての空気側電極反応層 5が設けられ、また電解質 3と、燃料極 4との間に多孔質層 6が設けられてなる。これら空気側電極反応層 5と、多孔質層 6は 、本発明にあっては必須ではないが、設けられてなることが好ましい。  FIG. 2 is an enlarged cross-sectional view illustrating a basic configuration of a solid oxide fuel cell according to the present invention. The solid oxide fuel cell according to the present invention has a basic configuration including an air electrode support 1, an electrolyte 3, and an anode 4. In FIG. 2, an air-side electrode reaction layer 5 as an embodiment of an air electrode is provided between the air electrode support 1 and the electrolyte 3, and between the electrolyte 3 and the fuel electrode 4. A porous layer 6 is provided. The air-side electrode reaction layer 5 and the porous layer 6 are not essential in the present invention, but are preferably provided.
[0018] また、本発明の別の好ましい態様によれば、図 3に示されるように、本発明による固 体酸化物形燃料電池は、燃料極の一態様としての燃料側電極反応層 4aが設けられ ていてもよい。 Further, according to another preferred embodiment of the present invention, as shown in FIG. 3, in the solid oxide fuel cell according to the present invention, the fuel-side electrode reaction layer 4a as one embodiment of the fuel electrode has Provided May be.
[0019] また、本発明の別の好ましい態様によれば、図 4に示されるように、本発明による固 体酸化物形燃料電池は、空気側電極反応層 5を複数層(5a、 5b)により構成されて いてもよい。  According to another preferred embodiment of the present invention, as shown in FIG. 4, in the solid oxide fuel cell according to the present invention, the air-side electrode reaction layer 5 has a plurality of layers (5a, 5b). May be constituted by
[0020] また、本発明の別の態様によれば、以上の構成要素を組み合わせた態様が提供さ れる。例えば、図 5に示されるように、燃料極 4 (燃料側電極反応層 4aを含む概念で ある)と、電解質 3との間に、多孔質層 6を設けた固体酸化物形燃料電池が提供され る。また、別の態様によれば、図 6に示される構成において、空気側電極反応層を複 数層により構成した固体酸化物形燃料電池が提供される。  Further, according to another aspect of the present invention, there is provided an aspect in which the above components are combined. For example, as shown in FIG. 5, a solid oxide fuel cell provided with a porous layer 6 between a fuel electrode 4 (a concept including a fuel-side electrode reaction layer 4a) and an electrolyte 3 is provided. Is performed. Further, according to another aspect, there is provided a solid oxide fuel cell in which the air-side electrode reaction layer has a plurality of layers in the configuration shown in FIG.
[0021] 本発明にあっては、燃料極に接する層の、燃料極側の表面におけるマンガンの含 有量が 0. 3 4重量%であることを特徴とする。  The present invention is characterized in that the content of manganese on the surface of the layer in contact with the fuel electrode on the fuel electrode side is 0.334% by weight.
[0022] 従って、燃料極に接する形で電解質が設けられてなる場合には、この電解質の燃 料極側の表面におけるマンガンの含有量が 0. 3— 4重量%である。本発明の好まし い態様によれば、電解質の燃料極側の表面におけるマンガンの含有量は、 0. 6— 3 . 5重量%が好ましぐより好ましくは 0. 9— 3重量%である。また、この態様において 、電解質の空気極側の表面におけるマンガンの含有量は 10重量%未満程度が好ま しぐより好ましくは 6重量%未満である。また、本発明の更に好ましい態様によれば、 電解質の空気極側の表面におけるマンガンの含有量が、電解質の燃料極側の表面 におけるマンガン成分の含有量よりも大であることが好ましい。  Therefore, when the electrolyte is provided in contact with the fuel electrode, the content of manganese on the surface of the electrolyte on the fuel electrode side is 0.3 to 4% by weight. According to a preferred embodiment of the present invention, the manganese content on the anode side of the electrolyte is 0.6-3.5% by weight, more preferably 0.9-3% by weight. . In this embodiment, the manganese content on the air electrode side surface of the electrolyte is preferably less than about 10% by weight, more preferably less than 6% by weight. According to a further preferred aspect of the present invention, it is preferable that the content of manganese on the surface of the electrolyte on the air electrode side is larger than the content of the manganese component on the surface of the electrolyte on the fuel electrode side.
[0023] また、燃料極と、電解質との間に多孔質層が設けられてなる場合には、この多孔質 層の燃料極側の表面におけるマンガンの含有量が 0. 3— 4重量%である。本発明の 好ましい態様によれば、多孔質層の燃料極側の表面におけるマンガンの含有量は、 0. 6-3. 5重量%が好ましぐより好ましくは 0. 9 3重量%である。また、本発明の 更に好ましい態様によれば、電解質の空気極側の表面におけるマンガンの含有量が 、多孔質層の燃料極側の表面におけるマンガンの含有量よりも大であることが好まし レ、。  When a porous layer is provided between the fuel electrode and the electrolyte, the manganese content on the surface of the porous layer on the fuel electrode side is 0.3 to 4% by weight. is there. According to a preferred embodiment of the present invention, the manganese content on the surface of the porous layer on the fuel electrode side is preferably 0.6-3.5% by weight, more preferably 0.93% by weight. Further, according to a further preferred aspect of the present invention, it is preferable that the manganese content on the air electrode side surface of the electrolyte is larger than the manganese content on the fuel electrode side surface of the porous layer. ,.
[0024] なお、本発明において、「燃料極に接する層の、燃料極側の表面におけるマンガン の含有量」における、「層の表面のマンガン含有量」とは、燃料極表面から深さ 3 μ m 以内の燃料極に接する層におけるマンガンの含有量を意味する。また、その測定は 、燃料極側からの分析、断面を形成し、その断面方向からの分析のいずれであって あよい。 In the present invention, “manganese content on the surface of the layer” in “content of manganese on the surface of the layer in contact with the fuel electrode on the side of the fuel electrode” refers to a depth of 3 μm from the surface of the fuel electrode. m Means the manganese content in the layer in contact with the fuel electrode within. In addition, the measurement may be either analysis from the fuel electrode side, formation of a cross section, and analysis from the cross section direction.
[0025] 本発明においては、上記の通り、燃料極に接する層において、燃料極側の表面に おけるマンガンの含有量を制御する。このマンガンは、空気極を構成するマンガンを 含むぺロブスカイト型酸化物から、その製造の際の焼結時に拡散してくるものと考え られる力 この拡散量を制御することで、出力特性に優れ、またサーマルサイクルを 経ても性能を維持する、すなわち耐久性に優れた固体酸化物形燃料電池が実現で きた。このマンガン量を制御することで、良好な固体酸化物形燃料電池が実現できる 理由は定かではないが、それによつて本発明が限定されないことを条件にその理由 を述べれば次の通りである。すなわち、燃料極と、それに接する層の界面においてマ ンガン量が上記範囲に置かれると、十分な焼結により二つの層の密着性が大きく向 上し、また電解質が良好なイオン伝導性を確保して、その性状の向上に寄与するも のと考えられる。  [0025] In the present invention, as described above, the manganese content on the surface on the fuel electrode side is controlled in the layer in contact with the fuel electrode. This manganese is considered to be diffused from perovskite oxide containing manganese constituting the air electrode during sintering during its production. By controlling the amount of this diffusion, it has excellent output characteristics. A solid oxide fuel cell that maintains its performance even after thermal cycling, that is, has excellent durability, has been realized. The reason why a good solid oxide fuel cell can be realized by controlling the amount of manganese is not clear, but the reason is as follows, provided that the present invention is not limited thereby. That is, if the amount of manganese is within the above range at the interface between the fuel electrode and the layer in contact with it, the adhesion between the two layers is greatly improved by sufficient sintering, and the electrolyte ensures good ionic conductivity. It is thought that this contributes to the improvement of its properties.
[0026] 本発明において、燃料極に接する層の、燃料極側の表面におけるマンガン量の制 御は、電池の組成および物理的構成、ならびに製造条件を制御することで実現可能 である。以下、マンガン量の制御のための具体的手段を含めて、本発明による固体 酸化物形燃料電池を構成する要素について、詳細に説明する。  In the present invention, control of the amount of manganese on the fuel electrode side surface of the layer in contact with the fuel electrode can be realized by controlling the composition and physical configuration of the battery and the manufacturing conditions. Hereinafter, the elements constituting the solid oxide fuel cell according to the present invention, including the specific means for controlling the amount of manganese, will be described in detail.
[0027] 電解晳  [0027] Electrolysis
本発明において、電解質は、高温で酸素イオン (O2—)の高い伝導性を示し、かつガ ス透過性の無い層であり、スカンジァおよび/またはイットリアを固溶させたジルコ二 ァからなる層が好ましく用いられる。本明細書において、スカンジァを固溶させたジノレ コニァを「SSZ」と、スカンジァおよびイットリアを固溶させたジルコユアを「ScYSZ」ま たは「SSZ/YSZ」と、またイットリアを固溶させたジルコユアを「YSZ」と呼ぶ。 In the present invention, the electrolyte is a layer showing high conductivity of oxygen ions (O 2 —) at high temperature and having no gas permeability, and a layer made of zirconium in which scandia and / or yttria are dissolved. Is preferably used. In the present specification, the ginoreconia in which scandia is dissolved is referred to as `` SSZ '', the zirconia in which scandia and yttria are dissolved is referred to as `` ScYSZ '' or `` SSZ / YSZ '', and the zirconia in which yttria is dissolved is referred to. Is called "YSZ".
[0028] 本発明の好ましい態様によれば、 SSZにおけるスカンジァの固溶量、 ScYSZにお けるスカンジァおよびイットリアの合計固溶量、 YSZにおけるイットリアの固溶量は、 3 一 12mol%程度が高い酸素イオン導電性を実現できることから好ましぐより好ましい 下限は 8mol%程度である。また、本発明の好ましい態様によれば、酸素イオン導電 性を向上させるために、 Ce〇、 Sm〇、 Gd〇、 Yb O、 Gd〇、 Er〇、 Nd O、 According to a preferred embodiment of the present invention, the solid solution amount of scandia in SSZ, the total solid solution amount of scandia and yttria in ScYSZ, and the solid solution amount of yttria in YSZ are as high as about 312 mol%. A more preferable lower limit is preferably about 8 mol% because ionic conductivity can be realized. Further, according to a preferred embodiment of the present invention, oxygen ion conduction Ce〇, Sm〇, Gd〇, Yb O, Gd〇, Er〇, Nd O,
2 2 3 2 3 2 3 2 3 2 3 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3
Eu〇、 Ey〇、 Tm O 、 Pr O、 La Oおよび Bi O力 なる群力 選択される少な Eu〇, Ey〇, Tm O, Pr O, La O and Bi O force
2 3 2 3 2 3 2 3 2 3 2 3  2 3 2 3 2 3 2 3 2 3 2 3
くとも一種の酸化物を合計 5mol%以下程度固溶させてもよい。さらに、その低温で の焼結を可能にするために、 Bi O 、 Al O、 SiOなどを添加してもよい。  At least one kind of oxide may be solid-dissolved in a total amount of about 5 mol% or less. Further, in order to enable sintering at a low temperature, Bi 2 O 3, Al 2 O 3, SiO 2 or the like may be added.
2 3 2 3 2  2 3 2 3 2
[0029] また、本発明の好ましい態様によれば、電解質が、燃料極側の膜表面において、そ の結晶粒径の 3%径が 3 a m以上で、かつ 97%径が 20 μ m以下である粒度分布を 有するものであることが好ましい。この範囲にあることで、良好な焼結性によりガス透 過性が無ぐまた燃料極との良好な密着性を有する電解質が実現できる。  [0029] Further, according to a preferred embodiment of the present invention, when the electrolyte has a 3% diameter of 3 am or more and a 97% diameter of 20 µm or less of the crystal grain size on the fuel electrode side membrane surface, It preferably has a certain particle size distribution. By being in this range, an electrolyte having no gas permeability due to good sinterability and having good adhesion to the fuel electrode can be realized.
[0030] ここで、燃料極側の電解質表面の結晶粒径とは、ブラ二メトリック法で求められた粒 径分布を意味する。すなわち、まず、 SEMで電解質表面の写真を撮り、この写真上 で面積(S)の概知の円を描き、円内の粒子数 nと円周に力、かった粒子数 nから次式 によって単位面積あたりの粒子数 N を求める。  Here, the crystal grain size of the electrolyte surface on the fuel electrode side means a grain size distribution obtained by the Branimetric method. That is, first, a picture of the surface of the electrolyte is taken by SEM, and a circle with an approximate area (S) is drawn on this picture, and the number of particles in the circle, the force on the circumference, and the number of particles n Calculate the number of particles N per unit area.
G  G
N = (n + l/2n) / (S/m2) N = (n + l / 2n) / (S / m 2 )
G c i  G c i
ここで、 mは写真の倍率である。 1/N 力 SI個の粒子の占める面積であるから、結  Here, m is the magnification of the photograph. 1 / N force This is the area occupied by SI particles.
G  G
晶粒径の粒径が円相当径の場合は、 2/^( π Ν )、正方形の場合は Νで得られ  If the grain size is a circle-equivalent diameter, it is obtained as 2 / ^ (πΝ), and if it is a square, it is obtained as Ν.
G G  G G
る。  The
[0031] さらに、本発明において、電解質の結晶粒径の 3%径とは、ブラ二メトリック法で 100 個の結晶粒径を測定し、粒径の小さい順番から並べた際の 3番目に相当する粒径を 指し、 97%径とは 97番目に相当する粒径を指す。  Further, in the present invention, the 3% diameter of the crystal grain diameter of the electrolyte corresponds to the third diameter when 100 crystal grain diameters are measured by the Branimetric method and arranged in ascending order of the particle diameter. The 97% diameter refers to the 97th particle diameter.
[0032] 本発明において、電解質はガス透過性が無いとは、具体的には電解質の片面とそ の反対側面の間に圧力差を設け、その間を透過する Nガスのガス透過量で評価す  [0032] In the present invention, the fact that the electrolyte does not have gas permeability is specifically evaluated by providing a pressure difference between one side of the electrolyte and the opposite side thereof and measuring the gas permeation amount of N gas passing through the gap.
2  2
ること力 Sできる。本発明の好ましい態様によれば、電解質はガス透過量 Qが Q≤ 2. 8 X 10— 9ms— ^a— 1であることが好ましぐより好ましくは Q≤2. 8 X 10— ms— ^a— 1であ る。 S power According to a preferred embodiment of the present invention, the electrolyte is a gas permeation amount Q is Q≤ 2. 8 X 10- 9 ms- ^ more preferably it is preferred instrument is a- 1 Q≤2. 8 X 10- ms — ^ A— 1
[0033] 本発明において電解質の厚さは適宜決定されてよレ、が、 10 111ー100 111程度カ [0033] In the present invention, the thickness of the electrolyte may be appropriately determined.
、耐久性等の観点からこのましい。 From the viewpoint of durability and the like.
[0034] 本発明による電解質は、スカンジァおよび/またはイットリアを固溶させたジルコ二 ァの原料粉末力、ら調製されてよい。ガス透過性が無ぐ適正な結晶粒径を形成できる との観点から、 BET値が 0. 5— 20m2g— 1で、粒度分布として 3%径が 0. 1 /i m以上、 97%径が 2 μ m以下で、および平均粒子径が 0. 3— 1 μ m程度に制御した原料粉 末がより好ましい。なお、本発明において、 BET値とは好ましくは島津製作所製の流 動式比表面積測定装置フローソープ Π2300形を用いて測定して得られた値である。 また、粒度分布とは好ましくは島津製作所製のレーザ回折式粒度分布測定装置 SA LD-2000を用いて測定して得られた値である。さらに、平均粒子径とは好ましくは 島津製作所製のレーザ回折式粒度分布測定装置 SALD—2000を用いて測定して 得られるメディアン径(50%径)の値である。 [0034] The electrolyte according to the present invention may be prepared from raw material powder of zirconium in which scandia and / or yttria are dissolved. Able to form appropriate crystal grain size without gas permeability In view of this, the BET value is 0.5-20 m 2 g- 1 , the 3% size is 0.1 / im or more, the 97% size is 2 μm or less, and the average particle size is 0. Raw material powder controlled to about 3-1 μm is more preferable. In the present invention, the BET value is preferably a value obtained by measurement using a fluid type specific surface area measuring apparatus Flow Soap Model 2300 manufactured by Shimadzu Corporation. The particle size distribution is preferably a value obtained by measurement using a laser diffraction type particle size distribution analyzer SA LD-2000 manufactured by Shimadzu Corporation. Further, the average particle diameter is preferably a value of a median diameter (50% diameter) obtained by using a laser diffraction particle size distribution analyzer SALD-2000 manufactured by Shimadzu Corporation.
[0035] 電解質の作製法は特に限定されないが、量産性に優れ、低コストであるという観点 力、らスラリーコート法、スクリーン印刷法、シート接着法が好ましい。  [0035] The method for producing the electrolyte is not particularly limited, but a viewpoint of excellent mass productivity and low cost, a slurry coating method, a screen printing method, and a sheet bonding method are preferable.
[0036] また、電解質の原料の作製法は、イットリアおよび/またはスカンジァの固溶を均一 にできる方法であれば良く特に限定されないが、共沈法が一般的であり、好ましい。  [0036] The method for producing the raw material for the electrolyte is not particularly limited as long as it can uniformly dissolve the yttria and / or scandia, and the coprecipitation method is generally preferable.
[0037] 本発明の別の好ましい態様によれば、電解質は少なくとも二層から構成され、空気 側電極反応層側にイットリアを固溶させたジノレコニァ (YSZ)からなる層を、そして燃 料極側にスカンジァを固溶させたジルコニァ(SSZ)力 なる層が設けられてなるか、 その逆であってもよい。  [0037] According to another preferred embodiment of the present invention, the electrolyte is composed of at least two layers, a layer made of dinoreconia (YSZ) in which yttria is dissolved as a solid on the air-side electrode reaction layer side, and a fuel electrode side. A zirconia (SSZ) force layer in which scandia is dissolved as a solid solution may be provided, or vice versa.
[0038] さらに、本発明の別の好ましい態様によれば、電解質は少なくとも三層力 構成さ れ、 SSZ力らなる層、 YSZからなる層、そして SSZからなる層の順に積層されてなるこ とができる。  [0038] Further, according to another preferred embodiment of the present invention, the electrolyte has at least a three-layer structure, and is formed by sequentially laminating a layer made of SSZ, a layer made of YSZ, and a layer made of SSZ. Can be.
[0039] さらに、本発明の別の好ましい態様によれば、電解質は SSZ/YSZの構成比を変 えたものであっても良い。例えば、電解質の空気極側を SSZ/YSZ = 3/1とし、燃 料極側を SSZ/YSZ= l/3とすることができる。また、別の例によれば、空気極側 力、ら燃料極側に向かって SSZZYSZ = 3Zl、 SSZ/YSZ= l/3、 SSZ/YSZ = 3/1と変化させてもよい。なおここで、 SSZ/YSZ = 3/1とは、ジルコユア中に固溶 Further, according to another preferred embodiment of the present invention, the electrolyte may have a different composition ratio of SSZ / YSZ. For example, the air electrode side of the electrolyte can be set to SSZ / YSZ = 3/1, and the fuel electrode side can be set to SSZ / YSZ = l / 3. Further, according to another example, SSZZYSZ = 3Zl, SSZ / YSZ = 1/3, and SSZ / YSZ = 3/1 may be changed toward the cathode side and the anode side. Here, SSZ / YSZ = 3/1 means solid solution in zircon
、Πァの^ /レ 1へ例えば 88molZrO— 9Sc O— 3Y Ο For example, 88molZrO—9Sc O—3Y へ
2 2 3 2 3 などがこれに該当する。  2 2 3 2 3 etc. correspond to this.
[0040] 空気極  [0040] air electrode
本発明において、空気極は、空気雰囲気下において、電子導電性が高ぐ酸素ガ ス透過性が高ぐ酸素イオンを効率よく生成するものであることが好ましい。本発明に おいて、空気極は、電池の強度を保持するとともに空気極としての機能を有する空気 極支持体として構成されてよレ、。 In the present invention, the air electrode is an oxygen gas having a high electron conductivity in an air atmosphere. It is preferable to efficiently generate oxygen ions having high permeability. In the present invention, the air electrode is configured as an air electrode support having the function of the air electrode while maintaining the strength of the battery.
[0041] 本発明において空気極は、少なくともマンガンを含むぺロブスカイト型酸化物を含 んでなるものである。本発明の好ましい態様によれば、この空気極は、(La A ) M In the present invention, the air electrode contains a perovskite oxide containing at least manganese. According to a preferred embodiment of the present invention, the cathode is (La A) M
1— x x y n〇 (ここで、 A〖ま Caまた〖ま Srを表し、 x〖ま 0. 15≤x≤0. 3を、 y〖ま 0. 97≤y≤lを満 1— x x y n〇 (where A 〖Ca and Sr represent the x 〖0.15≤x≤0.3 and the y 〖0.97≤y≤l
3 Three
足するものである)で表されるランタンマンガナイトである。  Lantern manga knight.
[0042] 本発明の好ましい態様によれば、空気極または空気極支持体は、マンガンおよび ニッケルを含むぺロブスカイト型酸化物と、酸素イオン導電性を有する酸化物とを均 一に混合した混合導電性セラミックス材料からなる構成とすることが出来る。その好ま しい例としては、例えば、(La A ) (Mn Ni ) O (ここで、 Aは Caまたは Srを表し  According to a preferred embodiment of the present invention, the air electrode or the air electrode support is made of a mixed conductive material in which a perovskite oxide containing manganese and nickel and an oxide having oxygen ion conductivity are uniformly mixed. It can be configured to be made of a conductive ceramic material. Preferable examples are, for example, (La A) (Mn Ni) O (where A represents Ca or Sr
1— x x y 1— z z 3  1— x x y 1— z z 3
、 0. 15≤x≤0. 3、 0. 97≤y≤l , 0. 02≤z≤0. 10を満足する)で表されるランタ ンマンガナイトと、 SSZとの混合物が挙げられる。ここで、マンガンとニッケルを含むぺ 口ブスカイト型酸化物の割合は、 30— 70重量%が好ましい。また、空気極は、酸素 ガス透過性の観点から適当な細孔径および空隙率を有し、細孔径としては 0. 5 /i m 以上、空隙率としては 5%以上が好ましい。さらに、電解質へのマンガンの拡散を抑 制する効果が高い組成であることが耐久性能向上の観点からより好ましい。  Satisfies 0.15≤x≤0.3, 0.97≤y≤l, 0.02≤z≤0.10.) And a mixture of SSZ with lanthanum manganite. Here, the proportion of the open bouskite-type oxide containing manganese and nickel is preferably 30 to 70% by weight. The air electrode has an appropriate pore size and porosity from the viewpoint of oxygen gas permeability, and preferably has a pore size of 0.5 / im or more and a porosity of 5% or more. Further, a composition having a high effect of suppressing the diffusion of manganese into the electrolyte is more preferable from the viewpoint of improving the durability performance.
[0043] 本発明の好ましい態様によれば、マンガンとニッケルを含むぺロブスカイト型酸化 物の組成としては、(Ln A ) (Mn Ni ) O (ここで、 Lnは Sc、 Y、 La、 Ce、 Pr、 N According to a preferred embodiment of the present invention, the composition of the perovskite-type oxide containing manganese and nickel is (Ln A) (Mn Ni) O (where Ln is Sc, Y, La, Ce, Pr, N
1— x x y 1— z z 3  1— x x y 1— z z 3
d、 Pm、 Sm、 Eu、 Gd、丁 b、 Dy、 Ho, Er、 Tm、 Yb、および: Lu力らなる群力ら選 れる 1種または 2種以上を表し、 Αは Caまたは Srを表し、 0· 15≤x≤0. 3、 0. 97≤y ≤1、 0. 02≤z≤0. 10を満足するものである)であることがより好ましレ、。 zが 0. 02≤ z≤0. 10の範囲にあることで、固溶の安定性が高ぐぺロブスカイト構造内のマンガ ンが他電極に拡散されるのを抑制する作用が最も大きぐ好ましい。 Xが 0. 15≤x≤ 0. 3を満たすことで、良好な電子導電性を確保し、また酸素イオンを効率よく生じさ せることが出来る。また、 yが 0. 97≤y≤lの範囲にあることで、ぺロブスカイト構造内 のマンガン量を適切にし、過剰のランタン成分が水分を吸収して水酸化ランタンに変 化し材料そのものの安定性が低下することを有効に防止できるので、有利である。 [0044] 空気極を構成する、酸素イオン導電性を有する酸化物としては、少なくともジノレコニ ァを含む酸化物、セリウム含有酸化物、ランタンガレート系酸化物が好ましい。さらに 、ジルコニァを含む酸化物としては SSZ、 ScYSZ,および YSZがより好ましい。 d, Pm, Sm, Eu, Gd, D, b, Dy, Ho, Er, Tm, Yb, and: represents one or more selected from the group consisting of Lu force, and 表 し represents Ca or Sr , 0 · 15 ≤ x ≤ 0.3, 0.97 ≤ y ≤ 1, 0.02 ≤ z ≤ 0.10. When z is in the range of 0.02≤z≤0.10, the stability of solid solution is high. ぺ The effect of suppressing the diffusion of manganese in the lobskite structure to other electrodes is greatest. . When X satisfies 0.15≤x≤0.3, it is possible to secure good electronic conductivity and efficiently generate oxygen ions. Also, when y is in the range of 0.97≤y≤l, the amount of manganese in the perovskite structure is adjusted appropriately, and the excess lanthanum component absorbs moisture and changes to lanthanum hydroxide, and the stability of the material itself Is effectively prevented from decreasing. [0044] The oxide having oxygen ion conductivity constituting the air electrode is preferably an oxide containing at least dinorecon, a cerium-containing oxide, or a lanthanum gallate-based oxide. Further, as the oxide containing zirconia, SSZ, ScYSZ, and YSZ are more preferable.
[0045] 空気極としての SSZにおけるスカンジァの固溶量としては 3 12mol%の範囲が好 ましレ、。また、 ScYSZにおけるスカンジァとイットリアの合計固溶量は 3 12mol%の 範囲が好ましレ、。さらに、 YSZにおけるイットリアの固溶量は 3 12mol%の範囲で ある。スカンジァまたはイットリアの固溶量が過多になると、結晶相が立方晶の他に菱 面体晶が生成し酸素イオン導電性が低下することと、スカンジァ、イットリアは高価な 材料であり酸素イオン導電性が低くなるところまで固溶させるのは実用的でないため 、留意する必要がある。また、 SSZおよび ScYSZには、さらに CeO 、 Sm O 、 Gd〇  [0045] The solid solution amount of scandia in the SSZ as the air electrode is preferably in the range of 3 12 mol%. Further, the total solid solution amount of scandia and yttria in ScYSZ is preferably in the range of 3 to 12 mol%. Furthermore, the solid solution amount of yttria in YSZ is in the range of 312 mol%. When the amount of solid solution of scandia or yttria becomes excessive, rhombohedral crystals are formed in addition to the cubic crystal phase, and oxygen ion conductivity is reduced, and scandia and yttria are expensive materials and oxygen ion conductivity is low. Care must be taken because it is not practical to form a solid solution to a lower point. SSZ and ScYSZ further include CeO, SmO, and Gd G
2 3 twenty three
Yb O および Er O力、ら選ばれる少なくとも一種の酸化物が 5mol%以下固溶さAt least one oxide selected from the group consisting of YbO and ErO is solid solution of 5 mol% or less.
3、 2 3、 2 3 3, 2, 3, 2 3
れてレ、てもよレ、。良好な酸素イオン伝導性を確保することができる。  Let's go, let's go. Good oxygen ion conductivity can be ensured.
[0046] また、空気極における酸素イオン導電性を有する酸化物としてセリウム含有酸化物 としては、一般式(CeO ) Q Ο ) (但し、 Jは Sm、 Gd、 Yのいずれか一種、 0.  The cerium-containing oxide as the oxide having oxygen ion conductivity at the air electrode includes a general formula (CeO) Q Ο (where J is any one of Sm, Gd, and Y.
2 1-2X1 2 3 XI  2 1-2X1 2 3 XI
05≤Χ1≤0. 15)で表されるものである。この化合物は、焼結性が低ぐガス透過性 が無い電解質を形成させるのに 1500°C以上の焼結温度が必要とされ、高温焼結ゆ えにマンガンを含むぺロブスカイト型酸化物から電解質へのマンガンの拡散が多くな る傾向を示した力 ニッケルを含有させることによって電解質へのマンガン拡散が抑 制される。  05≤Χ1≤0.15). This compound requires a sintering temperature of 1500 ° C or more to form an electrolyte with low sinterability and no gas permeability, and the manganese-containing perovskite-type oxide is used for sintering at high temperatures. Manganese diffusion into the electrolyte is suppressed by the inclusion of nickel, which tends to increase the diffusion of manganese into the electrolyte.
[0047] さらに、空気極における酸素イオン導電性を有する酸化物であるランタンガレート系 酸化物としては、一般式 La D Ga E〇または La D Ga E L O (但し、 D  [0047] Further, as the lanthanum gallate-based oxide which is an oxide having oxygen ion conductivity at the air electrode, a general formula La D Ga E〇 or La D Ga E L O (where D
1— a a 1— b b 3 1— a a 1— b— c b c 3  1— a a 1— b b 3 1— a a 1— b— c b c 3
は Sr、 Ca、 Baの 1種または 2種以上、 Eは Mg、 Al、 Inの 1種または 2種以上、 Lは Co 、 Fe、 Ni、 Crの 1種または 2種以上を表す)で表されるものが好ましく用いられる。マ ンガンを含むぺロブスカイト型酸化物と共焼結されると相互拡散が起こりマンガンが 拡散されやすくなる傾向を示すが、ニッケルを含むことによつてマンガンの拡散を有 効に抑制することができる。  Represents one or more of Sr, Ca, Ba, E represents one or more of Mg, Al, In, and L represents one or more of Co, Fe, Ni, Cr) Are preferably used. When co-sintered with a perovskite-type oxide containing manganese, mutual diffusion tends to occur and manganese tends to be easily diffused.However, by including nickel, the diffusion of manganese can be effectively suppressed. .
[0048] '燃籠  [0048] 'Fire basket
本発明において燃料極は、固体酸化物形燃料電池の燃料極として用いられる通常 のものであってよい。すなわち、燃料極は、固体酸化物形燃料電池の燃料ガス雰囲 気において電子導電性、燃料ガス透過性が高ぐ電解質を移動してきた酸素イオン 力 燃料ガスと反応して水および二酸化炭素になる反応を効率よく実施させるもので あればよい。 In the present invention, the fuel electrode is usually used as a fuel electrode of a solid oxide fuel cell. It may be. That is, the fuel electrode reacts with the fuel gas in the fuel gas atmosphere of the solid oxide fuel cell, which has moved through the electrolyte, which has high electron conductivity and high fuel gas permeability, to become water and carbon dioxide. It is only necessary that the reaction be carried out efficiently.
[0049] 本発明の好ましレ、態様によれば、燃料極は、酸化ニッケノレと、ジルコユアとを焼結さ せたものが好ましい。酸化ニッケルは、燃料ガス雰囲気下で還元されてニッケノレとな り、触媒能と電子導電性を発揮する。  [0049] According to a preferred aspect of the present invention, the fuel electrode is preferably formed by sintering nickel oxide and zirconia. Nickel oxide is reduced in a fuel gas atmosphere to become nickel, and exhibits catalytic activity and electronic conductivity.
[0050] 本発明の好ましい態様によれば、燃料極として、酸化ニッケノレと、イットリウムを固溶 させたジノレコニァ(NiOZYSZ)を用いることが好ましい。この物質は、電子導電性が 高ぐ IR損を低くすることができるからである。 Ni〇/YSZの比率は重量比で 50/5 0— 90/10が、高い電子導電性を実現でき、また Ni粒子の凝集によって耐久性能 が低下することを有効に防止できるため好ましい。  [0050] According to a preferred embodiment of the present invention, it is preferable to use nickel oxide and a dinoreconia (NiOZYSZ) obtained by dissolving yttrium as a fuel electrode. This is because this substance has high electronic conductivity and can reduce IR loss. The Ni〇 / YSZ ratio of 50/50 to 90/10 by weight is preferable because high electronic conductivity can be realized and durability performance can be effectively prevented from lowering due to aggregation of Ni particles.
[0051] 本発明の好ましい態様によれば、燃料極の材料として、 Ni〇/SSZ、 NiO/カルシ ゥムを固溶させたジルコニァ(以下、 NiO/CSZと示す)を挙げることができる。 SSZ より YSZの方が安価であることから、 YSZの方が好まれる力 CSZは YSZよりさらに 安価であり、よってコストの観点力らは NiO/CSZが最も好ましレ、。なお、 Ni〇/CS Zにおいても固体酸化物形燃料電池の燃料ガス雰囲気下においては Ni/CSZとな る。  According to a preferred embodiment of the present invention, as a material of the fuel electrode, zirconia in which Ni / SSZ or NiO / calcium is dissolved (hereinafter, referred to as NiO / CSZ) can be exemplified. YSZ is cheaper than SSZ, so YSZ is more preferred. CSZ is even cheaper than YSZ, so NiO / CSZ is the most preferred in terms of cost. Ni / CSZ also becomes Ni / CSZ under the fuel gas atmosphere of the solid oxide fuel cell.
[0052] 燃料極の原料の調製法は、 NiO/SSZおよび NiO/YSZなどの燃料極材料が均 一に混合されていれば特に限定されないが、共沈法、スプレードライ法などが挙げら れる。  [0052] The method of preparing the fuel electrode raw material is not particularly limited as long as the fuel electrode materials such as NiO / SSZ and NiO / YSZ are uniformly mixed, and examples thereof include a coprecipitation method and a spray drying method. .
[0053] なお、酸素イオンと燃料ガスとの反応を効率よく行わせるために、電解質と燃料極 の間に燃料側電極反応層を設けることが好ましいが、燃料側電極反応層の詳細は後 記する。  It is preferable to provide a fuel-side electrode reaction layer between the electrolyte and the fuel electrode in order to make the reaction between oxygen ions and the fuel gas efficient, but details of the fuel-side electrode reaction layer will be described later. I do.
[0054] 気,佃 J  [0054] Ki, Tsukuda J
本発明の好ましい態様によれば、空気極と電解質との界面において、  According to a preferred embodiment of the present invention, at the interface between the air electrode and the electrolyte,
1/20 + 2e—→〇21/20 + 2e— → 〇 2
2  2
の反応を促進するために、空気極と電解質との間に、空気側電極反応層を設けるこ とが好ましい。 An air-side electrode reaction layer should be provided between the air electrode and the electrolyte to promote the reaction of Is preferred.
[0055] 本発明において、空気側電極反応層は酸素イオン導電性が高いことが好ましい。  In the present invention, the air-side electrode reaction layer preferably has high oxygen ion conductivity.
また、さらに電子導電性を有することで、上記反応をより促進させることができることか らより好ましい。さらに、電解質との熱膨張係数が近ぐ電解質および空気極との反応 性が低ぐ密着性が良好である材料であることが好ましい。  Further, it is more preferable that the composition further has electronic conductivity because the above reaction can be further promoted. Further, it is preferable that the material has a low coefficient of thermal expansion with the electrolyte and a material having low reactivity with the air electrode and good adhesion.
[0056] 以上の観点から、本発明の好ましい態様によれば、空気側電極反応層の好ましい 材料として、 LaAMnO (ここで、 Aは Caまたは Srである)で表されるランタンマンガナ  In view of the above, according to a preferred embodiment of the present invention, as a preferred material for the air-side electrode reaction layer, a lanthanum manganese represented by LaAMnO (where A is Ca or Sr)
3  Three
イトと、 SSZとを均一に混合してなる層が挙げられる。ここで、本発明の好ましい態様 によれば、 700°C以上における電子導電性、材料の安定性等の観点から、この材料 は(La Ax) MnOと表記した場合、 x、 yのィ直は 0. 15≤x≤0. 3、 0. 97≤y≤l¾r l-x y 3  And a layer formed by mixing SSZ uniformly. Here, according to a preferred embodiment of the present invention, from the viewpoints of electron conductivity at 700 ° C. or higher, stability of the material, and the like, when this material is expressed as (La Ax) MnO, 0.15≤x≤0.3, 0.97≤y≤l¾r lx y 3
満足する組成を有するものであることが好ましい。この組成範囲にあることで、高い電 子伝導性が確保でき、水酸化ランタンの生成を防止して、高出力の燃料電池が実現 できる。  It is preferable that the composition has a satisfactory composition. By being in this composition range, high electron conductivity can be secured, lanthanum hydroxide is prevented from being generated, and a high-output fuel cell can be realized.
[0057] 本発明の好ましい態様によれば、このランタンマンガナイトには、 Srまたは Caにカロ えて、 Ce、 Sm、 Gd、 Pr、 Nd、 Co、 Al、 Fe、 Cr、 Ni等を固溶させたものであっても良 レ、。特に、 Niを固溶させた(La、 A) (Mn、 Ni) O で表される組成のものは La Zr O  According to a preferred embodiment of the present invention, the lanthanum manganite is dissolved in Ce, Sm, Gd, Pr, Nd, Co, Al, Fe, Cr, Ni, etc., in addition to Sr or Ca. Even if it is good. In particular, those having the composition represented by (La, A) (Mn, Ni) O in which Ni is dissolved in solid form are La Zr O
3 2 2 で表されるランタンジルコネートと呼ばれる絶縁層の生成を抑制させることができる だけでなぐマンガンの拡散を抑制させることができるので好ましい。  It is preferable because it can only suppress the formation of an insulating layer called lanthanum zirconate represented by 322 and can suppress the diffusion of manganese.
[0058] 本発明における空気側電極反応層の SSZには、さらに Ce〇、 Sm〇、 Gd O 、 Bi  [0058] The SSZ of the air-side electrode reaction layer in the present invention further includes Ce S, Sm〇, GdO, Bi
2 2 3 2 3 2 2 3 2 3
O等が 5mol%以下程度固溶させてもよい。また、 2種以上固溶させてもよい。これO or the like may be dissolved in a solid solution of about 5 mol% or less. Also, two or more kinds may be dissolved. this
2 3 twenty three
らの材料の固溶により、酸素イオン導電性の向上が期待できることから好ましい。 本 発明の好ましい態様によれば、空気側電極反応層の SSZにおけるスカンジァの固溶 量は 3 12mol%程度が、酸素イオン導電性の観点から好ましぐより好ましくは 8 12 mol%程度である。  The solid solution of these materials is preferable because improvement in oxygen ion conductivity can be expected. According to a preferred embodiment of the present invention, the solid solution amount of scandia in the SSZ of the air-side electrode reaction layer is about 312 mol%, more preferably about 812 mol% from the viewpoint of oxygen ion conductivity.
[0059] 本発明の好ましい態様によれば、空気側電極反応層は、ランタンマンガナイトと、 S SZと、一般式(Ce〇 ) (B O ) (ここで、 Bは Sm、 Gd、 Yのいずれかを表し、 X  According to a preferred embodiment of the present invention, the air-side electrode reaction layer is composed of lanthanum manganite, S SZ, and a general formula (Ce〇) (BO) (where B is any one of Sm, Gd, and Y) Or X
2 1-2X 2 3 X  2 1-2X 2 3 X
は 0. 05≤Χ≤0. 15を満たすものである)で表されるセリウム酸化物とが均一に混合 された層であって、連通した開気孔を有するものであってもよレ、。セリウム酸化物の存 在により、空気極と電解質との反応の抑制が期待される。セリウム酸化物の混合量はSatisfies 0.05 ≤ さ れ る ≤ 0.15), which may be a layer uniformly mixed with cerium oxide represented by the formula: Presence of cerium oxide Thus, suppression of the reaction between the air electrode and the electrolyte is expected. The mixing amount of cerium oxide is
、全体に対し 3— 30wt%程度力 空気極と電解質との反応を抑制し、また両者の密 着性を確保する観点から好ましレ、。 About 3-30 wt% of the total power, which is preferable from the viewpoint of suppressing the reaction between the air electrode and the electrolyte and ensuring the adhesion between the two.
[0060] 本発明の別の好ましい態様によれば、空気側電極反応層は、マンガンおよびニッ ケノレを含むぺロブスカイト型酸化物と、ジノレコニァを含む酸化物、セリウム酸化物、ま たはランタンおよびガリウムを含むぺロブスカイト型酸化物との混合導電性セラミック スからなり、かつ連通した開気孔を有するものであることが好ましい。  [0060] According to another preferred embodiment of the present invention, the air-side electrode reaction layer comprises a perovskite oxide containing manganese and nickel oxide, an oxide containing dinoreconia, a cerium oxide, or lanthanum and gallium. It is preferable to be made of a mixed conductive ceramic with a perovskite-type oxide containing, and to have open pores communicating with each other.
[0061] ここで、マンガンおよびニッケルを含むぺロブスカイト型酸化物は、好ましくは、 (Ln  Here, the perovskite-type oxide containing manganese and nickel is preferably (Ln
1 One
A ) (Mn Ni )〇 (式中、 は、 Sc、 Y、 La, Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、A) (Mn Ni) 〇 (where, is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd,
—x x y 1— z z 3 —X x y 1— z z 3
Tb、 Dy、 Ho、 Er、 Tm、 Yb、および Luからなる群力 選ばれるいずれ力 4種または 2 種以上のものを表し、 Aは、 Caまたは Srのいずれかを表し、 Xは 0. 15≤x≤0. 3を、 yは 0. 97≤y≤lを、そして zは 0. 02≤z≤0. 10を満足するものである)で表される ものである。  Group power consisting of Tb, Dy, Ho, Er, Tm, Yb, and Lu Any four or more of the selected powers, A represents either Ca or Sr, and X represents 0.15 ≤x≤0.3, y satisfies 0.97≤y≤l, and z satisfies 0.02≤z≤0.10).
[0062] また、ジルコニァを含む酸化物とは、好ましくは、スカンジァを固溶させたジルコニァ 、またはスカンジァおよびイットリアを固溶させたジルコニァを意味する。  [0062] The oxide containing zirconia preferably refers to zirconia in which scandia is dissolved or zirconia in which scandia and yttria are dissolved.
[0063] さらに、セリウム酸化物とは、好ましくは、式 (Ce〇 ) Q Ο ) (ここで、 Jは、 Sm  [0063] Further, cerium oxide is preferably a compound of the formula (Ce〇) Q Q) (where J is Sm
2 1-2X1 2 3 XI  2 1-2X1 2 3 XI
、Gd、または Yを表し、 XIは 0· 05≤Χ1≤0. 15を満足するものである)で表されるも のである。  , Gd, or Y, and XI satisfies 0 · 05≤Χ1≤0.15).
[0064] この態様において、マンガンとニッケルを含むぺロブスカイト型酸化物の、空気側電 極反応層中の含有量は 30— 70重量%程度であることが好ましい。  [0064] In this embodiment, the content of the perovskite oxide containing manganese and nickel in the air-side electrode reaction layer is preferably about 30 to 70% by weight.
[0065] さらに、本発明の別の好ましい態様によれば、空気側電極反応層は、空気極側の 第一の層と、電解質側の第二の層との少なくとも二層から構成されてなることが好まし レ、。  [0065] Further, according to another preferred embodiment of the present invention, the air-side electrode reaction layer is composed of at least two layers: a first layer on the air electrode side and a second layer on the electrolyte side. It's preferable.
[0066] この態様において、第一の層は、電子導電性を有する酸化物と酸素イオン導電性 を有する酸化物とが均一に混合され、連通した開気孔を有する層とされることが好ま しい。  [0066] In this embodiment, it is preferable that the first layer is a layer in which an oxide having electron conductivity and an oxide having oxygen ion conductivity are uniformly mixed and has open pores communicating with each other. .
[0067] ここで、電子導電性を有する酸化物とは、電子導電性を有し固体酸化物形燃料電 池の空気雰囲気で安定であるものが好ましぐ具体的には Srまたは Caを固溶させた ランタンマンガナイトが挙げられる。電解質へのマンガンの拡散が少なレ、ことや電子 導電性が高いことを考慮すると、 (La A ) MnO (ここで、 Aは Caまたは Srを表し、 Here, the oxide having electronic conductivity is preferably an oxide having electronic conductivity and being stable in the air atmosphere of a solid oxide fuel cell. More specifically, Sr or Ca is preferably solidified. Melted Lantern manga night. Considering that the diffusion of manganese into the electrolyte is small, and that the electron conductivity is high, (La A) MnO (where A represents Ca or Sr,
1—  1—
xは 0. 15≤x≤0. 3を、 yは 0. 97≤y≤ 1を満足する)で表されるランタンマンガナィ トがより好ましレ、。また、このランタンマンガナイトには、 Ce、 Sm、 Pr、 Nd、 Co、 Al、 F e、 Ni、 Crなどを固溶させたものであっても良い。特に、 Niを固溶させることが好まし レ、。 Niを固溶させたものとしては、 (La A ) (Mn Ni )〇 (但し、 A = Caまたは Sr  x satisfies 0.15≤x≤0.3, and y satisfies 0.97≤y≤1). The lanthanum manganite may be a solid solution of Ce, Sm, Pr, Nd, Co, Al, Fe, Ni, Cr and the like. In particular, it is preferable to dissolve Ni. As a solid solution of Ni, (La A) (Mn Ni) 〇 (where A = Ca or Sr
1— x x y 1— z z 3  1— x x y 1— z z 3
のレヽずれ力、、 0. 15≤x≤0. 3、 0. 97≤y≤l, 0. 02≤z≤0. 10)であるもの力 S好ま しい。  The displacement force, which is 0.15≤x≤0.3, 0.97≤y≤l, 0.02≤z≤0.10) is the force S preferred.
[0068] また、第一の層における酸素イオン導電性を有する酸化物としては、酸素イオン導 電性を有し固体酸化物形燃料電池の空気雰囲気下で安定であれば良ぐその具体 例としては、 SSZ、 ScYSZ、 YSZ、セリウム含有酸化物、少なくともランタンとガリウム を含むぺロブスカイト型酸化物(以下、ランタンガレート系酸化物と示す。)を挙げるこ とができる。  [0068] Examples of the oxide having oxygen ion conductivity in the first layer include oxygen ion conductivity, which may be stable as long as it is stable in an air atmosphere of a solid oxide fuel cell. Examples thereof include SSZ, ScYSZ, YSZ, cerium-containing oxides, and perovskite-type oxides containing at least lanthanum and gallium (hereinafter referred to as lanthanum gallate-based oxides).
[0069] 第一の層としての SSZにおけるスカンジァの固溶量としては 3— 12mol%の範囲が 好ましレ、。また、第一の層としての ScYSZにおけるスカンジァとイットリアの合計固溶 量は 3— 12mol%の範囲が好ましい。さらに、第一の層として好ましい YSZにおける イットリアの固溶量は 3— 12mol%の範囲である。スカンジァまたはイットリアの固溶量 が過多になると、結晶相が立方晶の他に菱面体晶が生成し酸素イオン導電性が低 下することと、スカンジァ、イットリアは高価な材料であり酸素イオン導電性が低くなる ところまで固溶させるのは実用的でないため、留意する必要がある。また、 SSZおよ び ScYSZには、さらに Ce〇、 Sm〇、 Gd O Yb O および Er O力ら選ばれる少  [0069] The solid solution amount of scandia in the SSZ as the first layer is preferably in the range of 3 to 12 mol%. Further, the total solid solution amount of scandia and yttria in ScYSZ as the first layer is preferably in the range of 3 to 12 mol%. Further, the preferred amount of yttria in YSZ for the first layer is in the range of 3 to 12 mol%. If the amount of solid solution of scandia or yttria becomes excessive, the crystal phase will generate rhombohedral crystals in addition to cubic, and oxygen ion conductivity will decrease.Scandia and yttria are expensive materials and oxygen ion conductivity. It should be noted that it is not practical to form a solid solution to the point where In addition, SSZ and ScYSZ include a small amount selected from Ce ら, Sm〇, Gd O Yb O, and Er O forces.
2 2 3 2 3、 2 3、 2 3  2 2 3 2 3, 2 3, 2 3
なくとも一種の酸化物が 5mol%以下固溶されていてもよい。良好な酸素イオン伝導 性を確保することができる。  At least one kind of oxide may be dissolved in 5 mol% or less. Good oxygen ion conductivity can be ensured.
[0070] また、第一の層としてのセリウム含有酸化物としては、一般式 (Ce〇 ) Q Ο )  [0070] The cerium-containing oxide as the first layer is represented by the general formula (Ce〇) Q〇)
2 1-2X1 2 3 XI 2 1-2X1 2 3 XI
(但し、 Jは Sm、 Gd、 Yのいずれか一種、 0. 05≤Χ1≤0. 15)で表されるものであ る。 (However, J is any one of Sm, Gd, and Y, and is represented by 0.05 ± 1≤ 0.15).
[0071] さらに、第一の層としてのランタンガレート系酸化物としては、一般式 La D Ga  [0071] Further, as the lanthanum gallate-based oxide as the first layer, the general formula La D Ga
1— a a 1-b 1— a a 1-b
E〇または La D Ga E L〇 (但し、 Dは Sr、 Ca、 Baの 1種または 2種以上、 E b 3 1 a a 1— b— c b c 3 は Mg、 Al、 Inの 1種または 2種以上、 Lは Co、 Fe、 Ni、 Crの 1種または 2種以上)で 表されるものが好ましく用いられる。 E〇 or La D Ga EL〇 (where D is one or more of Sr, Ca, Ba, E b 3 1 aa 1— b— cbc 3 Is preferably one or more of Mg, Al, and In, and L is one or more of Co, Fe, Ni, and Cr).
[0072] 以上、第一の層として好ましい電子導電性を有する酸化物と酸素イオン導電性を 有する酸化物を各々挙げたが、電子導電性および酸素イオン導電性の両方を有し たものであっても良い。その例としては、少なくともランタンとコバルトを含む酸化物で あるランタンコバルタイト系酸化物などを挙げることができる。  [0072] As described above, the oxide having preferable electron conductivity and the oxide having oxygen ion conductivity have been exemplified as the first layer. However, the first layer has both electron conductivity and oxygen ion conductivity. May be. Examples thereof include a lanthanum cobaltite-based oxide which is an oxide containing at least lanthanum and cobalt.
[0073] 第二の層は、少なくとも酸素イオン導電性を有し、電解質へマンガン成分の拡散を 抑制する作用を有し、連通した開気孔を有するものが好ましい。  [0073] It is preferable that the second layer has at least oxygen ion conductivity, has an action of suppressing the diffusion of a manganese component into the electrolyte, and has open pores communicating therewith.
[0074] ここで、少なくとも酸素イオン導電性を有することが好ましいのは、主に第一の層で 生成すると考えられる酸素イオンを、電解質へ効率良く供給するためである。また、 電解質へマンガン成分の拡散を抑制する作用を有することが好ましいのは、電解質 に電子導電性が発現することを抑制できることと焼結性の向上によって生じる電解質 の燃料極側表面の粒子が大きくなりすぎることによって生じる燃料極との密着性の低 下を抑制することができるためである。また、連通した開気孔を有するのが好ましいの はガス透過性が無いものであると、第一の層および空気極から拡散されるマンガン成 分を効率良く拡散させてしまうためである。マンガンの拡散量を制御するポイントは第 二の層における微構造であり、特に細孔径、空隙率、厚みの適正化が重要である。 細孔径は 0. 1— 10 μ ΐηが好ましぐ空隙率は 3— 40%が好ましぐ厚みは 5— 50 /i mが好ましい。  Here, it is preferable to have at least oxygen ion conductivity in order to efficiently supply oxygen ions, which are considered to be mainly generated in the first layer, to the electrolyte. Further, it is preferable to have an action of suppressing the diffusion of the manganese component into the electrolyte because it is possible to suppress the development of electronic conductivity in the electrolyte and the particles on the fuel electrode side of the electrolyte generated by the improvement in sinterability are large. This is because it is possible to suppress a decrease in the adhesion to the fuel electrode, which is caused by too much bending. Further, it is preferable to have open pores communicating with each other, because if the gas does not have gas permeability, the manganese component diffused from the first layer and the air electrode is efficiently diffused. The point that controls the amount of manganese diffusion is the microstructure in the second layer, and it is particularly important to optimize the pore size, porosity, and thickness. The pore size is preferably 0.1 to 10 μΐη, the porosity is preferably 3 to 40%, and the thickness is preferably 5 to 50 / im.
[0075] この態様において、第二の層としては、上記理由から酸素イオン導電性が高くかつ 焼結性が高くないものすなわちマンガンを電解質に拡散させにくい材料が好ましい。 さらに空気極から拡散されるマンガンを吸収する作用を有する材料が好ましい。この 観点から SSZ、セリウム含有酸化物が代表として挙げられる。また、 SSZより焼結性が 高いが第一の層と電解質の密着性を向上させるという観点から ScYSZの利用も好ま しい。空気極から拡散されるマンガンを吸収する作用を有することが好ましいのは、 マンガンが第二の層に入ることで第二の層に電子導電性が発現し、第一の層と同様 に酸素イオンの生成を行うことができるようになるためである。この作用により、より高 い出力性能を実現することが可能である点で、本発明の有利な態様であるといえる。 [0076] この態様において、第二の層としての、 SSZ、およびセリウム含有酸化物は、第一 の層で説明したものと同様のものであってよレ、。また、 ScYSZも第一の層のそれと同 様であってよいが、 ScYSZにおけるスカンジァとイットリアの合計量に対するスカンジ ァの比率としては 20mol%以上が好ましレ、。スカンジァが少なすぎるとマンガンの拡 散を抑制させる効果が小さくなるためである。また、 ScYSZにはさらに Ce〇、 Sm O In this embodiment, as the second layer, a material having high oxygen ion conductivity and low sinterability, that is, a material that does not easily diffuse manganese into the electrolyte is preferable for the above reason. Further, a material having an action of absorbing manganese diffused from the air electrode is preferable. From this viewpoint, SSZ and cerium-containing oxides are representative. Although the sinterability is higher than that of SSZ, the use of ScYSZ is also preferable from the viewpoint of improving the adhesion between the first layer and the electrolyte. It is preferable that manganese diffused from the air electrode has an action of absorbing manganese. When manganese enters the second layer, electronic conductivity is developed in the second layer, and oxygen ions are generated similarly to the first layer. Can be generated. This effect is an advantageous aspect of the present invention in that higher output performance can be realized. [0076] In this embodiment, the SSZ and the cerium-containing oxide as the second layer may be the same as those described in the first layer. Also, ScYSZ may be the same as that of the first layer, but the ratio of scandia to the total amount of scandia and yttria in ScYSZ is preferably 20 mol% or more. If the scandium is too small, the effect of suppressing the diffusion of manganese is reduced. In addition, ScYSZ contains Ce〇 and Sm O
2 2 twenty two
、 Gd〇 Yb〇 および Er〇力 選ばれる少なくとも一種の酸化物が 5mol%以下, Gd〇 Yb〇 and Er〇 force At least one oxide selected is 5 mol% or less
3 2 3、 2 3、 2 3 3 2 3, 2 3, 2 3
固溶されていてもよい。  It may be dissolved.
[0077] 従って、本発明の空気側電極反応層が二層からなる態様として、 [0077] Therefore, as an embodiment in which the air-side electrode reaction layer of the present invention is composed of two layers,
第一の層が、マンガンを含むぺロブスカイト型酸化物と、スカンジァおよび/または イットリアを固溶させたジルコユアとの混合物であって、連通した開気孔を有するもの 力 なり、第二の層が、スカンジァを固溶させたジルコユアであって、前記電解質より も大きな空隙率を有するものからなるもの、  The first layer is a mixture of a perovskite-type oxide containing manganese and zirconia in which scandia and / or yttria are dissolved and has open pores communicating with each other. Zirconia in which scandia is dissolved as a solid solution having a higher porosity than the electrolyte,
第一の層が、マンガンを含むぺロブスカイト型酸化物とセリウム含有酸ィヒ物との混 合物であって、連通した開気孔を有するものからなり、第二の層が、スカンジァを固 溶させたジルコユアであって、前記電解質よりも大きな空隙率を有するものからなるも の、  The first layer is a mixture of a perovskite-type oxide containing manganese and a cerium-containing oxide and having open pores communicating with each other, and the second layer is a solid solution of scandia. A zirconia which has a higher porosity than the electrolyte,
第一の層が、マンガンを含むぺロブスカイト型酸化物とランタンおよびガリウムを含 むぺロブスカイト型酸化物との混合物であって、連通した開気孔を有するものからな り、第二の層が、スカンジァを固溶させたジルコニァであって、前記電解質よりも大き な空隙率を有するものからなるもの、  The first layer is a mixture of a perovskite-type oxide containing manganese and a perovskite-type oxide containing lanthanum and gallium and having open pores communicating with each other. A zirconia in which a solid solution is formed, having a porosity larger than that of the electrolyte;
第一の層が、ランタンおよびコバルトを含むぺロブスカイト型酸化物であって、連通 した開気孔を有するものからなり、第二の層が、スカンジァを固溶させたジノレコユアで あって、前記電解質よりも大きな空隙率を有するものからなるもの、  The first layer is a perovskite-type oxide containing lanthanum and cobalt and has open pores communicating with each other, and the second layer is dinorecoure in which scandia is dissolved as a solid solution. Also having a large porosity,
前記第一の層が、マンガンを含むぺロブスカイト型酸化物とスカンジァおよび zま たはイットリアを固溶させたジルコユアとの混合物であって、連通した開気孔を有しす るものからなり、前記第二の層が、セリウム酸化物であって、前記電解質よりも大きな 空隙率を有するものからなるもの  The first layer is a mixture of a perovskite-type oxide containing manganese and zirconia in which scandia and z or yttria are dissolved, and has a continuous open pore; The second layer is made of cerium oxide having a higher porosity than the electrolyte.
が提供される。 [0078] さらに本発明の好ましい態様によれば、空気側電極反応層が二層からなる態様に おいて、空気極が有する細孔の径 dlと、第一の層が有する細孔の径 d2と、第二の層 が有する細孔の径 d3と力 dl > d2 > d3の関係を満たすものであること力 出力特性 に優れた燃料電池を実現できる観点から好ましい。 Is provided. Further, according to a preferred embodiment of the present invention, in the aspect in which the air-side electrode reaction layer has two layers, the diameter dl of the pores of the air electrode and the diameter d2 of the pores of the first layer In addition, it is preferable to satisfy the relationship of the pore diameter d3 of the second layer and the force dl>d2> d3 from the viewpoint of realizing a fuel cell having excellent power output characteristics.
[0079] また、本発明の別の好ましい態様によれば、空気側電極反応層が二層からなる態 様において、空気極が有する空隙率 alと、第一の層が有する空隙率 a2と、第二の層 が有する空隙率 a3、電解質が有する空隙率 a4とが、 al≥a2≥a3 >a4の関係を満 たすものであることが好ましレ、。  Further, according to another preferred embodiment of the present invention, when the air-side electrode reaction layer has two layers, the porosity al of the air electrode, the porosity a2 of the first layer, It is preferable that the porosity a3 of the second layer and the porosity a4 of the electrolyte satisfy the relationship of al≥a2≥a3> a4.
[0080] また、第一の層と、第二の層の厚さは適宜決定されてよいが、好ましくは第二の層 の厚さが 5 50 μ mであり、第一の層の厚さが 5 50 μ mである。  [0080] The thickness of the first layer and the thickness of the second layer may be determined as appropriate, but preferably the thickness of the second layer is 550 µm, and the thickness of the first layer is Is 550 μm.
[0081] 多孔晳層  [0081] Porous layer
本発明の好ましい態様によれば、燃料極と電解質との間に、多孔質層が設けられ てなる。本発明にあっては、この多孔質層はジルコニァを含む蛍石型酸ィ匕物からなり 、厚み 5— 40 /i mであり、かつその空隙率が電解質のそれよりも大であるものである。 そして、本発明にあっては、上記したように、この多孔質層の、燃料極側の表面にお けるマンガンの含有量が 0· 3— 4重量%であることを特徴とするものである。  According to a preferred embodiment of the present invention, a porous layer is provided between the fuel electrode and the electrolyte. In the present invention, this porous layer is made of a fluorite-type oxide containing zirconia, has a thickness of 5-40 / im, and has a porosity larger than that of the electrolyte. . In the present invention, as described above, the manganese content on the surface of the porous layer on the fuel electrode side is 0.3 to 4% by weight. .
[0082] さらに本発明の好ましい態様によれば、多孔質層の燃料極側の表面におけるマン ガン成分の含有量が 0. 6— 3. 5重量%であることが好ましぐより好ましくは 0. 9— 3 重量%である。 Further, according to a preferred embodiment of the present invention, the content of the manganese component on the surface of the porous layer on the fuel electrode side is preferably 0.6 to 3.5% by weight, more preferably 0 to 3.5% by weight. 9-3% by weight.
[0083] 本発明において、この多孔質層は、燃料極へマンガンが拡散されることを抑制する だけでなぐ電解質を移動してきた酸素イオンを燃料極へ効率良く移動させるように 機能するものである。この観点から、多孔質層は酸素イオン導電性が高いことが好ま しい。また、電解質からのマンガンを燃料極に拡散させないこと、そして材料自身の 抵抗によって出力性能を低減させないためには多孔質層の厚さを制御することもま た重要である。本発明の好ましい態様によれば、多孔質層の厚さは 5— 40 z mが好 ましレ、。さらに、多孔質層は、出力性能および耐久性能の観点から空隙率が 3 30 %で有ることが好ましぐまたそれが有する細孔の径は 0. 05— 2 z m程度が好ましい 。一方、 Hガスが燃料極側から電解質表面に到達しないよう、燃料極側から電解質  [0083] In the present invention, the porous layer functions not only to suppress the diffusion of manganese to the fuel electrode, but also to efficiently move oxygen ions that have moved the electrolyte to the fuel electrode. . From this viewpoint, the porous layer preferably has high oxygen ion conductivity. It is also important to control the thickness of the porous layer so that manganese from the electrolyte is not diffused to the anode and the output performance is not reduced by the resistance of the material itself. According to a preferred embodiment of the present invention, the thickness of the porous layer is preferably 5 to 40 zm. Further, the porous layer preferably has a porosity of 330% from the viewpoint of output performance and durability performance, and the pore diameter of the porous layer is preferably about 0.05 to 2 zm. On the other hand, to prevent H gas from reaching the electrolyte surface from the fuel electrode side,
2 に通じる空孔が無レ、ものが好ましレ、。 2 There are no holes that lead to, and things are preferred.
[0084] 本発明の好ましい態様によれば、電解質が有する空隙率 alと、蛍石型酸化物から なる多孔質層が有する空隙率 a2と、燃料極が有する空隙率 a3とが、 &1 < &2< &3の 関係を満足するものであることが好ましレ、。  According to a preferred embodiment of the present invention, the porosity al of the electrolyte, the porosity a2 of the porous layer made of the fluorite-type oxide, and the porosity a3 of the fuel electrode are & 1 <& 2. <It is preferable to satisfy the relationship of & 3.
[0085] 本発明の好ましい態様によれば、多孔質層を構成するジルコユアを含む蛍石型酸 化物は、固体酸化物形燃料電池の燃料ガス雰囲気下において安定であり、酸素ィ オン導電性が高い材料が好ましぐ SSZ、 ScYSZ、および YSZが好ましいものとして 挙げられる。これら SSZ、 ScYSZ、および YSZは、多孔質層に求められる物理特性 を除けば、上記空気側電極反応層を構成するそれと同様であってよい。またその好 ましレヽ態様も同様であつてよい。  [0085] According to a preferred embodiment of the present invention, the fluorite-type oxide containing zirconia constituting the porous layer is stable under a fuel gas atmosphere of a solid oxide fuel cell and has an oxygen ion conductivity. Higher materials are preferred SSZ, ScYSZ, and YSZ are preferred. These SSZ, ScYSZ, and YSZ may be the same as those constituting the air-side electrode reaction layer except for physical properties required for the porous layer. Further, the preferred embodiment may be the same.
[0086] 燃湘 J  [0086] Unsho J
本発明の好ましい態様によれば、燃料極における反応を効率よく行レ、、出力性能を 向上させるために、電解質と燃料極の間に燃料側電極反応層を設けることが好まし レ、。なお、本発明にあっては、この燃料側電極反応層は燃料極の一態様であるため 、「燃料極に接する層」との用語の意味は、燃料側電極反応層が設けられた態様に あっては、この燃料側電極反応層に接する層を意味することとなる。  According to a preferred embodiment of the present invention, it is preferable to provide a fuel-side electrode reaction layer between the electrolyte and the fuel electrode in order to efficiently perform the reaction at the fuel electrode and improve the output performance. In the present invention, since the fuel-side electrode reaction layer is one mode of the fuel electrode, the meaning of the term “layer in contact with the fuel electrode” means that the fuel-side electrode reaction layer is provided. This means a layer in contact with the fuel-side electrode reaction layer.
[0087] 本発明において、燃料側電極反応層としては、電子導電性と酸素イオン導電性の 両方の特性に優れる NiO/SSZまたは Ni/SSZが好ましく用いられる。ここで、 NiO は燃料雰囲気下で還元されて Niとなり、燃料側電極反応層は Ni/SSZとなる。  In the present invention, as the fuel-side electrode reaction layer, NiO / SSZ or Ni / SSZ, which has both excellent electron conductivity and oxygen ion conductivity, is preferably used. Here, NiO is reduced in a fuel atmosphere to become Ni, and the fuel-side electrode reaction layer becomes Ni / SSZ.
[0088] 本発明の好ましい態様によれば、 NiO/SSZの比率は、重量比で 10/90— 50/ 50が、良好な電子導電性および酸素イオン導電性が実現できるため、好ましい。  [0088] According to a preferred embodiment of the present invention, the ratio of NiO / SSZ is preferably 10 / 90-50 / 50 by weight, because good electronic conductivity and oxygen ion conductivity can be realized.
[0089] また、この燃料側電極反応層を構成する SSZにおけるスカンジァの固溶量としては 、 3— 12mol%程度が、酸素イオン導電性が高ぐ燃料極における反応を促進させる ことができるため好ましレ、。また、この SSZは、さらに Ce〇、 Sm〇、 Gd〇、 Bi〇  [0089] In addition, the solid solution amount of scandia in the SSZ constituting the fuel-side electrode reaction layer is preferably about 3 to 12 mol% because the reaction in the fuel electrode having high oxygen ion conductivity can be promoted. Masire, This SSZ is further divided into Ce さ ら に, Sm〇, Gd〇, Bi〇
2 2 3 2 3 2 3 を一種または二種以上 5mol%以下固溶させてもよい。これらを固溶させることで、燃 料ガス雰囲気下で酸素イオン導電性の向上だけでなく電子導電性の向上も期待で きる。  One, two or more of 2 2 3 2 3 2 3 may be dissolved in 5 mol% or less. By dissolving them, not only the improvement of oxygen ion conductivity but also the improvement of electron conductivity under fuel gas atmosphere can be expected.
[0090] 本発明の好ましい態様によれば、燃料側電極反応層として、 NiOと SSZとセリウム 酸化物が所定の重量比で均一に混合された層(以下、 NiO/SSZ/セリウム酸化物 )を好ましく用いることが出来る。この層は、燃料ガス雰囲気下で、酸素イオン導電性 が高ぐ電子導電性が高いという利点を有する。 Ni〇は燃料ガス雰囲気下で還元さ れて Niとなり、この層は Ni/SSZZセリウム酸化物となる。ここで、セリウム酸化物と は、セリウムが含まれた酸化物であれば良く特に限定されないが、一般式 (CeO ) According to a preferred embodiment of the present invention, NiO, SSZ, and cerium are used as the fuel-side electrode reaction layer. A layer in which oxides are uniformly mixed at a predetermined weight ratio (hereinafter, NiO / SSZ / cerium oxide) can be preferably used. This layer has the advantage of high oxygen ion conductivity and high electron conductivity in a fuel gas atmosphere. Ni〇 is reduced to Ni in a fuel gas atmosphere, and this layer becomes Ni / SSZZ cerium oxide. Here, the cerium oxide is not particularly limited as long as it is an oxide containing cerium, but the general formula (CeO)
2 1-2 2 1-2
(B〇 ) (ここで、 Bは Sm、 Gd、または Yのいずれか一種を表し、 Xは 0. 05≤Χ≤(B〇) (where B represents one of Sm, Gd, or Y, and X is 0.05 ± ≤
X 2 3 X X 2 3 X
0. 15を満たすものである)で表されるものが、高い酸素イオン導電性を実現でき、好 ましい。  (Which satisfies 0.15) is preferable because it can realize high oxygen ion conductivity.
[0091] インターコネクター  [0091] Interconnector
本発明による固体酸化物形燃料電池が有するインターコネクタ一は、固体酸化物 形燃料電池の発電温度の空気雰囲気および燃料ガス雰囲気において電子導電性 が高い、ガス透過性が無レ、、酸化還元雰囲気に対して安定であるものが好ましい。こ の観点からランタンクロマイトの利用が好ましい。  The interconnector of the solid oxide fuel cell according to the present invention has high electronic conductivity, no gas permeability, and redox atmosphere in the air atmosphere and fuel gas atmosphere at the power generation temperature of the solid oxide fuel cell. Those that are stable to are preferred. From this viewpoint, the use of lanthanum chromite is preferred.
[0092] ランタンクロマイトは、難焼結性であるため固体酸化物形燃料電池の焼成温度  [0092] Since lanthanum chromite is difficult to sinter, the firing temperature of solid oxide fuel cells
(1500°C以下)でガス透過性の無レ、インターコネクターを作製することが難しい。焼結 性を向上させるために Ca、 Sr、または Mgを固溶させて用いていることが好ましレ、。焼 結性が最も高ぐ固体酸化物形燃料電池の電解質等の他の電極を焼結させる時の 温度と同程度の温度で、ガス透過性の無い膜を作製できるという点から Caを固溶さ せることが好ましい。  (1500 ° C or less), it is difficult to produce an interconnector without gas permeability. It is preferable to use Ca, Sr, or Mg as a solid solution to improve sinterability. Solid solution of Ca from the point that a membrane without gas permeability can be produced at the same temperature as when sintering other electrodes such as the electrolyte of a solid oxide fuel cell with the highest sinterability. Preferably.
[0093] インターコネクターに用いられる Caを固溶させたランタンクロマイトの固溶量は多い ほど電子導電性が高くなるが、材料の安定性が低下するおそれもあることから、 10— 40mol%程度が好ましレ、。  [0093] The greater the solid solution amount of lanthanum chromite in which Ca is dissolved in the interconnector is, the higher the electronic conductivity is, but the stability of the material may be reduced. I like it.
[0094] 本発明の好ましい態様によれば、空気極とインターコネクターの間に、(La Ax)  [0094] According to a preferred embodiment of the present invention, (La Ax) is provided between the air electrode and the interconnector.
1— x y 1—x y
Mn〇 (ここで、 ま Srまた fま Caを表し、 xfま 0. 15≤x≤0. 3を、 yfま 0. 97≤v≤lをMn〇 (where, represents Sr or f or Ca, xf is 0.15≤x≤0.3, yf is 0.97≤v≤l
3 Three
満たすものである)で表される組成からなり、緻密なプリコート層を設けてもよい。この プリコート層により、 Caを固溶させたランタンクロマイトの焼結助剤成分であるカルシ ゥムクロメイト成分が、空気極へ拡散するのを有効に抑制することができるため有利で ある。ここで、緻密なプリコート層とは、プリコート層の片面とその反対側面の間に圧 力差を設けた時、その間を透過するガス透過量で評価され、ガス透過量 Q≤1.4 X 10 — 7ms— ^a— 1以上であるものを好ましくは意味する。 And a dense pre-coat layer may be provided. This precoat layer is advantageous because the calcium chromate component, which is a sintering aid component of lanthanum chromite in which Ca is dissolved, can be effectively prevented from diffusing into the air electrode. Here, the dense pre-coat layer means a pressure between one side of the pre-coat layer and the opposite side. When provided with a force difference, it is evaluated in a gas permeation quantity of transmitted therebetween, gas permeation Q≤1.4 X 10 - preferably those at 7 ms- ^ a- 1 or more.
[0095] なお、固体酸化物形燃料電池の形状が平板型の場合では、インターコネクターを セパレータと呼び、役割はインターコネクターと同様である。セパレータの場合は、フ エライト系ステンレス等の耐熱金属であってもよい。 [0095] When the solid oxide fuel cell has a flat plate shape, the interconnector is called a separator, and the role is the same as that of the interconnector. In the case of a separator, a heat-resistant metal such as ferrite stainless steel may be used.
[0096] 目 {本 >开 '燃 池,の 1¾告法  [0096] Eye {book> 开
本発明による固体酸化物形燃料電池は、その形状等を考慮して、合目的的な製造 法により製造することができる。図 1に示されるような円筒型の場合、以下のとおり製 造できる。  The solid oxide fuel cell according to the present invention can be manufactured by a suitable manufacturing method in consideration of its shape and the like. In the case of a cylindrical type as shown in FIG. 1, it can be manufactured as follows.
[0097] まず、支持体となる空気極部位を、原料である少なくともマンガンを含むぺロブス力 イト型酸化物他の成分を、好ましくはバインダーとともに混合し、この混合物を押し出 し成形法で成形し、 300— 500°C程度の温度でバインダーを除去した後、 1400—1 500°C程度で焼成を行い、高強度で多孔質な空気極の支持体を得る。焼成方法とし ては、吊り焼成方法と横焼き焼成方法とがあるが、横焼成が好ましい。  [0097] First, an air electrode portion serving as a support is mixed with a perovskite-type oxide containing at least manganese as a raw material and other components, preferably together with a binder, and the mixture is extruded and molded by a molding method. Then, after removing the binder at a temperature of about 300 to 500 ° C, baking is performed at about 1400 to 500 ° C to obtain a high strength porous air electrode support. As the firing method, there are a hanging firing method and a horizontal firing method, but a horizontal firing method is preferable.
[0098] 続いて、得られた空気極支持体の表面に、空気側電極反応層、電解質、インターコ ネクター、燃料極を成膜する。これらの電極の形成方法としては、湿式法がコストの観 点から好ましい。湿式法としては、原料粉末とバインダーと溶媒でスラリーを作製し、 このスラリー中に浸漬して電極を形成するデイツビング方法、スラリーより高粘度なぺ 一ストを用いてスクリーンを介して成膜するスクリーン印刷法、ペットフィルム等の別の 基材にシート成形したものをセル表面に貼り付けるシート接着法などを挙げることが できる。製法の選定は、被成膜部の形状によって適宜選択されてよぐ図 1に示され る円筒型セルの場合は、空気側電極反応層および電解質はデイツビング方法が好ま しぐインターコネクターおよび燃料極についてはマスキングレスな方法であるスクリ ーン印刷法あるいはシート接着法が好ましい。  Subsequently, an air-side electrode reaction layer, an electrolyte, an interconnector, and a fuel electrode are formed on the surface of the obtained air electrode support. As a method for forming these electrodes, a wet method is preferable from the viewpoint of cost. As a wet method, a dipping method in which a slurry is prepared from a raw material powder, a binder, and a solvent, and immersed in the slurry to form an electrode, and a screen that forms a film through a screen using a paste having a higher viscosity than the slurry Examples of the method include a printing method and a sheet bonding method in which a sheet formed on another substrate such as a pet film is attached to the cell surface. In the case of the cylindrical cell shown in Figure 1, the air-side electrode reaction layer and the electrolyte are interconnected and the fuel electrode are preferably selected by the diving method. For this, a screen printing method or a sheet bonding method, which is a masking-less method, is preferable.
[0099] 上記の方法により成膜されたセルは、 300 500°C程度の温度でバインダーを除 去した後、空気極支持体より低い温度で、 1300 1500°C程度の範囲の温度で焼 成を行うことが好ましい。焼成は、各層ごとに焼成する逐次焼成法と、レ、くつかの層を 同時に焼成する共焼成法があるがいずれであっても良レ、。コストの観点からは共焼 成法が好ましいが、空気極支持体として少なくともマンガンを含むぺロブスカイト型酸 化物を用いる本発明にあっては、マンガンの拡散によって出力性能が大きく低下す る可能性があり、逐次焼成が好ましい場合もある。 [0099] After removing the binder at a temperature of about 300 to 500 ° C, the cell formed by the above method is sintered at a temperature of about 1300 to 1500 ° C below the temperature of the air electrode support. Is preferably performed. There are two firing methods: a sequential firing method in which each layer is fired, and a co-firing method in which several layers are fired simultaneously. Co-firing from a cost perspective Although a synthesis method is preferable, in the present invention using a perovskite-type oxide containing at least manganese as the air electrode support, there is a possibility that the output performance may be significantly reduced due to the diffusion of manganese. There is also.
[0100] また、空気極成形体との共焼成も可能であるが、空気極支持体焼成の場合は他の 電極より高温で焼成を行うことから、マンガンの拡散を考慮すれば、逐次焼成が好ま しいといえる。  [0100] Co-firing with the air electrode molded body is also possible. However, in the case of the air electrode support firing, firing is performed at a higher temperature than the other electrodes. It is good.
実施例  Example
[0101] 本発明を以下の実施例により詳細に説明するが、本発明はこれら実施例に限定さ れるものではない。  [0101] The present invention will be described in detail with reference to the following examples, but the present invention is not limited to these examples.
実施例における各種物性、性能等の試験方法は以下のとおりとした。  Test methods for various physical properties, performance, and the like in Examples were as follows.
[0102] 雷解晳膜表而の結晶粒径測定  [0102] Measurement of crystal grain size of lightning film
電解質の膜表面を、 日立製作所 (株)製 S-4100を用いて SEM観察し、電解質の 燃料極側表面を 300倍の倍率で撮影した。さらに、撮影した写真でブラ二メトリック法 で粒子の粒度分布を算出した。また、平均結晶粒径についても測定した。すなわち、 写真上で面積 (A)の既知の円を描き、円内の粒子数 nと円周に力かった粒子数 nから 以下の式によって単位面積あたりの粒子数 Nを求める。  The surface of the electrolyte membrane was observed by SEM using S-4100 manufactured by Hitachi, Ltd., and the fuel electrode side surface of the electrolyte was photographed at a magnification of 300 times. Furthermore, the particle size distribution of the particles was calculated by the Branimetric method using the photographed images. The average crystal grain size was also measured. That is, a circle with a known area (A) is drawn on a photograph, and the number of particles N per unit area is obtained from the number of particles n in the circle and the number of particles n exerted on the circumference by the following formula.
N = (n + l/2n) / (A/m2) N = (n + l / 2n) / (A / m 2 )
G c i  G c i
二で、 mは写真の倍率である。 1/N力 個の粒子の占める面積であるから、膜表面  Where m is the magnification of the picture. The area occupied by 1 / N force particles
G  G
の粒径は円相当径は 2/ ( π Ν )、正方形の一辺とすると 1/ Νで得られる。  Is equivalent to a circle with a diameter of 2 / (π 、), and one side of a square is 1 / Ν.
G G  G G
膜表面の粒度分布における 3%径とは、ブラ二メトリック法で 100個の結晶粒径を測 定し、粒径の小さい順番から並べた際の 3番目に相当する粒径を指し、 97%径とは 97 番目に相当する粒径を指す。なお、焼結によって粒子同士が接合しているように見え る場合でも粒界が観察されれば別個の粒子と見なして測定した。  The 3% diameter in the particle size distribution on the film surface refers to the third equivalent particle size when 100 crystal grain sizes are measured by the Branimetric method and arranged in ascending order of particle size. The diameter refers to the particle size corresponding to the 97th. It should be noted that even when particles seemed to be joined by sintering, if a grain boundary was observed, the measurement was performed by regarding the particles as separate particles.
[0103] ガス漏れ試験 [0103] Gas leak test
発電試験前に空気極支持体内部に窒素ガスを流し、空気極内部から 0. IMPaの 圧力を加え、電解質を透過するガス透過量を測定した。これにより電解質がガス透過 性が無レ、膜であるかを評価した。  Before the power generation test, nitrogen gas was flown into the inside of the cathode support, a pressure of IMPA was applied from inside the cathode, and the amount of gas permeated through the electrolyte was measured. This was used to evaluate whether the electrolyte had no gas permeability and was a membrane.
[0104] 発電試験 作製された電池 (燃料極有効面積: 150cm2)を用レ、て発電試験を行った。運転条 件は以下のとおりとした。 [0104] Power generation test A power generation test was performed using the prepared battery (fuel electrode effective area: 150 cm 2 ). The operating conditions were as follows.
燃料:(H + 11 %H O): N = 1 : 2  Fuel: (H + 11% HO): N = 1: 2
2 2 2  2 2 2
酸化剤: Air  Oxidant: Air
発電温度: 800°C  Power generation temperature: 800 ° C
電流密度: 0. 3Acm— 2 Current density: 0.3 Acm— 2
[0105] 久試験 [0105] Hisashi exam
前記発電試験と同一条件下で 1000時間保持した後、電流密度を OAcm— 2に下げ た状態で室温まで温度を下げた後、再度 800°Cまで昇温し同様の条件で 500時間 保持した。再度電流密度を OAcm— 2に下げた状態で室温まで温度を下げた後、 800 °Cまで昇温し同様の条件で 500時間保持した。このようにヒートサイクルを 2回含む合 計 2000時間の耐久試験を実施した。 After holding for 1000 hours under the same conditions as in the power generation test, the temperature was lowered to room temperature with the current density lowered to OAcm- 2, and then the temperature was raised again to 800 ° C and held for 500 hours under the same conditions. After the temperature was lowered to room temperature while the current density was lowered to OAcm- 2 again, the temperature was raised to 800 ° C and maintained for 500 hours under the same conditions. In this way, a total of 2,000 hours of durability tests including two heat cycles were performed.
[0106] 雷解晳表而の組成分析 [0106] Composition analysis of thunder solution
発電試験用電池と同様の条件で作製した電池を用いて電解質の燃料極側表面の マンガンの含有量について調べた。マンガンの含有量は島津製作所製の島津電子 線マイクロアナライザー EPMA— 8705を用いて測定した。測定条件は以下のとおり とした。  Using a battery fabricated under the same conditions as the power generation test battery, the manganese content on the fuel electrode side surface of the electrolyte was examined. The manganese content was measured using a Shimadzu electron beam microanalyzer EPMA-8705 manufactured by Shimadzu Corporation. The measurement conditions were as follows.
加速電圧: 15kW  Accelerating voltage: 15kW
照射電流量: 50nA  Irradiation current: 50nA
分光結晶: LiF  Dispersion crystal: LiF
分析線: ΜηΚ α線(2· 103 A)  Analysis line: ΜηΚ α-ray (2 · 103 A)
[0107] 空隙率 [0107] Porosity
電池を切断し、空気極から燃料極にかけての切断面を鏡面が出るまで研磨をした。 電解質力 燃料極部分について SEMで断面写真を撮り、透明なフィルム上に空隙部 と粒子部を色分けしてトレースした。色分けされたフィルムを画像処理にかけて空隙 部の割合を算出することにより求めた。  The cell was cut, and the cut surface from the air electrode to the fuel electrode was polished until a mirror surface appeared. Electrolyte force A cross-sectional photograph of the fuel electrode was taken with an SEM, and the voids and particles were traced on a transparent film with different colors. It was determined by subjecting the color-coded film to image processing and calculating the ratio of voids.
[0108] 細孔择 [0108] Pores
細孔径は、以下の方法で求めた。電池を切断し、空気極から燃料極にかけての切断 面を鏡面が出るまで研磨をする。空気極から電極反応層部分について SEMで断面 写真を撮り、透明なフィルム上に空隙部と粒子部を色分けしてトレースする。空隙部 の大きさを測定し、例えば空隙が円相当のものはその直径が細孔径となり、正方形 相当のものは 1辺の長さが細孔径として算出する。また、細孔径が 0. 1— 10 z mとは 、前記方法で 100個の細孔径を測定し、径の小さい順番から並べた際の 3番目一 97 番目の範囲で測定されたもので、 50番目の細孔径に相当するものを指す。すなわち 、 3%径ー 97%径の範囲の細孔径で 50%径に相当するものが 0. 1 ΙΟ μ ΐηである ことを意味する。 The pore diameter was determined by the following method. Disconnect the battery and cut from the air electrode to the fuel electrode Polish the surface until a mirror surface appears. From the air electrode to the electrode reaction layer, take a cross-sectional photograph with SEM, and trace the gaps and particles on a transparent film by color coding. The size of the void is measured. For example, when the void is equivalent to a circle, the diameter is the pore diameter, and when the void is equivalent to a square, the length of one side is calculated as the pore diameter. The pore diameter of 0.1 to 10 zm means that the pore diameter was measured in the third to 97th range when 100 pore diameters were measured by the above-described method and arranged in ascending order of diameter. It refers to the one corresponding to the second pore size. That is, it means that the pore diameter in the range of 3% to 97% and corresponding to the 50% diameter is 0.1 0μΐη.
[0109]
Figure imgf000025_0001
(1)空気極支持体の作製
[0109]
Figure imgf000025_0001
(1) Preparation of cathode support
空気極を、 La Sr MnO組成で表される Srを固溶させたランタンマンガナイト  Lanthanum manganite with Sr as solid solution represented by La Sr MnO composition
0. 75 0. 25 3  0.75 0.25 3
とした。共沈法で作製後熱処理して空気電極原料粉末を得た。平均粒子径は、 30 / mであった。押し出し成形法によって円筒状成形体を作製し、さらに 1500°Cで焼 成を行い、空気極支持体とした。  It was. After preparation by a coprecipitation method, a heat treatment was performed to obtain an air electrode raw material powder. The average particle size was 30 / m. A cylindrical molded body was produced by an extrusion molding method, and was further calcined at 1500 ° C to obtain an air electrode support.
[0110] (2)空気側電極反応層の作製 (2) Preparation of air-side electrode reaction layer
空気側電極反応層として、 La Sr Mn Ni O /90mol%ZrO -lOmol  La Sr Mn Ni O / 90mol% ZrO -lOmol as air side electrode reaction layer
0. 75 0. 25 0. 95 0. 05 3 2  0.75 0.25 0.95 0.05 3 2
%Sc O = 50/50を用いた。 La、 Sr、 Mn、 Ni、 Zr、および Scの各々の硝酸塩水 % Sc O = 50/50 was used. Nitrate of La, Sr, Mn, Ni, Zr, and Sc
2 3 twenty three
溶液を用いて、前記組成になるように調合した後、シユウ酸による共沈を行った。さら に熱処理を施し、粒径を制御した原料粉末を得た。平均粒子径は 2 μ ΐηであった。こ の粉末 40重量部を溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2 重量部、分散剤(ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡 剤(ソルビタンセスキォレート) 1重量部とを混合した後、十分攪拌してスラリーを調製 した。このスラリー粘度は lOOmPasであった。このスラリーを、上記空気極支持体(外 径 15mm、肉厚 1. 5mm、有効長 400mm)上にスラリーコート法で成膜した後に 14 00°Cで焼結させた。厚さは 20 μ mであった。  After the solution was prepared so as to have the above composition, coprecipitation with oxalic acid was performed. Further, heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 2 μΐη. 40 parts by weight of this powder are 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. This slurry was formed into a film on the above-mentioned air electrode support (outside diameter: 15 mm, wall thickness: 1.5 mm, effective length: 400 mm) by a slurry coating method, and then sintered at 1400 ° C. The thickness was 20 μm.
[0111] (3)電解質のスラリー作製: (3) Preparation of electrolyte slurry:
電解質は 90mol%ZrO -10mol%Sc Oとした。 Zr、 Scの各々の硝酸塩水溶液 を用いて、前記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱 処理を施し、粒径を制御した原料粉末を得た。平均粒子径は 0. 5 μ ΐηであった。この 粉末 40重量部を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2 重量部、分散剤(ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡 剤(ソルビタンセスキォレート) 1重量部と混合した後、十分攪拌してスラリーを調製し た。このスラリー粘度は 140mPasであった。 The electrolyte was 90 mol% ZrO-10 mol% ScO. Aqueous nitrate solution for each of Zr and Sc And coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0.5 μΐη. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 140 mPas.
[0112] (4)電解質の作製 [0112] (4) Preparation of electrolyte
調製したスラリーを空気側電極反応層上に、スラリーコート法で成膜し、 1400°Cで 焼成した。得られた電解質の厚さは、 30 x mであった。なお、後工程でインターコネ クタ一を成膜する部分についてはマスキングを施し、膜が塗布されないようにしてお いた。  The prepared slurry was formed into a film on the air-side electrode reaction layer by a slurry coating method and fired at 1400 ° C. The thickness of the obtained electrolyte was 30 × m. The portion where the interconnector film is formed in a later step is masked so that the film is not applied.
[0113] (5)燃料側電極反応層のスラリー作製  (5) Preparation of slurry for fuel-side electrode reaction layer
燃料側電極反応層は NiO/90mol%ZrO -10mol%Sc Oとした。 Ni  The fuel-side electrode reaction layer was NiO / 90 mol% ZrO-10 mol% ScO. Ni
2 2 3 、 Zrおよび 2 2 3, Zr and
Sc各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸による 共沈を行った。さらに、熱処理を施し、粒径を制御した後原料を得た。燃料側電極反 応層の組成が、 Ni〇/90mol%Zr〇 _10mol%Sc O = 20/80と、 50/50の 2 After each Sc was prepared to have the above-mentioned composition using a nitrate aqueous solution, coprecipitation with oxalic acid was performed. Further, after heat treatment was performed to control the particle size, a raw material was obtained. The composition of the fuel-side electrode reaction layer is Ni〇 / 90mol% Zr〇_10mol% Sc O = 20/80, 50/50
2 2 3  2 2 3
種類を作製した。平均粒子径はいずれも 0. 5 μ ΐηであった。この粉末 100重量部と 有機溶媒 (エタノール) 500重量部、ノくインダー(ェチルセルロース) 10重量部、分散 剤(ポリオキシエチレンアルキルリン酸エステル) 5重量部、消泡剤(ソルビタンセスォ キォレート) 1重量部、および可塑剤(DBP) 5重量部を混合した後、十分攪拌してス ラリーを調製した。このスラリーの粘度は 70mPasであつた。  Types were made. The average particle diameter was 0.5 μΐη in all cases. 100 parts by weight of this powder, 500 parts by weight of an organic solvent (ethanol), 10 parts by weight of Noku Inda (ethyl cellulose), 5 parts by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing 1 part by weight and 5 parts by weight of plasticizer (DBP), the mixture was sufficiently stirred to prepare a slurry. The viscosity of this slurry was 70 mPas.
[0114] (6)燃料極のスラリー作製: (6) Slurry preparation of fuel electrode:
燃料極は NiOZ90mol%ZrO -10mol%Y O = 70/30とした。 Ni  The fuel electrode was NiOZ90mol% ZrO-10mol% YO = 70/30. Ni
2 2 3 、 Zrおよび Y 各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸による共 沈を行った。さらに熱処理を施し、粒径を制御した後原料を得た。平均粒径は 2 x m であった。この粉末 100重量部と有機溶媒(エタノール) 500重量部、バインダー(ェ チルセルロース) 20重量部、分散剤(ポリオキシエチレンアルキルリン酸エステル) 5 重量部、および消泡剤(ソルビタンセスォキォレート) 1重量部、可塑剤(DBP) 5重量 部を混合した後、十分攪拌してスラリーを調製した。このスラリーの粘度は 250mPas であった。 Each of the aqueous solutions of 222, Zr, and Y was mixed so as to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further, after heat treatment was performed to control the particle size, a raw material was obtained. The average particle size was 2 xm. 100 parts by weight of this powder, 500 parts by weight of an organic solvent (ethanol), 20 parts by weight of a binder (ethyl cellulose), 5 parts by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) 1 part by weight, plasticizer (DBP) 5 parts by weight After mixing the parts, the mixture was sufficiently stirred to prepare a slurry. The viscosity of this slurry was 250 mPas.
[0115] (7)燃料極の作製 (7) Preparation of fuel electrode
上記 (4)で調製した電解質をマスキングし、有効面積が 150cm2になるようにし、前 記燃料側電極反応層スラリーをまずスラリーコート法により、電解質上へ、 ΝΪΟ/90 mol%ZrO— 10mol%Sc〇 (平均粒子径) = 2θΖ80 (0. 5 μ m)、 50/50 (0. 5 The electrolyte prepared in (4) above is masked so that the effective area becomes 150 cm 2, and the slurry on the fuel-side electrode reaction layer is first coated on the electrolyte by a slurry coating method to obtain ΝΪΟ / 90 mol% ZrO—10 mol% Sc〇 (average particle size) = 2θΖ80 (0.5 μm), 50/50 (0.5
2 2 3  2 2 3
μ m)の順に成膜した。膜厚 (焼成後)は 10 μ mであった。この上に、燃料極スラリー をスラリーコート法により成膜した。膜厚 (焼成後)は 90 z mであった。さらに、 1400 °Cで焼成した。  μm). The thickness (after firing) was 10 μm. A fuel electrode slurry was formed thereon by a slurry coating method. The thickness (after firing) was 90 zm. Further, firing was performed at 1400 ° C.
[0116] (8)インターコネクターの作製: (8) Fabrication of interconnector:
インターコネクターの組成を La Ca CrO、で表される Caを固溶させたランタ  La with a Ca solid solution represented by the composition of the interconnector La Ca CrO
0. 80 0. 20 3  0.80 0.20 3
ンクロマイトとした。原料粉末を噴霧熱分解法で作製後、熱処理を施して得た。得ら れた粉末の平均粒子径は 1 μ mであった。該粉末 40重量部を溶媒(エタノール) 100 重量部、バインダー(ェチルセルロース) 2重量部、分散剤(ポリオキシエチレンアル キルリン酸エステル) 1重量部、および消泡剤(ソルビタンセスキォレート) 1重量部とを 混合した後、十分攪拌してスラリーを調製した。このスラリーの粘度は lOOmPasであ つた。スラリーコート法によりインターコネクターを成膜し、 1400°Cで焼成した。焼成 後の厚さは 40 μ mであった。  Chromite. The raw material powder was prepared by spray pyrolysis and then heat-treated. The average particle size of the obtained powder was 1 μm. 40 parts by weight of the powder are 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate) 1 After that, the mixture was mixed sufficiently with the mixture and stirred sufficiently to prepare a slurry. The viscosity of this slurry was 100 mPas. An interconnector was formed by a slurry coating method and fired at 1400 ° C. The thickness after firing was 40 μm.
[0117] 実施例 A1— 2  Example A1-2
電解質の焼成温度が 1360°Cであること以外は実施例 1と同様にして、固体酸化物 形燃料電池を得た。  A solid oxide fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1360 ° C.
[0118] 実施例 Al_3  [0118] Example Al_3
電解質の焼成温度が 1380°Cであること以外は実施例 1と同様にして、燃料電池を 得た。  A fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1380 ° C.
[0119] 実施例 Al_4  [0119] Example Al_4
電解質の焼成温度が 1420°Cであること以外は実施例 1と同様にして、燃料電池を 得た。  A fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1420 ° C.
[0120] 実施例 Al_5 電解質の焼成温度が 1440°Cであること以外は実施例 1と同様にして、燃料電池を 得た。 [0120] Example Al_5 A fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1440 ° C.
[0121] 比較例 A1 - 1  [0121] Comparative example A1-1
電解質の焼成温度が 1340°Cであること以外は実施例 1と同様にして、燃料電池を 得た。  A fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1340 ° C.
[0122] 比較例 A1 - 2  [0122] Comparative example A1-2
電解質の焼成温度が 1460°Cであること以外は実施例 1と同様にして、燃料電池を 得た。  A fuel cell was obtained in the same manner as in Example 1, except that the firing temperature of the electrolyte was 1460 ° C.
[0123] 実施例 2:電解質力 YSZからなる層である燃料電池 電解質の組成が 90mol%Zr〇 _10mol%Y Oであること以外は、実施例 A1— 1と  Example 2 Electrolyte Force A fuel cell which is a layer composed of YSZ. Examples A1-1 and A-1 were the same except that the electrolyte composition was 90 mol% Zr〇_10 mol% YO.
2 2 3  2 2 3
同様にして、燃料電池を得た。  Similarly, a fuel cell was obtained.
[0124] 実施例 A2— 2  Example A2-2
電解質の組成が 90mol%Zr〇 -10mol%Y Oであり、電解質の焼成温度が 135  The composition of the electrolyte is 90 mol% Zr〇-10 mol% YO, and the sintering temperature of the electrolyte is 135 mol%.
2 2 3  2 2 3
0°Cであること以外は実施例 A1— 1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example A1-1 except that the temperature was 0 ° C.
[0125] 実施例 A2— 3 Example A2—3
電解質の組成が 90mol%Zr〇 -10mol%Y Oであり、電解質の焼成温度が 138  The composition of the electrolyte is 90 mol% Zr〇-10 mol% YO, and the firing temperature of the electrolyte is 138%.
2 2 3  2 2 3
0°Cであること以外は実施例 A1— 1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example A1-1 except that the temperature was 0 ° C.
[0126] 実施例 A2— 4 Example A2—4
電解質の組成が 90mol%Zr〇 -10mol%Y Oであり、電解質の焼成温度が 141  The composition of the electrolyte is 90 mol% Zr〇 -10 mol% YO, and the sintering temperature of the electrolyte is 141 mol%.
2 2 3  2 2 3
0°Cであること以外は実施例 A1— 1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example A1-1 except that the temperature was 0 ° C.
[0127] 実施例 A2_5 [0127] Example A2_5
電解質の組成が 90molQ/。Zr〇 -10mol%Y Oであり、電解質の焼成温度が 142  The composition of the electrolyte is 90molQ /. Zr〇 -10 mol% Y O, and the sintering temperature of the electrolyte was 142
2 2 3  2 2 3
0°Cであること以外は実施例 A1— 1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example A1-1 except that the temperature was 0 ° C.
[0128] 比較例 A2—1 [0128] Comparative example A2-1
電解質の組成が 90molQ/。Zr〇 -10mol%Y Oであり、電解質の焼成温度が 133  The composition of the electrolyte is 90molQ /. Zr〇 -10 mol% Y O, and the sintering temperature of the electrolyte is 133
2 2 3  2 2 3
0°Cであること以外は実施例 A1— 1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example A1-1 except that the temperature was 0 ° C.
[0129] 比較例 A2—2 電解質の組成が 90mol%Zr〇 -10mol%Y Oであり、電解質の焼成温度が 144 [0129] Comparative Example A2-2 The composition of the electrolyte is 90 mol% Zr〇-10 mol% YO, and the firing temperature of the electrolyte is
2 2 3  2 2 3
0°Cであること以外は実施例 Al— 1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example Al-1, except that the temperature was 0 ° C.
[0130] 実施例 3:電解質が SSZZYSZからなる層である燃料電池 Example 3: Fuel cell in which the electrolyte is a layer composed of SSZZYSZ
実施例 A3_l  Example A3_l
電解質の組成が 90mol%Zr〇 -5mol%Sc O -5mol%Y Oであること以外は  Except that the composition of the electrolyte is 90 mol% Zr〇 -5 mol% ScO -5 mol% YO
2 2 3 2 3  2 2 3 2 3
実施例 A1-1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example A1-1.
[0131] 実施例 A3_2 [0131] Example A3_2
電解質の組成が、 90mol%ZrO -5mol%Sc O -5mol%Y Oであり、電解質の  The composition of the electrolyte is 90 mol% ZrO -5 mol% ScO -5 mol% YO,
2 2 3 2 3  2 2 3 2 3
焼成温度が 1350°Cであること以外は実施例 Al-1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example Al-1, except that the firing temperature was 1350 ° C.
[0132] 実施例 A3_3 [0132] Example A3_3
電解質の組成が、 90mol%ZrO -5mol%Sc O -5mol%Y Oであり、電解質の  The composition of the electrolyte is 90 mol% ZrO -5 mol% ScO -5 mol% YO,
2 2 3 2 3  2 2 3 2 3
焼成温度が 1380°Cであること以外は実施例 Al-1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example Al-1, except that the firing temperature was 1380 ° C.
[0133] 実施例 A3— 4 Example A3—4
電解質の組成が、 90mol%ZrO _5mol%Sc O _5mol%Y Oであり、電解質の  The composition of the electrolyte is 90 mol% ZrO_5 mol% ScO_5 mol% YO,
2 2 3 2 3  2 2 3 2 3
焼成温度が 1420°Cであること以外は実施例 Al— 1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example Al-1, except that the firing temperature was 1420 ° C.
[0134] 実施例 A3— 5 Example A3—5
電解質の組成が、 90mol%ZrO _5mol%Sc O _5mol%Y Oであり、電解質の  The composition of the electrolyte is 90 mol% ZrO_5 mol% ScO_5 mol% YO,
2 2 3 2 3  2 2 3 2 3
焼成温度が 1430°Cであること以外は実施例 Al-1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example Al-1, except that the firing temperature was 1,430 ° C.
[0135] 以上のようにして得られた燃料電池について、粒度分布、ガス漏れ試験、発電試験 、および耐久試験を行った。その結果は、以下の表示に示される通りであった。 [0135] The fuel cell obtained as described above was subjected to a particle size distribution, a gas leak test, a power generation test, and a durability test. The results were as shown in the following display.
[表 1]  [table 1]
3 %径 9 7%径 平均結晶粒径 Mn量 ガス透過量 3% diameter 9 7% diameter Average crystal grain size Mn amount Gas permeation amount
(j m) ( m) (wt %) ( xlO' ^ms- 'Pa' 1) 実施例 A 1 3 8 5 0.9 3.5 実施例 Aト 2 3 5 4 0.3 25.5 実施例 A1-3 3 7 4.5 0.6 12.7 実施例 A 1-4 3 12 7.5 1.5 3.0 実施例 A 1-5 4 20 12 2.9 3.7 比較例 Al-1 1 4 2 0.1 320 比較例 A1-2 5 26 15 4.3 5.5 [表 2]
Figure imgf000030_0001
(jm) (m) (wt%) (xlO '^ ms-' Pa ' 1 ) Example A 1 3 8 5 0.9 3.5 Example A 2 3 5 4 0.3 25.5 Example A1-3 3 7 4.5 0.6 12.7 Example A 1-4 3 12 7.5 1.5 3.0 Example A 1-5 4 20 12 2.9 3.7 Comparative example Al-1 1 4 2 0.1 320 Comparative example A1-2 5 26 15 4.3 5.5 [Table 2]
Figure imgf000030_0001
[表 3]
Figure imgf000030_0002
[Table 3]
Figure imgf000030_0002
[表 4] [Table 4]
初期電位 1000時間後 1500時間後 2000時間後 (V) (V) (V) (V) 実施例 A2- 1 0.58 0.58 0.58 0.58 実施例 A2-2 0.57 0.57 0.57 0.57 実施例 A2-3 0.58 0.58 0.58 0.58 実施例 A2-4 0.58 0.58 0.58 0.58 実施例 A2-5 0.57 0.57 0.57 0.57 比較例 A2- 1 0.42 0.41 0.40 0.39 比較例 A2- 2 0.56 0.56 0.55 0.54 Initial potential After 1000 hours After 1500 hours After 2000 hours (V) (V) (V) (V) Example A2- 1 0.58 0.58 0.58 0.58 Example A2-2 0.57 0.57 0.57 0.57 Example A2-3 0.58 0.58 0.58 0.58 Example A2-4 0.58 0.58 0.58 0.58 Example A2-5 0.57 0.57 0.57 0.57 Comparative example A2- 1 0.42 0.41 0.40 0.39 Comparative example A2- 2 0.56 0.56 0.55 0.54
[表 5] [Table 5]
Figure imgf000031_0001
Figure imgf000031_0001
[表 6] [Table 6]
ネ脚雷 1000時間後 丄 ¾5ς, l¾l After 1000 hours 脚 ¾5ς, l¾l
( V) ( V) ( V ) ( V)  (V) (V) (V) (V)
実施例 A3- 1 0.68 0.68 0.68 0.68 実施例 A3 -2 0.66 0.66 0 .66 0. 66 実施例 A3 - 3 0.67 0.67 0.67 0.67 実施例 A3-4 0.68 0.68 0.68 0.68 実施例 A3 -5 0.67 0.67 0.67 0.67 比較例 A3- 1 0.46 0.45 0.44 0.43 比較例 A3 -2 0.66 0.66 0.65 0.64  Example A3-1 0.68 0.68 0.68 0.68 Example A3 -2 0.66 0.66 0.66 0.66 Example A3-3 0.67 0.67 0.67 0.67 Example A3-4 0.68 0.68 0.68 0.68 Example A3 -5 0.67 0.67 0.67 0.67 Compare Example A3-1 0.46 0.45 0.44 0.43 Comparative example A3 -2 0.66 0.66 0.65 0.64
[0136] 実施例 A4 :電解質として、空気極側に SSZからなる層、燃料極側に YSZからなる層 を有する燃料電池 Example A4: Fuel cell having, as an electrolyte, a layer made of SSZ on the air electrode side and a layer made of YSZ on the fuel electrode side
実施例 A4 - 1  Example A4-1
空気側電極反応層上に、 90mol%ZrO _10mol%Sc Oである SSZからなる層を スラリーコート法で成膜した。この上に、 90mol%ZrO -10mol%Y〇である YSZ 力 なる層をスラリーコート法で成膜した後、 1400°Cで焼成した。得られた電解質の 厚さは、 30 μ m (SSZからなる層: 15 μ m、 YSZからなる層: 15 / m)であった。それ 以外は実施例 A1— 1と同様にして、燃料電池を得た。  On the air-side electrode reaction layer, a layer composed of SSZ of 90 mol% ZrO — 10 mol% ScO was formed by a slurry coating method. A YSZ layer of 90 mol% ZrO -10 mol% Y〇 was formed thereon by a slurry coating method, and then fired at 1400 ° C. The thickness of the obtained electrolyte was 30 μm (layer made of SSZ: 15 μm, layer made of YSZ: 15 / m). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0137] 実施例 A4— 2 Example A4-2
空気側電極反応層上に、 90mol%ZrO 一 10mol%Sc〇である SSZからなる層を スラリーコート法で成膜した。この上に、 90mol%ZrO -10mol%Y Oである YSZ 力 なる層をスラリーコート法で成膜した後、 1350°Cで焼成した。得られた電解質の 厚さは、 SO z n^SSZ力らなる層: 15 μ πι、 YSZからなる層: 15 μ m)であった。それ 以外は実施例 A1— 1と同様にして、燃料電池を得た。  On the air-side electrode reaction layer, a layer composed of 90 mol% ZrO and 10 mol% Sc〇 SSZ was formed by a slurry coating method. A YSZ layer of 90 mol% ZrO-10 mol% Y 2 O was formed thereon by a slurry coating method, and then fired at 1350 ° C. The thickness of the obtained electrolyte was a layer composed of SOzn ^ SSZ force: 15 μπι, a layer composed of YSZ: 15 μm). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0138] 実施例 A4— 3 Example A4-3
空気側電極反応層上に、 90mol%ZrO -10mol%Sc〇である SSZからなる層を スラリーコート法で成膜した。この上に、 90mol%ZrO -10mol%Y〇である YSZ 力 なる層をスラリーコート法で成膜した後、 1380°Cで焼成した。得られた電解質の 厚さは、 30 /1 111 (332カらなる層:15 111、 YSZからなる層: 15 /i m)であった。それ 以外は実施例 A1— 1と同様にして、燃料電池を得た。 On the air-side electrode reaction layer, a layer composed of SSZ of 90 mol% ZrO -10 mol% Sc〇 was formed by a slurry coating method. A YSZ layer of 90 mol% ZrO -10 mol% Y〇 was formed thereon by a slurry coating method, and then fired at 1380 ° C. Of the resulting electrolyte The thickness was 30/1111 (332 layers: 15111, YSZ layer: 15 / im). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0139] 実施例 A4— 4 Example A4—4
空気側電極反応層上に、 90mol%ZrO -10mol%Sc〇である SSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO -10 mol% Sc〇 SSZ
2 2 3  2 2 3
スラリーコート法で成膜した。この上に、 90mol%ZrO -10mol%Y〇である YSZ  A film was formed by a slurry coating method. On top of this, 90 mol% ZrO -10 mol% Y〇 YSZ
2 2 3  2 2 3
力 なる層をスラリーコート法で成膜した後、 1415°Cで焼成した。得られた電解質の 厚さは、 SO z n^SSZ力らなる層: 15 x m、 YSZからなる層: 15 μ m)であった。それ 以外は実施例 A1— 1と同様にして、燃料電池を得た。  After forming a strong layer by a slurry coating method, it was baked at 1415 ° C. The thickness of the obtained electrolyte was a layer composed of SOzn ^ SSZ force: 15 x m, and a layer composed of YSZ: 15 µm). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0140] 実施例 A4_5 [0140] Example A4_5
空気側電極反応層上に、 90mol%ZrO -10mol%Sc〇である SSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO -10 mol% Sc〇 SSZ
2 2 3  2 2 3
スラリーコート法で成膜した。この上に、 90mol%ZrO -10mol%Y〇である YSZ  A film was formed by a slurry coating method. On top of this, 90 mol% ZrO -10 mol% Y〇 YSZ
2 2 3  2 2 3
力 なる層をスラリーコート法で成膜した後、 1425°Cで焼結させた。得られた電解質 の厚さは、 30 111 (332カらなる層:15 /1 111、 YSZからなる層: 15 μ m)であった。そ れ以外は実施例 A1— 1と同様にして、燃料電池を得た。  After forming a strong layer by a slurry coating method, it was sintered at 1425 ° C. The thickness of the obtained electrolyte was 30 111 (a layer composed of 332: 15/1111, a layer composed of YSZ: 15 μm). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0141] 比較例 A4— 1 [0141] Comparative example A4-1
空気側電極反応層上に、 90mol%ZrO 一 10mol%Sc〇である SSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO and 10 mol% Sc
2 2 3  2 2 3
スラリーコート法で成膜した。この上に、 90mol%ZrO _10mol%Y〇である YSZ  A film was formed by a slurry coating method. On top of this, 90 mol% ZrO _ 10 mol% Y〇 YSZ
2 2 3  2 2 3
力 なる層をスラリーコート法で成膜した後、 1330°Cで焼成した。得られた電解質の 厚さは、 30 /1 111 (332カらなる層:15 111、 YSZからなる層: 15 /i m)であった。それ 以外は実施例 A1— 1と同様にして、燃料電池を得た。  After forming a strong layer by the slurry coating method, it was baked at 1330 ° C. The thickness of the obtained electrolyte was 30/1 111 (a layer composed of 332: 15 111, a layer composed of YSZ: 15 / im). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0142] 比較例 A4— 2 [0142] Comparative example A4-2
空気側電極反応層上に、 90mol%ZrO -10mol%Sc〇である SSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO -10 mol% Sc〇 SSZ
2 2 3  2 2 3
スラリーコート法で成膜した。この上に、 90mol%ZrO -10mol%Y〇である YSZ  A film was formed by a slurry coating method. On top of this, 90 mol% ZrO -10 mol% Y〇 YSZ
2 2 3  2 2 3
力 なる層をスラリーコート法で成膜した後、 1440°Cで焼結させた。得られた電解質 の厚さは、 30 x m (SSZ力、らなる層: 15 μ πι、 YSZからなる層: 15 μ m)であった。そ れ以外は実施例 A1— 1と同様にして、燃料電池を得た。  After forming a strong layer by the slurry coating method, it was sintered at 1440 ° C. The thickness of the obtained electrolyte was 30 × m (SSZ force, layer composed of 15 μπι, layer composed of YSZ: 15 μm). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0143] 以上のようにして得られた燃料電池について、粒度分布、ガス漏れ試験、発電試験 、および耐久試験を行った。その結果は、以下の表示に示される通りであった。 [表 7] [0143] The fuel cell obtained as described above was subjected to a particle size distribution, a gas leak test, a power generation test, and a durability test. The results were as shown in the following display. [Table 7]
Figure imgf000034_0001
Figure imgf000034_0001
[¾8] [¾8]
Figure imgf000034_0002
Figure imgf000034_0002
[0144] 実施例 A5:電解質として、空気極側に YSZからなる層、燃料極側に SSZからなる層 を有する燃料電池 Example A5: As an electrolyte, a fuel cell having a layer made of YSZ on the air electrode side and a layer made of SSZ on the fuel electrode side
実施例 A5 - 1  Example A5-1
空気側電極反応層上に、 90mol%ZrO 一 10mol%Y〇である YSZからなる層を  On the air-side electrode reaction layer, a layer composed of 90 mol% ZrO and 10 mol% Y
2 2 3  2 2 3
スラリーコート法で成膜した。この上に、 90mol%ZrO _10mol%Sc〇である SSZ  A film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc〇 SSZ
2 2 3 力もなる層をスラリーコート法で成膜した後、 1400°Cで焼成した。得られた電解質の 厚さは、 30 111 (丫32カ、らなる層:15 111、 SSZからなる層: 15 μ m)であった。それ 以外は実施例 A1— 1と同様にして、燃料電池を得た。  After a layer having a strength of 2 23 was formed by the slurry coating method, it was baked at 1400 ° C. The thickness of the obtained electrolyte was 30 111 (丫 32, a layer composed of 15111, a layer composed of SSZ: 15 μm). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0145] 実施例 A5— 2 空気側電極反応層上に、 90mol%ZrO 一 10mol%Y〇である YSZからなる層を Example A5-2 On the air-side electrode reaction layer, a layer composed of 90 mol% ZrO and 10 mol% Y
2 2 3  2 2 3
スラリーコート法で成膜した。この上に、 90mol%ZrO _10mol%Sc〇である SSZ  A film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc〇 SSZ
2 2 3 力 なる層をスラリーコート法で成膜した後、 1350°Cで焼成した。得られた電解質の 厚さは、 30〃111 (丫32カ、らなる層:15〃111、 SSZからなる層: 15 μ m)であった。それ 以外は実施例 A1— 1と同様にして、燃料電池を得た。  After forming a layer having a high strength by a slurry coating method, it was baked at 1350 ° C. The thickness of the obtained electrolyte was 30〃111 (丫 32, a layer composed of 15〃111, a layer composed of SSZ: 15 μm). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0146] 実施例 A5_3 [0146] Example A5_3
空気側電極反応層上に、 90mol%ZrO -10mol%Y〇である YSZ力、らなる層を  On the air-side electrode reaction layer, a layer consisting of a 90 mol% ZrO -10 mol% Y
2 2 3  2 2 3
スラリーコート法で成膜した。この上に、 90mol%ZrO _10mol%Sc〇である SSZ  A film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc〇 SSZ
2 2 3 力 なる層をスラリーコート法で成膜した後、 1380°Cで焼成した。得られた電解質の 厚さは、 30〃111 (丫32カ、らなる層:15〃111、 SSZからなる層: 15 μ m)であった。それ 以外は実施例 A1— 1と同様にして、燃料電池を得た。  After forming a layer having a high strength by a slurry coating method, it was baked at 1380 ° C. The thickness of the obtained electrolyte was 30〃111 (丫 32, a layer composed of 15〃111, a layer composed of SSZ: 15 μm). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0147] 実施例 A5_4 [0147] Example A5_4
空気側電極反応層上に、 90mol%ZrO 一 10mol%Y〇である YSZからなる層を  On the air-side electrode reaction layer, a layer composed of 90 mol% ZrO and 10 mol% Y
2 2 3  2 2 3
スラリーコート法で成膜した。この上に、 90mol%ZrO _10mol%Sc〇である SSZ  A film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc〇 SSZ
2 2 3 力 なる層をスラリーコート法で成膜した後、 1420°Cで焼成した。得られた電解質の 厚さは、 30 /1 111 (丫32カらなる層:15 /1 111、 SSZからなる層: 15 /i m)であった。それ 以外は実施例 A1— 1と同様にして、燃料電池を得た。  After forming a layer having a high strength by a slurry coating method, it was baked at 1420 ° C. The thickness of the obtained electrolyte was 30/1111 (層 32 layers: 15/1111, SSZ layer: 15 / im). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0148] 実施例 A5— 5 Example A5—5
空気側電極反応層上に、 90mol%ZrO 一 10mol%Y〇である YSZからなる層を  On the air-side electrode reaction layer, a layer composed of 90 mol% ZrO and 10 mol% Y
2 2 3  2 2 3
スラリーコート法で成膜した。この上に、 90mol%ZrO _10mol%Sc〇である SSZ  A film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc〇 SSZ
2 2 3 力 なる層をスラリーコート法で成膜した後、 1430°Cで焼成した。得られた電解質の 厚さは、 30〃111 (丫32カ、らなる層:15〃111、 SSZからなる層: 15 μ m)であった。それ 以外は実施例 A1— 1と同様にして、燃料電池を得た。  After forming a layer having a high strength by a slurry coating method, it was baked at 1430 ° C. The thickness of the obtained electrolyte was 30〃111 (丫 32, a layer composed of 15〃111, a layer composed of SSZ: 15 μm). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0149] 比較例 A5—1 [0149] Comparative Example A5-1
空気側電極反応層上に、 90mol%ZrO -10mol%Y〇である YSZ力、らなる層を  On the air-side electrode reaction layer, a layer consisting of a 90 mol% ZrO -10 mol% Y
2 2 3  2 2 3
スラリーコート法で成膜した。この上に、 90mol%ZrO _10mol%Sc〇である SSZ  A film was formed by a slurry coating method. On top of this, 90mol% ZrO _10mol% Sc〇 SSZ
2 2 3 力 なる層をスラリーコート法で成膜した後、 1330°Cで焼成した。得られた電解質の 厚さは、 30〃111 (丫32カ、らなる層:15〃111、 SSZからなる層: 15 μ m)であった。それ 以外は実施例 Al— 1と同様にして、燃料電池を得た。 After forming a layer having a high strength by a slurry coating method, it was baked at 1330 ° C. The thickness of the obtained electrolyte was 30〃111 (丫 32, a layer composed of 15〃111, a layer composed of SSZ: 15 μm). It A fuel cell was obtained in the same manner as in Example Al-1, except for the above.
[0150] 比較例 A5— 2 [0150] Comparative Example A5-2
空気側電極反応層上に、 90mol%ZrO -10mol%Y Oである YSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO-10 mol% YO
2 2 3  2 2 3
スラリーコート法で成膜した。この上に、 90mol%ZrO _10mol%Sc Oである SSZ  A film was formed by a slurry coating method. On top of this, SSZ which is 90mol% ZrO _10mol% Sc O
2 2 3 力もなる層をスラリーコート法で成膜した後、 1450°Cで焼成した。得られた電解質の 厚さは、 30〃111(丫32カ、らなる層:15〃111、 SSZからなる層: 15 μ m)であった。それ 以外は実施例 A1— 1と同様にして、燃料電池を得た。  After a layer having a strength of 2 23 was formed by the slurry coating method, it was baked at 1450 ° C. The thickness of the obtained electrolyte was 30〃111 (丫 32, a layer composed of 15〃111, a layer composed of SSZ: 15 μm). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0151] 以上のようにして得られた燃料電池について、粒度分布、ガス漏れ試験、発電試験 、および耐久試験を行った。その結果は、以下の表示に示される通りであった。 [0151] The fuel cell obtained as described above was subjected to a particle size distribution, a gas leakage test, a power generation test, and a durability test. The results were as shown in the following display.
[表 9]  [Table 9]
Figure imgf000036_0001
Figure imgf000036_0001
[表 10] 初期電位 1000時間後 1500時間後 2000時間後 [Table 10] Initial potential After 1000 hours After 1500 hours After 2000 hours
(V) (V) (V) (V) 実施例 A5-1 0.67 0.67 0.67 0.67 実施例 A5-2 0.66 0.66 0.66 0.66 実施例 A5-3 0.67 0.67 0.67 0.67 実施例 A5-4 0.67 0.67 0.67 0.67 実施例 A5-5 0.66 0.66 0.66 0.66 比較例 A5-1 0.45 0.44 0.43 0.42 比較例 A5-2 0.65 0.65 0.64 0.63 [0152] 実施例 A6 :電解質が、三層構造を有する燃料電池 (V) (V) (V) (V) Example A5-1 0.67 0.67 0.67 0.67 Example A5-2 0.66 0.66 0.66 0.66 Example A5-3 0.67 0.67 0.67 0.67 Example A5-4 0.67 0.67 0.67 0.67 Example A5-5 0.66 0.66 0.66 0.66 Comparative example A5-1 0.45 0.44 0.43 0.42 Comparative example A5-2 0.65 0.65 0.64 0.63 [0152] Example A6: Fuel cell in which the electrolyte has a three-layer structure
実施例 A6 - 1  Example A6-1
空気側電極反応層上に、 90mol%ZrO 10mol%Sc〇である SSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO 10 mol% Sc〇 SSZ
2 2 3  2 2 3
スラリーコート法で成膜した。この上に 90mol%ZrO _10mol%Y〇である YSZ力、  A film was formed by a slurry coating method. On top of this, the YSZ force, which is 90 mol% ZrO _ 10 mol% Y〇,
2 2 3  2 2 3
らなる層をスラリーコート法で成膜した。さらに、 90mol%ZrO -10mol%Sc Oであ  This layer was formed by a slurry coating method. In addition, 90 mol% ZrO -10 mol% ScO
2 2 3 る SSZからなる層をスラリーコート法で成膜した後、 1400°Cで焼成した。得られた電 解質の厚さは、 30 μ m (空気側の SSZからなる層: 10 μ m、 YSZからなる層: 10 μ m 、燃料極側 SSZからなる層: 10 μ m)であった。それ以外は実施例 A1— 1と同様にし て、燃料電池を得た。  After a layer of SSZ was formed by a slurry coating method, it was baked at 1400 ° C. The thickness of the obtained electrolyte was 30 μm (layer composed of SSZ on the air side: 10 μm, layer composed of YSZ: 10 μm, layer composed of SSZ on the fuel electrode side: 10 μm). Was. Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0153] 実施例 A6_2 [0153] Example A6_2
空気側電極反応層上に、 90mol%ZrO -10mol%Sc〇である SSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO -10 mol% Sc〇 SSZ
2 2 3  2 2 3
スラリーコート法で成膜した。この上に 90mol%ZrO _10mol%Y〇である YSZ力、  A film was formed by a slurry coating method. On top of this, the YSZ force, which is 90 mol% ZrO _ 10 mol% Y〇,
2 2 3  2 2 3
らなる層をスラリーコート法で成膜した。さらに、 90mol%ZrO _10mol%Sc Oであ  This layer was formed by a slurry coating method. In addition, 90 mol% ZrO_10 mol% ScO
2 2 3 る SSZからなる層をスラリーコート法で成膜した後、 1360°Cで焼成した。得られた電 解質の厚さは、 30 μ m (空気側の SSZからなる層: 10 μ m、 YSZからなる層: 10 /i m 、燃料極側 SSZからなる層: 10 / m)であった。それ以外は実施例 A1-1と同様にし て、燃料電池を得た。  After a layer of SSZ was formed by the slurry coating method, it was baked at 1360 ° C. The thickness of the obtained electrolyte was 30 μm (layer composed of SSZ on the air side: 10 μm, layer composed of YSZ: 10 / im, layer composed of SSZ on the fuel electrode side: 10 / m). Was. Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0154] 実施例 A6— 3 Example A6-3
空気側電極反応層上に、 90mol%ZrO 10mol%Sc〇である SSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO 10 mol% Sc〇 SSZ
2 2 3  2 2 3
スラリーコート法で成膜した。この上に 90mol%ZrO _10mol%Y〇である YSZか  A film was formed by a slurry coating method. On top of this, 90 mol% ZrO _ 10 mol% Y〇
2 2 3  2 2 3
らなる層をスラリーコート法で成膜した。さらに、 90mol%ZrO _10mol%Sc Oであ  This layer was formed by a slurry coating method. In addition, 90 mol% ZrO_10 mol% ScO
2 2 3 る SSZからなる層をスラリーコート法で成膜した後、 1380°Cで焼成した。得られた電 解質の厚さは、 30 μ m (空気側の SSZからなる層: 10 μ m、 YSZからなる層: 10 μ m 、燃料極側 SSZからなる層: 10 μ m)であった。それ以外は実施例 A1— 1と同様にし て、燃料電池を得た。  After a layer of SSZ was formed by the slurry coating method, it was baked at 1380 ° C. The thickness of the obtained electrolyte was 30 μm (layer composed of SSZ on the air side: 10 μm, layer composed of YSZ: 10 μm, layer composed of SSZ on the fuel electrode side: 10 μm). Was. Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0155] 実施例 A6_4 Example A6_4
空気側電極反応層上に、 90mol%ZrO -10mol%Sc〇である SSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO -10 mol% Sc〇 SSZ
2 2 3  2 2 3
スラリーコート法で成膜した。この上に 90mol%ZrO _10mol%Y〇である YSZ力、  A film was formed by a slurry coating method. On top of this, the YSZ force, which is 90 mol% ZrO _ 10 mol% Y〇,
2 2 3 らなる層をスラリーコート法で成膜した。さらに、 90mol%ZrO _10mol%Sc Oであ 2 2 3 This layer was formed by a slurry coating method. In addition, 90 mol% ZrO_10 mol% ScO
2 2 3 る SSZからなる層をスラリーコート法で成膜した後、 1420°Cで焼成した。得られた電 解質の厚さは、 30 μ m (空気側の SSZからなる層: 10 μ m、 YSZからなる層: 10 /i m 、燃料極側 SSZからなる層: 10 μ m)であった。それ以外は実施例 A1— 1と同様にし て、燃料電池を得た。  After a layer made of SSZ was formed by the slurry coating method, it was baked at 1420 ° C. The thickness of the obtained electrolyte was 30 μm (the layer composed of SSZ on the air side: 10 μm, the layer composed of YSZ: 10 / im, the layer composed of SSZ on the fuel electrode side: 10 μm). Was. Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0156] 実施例 A6_5 [0156] Example A6_5
空気側電極反応層上に、 90mol%ZrO -10mol%Sc〇である SSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO -10 mol% Sc〇 SSZ
2 2 3  2 2 3
スラリーコート法で成膜した。この上に 90mol%ZrO _10mol%Y〇である YSZ力、  A film was formed by a slurry coating method. On top of this, the YSZ force, which is 90 mol% ZrO _ 10 mol% Y〇,
2 2 3  2 2 3
らなる層をスラリーコート法で成膜した。さらに、 90mol%ZrO -10mol%Sc Oであ  This layer was formed by a slurry coating method. In addition, 90 mol% ZrO -10 mol% ScO
2 2 3 る SSZからなる層をスラリーコート法で成膜した後、 1440°Cで焼成した。得られた電 解質の厚さは、 30 μ m (空気側の SSZからなる層: 10 μ m、 YSZからなる層: 10 μ m 、燃料極側 SSZからなる層: 10 μ m)であった。それ以外は実施例 A1— 1と同様にし て、燃料電池を得た。  After a layer of SSZ was formed by the slurry coating method, it was baked at 1440 ° C. The thickness of the obtained electrolyte was 30 μm (layer composed of SSZ on the air side: 10 μm, layer composed of YSZ: 10 μm, layer composed of SSZ on the fuel electrode side: 10 μm). Was. Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0157] 比較例 A6— 1 [0157] Comparative Example A6-1
空気側電極反応層上に、 90mol%ZrO 一 10mol%Sc〇である SSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO and 10 mol% Sc
2 2 3  2 2 3
スラリーコート法で成膜した。この上に 90mol%ZrO _10mol%Y〇である YSZか  A film was formed by a slurry coating method. On top of this, 90 mol% ZrO _ 10 mol% Y〇
2 2 3  2 2 3
らなる層をスラリーコート法で成膜した。さらに、 90mol%ZrO _10mol%Sc Oであ  This layer was formed by a slurry coating method. In addition, 90 mol% ZrO_10 mol% ScO
2 2 3 る SSZからなる層をスラリーコート法で成膜した後、 1330°Cで焼結させた。得られた 電解質の厚さは、 30 μ m (空気側の SSZからなる層: 10 μ m、 YSZからなる層: 10 /i m、燃料極側 SSZからなる層: 10 μ ΐη)であった。それ以外は実施例 A1-1と同様に して、燃料電池を得た。  After a layer made of SSZ was formed by a slurry coating method, it was sintered at 1330 ° C. The thickness of the obtained electrolyte was 30 μm (the layer composed of SSZ on the air side: 10 μm, the layer composed of YSZ: 10 / im, the layer composed of SSZ on the fuel electrode side: 10 μΐη). Otherwise, in the same manner as in Example A1-1, a fuel cell was obtained.
[0158] 比較例 A6—2 [0158] Comparative Example A6-2
空気側電極反応層上に、 90mol%ZrO -10mol%Sc〇である SSZからなる層を  On the air-side electrode reaction layer, a layer consisting of 90 mol% ZrO -10 mol% Sc〇 SSZ
2 2 3  2 2 3
スラリーコート法で成膜した。この上に 90mol%ZrO _10mol%Y〇である YSZ力、  A film was formed by a slurry coating method. On top of this, the YSZ force, which is 90 mol% ZrO _ 10 mol% Y〇,
2 2 3  2 2 3
らなる層をスラリーコート法で成膜した。さらに、 90mol%ZrO -10mol%Sc Oであ  This layer was formed by a slurry coating method. In addition, 90 mol% ZrO -10 mol% ScO
2 2 3 る SSZからなる層をスラリーコート法で成膜した後、 1450°Cで焼結させた。得られた 電解質の厚さは、 30 μ m (空気側の SSZからなる層: 10 μ m、 YSZからなる層: 10 μ m、燃料極側 SSZからなる層: 10 x m)であった。それ以外は実施例 A1—1と同様に して、燃料電池を得た。 After a layer of SSZ was formed by the slurry coating method, it was sintered at 1450 ° C. The thickness of the obtained electrolyte was 30 μm (layer composed of SSZ on the air side: 10 μm, layer composed of YSZ: 10 μm, layer composed of SSZ on the fuel electrode side: 10 × m). Otherwise, as in Example A1-1 Thus, a fuel cell was obtained.
[0159] 以上のようにして得られた燃料電池について、粒度分布、ガス漏れ試験、発電試験 、および耐久試験を行った。その結果は、以下の表示に示される通りであった。  The fuel cell obtained as described above was subjected to a particle size distribution, a gas leak test, a power generation test, and a durability test. The results were as shown in the following display.
11]  11]
Figure imgf000039_0002
Figure imgf000039_0002
[表 12] [Table 12]
Figure imgf000039_0003
Figure imgf000039_0003
[0160] 実施例 A7 :電解質膜の膜厚についてExample A7: Regarding thickness of electrolyte membrane
Figure imgf000039_0001
Figure imgf000039_0001
電解質膜の組成が 90mol%Zr〇 -5mol%Sc O -5mol%Y Oであり、 1420°C  The composition of the electrolyte membrane is 90 mol% Zr〇 -5 mol% ScO -5 mol% YO, 1420 ° C
2 2 3 2 3  2 2 3 2 3
で焼結させ、厚さが 8 z mであった以外は実施例 A1— 1と同様にして、燃料電池を得 た。  And a fuel cell was obtained in the same manner as in Example A1-1, except that the thickness was 8 zm.
[0161] 実施例 A7_2 電解質膜の組成が 90mol%Zr〇 -5mol%Sc O -5mol%Y Oであり、 1420°C [0161] Example A7_2 The composition of the electrolyte membrane is 90 mol% Zr〇-5 mol% ScO-5 mol% YO, 1420 ° C
2 2 3 2 3  2 2 3 2 3
で焼結させ、厚さが 10 / mであった以外は実施例 Al-1と同様にして、燃料電池を 得た。  And a fuel cell was obtained in the same manner as in Example Al-1, except that the thickness was 10 / m.
[0162] 実施例 A7— 3  [0162] Example A7-3
電解質膜の組成が 90mol%Zr〇 -5mol%Sc〇 -5mol%Y Oであり、 1420°C  The composition of the electrolyte membrane is 90 mol% Zr〇 -5 mol% Sc〇 -5 mol% YO, 1420 ° C
2 2 3 2 3  2 2 3 2 3
で焼結させ、厚さが 15 z mであった以外は実施例 A1— 1と同様にして、燃料電池を 得た。  And a fuel cell was obtained in the same manner as in Example A1-1, except that the thickness was 15 zm.
[0163] 実施例 A7— 4  [0163] Example A7-4
電解質膜の組成が 90mol%Zr〇 -5mol%Sc O -5mol%Y〇であり、 1420°C  The composition of the electrolyte membrane is 90 mol% Zr〇 -5 mol% ScO -5 mol% Y〇, 1420 ° C
2 2 3 2 3  2 2 3 2 3
で焼結させ、厚さが 30 z mであった以外は実施例 Al-1と同様にして、燃料電池を 得た。  And a fuel cell was obtained in the same manner as in Example Al-1, except that the thickness was 30 zm.
[0164] 実施例 A7— 5  Example A7-5
電解質膜の組成が 90mol%Zr〇 -5mol%Sc O -5mol%Y Oであり、 1420°C  The composition of the electrolyte membrane is 90 mol% Zr〇 -5 mol% ScO -5 mol% YO, 1420 ° C
2 2 3 2 3  2 2 3 2 3
で焼結させ、厚さが 50 / mであった以外は実施例 A1— 1と同様にして、燃料電池を 得た。  And a fuel cell was obtained in the same manner as in Example A1-1, except that the thickness was 50 / m.
[0165] 実施例 A7— 6  Example A7-6
電解質膜の組成が 90mol%Zr〇 -5mol%Sc O— 5mol%Y Oであり、 1420°C  The composition of the electrolyte membrane is 90 mol% Zr〇 -5 mol% ScO— 5 mol% YO, 1420 ° C
2 2 3 2 3  2 2 3 2 3
で焼結させ、厚さが 80 / mであった以外は実施例 Al-1と同様にして、燃料電池を 得た。  And a fuel cell was obtained in the same manner as in Example Al-1, except that the thickness was 80 / m.
[0166] 実施例 A7— 7  Example A7-7
電解質膜の組成が 90mol%ZrO— 5mol%Sc O— 5mol%Y〇であり、 1420°C  The composition of the electrolyte membrane is 90 mol% ZrO— 5 mol% ScO— 5 mol% Y〇, 1420 ° C
2 2 3 2 3  2 2 3 2 3
で焼結させ、厚さが 100 μ πιであった以外は実施例 Al-1と同様にして、燃料電池を 得た。  And a fuel cell was obtained in the same manner as in Example Al-1, except that the thickness was 100 μπι.
[0167] 実施例 A7— 8  Example A7-8
電解質膜の組成が 90mol%Zr〇 -5mol%Sc O -5mol%Y〇であり、 1420°C  The composition of the electrolyte membrane is 90 mol% Zr〇 -5 mol% ScO -5 mol% Y〇, 1420 ° C
2 2 3 2 3  2 2 3 2 3
で焼結させ、厚さが 120 μ πιであった以外は実施例 A1— 1と同様にして、燃料電池を 得た。  And a fuel cell was obtained in the same manner as in Example A1-1, except that the thickness was 120 μπι.
[0168] 以上のようにして得られた燃料電池について、粒度分布、ガス漏れ試験、発電試験 、および耐久試験を行った。その結果は、以下の表示に示される通りであった With respect to the fuel cell obtained as described above, a particle size distribution, a gas leak test, a power generation test , And a durability test. The results were as shown in the display below
[表 13]  [Table 13]
Figure imgf000041_0001
Figure imgf000041_0001
[表 14] [Table 14]
Figure imgf000041_0002
実施例 B1
Figure imgf000041_0002
Example B1
(1)電解質の作製  (1) Preparation of electrolyte
(1-1)電解質原料粉末の作製 (1-1) Preparation of electrolyte raw material powder
電解質材料として、 90mol%ZrO -10mol%Sc Oで表される SSZ材料を用意し  An SSZ material represented by 90 mol% ZrO -10 mol% ScO was prepared as an electrolyte material.
2 2 3  2 2 3
た。すなわち、 ZrOを 100°Cで加熱した 3N以上の濃硝酸に溶解させ、蒸留水で希 釈した後、硝酸塩水溶液を得た。 Sc Oについても同様の方法から硝酸塩水溶液を It was. That is, ZrO was dissolved in concentrated nitric acid of 3N or more heated at 100 ° C, and diluted with distilled water to obtain a nitrate aqueous solution. For ScO, a nitrate aqueous solution was prepared using the same method.
2 3 得た。各々の硝酸塩水溶液を前記組成になるように調合し、シユウ酸水溶液を加え、 共沈させた。共沈して得られた液を 200°C程度で乾燥し、 500°Cで熱分解し、さらに 800°Cで熱処理をして、原料粉末を得た。平均粒子径は 0. 5 /i mであった。 twenty three Obtained. Each nitrate aqueous solution was prepared so as to have the above composition, and oxalic acid aqueous solution was added thereto for coprecipitation. The liquid obtained by co-precipitation was dried at about 200 ° C, pyrolyzed at 500 ° C, and heat-treated at 800 ° C to obtain a raw material powder. The average particle size was 0.5 / im.
[0170] (1_2)プレス体の作製 [0170] (1_2) Production of pressed body
上記粉末にバインダー PVAを、 SSZ材料に対して 1 Owt%加えて混練乾燥した後 、円盤状の金型で一軸成形し、 1000kg/cm2加圧し成形した。 After adding 1% by weight of the binder PVA to the SSZ material and kneading and drying the powder, the powder was uniaxially molded with a disk-shaped mold and pressed to 1000 kg / cm 2 to form the powder.
[0171] (1一 3)プレス焼成体の作製 [0171] (1-3) Preparation of fired pressed body
上記プレス体を 1430°Cで焼結させた。さらに焼結後に厚さ力 Slmmになるように研 削を行った。  The pressed body was sintered at 1430 ° C. After sintering, it was ground to a thickness of Slmm.
[0172] (1一 4)気孔率測定 [0172] (1-1-4) Porosity measurement
前記プレス焼成体をアルキメデス法によって気孔率を測定した。気孔率は、 0. 8% であり、ガス透過性が無い電解質であることを確認した。  The porosity of the fired pressed body was measured by the Archimedes method. The porosity was 0.8%, confirming that the electrolyte had no gas permeability.
[0173] (2) 混合導電性セラミックス電極の作製 [0173] (2) Preparation of mixed conductive ceramic electrode
(2— 1)原料の作製  (2-1) Preparation of raw materials
マンガンとニッケルを含むぺロブスカイト型酸化物と、酸素イオン導電性を有する酸 化物とを均一に混合した混合導電性セラミックス材料を用意した。その組成は、 (La  A mixed conductive ceramic material was prepared by uniformly mixing a perovskite-type oxide containing manganese and nickel and an oxide having oxygen ion conductivity. Its composition is (La
0. 0.
Sr ) (Mn Ni )〇と 90mol%Zr〇 _10mol%Sc〇で表される SSZ (SSZ (Sr) (Mn Ni) 〇 and 90mol% Zr〇 _10mol% Sc〇
75 0. 25 0. 98 0. 95 0. 05 3 2 2 3 75 0.25 0.98 0.95 0.05 3 2 2 3
以下、(La Sr ) (Mn Ni )〇 /90mol%Zr〇一 10mol%Sc〇と示  Hereinafter, (La Sr) (Mn Ni) 〇 / 90 mol% Zr〇10 mol% Sc〇
0. 75 0. 25 0. 98 0. 95 0. 05 3 2 2 3 す。 )とし、重量比率は 50/50とした。まず、(La Sr ) (Mn Ni )〇は  0.75 0.25 0.98 0.95 0.05 3 2 2 3 ) And the weight ratio was 50/50. First, (La Sr) (Mn Ni) 〇
0. 75 0. 25 0. 98 0. 95 0. 05 3 0.75 0.25 0.98 0.95 0.05 3
、次のようにして得た。 La、 Sr、 Mnおよび Niの各々の硝酸塩水溶液を用いて、前記 組成になるように調合した後、シユウ酸をカ卩えて沈殿させた。沈殿物をさらに熱処理し た。原料を粉砕した後、さらに 1300°Cで焼成して原料粉末を得た。また、 90mol%Z rO -10mol%Sc Oは、次のようにして得た。 ZrOを 100°Cで加熱した 3N以上のWas obtained as follows. The aqueous solution of each of La, Sr, Mn and Ni was mixed so as to have the above-mentioned composition, and then oxalic acid was precipitated by precipitation. The precipitate was further heat treated. After pulverizing the raw material, it was further fired at 1300 ° C. to obtain a raw material powder. Also, 90 mol% ZrO-10 mol% ScO was obtained as follows. 3N or more heated ZrO at 100 ° C
2 2 3 2 2 2 3 2
濃硝酸に溶解させ、蒸留水で希釈した後、硝酸塩水溶液を得た。 Sc Oについても  After dissolving in concentrated nitric acid and diluting with distilled water, a nitrate aqueous solution was obtained. About Sc O
2 3  twenty three
同様の方法から硝酸塩水溶液を得た。各々の硝酸塩水溶液を前記組成になるように 調合し、シユウ酸水溶液をカ卩え、共沈させた。共沈して得られた液を 200°C程度で乾 燥し、 500°Cで熱分解、さらに 1200°Cで熱処理をして原料粉末を得た。さらに、各々 の原料を混合し、 1300°Cで熱処理を行い、原料粉末を得た。粒子径を制御して、原 料粉末の平均粒子径を 2 μ mとした。 A nitrate aqueous solution was obtained in the same manner. Each nitrate aqueous solution was prepared so as to have the above-mentioned composition, and oxalic acid aqueous solution was collected and coprecipitated. The solution obtained by coprecipitation was dried at about 200 ° C, pyrolyzed at 500 ° C, and heat-treated at 1200 ° C to obtain a raw material powder. Further, each raw material was mixed and heat-treated at 1300 ° C to obtain a raw material powder. By controlling the particle size, The average particle size of the powder was 2 μm.
[0174] (2— 2)ペーストの作製 [2-2] Preparation of Paste
前記(La Sr ) (Mn Ni ) 0 /90mol%ZrO -10mol%Sc O = 5  (La Sr) (Mn Ni) 0/90 mol% ZrO -10 mol% ScO = 5
0. 75 0. 25 0. 98 0. 95 0. 05 3 2 2 3 0.75 0.25 0.98 0.95 0.05 3 2 2 3
0/50からなる原料粉末 100重量部に対し、バインダーとしてェチルセルロースを 10 重量部、溶剤としてひ-テルビネオールを 90重量部加え、 30分間混鍊してペースト を作製した。 10 parts by weight of ethyl cellulose as a binder and 90 parts by weight of terbineol as a solvent were added to 100 parts by weight of the raw material powder composed of 0/50, and mixed for 30 minutes to prepare a paste.
[0175] (2— 3)電極の作製 (2-3) Preparation of Electrode
前記プレス体の電解質の片面に、直径 6mmの大きさになるよう前記ペーストをスク リーン印刷法で塗布し、 1400°Cで焼結させた。焼成後の電極の厚さは 20 z mであ つた。さらに、この電極上とプレス体の反対面に、直径 6mmの大きさになるように白 金電極をスクリーン印刷法で塗布し、 1100°Cで焼結させて、燃料電池試験片を得た  The paste was applied to one surface of the electrolyte of the pressed body by a screen printing method so as to have a diameter of 6 mm, and sintered at 1400 ° C. The thickness of the electrode after firing was 20 zm. Further, a platinum electrode was applied on the electrode and the opposite side of the pressed body by a screen printing method so as to have a diameter of 6 mm, and sintered at 1100 ° C to obtain a fuel cell test piece.
[0176] 実施例 B2 [0176] Example B2
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%Zr  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% Zr
0. 75 0. 25 0. 98 0. 99 0. 01 3  0.75 0.25 0.98 0.99 0.01 3
O -10mol%Sc O = 50/50となるように調合したこと以外は実施例 Blと同様にし O -10 mol% Sc O Same as Example Bl except that it was prepared to be 50/50.
2 2 3 2 2 3
て、燃料電池試験片を得た。  Thus, a fuel cell test piece was obtained.
[0177] 実施例 B3 [0177] Example B3
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%Zr  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% Zr
0. 75 0. 25 0. 98 0. 98 0. 02 3  0.75 0.25 0.98 0.98 0.02 3
O -10mol%Sc O = 50/50となるように調合したこと以外は実施例 Blと同様にし O -10 mol% Sc O Same as Example Bl except that it was prepared to be 50/50.
2 2 3 2 2 3
て、燃料電池試験片を得た。  Thus, a fuel cell test piece was obtained.
[0178] 実施例 B4 Example B4
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%Zr  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% Zr
0. 75 0. 25 0. 98 0. 92 0. 08 3  0.75 0.25 0.98 0.92 0.08 3
O -10mol%Sc O = 50/50となるように調合したこと以外は実施例 Blと同様にし O -10 mol% Sc O Same as Example Bl except that it was prepared to be 50/50.
2 2 3 2 2 3
て、燃料電池試験片を得た。  Thus, a fuel cell test piece was obtained.
[0179] 実施例 B5 [0179] Example B5
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%Zr  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% Zr
0. 75 0. 25 0. 98 0. 90 0. 10 3  0.75 0.25 0.98 0.90 0.10 3
O -10mol%Sc O = 50/50となるように調合したこと以外は実施例 Blと同様にし O -10 mol% Sc O Same as Example Bl except that it was prepared to be 50/50.
2 2 3 2 2 3
て、燃料電池試験片を得た。 [0180] 実施例 B6 Thus, a fuel cell test piece was obtained. [0180] Example B6
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%Zr  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% Zr
0. 75 0. 25 0. 98 0. 87 0. 13 3  0.75 0.25 0.98 0.87 0.13 3
O -10mol%Sc O = 50/50となるように調合したこと以外は実施例 Blと同様にし O -10 mol% Sc O Same as Example Bl except that it was prepared to be 50/50.
2 2 3 2 2 3
て、燃料電池試験片を得た。  Thus, a fuel cell test piece was obtained.
[0181] 比較例 B1 [0181] Comparative example B1
混合導電性セラミックス電極を(La Sr ) MnO /90mol%ZrO -lOmol  Mixed conductive ceramic electrode (La Sr) MnO / 90mol% ZrO -lOmol
0. 75 0. 25 0. 98 3 2  0.75 0.25 0.98 3 2
%Sc O = 50Z50となるように調合したこと以外は実施例 1と同様にして、燃料電池 A fuel cell was prepared in the same manner as in Example 1 except that the mixture was prepared so that% ScO = 50Z50.
2 3 twenty three
試験片を得た。  A test piece was obtained.
[0182] 渦 圧沏 I定 [0182] Vortex pressure I constant
以上のようにして得られた試験片を図 7に示されるように構成して、反応過電圧を測 定した。すなわち、 SSZ材料からなる電解質 13の片面に混合導電性セラミックスから なる電極 11が形成され、電極 11の表面に白金電極 12と、反対面に白金からなる対 極 14が形成されている。また、電解質 13の側面には白金からなる参照極 15が形成 され、さらに白金電極 12には 2本のリード線 16、対極および参照極には各々 1本ず つリード線 17および 18が取り付けられている。電池を大気雰囲気で 800°Cまで昇温 させた後、電流遮断法で過電圧の測定を行った。ここで、電流遮断法とは電池に流 れている電流を瞬間的に遮断し、その時の電圧変化から、反応に伴う過電圧とォー ム抵抗に伴う過電圧を定量する方法である。本試験では、 0. 2Acm— 2条件下での反 応過電圧を算出した。一般的に反応過電圧が低く測定されるものほど、電極特性が 優れる材料であると言われてレ、る。 The test piece obtained as described above was configured as shown in FIG. 7, and the reaction overvoltage was measured. That is, an electrode 11 made of mixed conductive ceramics is formed on one surface of an electrolyte 13 made of an SSZ material, a platinum electrode 12 is formed on the surface of the electrode 11, and a counter electrode 14 made of platinum is formed on the opposite surface. A reference electrode 15 made of platinum is formed on the side surface of the electrolyte 13, and two lead wires 16 are attached to the platinum electrode 12, and one lead wire 17 and 18 are attached to the counter electrode and the reference electrode, respectively. ing. After raising the temperature of the battery to 800 ° C in the atmosphere, the overvoltage was measured by the current interruption method. Here, the current interruption method is a method of instantaneously interrupting the current flowing in the battery, and quantifying the overvoltage due to the reaction and the overvoltage due to the ohmic resistance from the voltage change at that time. In this test, the reaction overvoltage under the condition of 0.2 Acm- 2 was calculated. Generally, it is said that the lower the reaction overpotential is measured, the better the electrode characteristics are.
[表 15] [Table 15]
(Lao . 7 5 Sro .2 5 )0 . 9 8 (Mniz iz)O3 反応過電圧 (Lao .75 Sro .25) 0.99 (Mniz iz) O3 reaction overvoltage
における z値 ( mV) 実施例 B 1 0.05 25 実施例 B 2 0.01 70 実施例 B 3 0.02 45 実施例 B 4 0.08 24 実施例 B 5 0.10 38 実施例 B 6 0.13 60 比較例 B 1 0 80  Z value (mV) at Example B 1 0.05 25 Example B 2 0.01 70 Example B 3 0.02 45 Example B 4 0.08 24 Example B 5 0.10 38 Example B 6 0.13 60 Comparative example B 1 0 80
[0183] 比較例 B1との比較から明らかなように、 Niが入ることによって反応過電圧が低下し ている。これは Niが入ることによって電解質へのマンガンの拡散が抑制されたものと 推測される。このことから Niを含むことによってマンガンの拡散が抑制され、良好な電 極特性を有することを確認することができた。また、 Ni量で比較すると 0. 02以上入る と反応過電圧が低下し、一方、 0. 10より多く加えると反応過電圧が大きくなる傾向が 見られる。このこと力もより Niが 0. 02-0. 10の範囲がより好ましいといえる。 [0183] As is clear from the comparison with Comparative Example B1, the reaction overvoltage is reduced by the addition of Ni. This is presumed to be because the diffusion of manganese into the electrolyte was suppressed by the inclusion of Ni. From this, it was confirmed that the diffusion of manganese was suppressed by the inclusion of Ni, and that it had good electrode characteristics. In addition, when compared with the Ni content, the reaction overpotential decreases when the Ni content exceeds 0.02, while the reaction overvoltage tends to increase when the Ni content exceeds 0.10. It can be said that Ni is more preferably in the range of 0.02-0.10.
[01841 以下、(La Sr ) (Mn Ni ) 0 /90mol%ZrO -10mol%Sc O = 50  [01841] Hereinafter, (La Sr) (Mn Ni) 0 / 90mol% ZrO -10mol% ScO = 50
0. 75 0. 25 y 0. 95 0. 05 3 2 2 3 0.75 0.25 y 0.95 0.05 3 2 2 3
/50について試験した。 / 50 was tested.
[0185] 実施例 B7 Example B7
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%Zr  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% Zr
0. 75 0. 25 0. 96 0. 95 0. 05 3  0.75 0.25 0.96 0.95 0.05 3
O -10mol%Sc O = 50/50となるように調合したこと以外は実施例 Blと同様にし O -10 mol% Sc O Same as Example Bl except that it was prepared to be 50/50.
2 2 3 2 2 3
て、燃料電池試験片を得た。  Thus, a fuel cell test piece was obtained.
[0186] 実施例 B8 Example B8
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%Zr  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% Zr
0. 75 0. 25 0. 97 0. 95 0. 05 3  0.75 0.25 0.97 0.95 0.05 3
O -10mol%Sc O = 50/50となるように調合したこと以外は実施例 Blと同様にし O -10 mol% Sc O Same as Example Bl except that it was prepared to be 50/50.
2 2 3 2 2 3
て、燃料電池試験片を得た。  Thus, a fuel cell test piece was obtained.
[0187] 実施例 B9 [0187] Example B9
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%Zr  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% Zr
0. 75 0. 25 0. 99 0. 95 0. 05 3  0.75 0.25 0.99 0.95 0.05 3
O -10mol%Sc O = 50/50となるように調合したこと以外は実施例 Blと同様にし O -10 mol% Sc O Same as Example Bl except that it was prepared to be 50/50.
2 2 3 て、燃料電池試験片を得た。 2 2 3 Thus, a fuel cell test piece was obtained.
[0188] 実施例 B 10  Example B 10
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%ZrO  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% ZrO
0. 75 0. 25 0. 95 0. 05 3 2 0.75 0.25 0.95 0.05 3 2
-10mol%Sc O = 50/50となるように調合したこと以外は実施例 BIOと同様にし Same as Example BIO except that it was prepared so that -10 mol% ScO = 50/50.
2 3  twenty three
て、燃料電池試験片を得た。  Thus, a fuel cell test piece was obtained.
[0189] 実施例 B 11 [0189] Example B 11
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%Zr  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% Zr
0. 75 0. 25 1. 01 0. 95 0. 05 3  0.75 0.25 1.01 0.95 0.05 3
O -10mol%Sc O = 50/50となるように調合したこと以外は実施例 Blと同様にし O -10 mol% Sc O Same as Example Bl except that it was prepared to be 50/50.
2 2 3 2 2 3
て、燃料電池試験片を得た。  Thus, a fuel cell test piece was obtained.
[0190] 渦電圧評価試験 [0190] Eddy voltage evaluation test
前記と同様の過電圧測定法により、反応過電圧を測定した。その結果は以下の表 に示される通りであった。  The reaction overvoltage was measured by the same overvoltage measurement method as described above. The results were as shown in the table below.
[表 16]  [Table 16]
Figure imgf000046_0001
Figure imgf000046_0001
[0191] y値が 0. 97— 1の範囲であると反応過電圧が小さいが、 y値が 0· 97未満および 1 . 00を越えると急激に大きくなる。以上の結果から、 y値として、より好ましい範囲は 0 . 97≤y≤l. 00であることを確認、することができた。 [0191] When the y value is in the range of 0.97-1, the reaction overvoltage is small, but when the y value is less than 0.97 and exceeds 1.00, it rapidly increases. From the above results, it was confirmed and confirmed that a more preferable range for the y value was 0.97≤y≤l.00.
[0192] 以下、重量比率を変えて試験した。  [0192] Hereinafter, the test was performed while changing the weight ratio.
[0193] 実施例 B 12  Example B 12
混合導電性セラミックス電極を重量比が(La Sr ) (Mn Ni ) 0 /90  The weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
0. 75 0. 25 0. 98 0. 95 0. 05 3 mol%ZrO一 10mol%Sc〇 = 20/80となるように調合したこと以外は実施例 Blと  0.75 0.25 0.98 0.95 0.05 3 mol% ZrO-1 mol% Sc〇 = 20/80
2 2 3 同様にして、燃料電池試験片を得た。 2 2 3 Similarly, a fuel cell test piece was obtained.
[0194] 実施例 B 13  [0194] Example B 13
混合導電性セラミックス電極を重量比が(La Sr ) (Mn Ni ) 0 /90  The weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
0. 75 0. 25 0. 98 0. 95 0. 05 3 mol%ZrO -10mol%Sc〇 = 30/70となるように調合したこと以外は実施例 Blと  0.75 0.25 0.98 0.95 0.05 3 mol% ZrO -10 mol% Sc〇 = 30/70
2 2 3  2 2 3
同様にして、燃料電池試験片を得た。  Similarly, a fuel cell test piece was obtained.
[0195] 実施例 B 14 [0195] Example B 14
混合導電性セラミックス電極を重量比が(La Sr ) (Mn Ni ) 0 /90  The weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
0. 75 0. 25 0. 98 0. 95 0. 05 3 mol%ZrO -10mol%Sc〇 =40/60となるように調合したこと以外は実施例 Blと  0.75 0.25 0.98 0.95 0.05 3 mol% ZrO -10mol% Sc〇 = 40/60
2 2 3  2 2 3
同様にして、燃料電池試験片を得た。  Similarly, a fuel cell test piece was obtained.
[0196] 実施例 B 15 [0196] Example B 15
混合導電性セラミックス電極を重量比が(La Sr ) (Mn Ni ) 0 /90  The weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
0. 75 0. 25 0. 98 0. 95 0. 05 3 mol%ZrO -10mol%Sc〇 =60/40となるように調合したこと以外は実施例 Blと  0.75 0.25 0.98 0.95 0.05 3 mol% ZrO -10 mol% Sc〇 = 60/40
2 2 3  2 2 3
同様にして、燃料電池試験片を得た。  Similarly, a fuel cell test piece was obtained.
[0197] 実施例 B 16 Example B 16
混合導電性セラミックス電極を重量比が(La Sr ) (Mn Ni ) 0 /90  The weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
0. 75 0. 25 0. 98 0. 95 0. 05 3 mol%ZrO— 10mol%Sc〇 = 70/30となるように調合したこと以外は実施例 Blと  0.75 0.25 0.98 0.95 0.05 3 mol% ZrO- 10 mol% Sc〇 = 70/30 except that it was prepared so as to be 70/30.
2 2 3  2 2 3
同様にして、燃料電池試験片を得た。  Similarly, a fuel cell test piece was obtained.
[0198] 実施例 B 17 [0198] Example B 17
混合導電性セラミックス電極を重量比が(La Sr ) (Mn Ni ) 0 /90  The weight ratio of mixed conductive ceramic electrodes is (La Sr) (Mn Ni) 0/90
0. 75 0. 25 0. 98 0. 95 0. 05 3 mol%ZrO — 10mol%Sc〇 =80/20となるように調合したこと以外は実施例 Blと  0.75 0.25 0.98 0.95 0.05 3mol% ZrO — 10mol% Sc〇 = 80/20
2 2 3  2 2 3
同様にして、燃料電池試験片を得た。  Similarly, a fuel cell test piece was obtained.
[0199] 比較例 B2 [0199] Comparative Example B2
混合導電性セラミックス電極を (La Sr ) (Mn Ni ) 0となるように調  The mixed conductive ceramic electrode was adjusted to (La Sr) (Mn Ni) 0.
0. 75 0. 25 0. 98 0. 95 0. 05 3  0.75 0.25 0.98 0.95 0.05 3
合し、 1300°Cで焼成後平均粒径 2 μ mに制御したこと以外は実施例 Blと同様にし て、燃料電池試験片を得た。  A fuel cell test piece was obtained in the same manner as in Example Bl, except that the average particle size after firing at 1300 ° C was controlled to 2 µm.
[0200] 比較例 B3 [0200] Comparative Example B3
混合導電性セラミックス電極を 90mol%Zr〇 -10mol%Sc O組成で表される SS  SS with 90mol% Zr〇-10mol% ScO composition
2 2 3  2 2 3
Z材料を用い、 1200°Cで焼成後平均粒径が 2 μ mに制御したこと以外は実施例 Bl と同様にして、燃料電池試験片を得た。 Example Bl except that the average particle size after firing at 1200 ° C was controlled to 2 μm using Z material. In the same manner as described above, a fuel cell test piece was obtained.
[0201] 渦電圧評価試験  [0201] Eddy voltage evaluation test
前記と同様の過電圧測定法により、反応過電圧を測定した。その結果は以下の表 に示される通りであった。  The reaction overvoltage was measured by the same overvoltage measurement method as described above. The results were as shown in the table below.
[表 17] [Table 17]
Figure imgf000048_0001
Figure imgf000048_0001
[0202] 重量比率が 30— 70重量%の範囲であると過電圧が小さくなる傾向が見られる。 [0202] When the weight ratio is in the range of 30 to 70% by weight, the overvoltage tends to decrease.
[0203] 以下、 La以外の希土類元素の影響について試験した。 [0203] Hereinafter, the effects of rare earth elements other than La were tested.
[0204] 実施例 B 18 [0204] Example B 18
混合導電性セラミックス電極を(Y Sr ) (Mn Ni ) O /90mol%Zr  Mixed conductive ceramic electrode (Y Sr) (Mn Ni) O / 90mol% Zr
0. 75 0. 25 0. 98 0. 95 0. 05 3  0.75 0.25 0.98 0.95 0.05 3
O2-10mol%Sc2O = 50/50となるように調合したこと以外は実施例 Blと同様にし て、燃料電池試験片を得た。 A fuel cell test piece was obtained in the same manner as in Example Bl, except that the composition was adjusted so that O 2 -10 mol% Sc 2 O = 50/50.
[0205] 実施例 B 19 Example B 19
混合導電性セラミックス電極を(Sm Sr ) (Mn Ni ) O /90mol%Z  Mixed conductive ceramic electrode (Sm Sr) (Mn Ni) O / 90mol% Z
0. 75 0. 25 0. 98 0. 95 0. 05 3  0.75 0.25 0.98 0.95 0.05 3
r〇2-10mol%Sc23 = 50/50となるように調合したこと以外は実施例 Blと同様に して、燃料電池試験片を得た。 A fuel cell test piece was obtained in the same manner as in Example Bl, except that r〇 2 -10 mol% Sc 23 = 50/50.
[0206] 渦電圧評価試験 [0206] Eddy voltage evaluation test
前記と同様の過電圧測定法により、反応過電圧を測定した。その結果は以下の表 に示される通りであった。 [表 18] The reaction overvoltage was measured by the same overvoltage measurement method as described above. The results were as shown in the table below. [Table 18]
Figure imgf000049_0001
Figure imgf000049_0001
[0207] 少なくともマンガンとニッケルを含むぺロブスカイト型酸化物として、(Ln A ) (M  [0207] As a perovskite-type oxide containing at least manganese and nickel, (Ln A) (M
1— x x y n Ni )〇で表した場合、 Lnは Sm、 Yでも良いことが確認された。このこと力ら Lnは It was confirmed that Ln could be Sm or Y when expressed as 1—xxynNi) 〇. This power Ln
1— z z 1—z z
、 Sc、 Y、 La、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、およ び Luから選ばれるいずれ力 4種または 2種以上であっても同様の効果が得られること は容易に推定でき、好ましレ、ことを確認することができた。  , Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. However, it was easy to estimate that the same effect could be obtained, and it was possible to confirm that it was preferable.
[0208] 以下、酸素イオン導電性を有する材料の影響について試験した。 [0208] Hereinafter, the effect of a material having oxygen ion conductivity was tested.
[0209] 実施例 B20 [0209] Example B20
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%Zr  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% Zr
0. 75 0. 25 0. 98 0. 95 0. 05 3  0.75 0.25 0.98 0.95 0.05 3
O -10mol%Y O = 50/50となるように調合したこと以外は実施例 Blと同様にし O-10 mol% Y O = 50/50, except that it was prepared in the same manner as in Example Bl.
2 2 3 2 2 3
て、燃料電池試験片を得た。  Thus, a fuel cell test piece was obtained.
[0210] 実施例 B21 [0210] Example B21
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0 /90mol%Zr  Mixed conductive ceramic electrode (La Sr) (Mn Ni) 0 / 90mol% Zr
0. 75 0. 25 0. 98 0. 95 0. 05 3  0.75 0.25 0.98 0.95 0.05 3
0 -5mol%Y O -5mol%Sc O = 50/50となるように調合したこと以外は実施例 Example except that it was prepared so that 0 -5 mol% Y O -5 mol% ScO = 50/50
2 2 3 2 3 2 2 3 2 3
B1と同様にして、燃料電池試験片を得た。  A fuel cell test piece was obtained in the same manner as in B1.
[0211] 実施例 B22 [0211] Example B22
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) Oと(CeO ) (  The mixed conductive ceramic electrode is made of (La Sr) (Mn Ni) O and (CeO) (
0. 75 0. 25 0. 98 0. 95 0. 05 3 2 0. 8 0.75 0.25 0.98 0.95 0.05 3 2 0.8
Sm O ) で表されるセリウム含有酸化物(以下、(La Sr ) (Mn NiCerium-containing oxide represented by Sm 2 O 3 (hereinafter referred to as (La Sr) (Mn Ni
2 3 0. 1 0. 75 0. 25 0. 98 0. 95 0. 052 3 0.1 0.75 0.25 0.98 0.95 0.05
) 0 / (CeO ) (Sm O ) と示す。)が重量比率で 50Z50となるように調合した) 0 / (CeO) (Sm O). ) Was adjusted to be 50Z50 by weight.
3 2 0. 8 2 3 0. 1 3 2 0. 8 2 3 0. 1
ものを用いた。 (CeO ) (Sm O ) は、 Ce, Smの各々の硝酸溶液からシユウ酸  Was used. (CeO) (SmO) is oxalic acid from each nitric acid solution of Ce and Sm
2 0. 8 2 3 0. 1  2 0.8 2 3 0.1
を用いて共沈法により作製し、 1200°Cで熱処理した後(La Sr ) (Mn N  Prepared by co-precipitation method and heat-treated at 1200 ° C (La Sr) (Mn N
0. 75 0. 25 0. 98 0. 95 0.75 0.25 0.98 0.95
1 ) 0と粉末混合し、 1300°Cで焼成した。さらに本電極を 1500°Cで焼結させたこ1) Powder mixed with 0 and fired at 1300 ° C. This electrode was sintered at 1500 ° C.
0. 05 3 と以外は実施例 1と同様にした。 0.05 3 Except for, the procedure was the same as in Example 1.
[0212] 実施例 B23 [0212] Example B23
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) 0と 90mol%Zr  Mixed conductive ceramic electrodes (La Sr) (Mn Ni) 0 and 90mol% Zr
0. 75 0. 25 0. 98 0. 95 0. 05 3  0.75 0.25 0.98 0.95 0.05 3
O -10mol%Sc Oと(CeO ) (Sm〇 ) で表されるセリウム含有酸化物(以下 Cerium-containing oxide represented by O-10mol% ScO and (CeO) (Sm〇)
2 2 3 2 0. 8 2 3 0. 1 2 2 3 2 0.8 2 3 0.1
, (La Sr ) (Mn Ni ) 0 /90mol%ZrO -10mol%Sc O / (CeO , (La Sr) (Mn Ni) 0 / 90mol% ZrO -10mol% Sc O / (CeO
0. 75 0. 25 0. 98 0. 95 0. 05 3 2 2 3 20.75 0.25 0.98 0.95 0.05 3 2 2 3 2
) (Sm O ) と示す。)が重量比率で 50/25/25となるように調合したものを用) (Sm O). ) Is 50/25/25 by weight.
0. 8 2 3 0. 1 0.8 2 3 0 0.1
いた。 (La Sr ) (Mn Ni )〇、 90mol%ZrO -10mol%Sc Oおよ  Was. (La Sr) (Mn Ni) 〇, 90 mol% ZrO -10 mol% ScO and
0. 75 0. 25 0. 98 0. 95 0. 05 3 2 2 3 び(CeO ) (Sm O ) を各々共沈法により作製したものを粉末混合し、 1300°C  0.75 0.25 0.98 0.95 0.05 3 2 2 3 and (CeO 2) (Sm 2 O 3) prepared by the coprecipitation method were powder mixed, and 1300 ° C
2 0. 8 2 3 0. 1  2 0.8 2 3 0.1
で焼成したこと以外は実施例 Blと同様にして、燃料電池試験片を得た。  A fuel cell test piece was obtained in the same manner as in Example Bl, except that it was fired.
[0213] 実施例 B24 [0213] Example B24
混合導電性セラミックス電極を(La Sr ) (Mn Ni ) Oと La Sr G  The mixed conductive ceramic electrode is made of (La Sr) (Mn Ni) O and La Sr G
0. 75 0. 25 0. 98 0. 95 0. 05 3 0. 8 0. 2 a Mg 〇で表されるランタンガレート系酸化物(以下、(La Sr ) (Mn 0.75 0.25 0.98 0.95 0.05 3 0.80 0.2 a Mg lanthanum gallate-based oxide (hereinafter referred to as (La Sr) (Mn
0. 8 0. 2 3 0. 75 0. 25 0. 98 0. 90.8 0.8 0.2 3 0 0.75 0.25 0.98 0.9
Ni ) 0 /La Sr Ga Mg Oと示す。)が重量比率で 50/50になるようにNi) 0 / LaSrGaMgO. ) Is 50/50 by weight
5 0. 05 3 0. 8 0. 2 0. 8 0. 2 3 5 0.05 3 0.8 0.2 0.8 0.2 3
調合したものを用いた。 La Sr Ga Mg 〇は、 La O , SrCO , Ga〇, Mg  The prepared one was used. La Sr Ga Mg 〇 is La O, SrCO, Ga〇, Mg
0. 8 0. 2 0. 8 0. 2 3 2 3 3 2 3  0.8 0 0.2 0 0.8 0 0.2 3 2 3 3 2 3
Oを前記組成になるように配合し、ボールミルで混合後、 1200°Cで熱処理した。その 後、各々の粉末を混合して 1300°Cで焼成したこと以外は実施例 B1と同様にして、 燃料電池試験片を得た。  O was blended so as to have the above composition, mixed by a ball mill, and heat-treated at 1200 ° C. Thereafter, a fuel cell test piece was obtained in the same manner as in Example B1, except that the respective powders were mixed and fired at 1300 ° C.
[0214] 比較例 B4 [0214] Comparative Example B4
混合導電性セラミックス電極を(La Sr ) MnO /90mol%ZrO -lOmol  Mixed conductive ceramic electrode (La Sr) MnO / 90mol% ZrO -lOmol
0. 75 0. 25 0. 98 3 2  0.75 0.25 0.98 3 2
%Y O = 50/50 (重量比)となるように調合したこと以外は実施例 Blと同様にして % Y O = 50/50 (weight ratio), except that it was prepared in the same manner as in Example Bl.
2 3 twenty three
、燃料電池試験片を得た。  Thus, a fuel cell test piece was obtained.
[0215] 比較例 B5 [0215] Comparative Example B5
混合導電性セラミックス電極を(La Sr ) MnO /90mol%ZrO -5mol%  Mixed conductive ceramic electrode (La Sr) MnO / 90mol% ZrO -5mol%
0. 75 0. 25 0. 98 3 2  0.75 0.25 0.98 3 2
Sc O -5mol%Y O = 50/50 (重量比)となるように調合したこと以外は実施例 Bl Example Bl except that it was prepared so that Sc O -5 mol% Y O = 50/50 (weight ratio)
2 3 2 3 2 3 2 3
と同様にして、燃料電池試験片を得た。  In the same manner as described above, a fuel cell test piece was obtained.
[0216] 比較例 B6 [0216] Comparative Example B6
混合導電性セラミックス電極を(La Sr ) MnO / (CeO ) (Sm〇)  Mixed conductive ceramic electrode (La Sr) MnO / (CeO) (Sm〇)
0. 75 0. 25 0. 98 3 2 0. 8 2 3 0. 1 0.75 0.25 0.98 3 2 0.8 2 3 0.1
= 50/50となるように調合した。 (CeO ) (Sm O ) は、 Ce, Smの各々の硝酸 = 50/50. (CeO) (SmO) is the nitric acid of each of Ce and Sm
2 0. 8 2 3 0. 1 溶液からシユウ酸を用いて共沈法により作製し、 1200°Cで熱処理した後(La Sr 2 0.8 2 3 0.1 The solution was prepared by coprecipitation using oxalic acid and heat-treated at 1200 ° C (La Sr
0. 75 0. 0.75 0.
) Mn〇と粉末混合し、 1300°Cで焼成したこと以外は実施例 B22と同様にして) The powder was mixed with Mn〇 and baked at 1300 ° C in the same manner as in Example B22.
25 0. 99 3 25 0.99 3
、燃料電池試験片を得た。  Thus, a fuel cell test piece was obtained.
[0217] 比較例 B7  [0217] Comparative Example B7
混合導電性セラミックス電極を(La Sr ) MnO /90mol%ZrO -lOmol  Mixed conductive ceramic electrode (La Sr) MnO / 90mol% ZrO -lOmol
0. 75 0. 25 0. 98 3 2  0.75 0.25 0.98 3 2
%Sc O / (CeO ) (Sm〇) =50Z25Z25となるように調合したものを用レヽ % Sc O / (CeO) (Sm〇) = 50Z25Z25
2 3 2 0. 8 2 3 0. 1 2 3 2 0. 8 2 3 0. 1
た。 (La Sr ) Mn〇、 90mol%ZrO _10mol%Sc Oおよび(Ce〇) ( It was. (La Sr) Mn〇, 90 mol% ZrO _10 mol% ScO and (Ce〇) (
0. 75 0. 25 0. 98 3 2 2 3 2 0. 80.75 0.25 0.98 3 2 2 3 2 0.8
Sm O ) を各々共沈法により作製したものを粉末混合し、 1300°Cで焼成したことSm O) prepared by the coprecipitation method were powder mixed and fired at 1300 ° C
2 3 0. 1 2 3 0.1
以外は実施例 B1と同様にして、燃料電池試験片を得た。  Except for the above, a fuel cell test piece was obtained in the same manner as in Example B1.
[0218] 比較例 B8 [0218] Comparative Example B8
混合導電性セラミックス電極を(La Sr ) MnO /La Sr Ga Mg  (La Sr) MnO / La Sr Ga Mg
0. 75 0. 25 0. 98 3 0. 8 0. 2 0. 8 0. 2 0.75 0.25 0.98 3 0.8 0.8 0.2 0.8 0.8
O = 50/50になるように調合したものを用いた。 La Sr Ga Mg Oは、 LaThose prepared so that O = 50/50 were used. La Sr Ga Mg O
3 0. 8 0. 2 0. 8 0. 2 3 23 0.8 0.8 0.2 0.8 0.2 3 2
O , SrCO , Ga〇, MgOを前記組成になるように配合し、ボールミルで混合後、 1O, SrCO, Ga〇, MgO are blended so as to have the above-mentioned composition, and after mixing with a ball mill, 1
3 3 2 3 3 3 2 3
200°Cで熱処理した。その後、各々の粉末を混合して 1300°Cで焼成したこと以外は 実施例 B1と同様にして、燃料電池試験片を得た。  Heat treated at 200 ° C. Thereafter, a fuel cell test piece was obtained in the same manner as in Example B1, except that the respective powders were mixed and fired at 1300 ° C.
[0219] 渦電圧評価試験 [0219] Eddy voltage evaluation test
前記と同様の過電圧測定法により、反応過電圧を測定した。その結果は以下の表 に示される通りであった。  The reaction overvoltage was measured by the same overvoltage measurement method as described above. The results were as shown in the table below.
[表 19] [Table 19]
Figure imgf000052_0001
Figure imgf000052_0001
[0220] 酸素イオン導電性を有する材料として YSZ、 ScYSZ、セリウム含有酸化物、 SSZと セリウム酸化物の混合材料およびランタンガレート系酸化物を用いた力 いずれも少 なくともマンガンとニッケルを含むぺロブスカイト型酸化物との混合では低い反応過電 圧を示しているのに対して、ニッケノレを含まないと反応過電圧が大きくなつており、マ ンガンを含むぺロブスカイト型酸化物にニッケルを入れることで電極特性が著しく向 上することが確認された。いずれも電解質へのマンガンの拡散が抑制されたことによ つて電極特性が向上したものと推察される。 [0220] Forces using YSZ, ScYSZ, cerium-containing oxides, mixed materials of SSZ and cerium oxide, and lanthanum gallate-based oxides as materials having oxygen ion conductivity. Perovskite containing at least manganese and nickel When mixed with oxides, the reaction overvoltage was low, but when nickel was not included, the reaction overvoltage was large, and nickel was added to perovskite-type oxides containing manganese. It was confirmed that the characteristics were significantly improved. In each case, it is inferred that the diffusion of manganese into the electrolyte was suppressed and the electrode characteristics were improved.
[0221] 目{本 >开'燃 池,のィ乍製  [0221] eyes
例 B25  Example B25
(1)空気極支持体の作製  (1) Preparation of cathode support
空気極を、 La Sr MnO組成で表される Srを固溶させたランタンマンガナイト  Lanthanum manganite with Sr as solid solution represented by La Sr MnO composition
0. 75 0. 25 3  0.75 0.25 3
とした。共沈法で作製後熱処理して空気極原料粉末を得た。平均粒子径は、 30 z m であった。押し出し成形法によって円筒状成形体を作製し、さらに 1500°Cで焼成を 行い、空気極支持体とした。空気極支持体の細孔径は 14 z m、空隙率は 45%、肉 厚は 1 · 5mmであった。 And After preparation by the coprecipitation method, heat treatment was performed to obtain air electrode raw material powder. The average particle size was 30 zm. A cylindrical molded body was produced by an extrusion molding method, and was baked at 1500 ° C to obtain an air electrode support. The pore diameter of the cathode support is 14 zm, the porosity is 45%, The thickness was 1.5 mm.
[0222] (2)空気側電極反応層の作製 [0222] (2) Preparation of air-side electrode reaction layer
空気側電極反応層を、マンガンとニッケルを含むぺロブスカイト型酸化物と YSZが 均一に混合された層とし、その組成およびその重量比率が、(La Sr ) (Mn  The air-side electrode reaction layer is a layer in which a perovskite-type oxide containing manganese and nickel and YSZ are uniformly mixed, and the composition and its weight ratio are (La Sr) (Mn
0. 75 0. 25 0. 95 0.75 0.25 0.95
Ni ) 0 /90mol%ZrO _10mol%Y〇 = 50/50であるものを調製して用いたNi) 0 / 90mol% ZrO_10mol% Y〇 = 50/50
0. 05 3 2 2 3 0.05 3 2 2 3
。 La、 Sr、 Mn、 Ni、 Zrおよび Yの各々の硝酸塩水溶液を用いて、前記組成になるよ うに調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御した 原料粉末を得た。平均粒子径は 5 x mであった。この粉末 40重量部を溶媒 (エタノー ノレ) 100重量部、バインダー(ェチルセルロース) 2重量部、分散剤(ポリオキシェチレ ンアルキルリン酸エステル) 1重量部、消泡剤(ソルビタンセスキォレート) 1重量部とを 混合した後、十分攪拌してスラリーを調整した。このスラリー粘度は lOOmPasであつ た。このスラリーを、上で調製した空気極支持体(外径 15mm、肉厚 1. 5mm,有効 長 400mm)表面上にスラリーコート法で成膜した後に 1400°Cで焼結させた。形成さ れた層の細孔径は 5 β m、空隙率は 28%、厚さは 30 μ mであった。 . Using the respective nitrate aqueous solutions of La, Sr, Mn, Ni, Zr and Y, they were prepared to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 xm. 40 parts by weight of this powder were mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate). After mixing, the slurry was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. The slurry was formed on the surface of the above-prepared air electrode support (outside diameter: 15 mm, wall thickness: 1.5 mm, effective length: 400 mm) by a slurry coating method, and then sintered at 1400 ° C. The pore size of the formed layer was 5 βm , the porosity was 28%, and the thickness was 30 μm.
[0223] (3)電解質のスラリー作製: (3) Preparation of Electrolyte Slurry:
電解質の材料を YSZとし、その組成は 90mol%ZrO _10mol%Y Oとした。 Zr  The material of the electrolyte was YSZ, and its composition was 90 mol% ZrO_10 mol% YO. Zr
2 2 3 、 2 2 3,
Yの各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸によ る共沈を行った。さらに熱処理を施し、粒径を制御した原料粉末を得た。平均粒子径 は 0. 5 μ mであった。この粉末 40重量部を、溶媒(エタノール) 100重量部、バインダ 一(ェチルセルロース) 2重量部、分散剤(ポリオキシエチレンアルキルリン酸エステル ) 1重量部、消泡剤(ソルビタンセスキォレート) 1重量部と混合した後、十分攪拌して スラリーを調製した。このスラリ一粘度は 140mPasであった。 Y was prepared by using each nitrate aqueous solution to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0.5 μm. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. This slurry had a viscosity of 140 mPas.
[0224] (4)電解質の作製  [0224] (4) Preparation of electrolyte
調製したスラリーを上記(2)で作製した空気側電極反応層の表面上に、スラリーコ ート法で成膜し、 1400°Cで焼結させた。得られた電解質の厚さは、 30 x mであった 。なお、後工程でインターコネクターを成膜する部分についてはマスキングを施し、膜 が塗布されなレ、ようにしてぉレヽた。  The prepared slurry was formed into a film by the slurry coating method on the surface of the air-side electrode reaction layer prepared in (2) above, and sintered at 1400 ° C. The thickness of the obtained electrolyte was 30 x m. The portion where the interconnector was to be formed in a later step was masked, and the film was not coated so as to be removed.
[0225] (5)燃料側電極反応層のスラリー作製 燃料側電極反応層の材料を Ni〇/SSZとし、その組成は NiO/ (ZrO ) (Sc (5) Slurry preparation of fuel-side electrode reaction layer The material of the fuel-side electrode reaction layer is Ni〇 / SSZ, and its composition is NiO / (ZrO) (Sc
2 0. 90 2 2 0. 90 2
O ) とした。 Ni、 Zrおよび Sc各々の硝酸塩水溶液を用いて、前記組成になるようO). Using the nitrate aqueous solution of each of Ni, Zr and Sc,
3 0. 10 3 0. 10
に調合した後、シユウ酸を加え沈殿させた。この沈殿物と上澄み液を乾燥した後、さ らに熱処理を施し、粒径を制御して原料を得た。燃料側電極反応層の重量比率が、 NiO/ (ZrO ) (Sc O ) = 20Z80と、 50/50の 2種類を作製した。平均粒  After that, oxalic acid was added for precipitation. After the precipitate and the supernatant were dried, they were further subjected to a heat treatment to control the particle size to obtain a raw material. Two types of the fuel-side electrode reaction layer were produced, with the weight ratio of NiO / (ZrO) (ScO) = 20Z80 and 50/50. Average grain
2 0. 90 2 3 0. 10  2 0.90 2 3 0.10
子径はいずれも 0. であった。この粉末 100重量部と、有機溶媒(エタノール) 5 The diameters were all 0. 100 parts by weight of this powder and an organic solvent (ethanol) 5
00重量部、バインダー(ェチルセルロース) 10重量部、分散剤(ポリオキシエチレン アルキルリン酸エステル) 5重量部、消泡剤(ソルビタンセスォキォレート) 1重量部、 および可塑剤(DBP) 5重量部を混合した後、十分攪拌してスラリーを調製した。この スラリーの粘度は 70mPasであった。 00 parts by weight, binder (ethyl cellulose) 10 parts by weight, dispersant (polyoxyethylene alkyl phosphate ester) 5 parts by weight, defoamer (sorbitan sesquiolate) 1 part by weight, and plasticizer (DBP) 5 After mixing the parts by weight, the mixture was sufficiently stirred to prepare a slurry. The viscosity of this slurry was 70 mPas.
[0226] (6)燃料側電極反応層の作製 (6) Preparation of Fuel-Side Electrode Reaction Layer
上記 (4)で調製した電解質層をマスキングして、有効面積が 150cm2になるようにし 、スラリーコート法により電解質層上に、上記(5)で作製したスラリー NiO/ (ZrO ) The electrolyte layer prepared in (4) above is masked so that the effective area becomes 150 cm 2 , and the slurry NiO / (ZrO) prepared in (5) is coated on the electrolyte layer by a slurry coating method.
2 0. 2 0.
(Sc O ) = 20/80 (平均粒子径 0· 5 // η )、および同 50/50 (平均粒子径 0·(Sc O) = 20/80 (average particle diameter 0.55 η), and 50/50 (average particle diameter 0
90 2 3 0. 10 90 2 3 0.10
5 / m)を順に成膜した。膜厚 (焼結後)は 10 μ mとした。  5 / m). The film thickness (after sintering) was 10 μm.
[0227] (7)燃料極のスラリー作製: (7) Slurry preparation of fuel electrode:
燃料極の材料を NiO/YSZとし、その組成は NiO/ (ZrO ) (Y Ο ) とした  The fuel electrode material was NiO / YSZ and the composition was NiO / (ZrO) (Y ().
2 0. 90 2 3 0. 10 2 0.90 2 3 0.10
。 Ni、 Zrおよび Y各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、 シユウ酸をカ卩ぇ沈殿させた。沈殿物と上澄み液を乾燥した後、さらに熱処理を施し、 粒径を制御した後原料を得た。その組成およびその重量比率は NiO/ (ZrO ) ( . Using the respective nitrate aqueous solutions of Ni, Zr and Y, the mixture was prepared to have the above-mentioned composition, and oxalic acid was precipitated. After the precipitate and the supernatant were dried, they were further subjected to a heat treatment to control the particle size and obtain a raw material. Its composition and its weight ratio is NiO / (ZrO) (
2 0. 90 2 0. 90
Y Ο ) = 70/30であり、平均粒径は 2 i mであった。この粉末 100重量部と、有YΟ) = 70/30, and the average particle size was 2 im. 100 parts by weight of this powder
2 3 0. 10 2 3 0. 10
機溶媒(エタノール) 500重量部、バインダー(ェチルセルロース) 20重量部、分散剤 (ポリオキシエチレンアルキルリン酸エステル) 5重量部、消泡剤(ソルビタンセスォキ ォレート) 1重量部、および可塑剤(DBP) 5重量部を混合した後、十分攪拌してスラリ 一を調製した。このスラリーの粘度は 250mPasであった。  500 parts by weight of solvent (ethanol), 20 parts by weight of binder (ethyl cellulose), 5 parts by weight of dispersant (polyoxyethylene alkyl phosphate), 1 part by weight of defoamer (sorbitan sesocholate), and plastic After mixing 5 parts by weight of the agent (DBP), the mixture was sufficiently stirred to prepare a slurry. The viscosity of this slurry was 250 mPas.
[0228] (8)燃料極の作製 [0228] (8) Preparation of fuel electrode
上記(6)で調製した燃料側電極反応層上に上記(7)で調製したスラリーをスラリー コート法により成膜した。膜厚 (焼結後)は 90 x mであった。さらに、燃料側電極反応 層と燃料極を 1400°Cで共焼結させた。 The slurry prepared in (7) was formed on the fuel-side electrode reaction layer prepared in (6) by a slurry coating method. The film thickness (after sintering) was 90 xm. In addition, the fuel-side electrode reaction The layer and anode were co-sintered at 1400 ° C.
[0229] (9)インターコネクターの作製: (9) Fabrication of interconnector:
組成 La Ca CrOで表される Caを固溶させたランタンクロマイトのインターコネ Composition of lanthanum chromite in which Ca represented by composition La Ca CrO is dissolved
0. 70 0. 30 3 0.70 0.30 3
クタを作製した。噴霧熱分解法で粉末を作製後、熱処理を施して得た。得られた粉末 の平均粒子径は 1 μ mであった。この粉末 40重量部を溶媒(エタノール) 100重量部 、バインダー(ェチルセルロース) 2重量部、分散剤(ポリオキシエチレンアルキルリン 酸エステル) 1重量部、および消泡剤(ソルビタンセスキォレート) 1重量部とを混合し た後、十分攪拌してスラリーを調製した。このスラリー粘度は lOOmPasであった。スラ リーコート法によりインターコネクターを成膜し、 1400°Cで焼結させた。焼結後の厚さ は 40 x mであった。  Kuta was made. Powder was prepared by spray pyrolysis and then heat-treated. The average particle size of the obtained powder was 1 μm. 40 parts by weight of this powder are 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate) 1 After that, the mixture was mixed well with the mixture and stirred sufficiently to prepare a slurry. The slurry viscosity was 100 mPas. An interconnector was formed by a slurry coating method and sintered at 1400 ° C. The thickness after sintering was 40 x m.
[0230] 比較例 B9 [0230] Comparative Example B9
空気側電極反応層として、組成、重量比が La Sr MnO /90mol%ZrO _1  As the air-side electrode reaction layer, the composition and weight ratio are La Sr MnO / 90mol% ZrO_1
0. 75 0. 25 3 2 0.75 0.25 3 2
0mol%Y O = 50/50であるものとした。 La、 Sr、 Mn、 Zrおよび Yの各々の硝酸 It was assumed that 0 mol% Y O = 50/50. La, Sr, Mn, Zr and Y each nitric acid
2 3  twenty three
塩水溶液を用いて、前記組成になるように調合した後、シユウ酸による共沈を行った Using a salt aqueous solution, the mixture was prepared so as to have the above composition, and then coprecipitation with oxalic acid was performed.
。さらに熱処理を施し、粒径を制御した原料粉末を得た。平均粒子径は 5 μ ΐηであつ た。この粉末 40重量部を、溶媒 (エタノール) 100重量部、バインダー(ェチルセル口 ース) 2重量部、分散剤(ポリオキシエチレンアルキルリン酸エステル) 1重量部、およ び消泡剤(ソルビタンセスキォレート) 1重量部と混合した後、十分攪拌してスラリーを 調製した。このスラリー粘度は lOOmPasであった。前記スラリーを、空気極支持体表 面上にスラリーコート法で成膜した後に 1400°Cで焼結させた。厚さは 30 μ mであつ た。上記以外は実施例 B25と同様にして、燃料電池を得た。 . Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 μΐη. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethylcellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and a defoamer (sorbitan sesquis) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. The slurry was formed into a film on the surface of the air electrode support by a slurry coating method and then sintered at 1400 ° C. The thickness was 30 μm. A fuel cell was obtained in the same manner as Example B25 except for the above.
[0231] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。 [0231] The fuel cell obtained as described above was subjected to the Mn content, gas leak test, power generation test, and durability test on the surface of the electrolyte on the fuel electrode side. The results were as shown in the display below.
[表 20] ガス透過量 M n量 初期電位 [Table 20] Gas permeation amount M n amount Initial potential
(x lO !Oms !Pa 1) (w t %) ( V ) 実施例 B 25 6.5 2.9 0.57 比較例 B 9 6.5 5.5 0.48 (xlO! Oms! Pa 1 ) (wt%) (V) Example B 25 6.5 2.9 0.57 Comparative example B 9 6.5 5.5 0.48
[表 21] [Table 21]
Figure imgf000056_0001
Figure imgf000056_0001
[0232] 表 7には 40000時間後の推定電位を示すがこれは定置型の燃料電池として求めら れる寿命が 40000時間であるためである。一般的に 40000時間での電位低下率が 10%以下であれば問題ないとされている。 [0232] Table 7 shows the estimated potential after 40,000 hours, because the lifetime required for a stationary fuel cell is 40,000 hours. In general, it is considered that there is no problem if the potential decrease rate after 40,000 hours is 10% or less.
[0233] 以下、空気側電極反応層の厚さについて試験した。  [0233] Hereinafter, the thickness of the air-side electrode reaction layer was tested.
[0234] 実施例 B26  [0234] Example B26
空気側電極反応層の厚さを 3 μ mとしたこと以外は実施例 Β25と同様にして、燃料 電池を得た。  A fuel cell was obtained in the same manner as in Example 25 except that the thickness of the air-side electrode reaction layer was 3 μm.
[0235] 実施例 B27 Example B27
空気側電極反応層の厚さを 5 β mとしたこと以外は実施例 Β25と同様にして、燃料 電池を得た。 Except that the thickness of the air-side electrode reaction layer and 5 beta m in the same manner as in Example Beta25, a fuel cell was obtained.
[0236] 実施例 B28 [0236] Example B28
空気側電極反応層の厚さを 20 β mとしたこと以外は実施例 25と同様にして、燃料 電池を得た。 A fuel cell was obtained in the same manner as in Example 25 except that the thickness of the air-side electrode reaction layer was set to 20 βm .
[0237] 実施例 B29 [0237] Example B29
空気側電極反応層の厚さを 50 β mとしたこと以外は実施例 Β25と同様にして、燃 料電池を得た。 The thickness of the air-side electrode reaction layers except that the 50 beta m in the same manner as in Example Beta25, to obtain a fuel cell.
[0238] 実施例 B30 空気側電極反応層の厚さを 55 μ mとしたこと以外は実施例 Β25と同様にして、燃 料電池を得た。 [0238] Example B30 A fuel cell was obtained in the same manner as in Example 25 except that the thickness of the air-side electrode reaction layer was 55 μm.
[0239] 以上のようにして得られた燃料電池について、前記と同様のガス漏れ試験、発電試 験、耐久試験、および電解質表面の組成分析を行った。その結果は、以下に示され るとおりであった。  [0239] The fuel cell obtained as described above was subjected to the same gas leak test, power generation test, durability test, and composition analysis of the electrolyte surface as described above. The results were as shown below.
[表 22]  [Table 22]
Figure imgf000057_0001
Figure imgf000057_0001
[表 23] [Table 23]
Figure imgf000057_0002
Figure imgf000057_0002
[0240] 以上より、出力性能および耐久性能の面から、空気側電極反応層の厚さ 5— 50 / mの範囲がより好ましいことが分かる。 [0240] From the above, it can be seen that the thickness of the air-side electrode reaction layer is more preferably in the range of 5-50 / m from the viewpoint of output performance and durability performance.
[0241] 空気側電極反応層の二層化の効果 [0241] Effect of double layer of air-side electrode reaction layer
実 例 B31  Example B31
第二の空気側電極反応層の材料を SSZとし、その組成は 90mol%ZrO -lOmol  The material of the second air-side electrode reaction layer is SSZ, and its composition is 90 mol% ZrO -lOmol
2  2
%Sc Oとした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前記組成になるように調 % Sc O. Using the aqueous nitrate solutions of Zr and Sc, adjust to the above composition.
2 3 twenty three
合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御した原料粉 末を得た。平均粒子径は 2 μ ΐηであった。この粉末 40重量部を、溶媒 (エタノール) 1 00重量部、バインダー(ェチルセルロース) 2重量部、分散剤(ポリオキシエチレンァ ルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセスキォレート) 1重量部 とを混合した後、十分攪拌してスラリーを調製した。このスラリー粘度は lOOmPasで あった。このスラリーを、上記実施例 B25 (2)で得た空気側電極反応層の表面上にス ラリーコート法で成膜した後に 1400°Cで焼結させた。第二の層の細孔径は 1. 5 z m 、空隙率は 14%、厚さは 10 z mであった。上記以外は実施例 B25と同様にして、燃 料電池を得た。 After combining, coprecipitation with oxalic acid was performed. Raw material powder that has been subjected to heat treatment to control the particle size I got the end. The average particle size was 2 μΐη. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and a defoamer (sorbitan sesquiolate) After mixing 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. This slurry was formed into a film by slurry coating on the surface of the air-side electrode reaction layer obtained in Example B25 (2), and then sintered at 1400 ° C. The pore size of the second layer was 1.5 zm, the porosity was 14%, and the thickness was 10 zm. A fuel cell was obtained in the same manner as Example B25 except for the above.
[0242] 実施例 B32 [0242] Example B32
第二の空気側電極反応層の厚さを 3 μ mとしたこと以外は実施例 B31と同様にして 、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example B31, except that the thickness of the second air-side electrode reaction layer was changed to 3 μm.
[0243] 実施例 B33 [0243] Example B33
第二の空気側電極反応層の厚さを 5 μ mとしたこと以外は実施例 B31と同様にして 、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example B31, except that the thickness of the second air-side electrode reaction layer was set to 5 μm.
[0244] 実施例 B34 Example B34
第二の空気側電極反応層の厚さを 30 μ mとしたこと以外は実施例 B31と同様にし て、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example B31, except that the thickness of the second air-side electrode reaction layer was set to 30 μm.
[0245] 実施例 B35 Example B35
第二の空気側電極反応層の厚さを 50 μ mとしたこと以外は実施例 B31と同様にし て、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example B31, except that the thickness of the second air-side electrode reaction layer was set to 50 μm.
[0246] 実施例 B36 [0246] Example B36
第二の空気側電極反応層の厚さを 55 μ mとしたこと以外は実施例 B31と同様にし て、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example B31, except that the thickness of the second air-side electrode reaction layer was set to 55 μm.
[0247] 以上のようにして得られた燃料電池について、前記と同様のガス漏れ試験、発電試 験、耐久試験、および電解質表面の組成分析を行った。なお、組成分析については 、燃料極に接する電解質の表面に加えて、第二の空気側電極反応層に接する電解 質の表面のマンガン含有量についても同様に測定した。また、比較例 B9についても 同様に測定を行った。その結果は、以下に示されるとおりであった。 [表 24] [0247] The fuel cell obtained as described above was subjected to the same gas leak test, power generation test, durability test, and composition analysis of the electrolyte surface as described above. In the composition analysis, in addition to the surface of the electrolyte in contact with the fuel electrode, the manganese content on the surface of the electrolyte in contact with the second air-side electrode reaction layer was similarly measured. The measurement was also performed for Comparative Example B9 in the same manner. The results were as shown below. [Table 24]
Figure imgf000059_0001
Figure imgf000059_0001
[表 25] [Table 25]
Figure imgf000059_0002
Figure imgf000059_0002
[0248] 第二の空気側電極反応層を設けた方が良ぐ厚さが 5— 50 μ ΐηの範囲がより好まし レ、ことが分かる。 [0248] It can be seen that it is more preferable to provide the second air-side electrode reaction layer, and it is more preferable that the thickness is in the range of 5-50 µΐη.
[0249] 以下、電解質の構成について試験した。 [0249] Hereinafter, the configuration of the electrolyte was tested.
[0250] 実施例 B37 [0250] Example B37
電解質の材料を ScYSZとし、その組成は 90mol%ZrO _5mol%Sc O -5mol%  The material of the electrolyte is ScYSZ, and its composition is 90 mol% ZrO_5 mol% ScO-5 mol%
2 2 3  2 2 3
Y Oとした。 Zr Y Scの各々の硝酸塩水溶液を用いて、前記組成になるように調 Y O. Using each nitrate aqueous solution of Zr Y Sc, adjust to the above composition.
2 3 twenty three
合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御した原料粉 末を得た。平均粒子径は 0. であった。上記以外は実施例 B25と同様にして、 燃料電池を得た。 [0251] 実施例 B38 After combining, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0. A fuel cell was obtained in the same manner as Example B25 except for the above. [0251] Example B38
電解質の材料を SSZとし、その組成は 90mol%Zr〇 _10mol%Sc Oとした。 Zr  The material of the electrolyte was SSZ, and its composition was 90 mol% Zr〇_10 mol% ScO. Zr
2 2 3 、 2 2 3,
Scの各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸に よる共沈を行った。さらに熱処理を施し、粒径を制御した原料粉末を得た。平均粒子 径は 0. であった。上記以外は実施例 B25と同様にして、燃料電池を得た。 After each Sc was mixed to have the above-mentioned composition using each nitrate aqueous solution, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0. A fuel cell was obtained in the same manner as Example B25 except for the above.
[0252] 実施例 B39  [0252] Example B39
電解質の材料を、組成 90mol%ZrO -10mol%Sc〇の SSZ、および組成 90mo  The material of the electrolyte is SSZ with a composition of 90 mol% ZrO -10 mol% Sc〇, and a composition of 90 mol%
2 2 3  2 2 3
l%ZrO -10mol%Y Oの YSZとした。空気側電極反応層の表面上に YSZをスラリ YSZ of l% ZrO-10mol% YO was used. YSZ slurry on the surface of the air-side electrode reaction layer
2 2 3 2 2 3
一コート法で成膜した後、 YSZ表面上に SSZをスラリーコート法で成膜し、 1400°C で焼結させた。各々の層の厚さを 15 x mとした。上記以外は実施例 B25と同様にし て、燃料電池を得た。  After the film was formed by one coat method, SSZ was formed on the YSZ surface by the slurry coat method and sintered at 1400 ° C. The thickness of each layer was 15 x m. A fuel cell was obtained in the same manner as Example B25 except for the above.
[0253] 実施例 B40 [0253] Example B40
電解質の材料を、組成 90mol%ZrO _10mol%Sc〇の SSZ、および組成 90mo  The material of the electrolyte was SSZ with a composition of 90 mol% ZrO_10 mol% ScS, and a composition of 90 mol%
2 2 3  2 2 3
l%ZrO -10mol%Y Oの YSZとした。空気側電極反応層の表面上に SSZをスラリ YSZ of l% ZrO-10mol% YO was used. Slurry SSZ on the surface of the air-side electrode reaction layer
2 2 3 2 2 3
一コート法で成膜した後、 SSZ表面上に YSZをスラリーコート法で成膜し、さらに YS Z表面上に SSZをスラリーコート法で成膜した。各々の層を 1400°Cで共焼結させた。 各々の層の厚さを 10 μ mとした。上記以外は実施例 B25と同様とした。  After forming the film by one coating method, YSZ was formed on the SSZ surface by the slurry coating method, and further, SSZ was formed on the YSZ surface by the slurry coating method. Each layer was co-sintered at 1400 ° C. The thickness of each layer was 10 μm. Except for the above, the procedure was the same as that of Example B25.
[0254] 以上のようにして得られた燃料電池について、前記と同様のガス漏れ試験、発電試 験、耐久試験、および電解質表面の組成分析を行った。その結果は、以下に示され るとおりであった。 [0254] The fuel cell obtained as described above was subjected to the same gas leak test, power generation test, durability test, and composition analysis of the electrolyte surface as described above. The results were as shown below.
[表 26]  [Table 26]
Figure imgf000060_0001
Figure imgf000060_0001
[表 27] 40000時間 [Table 27] 40000 hours
¾7tB雷 <f r後 1000 間後 1500時間後 2000時間後  ¾7tB lightning <f r after 1000 between 1500 hours after 2000 hours
後推定電位 ( V) ( V) ( V) ( V)  Estimated potential after (V) (V) (V) (V)
( V) 実施例 B 25 0.57 0.57 0.57 0.57 0.54 実施例 B 37 0.60 0.60 0.60 0.60 0.57 実施例 B 38 0.61 0.61 0.61 0.61 0.58 実施例 B 39 0.61 0.61 0.61 0.61 0.58 実施例 B 40 0.62 0.62 0.62 0.62 0.59  (V) Example B 25 0.57 0.57 0.57 0.57 0.54 Example B 37 0.60 0.60 0.60 0.60 0.57 Example B 38 0.61 0.61 0.61 0.61 0.58 Example B 39 0.61 0.61 0.61 0.61 0.58 Example B 40 0.62 0.62 0.62 0.62 0.59
[0255] 実施例 CI [0255] Example CI
(1)空気極支持体の作製  (1) Preparation of cathode support
空気極を、 La Sr MnO組成で表される Srを固溶させたランタンマンガナイト  Lanthanum manganite with Sr as solid solution represented by La Sr MnO composition
0. 75 0. 25 3  0.75 0.25 3
とした。共沈法で作製後熱処理して空気極原料粉末を得た。平均粒子径は、 30 / m であった。押し出し成形法によって円筒状成形体を作製した。さらに、 1500°Cで焼 成を行い、空気極支持体とした。空気極支持体の細孔径は 14 / m、空隙率は 45% 、肉厚は 1 · 5mmであった。  It was. After preparation by the coprecipitation method, heat treatment was performed to obtain air electrode raw material powder. The average particle size was 30 / m. A cylindrical molded body was produced by an extrusion molding method. Furthermore, sintering was performed at 1500 ° C to obtain an air electrode support. The pore diameter of the air electrode support was 14 / m, the porosity was 45%, and the wall thickness was 1.5 mm.
[0256] (2)空気側電極反応層(第一の層)の作製 [0256] (2) Preparation of air-side electrode reaction layer (first layer)
第一の層を、(La A ) MnOと YSZが均一に混合された層とし、その組成および  The first layer is a layer in which (La A) MnO and YSZ are uniformly mixed, and its composition and
1— 3  13
その重量比率が、 La Sr MnO /90mol%ZrO— 10mol%Y〇 = 50/50  The weight ratio is La Sr MnO / 90mol% ZrO— 10mol% Y〇 = 50/50
0. 75 0. 25 3 2 2 3  0.75 0.25 3 2 2 3
であるものを調製して用いた。 La、 Sr、 Mn、 Zrおよび Yの各々の硝酸塩水溶液を用 いて、前記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理 を施し、粒径を制御した原料粉末を得た。平均粒子径は 5 z mであった。この第一の 層の粉末 40重量部を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロー ス) 2重量部、分散剤(ポリオキシエチレンアルキルリン酸エステル) 1重量部、および 消泡剤(ソルビタンセスキォレート) 1重量部と混合した後、十分攪拌してスラリーを調 製した。このスラリー粘度は lOOmPasであった。このスラリーを、空気極支持体 (外径 15mm,肉厚 1. 5mm、有効長 400mm)表面上にスラリーコート法で成膜した後に 1 400°Cで焼結させた。第一の層の細孔径は 5 μ ΐη、空隙率は 28%、厚さは 20 μ ΐηで あった。 [0257] (3)空気側電極反応層(第二の層)の作製 Was prepared and used. The aqueous solution of each of La, Sr, Mn, Zr and Y was mixed to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 zm. 40 parts by weight of the powder of the first layer were mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and a defoamer (sorbitan). (Sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. The slurry was formed on a surface of an air electrode support (outside diameter: 15 mm, wall thickness: 1.5 mm, effective length: 400 mm) by a slurry coating method, and then sintered at 1400 ° C. The pore size of the first layer was 5 μΐη, the porosity was 28%, and the thickness was 20 μΐη. [0257] (3) Preparation of air-side electrode reaction layer (second layer)
第二の層の材料を SSZとし、その組成は 90mol%ZrO— 10mol%Sc Oとした。 Z  The material of the second layer was SSZ, and the composition was 90 mol% ZrO-10 mol% ScO. Z
2 2 3 r、 Scの各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸 による共沈を行った。さらに熱処理を施し、粒径を制御した原料粉末を得た。平均粒 子径は 2 μ mであった。この粉末 40重量部を、溶媒(エタノール) 100重量部、バイン ダー(ェチルセルロース) 2重量部、分散剤(ポリオキシエチレンアルキルリン酸エステ ノレ) 1重量部、消泡剤(ソルビタンセスキォレート) 1重量部とを混合した後、十分攪拌 してスラリーを調製した。このスラリー粘度は lOOmPasであった。このスラリーを、第 一の層表面上にスラリーコート法で成膜した後に 1400°Cで焼結させた。第二の層の 細孔径は 1. 5 μ m、空隙率は 14%、厚さは 10 μ mであった。  The respective compositions were prepared using the respective aqueous nitrate solutions of 230 r and Sc so as to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 2 μm. 40 parts by weight of this powder are mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate ester), and an antifoaming agent (sorbitan sesquiolate). After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. This slurry was sintered at 1400 ° C. after forming a film on the surface of the first layer by a slurry coating method. The pore size of the second layer was 1.5 μm, the porosity was 14%, and the thickness was 10 μm.
[0258] (4)電解質のスラリー作製: ( 4 ) Preparation of Slurry of Electrolyte:
電解質の材料を YSZとし、その組成は 90mol%ZrO -10mol%Y Oとした。 Zr  The material of the electrolyte was YSZ, and the composition was 90 mol% ZrO-10 mol% YO. Zr
2 2 3 、 2 2 3,
Yの各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸によ る共沈を行った。さらに熱処理を施し、粒径を制御した原料粉末を得た。平均粒子径 は 0. 5 μ mであった。この粉末 40重量部を、溶媒(エタノール) 100重量部、バインダ 一(ェチルセルロース) 2重量部、分散剤(ポリオキシエチレンアルキルリン酸エステル ) 1重量部、および消泡剤(ソルビタンセスキォレート) 1重量部と混合した後、十分攪 拌してスラリ一を調製した。このスラリー粘度は 140mPasであつた。 Y was prepared by using each nitrate aqueous solution to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0.5 μm. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and a defoamer (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 140 mPas.
[0259] (5)電解質の作製  [0259] (5) Preparation of electrolyte
調製したスラリーを第二の層上に、スラリーコート法で成膜し、 1400°Cで焼結させ た。得られた電解質の厚さは、 30 /i mであった。なお、後工程でインターコネクターを 成膜する部分にっレ、てはマスキングを施し、膜が塗布されなレ、ようにしてぉレ、た。  The prepared slurry was formed on the second layer by a slurry coating method, and sintered at 1400 ° C. The thickness of the obtained electrolyte was 30 / im. In the post-process, the portion where the interconnector was to be formed was subjected to masking, so that the film was not applied.
[0260] (6)燃料側電極反応層のスラリー作製  [0260] (6) Preparation of slurry for fuel-side electrode reaction layer
燃料側電極反応層の材料を Ni〇/SSZとし、その組成は、 Ni〇/ (ZrO ) (Sc  The material of the fuel-side electrode reaction layer is Ni〇 / SSZ, and its composition is Ni〇 / (ZrO) (Sc
2 0. 90 2 2 0. 90 2
O ) とした。 Ni、 Zrおよび Sc各々の硝酸塩水溶液を用いて、前記組成になるようO). Using the nitrate aqueous solution of each of Ni, Zr and Sc,
3 0. 10 3 0. 10
に調合した後、シユウ酸を加え沈殿させた。該沈殿物と上澄み液を乾燥した後、さら に熱処理を施し、粒径を制御して原料を得た。燃料側電極反応層の重量比率が、 Ni O/ (ZrO ) (Sc O ) = 20/80と、 50Z50の 2種類を作製し、平均粒子径  After that, oxalic acid was added for precipitation. After drying the precipitate and the supernatant, it was further subjected to a heat treatment to control the particle size to obtain a raw material. The weight ratio of the fuel-side electrode reaction layer was NiO / (ZrO) (ScO) = 20/80 and 50Z50.
2 0. 90 2 3 0. 10 はいずれも 0· 5 μ ΐηであった。この粉末 100重量部と有機溶媒(エタノール) 500重 量部、バインダー(ェチルセルロース) 10重量部、分散剤(ポリオキシエチレンアルキ ルリン酸エステル) 5重量部、および消泡剤(ソルビタンセスォキォレート) 1重量部、 可塑剤(DBP) 5重量部を混合した後、十分攪拌してスラリーを調製した。このスラリ 一の粘度は 70mPasであった。 2 0.90 2 3 0.10 Was 0.5 μΐη. 100 parts by weight of this powder, 500 parts by weight of an organic solvent (ethanol), 10 parts by weight of a binder (ethyl cellulose), 5 parts by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesozoate) Rate) and 5 parts by weight of a plasticizer (DBP), and then sufficiently stirred to prepare a slurry. The viscosity of this slurry was 70 mPas.
[0261] (7)燃料側電極反応層の作製 (7) Preparation of Fuel-Side Electrode Reaction Layer
上記(5)で調製した電解質層をマスキングし、有効面積が 150cm2になるようにし、 スラリーコート法により電解質層上へ Ni〇/ (Zr〇) (Sc O ) (平均粒子径) = The electrolyte layer prepared in (5) above is masked so that the effective area becomes 150 cm 2 , and Ni〇 / (Zr〇) (Sc O) (average particle diameter) is applied onto the electrolyte layer by a slurry coating method.
2 0. 90 2 3 0. 10  2 0.90 2 3 0.10
20/80 (0. 5 μ m)、 50/50 (0. 5 μ m)の順に成膜した。膜厚(焼結後)は 10 μ m とした。  Films were formed in the order of 20/80 (0.5 μm) and 50/50 (0.5 μm). The film thickness (after sintering) was 10 μm.
[0262] (8)燃料極のスラリー作製:  (8) Preparation of slurry for fuel electrode:
燃料極の材料を Ni〇/YSZとし、その組成は Ni〇/ (Zr〇 ) (Y O ) とした  The fuel electrode material was Ni〇 / YSZ and its composition was Ni〇 / (Zr〇) (Y O).
2 0. 90 2 3 0. 10 2 0.90 2 3 0.10
。 Ni、 Zr、および Y各々の硝酸塩水溶液を用いて、前記組成になるように調合した後 、シユウ酸をカ卩ぇ沈殿させた。沈殿物と上澄み液を乾燥した後、さらに熱処理を施し、 粒径を制御した後原料を得た。組成およびその重量比率は Ni〇/ (Zr〇 ) (Y O . After using the respective nitrate aqueous solutions of Ni, Zr and Y to prepare the above composition, oxalic acid was precipitated. After the precipitate and the supernatant were dried, they were further subjected to a heat treatment to control the particle size and obtain a raw material. The composition and its weight ratio is Ni〇 / (Zr〇) (Y O
2 0. 90 2 2 0. 90 2
) = 70/30であり、平均粒径は 2 / mであった。この粉末 100重量部と、有機溶) = 70/30 and the average particle size was 2 / m. 100 parts by weight of this powder and organic solvent
3 0. 10 3 0. 10
媒 (エタノール) 500重量部、バインダー(ェチルセルロース) 20重量部、分散剤(ポリ ォキシエチレンアルキルリン酸エステル) 5重量部、および消泡剤(ソルビタンセスォ キォレート) 1重量部、可塑剤(DBP) 5重量部を混合した後、十分攪拌してスラリーを 調製した。このスラリーの粘度は 250mPasであった。  500 parts by weight of medium (ethanol), 20 parts by weight of binder (ethyl cellulose), 5 parts by weight of dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of defoamer (sorbitan seso cholate), plasticizer After mixing 5 parts by weight of (DBP), the mixture was sufficiently stirred to prepare a slurry. The viscosity of this slurry was 250 mPas.
[0263] (9)燃料極の作製 [0263] (9) Preparation of fuel electrode
燃料側電極反応層上に燃料極スラリーをスラリーコート法により成膜した。膜厚 (焼 結後)は 90 x mであった。さらに、燃料側電極反応層と燃料極を 1400°Cで共焼結さ せた。  A fuel electrode slurry was formed on the fuel-side electrode reaction layer by a slurry coating method. The film thickness (after sintering) was 90 x m. Furthermore, the fuel electrode reaction layer and the fuel electrode were co-sintered at 1400 ° C.
[0264] (10)インターコネクターの作製:  (10) Fabrication of interconnector:
組成を La Ca CrOで表される Caを固溶させたランタンクロマイトのインターコ  The composition of lanthanum chromite with a solid solution of Ca, whose composition is represented by La Ca CrO
0. 70 0. 30 3  0.70 0.30 3
ネクターを作製した。噴霧熱分解法で作製後、熱処理を施して得た。得られた粉末 の平均粒子径は 1 μ mであった。この粉末 40重量部を、溶媒(エタノール) 100重量 部、バインダー(ェチルセルロース) 2重量部、分散剤(ポリオキシエチレンアルキルリ ン酸エステル) 1重量部、および消泡剤(ソルビタンセスキォレート) 1重量部と混合し た後、十分攪拌してスラリーを調製した。このスラリー粘度は lOOmPasであった。スラ リーコート法によりインターコネクターを成膜し、 1400°Cで焼結させた。焼結後の厚さ は 40 x mであった。 Nectar was prepared. After being produced by the spray pyrolysis method, it was obtained by performing a heat treatment. The average particle size of the obtained powder was 1 μm. 40 parts by weight of this powder are mixed with 100 parts by weight of solvent (ethanol) Parts, a binder (ethyl cellulose) 2 parts by weight, a dispersant (polyoxyethylene alkyl phosphate) 1 part by weight, and an antifoaming agent (sorbitan sesquiolate) 1 part by weight, and then sufficiently stirred. To prepare a slurry. The slurry viscosity was 100 mPas. An interconnector was formed by a slurry coating method and sintered at 1400 ° C. The thickness after sintering was 40 xm.
[0265] 比較例 C1 [0265] Comparative Example C1
空気側電極反応層の材料を YSZとし、その組成およびその重量比率は 90mol%Z rO -10mol%Y Oとした。 Zr、 Yの各々の硝酸塩水溶液を用いて、前記組成にな The material of the air-side electrode reaction layer was YSZ, and its composition and weight ratio were 90 mol% ZrO-10 mol% YO. Using the respective nitrate aqueous solutions of Zr and Y,
2 2 3 2 2 3
るように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御 した原料粉末を得た。平均粒子径は 2 x mであった。この粉末 40重量部を、溶媒(ェ タノール) 100重量部、バインダー(ェチルセルロース) 2重量部、分散剤(ポリオキシ エチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセスキォレート ) 1重量部と混合した後、十分攪拌してスラリーを調製した。このスラリー粘度は 100m Pasであった。このスラリーを、空気極支持体の表面上にスラリーコート法で成膜した 後に 1400°Cで焼結させた。厚さは 30 /i mであった。上記以外は実施例 C1と同様に して、燃料電池を得た。  After that, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 2 × m. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate ester), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. This slurry was formed into a film on the surface of the air electrode support by a slurry coating method, and then sintered at 1400 ° C. The thickness was 30 / im. Except for the above, a fuel cell was obtained in the same manner as in Example C1.
[0266] 比較例 C2 [0266] Comparative Example C2
空気側電極反応層を(La A ) MnOと YSZが均一に混合された層とし、組成お  The air-side electrode reaction layer is a layer in which (La A) MnO and YSZ are uniformly mixed,
1— 3  13
よびその重量比率が、 La Sr MnO /90mol%ZrO -10mol%Y O = 50/  And its weight ratio is La Sr MnO / 90mol% ZrO -10mol% Y O = 50 /
0. 75 0. 25 3 2 2 3 0.75 0.25 3 2 2 3
50であるものを調製して用いた。 La、 Sr、 Mn、 Zr、および Yの各々の硝酸塩水溶液 を用いて、前記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱 処理を施し、粒径を制御した原料粉末を得た。平均粒子径は 5 z mであった。この粉 末 40重量部を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2重 量部、分散剤(ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤( ソルビタンセスキォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。 このスラリー粘度は lOOmPasであった。このスラリーを、空気極支持体表面上にスラ リーコート法で成膜した後に 1400°Cで焼結させた。厚さは 30 x mであった。上記以 外は実施例 C1と同様として、燃料電池を得た。 [0267] 比較例 C3 What was 50 was prepared and used. Using the aqueous solutions of the respective nitrates of La, Sr, Mn, Zr, and Y, the mixture was prepared to have the above-mentioned composition, and then coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 zm. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and a defoamer (Sorbitan sesquio) Rate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. This slurry was formed into a film on the surface of the cathode support by a slurry coating method, and then sintered at 1400 ° C. The thickness was 30 xm. A fuel cell was obtained in the same manner as Example C1, except for the above. [0267] Comparative Example C3
空気側電極反応層を(La A ) MnOと一般式(Ce〇 ) (Y Ο ) で表される  The air-side electrode reaction layer is represented by (La A) MnO and the general formula (Ce〇) (Y Ο)
1— 3 2 0. 8 2 3 0. 1  1— 3 2 0. 8 2 3 0. 1
セリウム含有酸化物が均一に混合された層(以下、(La A ) MnO / (CeO ) (  A layer in which a cerium-containing oxide is uniformly mixed (hereinafter referred to as (La A) MnO / (CeO) (
1— x x y 3 2 0. 8 1— x x y 3 2 0.8
Y〇 ) と示す。)とし、その組成およびその重量比率が、 La Sr MnO / (CeY〇). ) And its composition and its weight ratio are La Sr MnO / (Ce
2 3 0. 1 0. 75 0. 25 32 3 0.1 0.75 0.25 3
〇) (Y〇) = 50/50であるものを調製して用いた。 La Sr MnOにつ〇) Those with (Y〇) = 50/50 were prepared and used. About La Sr MnO
2 0. 8 2 3 0. 1 0. 75 0. 25 3 いては La, Srおよび Mnの各々の硝酸塩水溶液を用いて、前記組成になるように調 合した後、シユウ酸による共沈を行った。さらに 1200°Cで熱処理を施した。 (CeO ) 20.8 2 3 0.10.15 0.25 3 After using La, Sr and Mn nitrate aqueous solutions to prepare the above composition, coprecipitation with oxalic acid was performed. Was. Further, heat treatment was performed at 1200 ° C. (CeO)
2 0 2 0
(Y O ) については Ceおよび Yの各々の硝酸塩水溶液を用いて、前記組成になFor (Y O), use the aqueous nitrate solutions of Ce and Y to achieve the above composition.
. 8 2 3 0. 1 . 8 2 3 0. 1
るように調合した後、シユウ酸による共沈を行った。さらに 1200°Cで熱処理を施した。 1200°Cで熱処理を施した La Sr Mn〇粉末および(Ce〇) (Y Ο ) 粉末  After that, coprecipitation with oxalic acid was performed. Further, heat treatment was performed at 1200 ° C. La Sr Mn〇 powder and (Ce〇) (Y Ο) powder heat treated at 1200 ° C
0. 75 0. 25 3 2 0. 8 2 3 0. 1 を粉末混合法で混合させた後、 1400°Cで熱処理を施し、さらに粒径を制御して原料 粉末を得た。平均粒子径は 5 x mであった。この粉末 40重量部を、溶媒(エタノール ) 100重量部、バインダー(ェチルセルロース) 2重量部、分散剤(ポリオキシエチレン アルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセスキォレート) 1重量 部と混合した後、十分攪拌してスラリーを調製した。このスラリー粘度は lOOmPasで あった。前記スラリーを、空気極支持体表面上にスラリーコート法で成膜した後に 14 00°Cで焼結させた。厚さは 30 μ ΐηであった。上記以外は実施例 C1と同様として、燃 料電池を得た。  After mixing 0.75 0.25 3 2 0.82 30.1 by the powder mixing method, the mixture was heat-treated at 1400 ° C., and the particle size was controlled to obtain a raw material powder. The average particle size was 5 x m. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. The slurry was formed into a film on the surface of the cathode support by a slurry coating method and then sintered at 1400 ° C. The thickness was 30 μΐη. A fuel cell was obtained in the same manner as Example C1 except for the above.
[0268] 比較例 C4 [0268] Comparative Example C4
電解質を 1500°Cで焼結させたこと以外は、比較例 C3と同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Comparative Example C3, except that the electrolyte was sintered at 1500 ° C.
[0269] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。  [0269] The fuel cell obtained as described above was subjected to the Mn content on the fuel electrode side surface of the electrolyte, a gas leak test, a power generation test, and a durability test. The results were as shown in the display below.
[表 28] 刀ス透: id Mn量 初期電位 [Table 28] Toru Sword: id Mn amount Initial potential
(xlO ^ms !Pa 1) (wt %) (V) (xlO ^ ms! Pa 1 ) (wt%) (V)
実施例 C 1 1.8 2.8 0.61  Example C 1 1.8 2.8 0.61
比較例 C 1 3.0 4.8 0.40  Comparative Example C 1 3.0 4.8 0.40
比較例 C 2 6.5 5.5 0.48  Comparative Example C 2 6.5 5.5 0.48
比較例 C 3 210 0.1 0.41  Comparative Example C 3 210 0.1 0.41
比較例 C4 17.5 4.8 0.54  Comparative Example C4 17.5 4.8 0.54
[表 29] [Table 29]
Figure imgf000066_0001
Figure imgf000066_0001
[0270] 以下、空気側電極反応層の第二の層の細孔径について試験した。 [0270] Hereinafter, the pore size of the second layer of the air-side electrode reaction layer was tested.
[0271] 実施例 C2 [0271] Example C2
第二の層の原料の平均粒子径を 0. とし、第一の層表面上にスラリーコート法 で成膜した後、 1350°Cで焼結させたこと以外は実施例 C1と同様にして、燃料電池 を得た。  The average particle diameter of the raw material of the second layer was set to 0, and the film was formed on the surface of the first layer by the slurry coating method, and then sintered at 1350 ° C. A fuel cell was obtained.
[0272] 実施例 C3 [0272] Example C3
第二の層の原料の平均粒子径を 0.5μπιとし、第一の層表面上にスラリーコート法 で成膜した後、 1380°Cで焼結させたこと以外は実施例 C1と同様にして、燃料電池 を得た。  The average particle diameter of the raw material of the second layer was set to 0.5 μπι, and a film was formed on the surface of the first layer by a slurry coating method, and then sintered at 1380 ° C in the same manner as in Example C1. A fuel cell was obtained.
[0273] 実施例 C4 [0273] Example C4
第二の層の原料の平均粒子径を 0.5 μπιとし、第一の層表面上にスラリーコート法 で成膜した後、 1400°Cで焼結させたこと以外は実施例 C1と同様にして、燃料電池 を得た。 The average particle size of the raw material of the second layer is set to 0.5 μπι, and the slurry coating method Then, a fuel cell was obtained in the same manner as in Example C1, except that sintering was performed at 1400 ° C.
[0274] 実施例 C5 [0274] Example C5
第二の層の原料の平均粒子径を 2 μ mとし、第一の層表面上にスラリーコート法で 成膜した後、 1430°Cで焼結させたこと以外は実施例 C1と同様にして、燃料電池を 得た。  In the same manner as in Example C1, except that the average particle diameter of the raw material of the second layer was set to 2 μm, a film was formed on the surface of the first layer by a slurry coating method, and then sintered at 1430 ° C. Thus, a fuel cell was obtained.
[0275] 実施例 C6 [0275] Example C6
第二の層の原料の平均粒子径を 5 μ mとし、第一の層表面上にスラリーコート法で 成膜した後、 1430°Cで焼結させたこと以外は実施例 C1と同様にして、燃料電池を 得た。  In the same manner as in Example C1, except that the average particle diameter of the raw material of the second layer was set to 5 μm, and a film was formed on the surface of the first layer by a slurry coating method, and then sintered at 1430 ° C. Thus, a fuel cell was obtained.
[0276] 実施例 C7 [0276] Example C7
第二の層の原料の平均粒子径を 5 μ mとし、第一の層表面上にスラリーコート法で 成膜した後、 1450°Cで焼結させたこと以外は実施例 C1と同様にして、燃料電池を 得た。  In the same manner as in Example C1, except that the average particle diameter of the raw material of the second layer was set to 5 μm, a film was formed on the surface of the first layer by a slurry coating method, and then sintered at 1450 ° C. Thus, a fuel cell was obtained.
[0277] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。  [0277] The fuel cell obtained as described above was subjected to the Mn content on the surface of the electrolyte on the fuel electrode side, a gas leak test, a power generation test, and a durability test. The results were as shown in the display below.
[表 30] 細孔径 空隙率 ガス透過量 M n量 初期電位  [Table 30] Pore size Porosity Gas permeation amount M n amount Initial potential
( %) (x lO !Oms !Pa - 1) (w t %) ( V) 実施例 C 1 2 14 1.8 2.8 0.61 実施例 C 2 0.2 6 1.5 2.3 0.61 実施例 C 3 0.1 3 1.1 4.0 0.60 実施例 C 4 0.08 2 0.6 4.6 0.55 実施例 C 5 5 25 3.2 3.5 0.60 実施例 C 6 10 40 8.5 3.2 0.60 実施例 C 7 12 43 14.5 4.4 0.55 [表 31] (%) (x lO! Oms! Pa- 1 ) (wt%) (V) Example C 1 2 14 1.8 2.8 0.61 Example C 2 0.2 6 1.5 2.3 0.61 Example C 3 0.1 3 1.1 4.0 0.60 Example C 4 0.08 2 0.6 4.6 0.55 Example C 5 5 25 3.2 3.5 0.60 Example C 6 10 40 8.5 3.2 0.60 Example C 7 12 43 14.5 4.4 0.55 [Table 31]
Figure imgf000068_0001
Figure imgf000068_0001
[0278] 電解質層のガス透過量を比較すると実施例 5— 7では好ましい Q≤2.8X10— 9ms— ^a— 1ではある力 より好ましい Q≤2.8X10— 1<3ms— ^a— 1の範囲にはない。一方、実 施例 C1一 4はより好ましい Q≤2.8X10— " s—Pa—1である。電解質のガス透過性を 考慮すると、空気極の細孔径 dlと第一の層の細孔径 d2と第二の層の細孔径 d3は d l>d2> d3であることが好ましレ、ことが分かる。 [0278] In Example 5-7 to compare the gas permeability of the electrolyte layer preferably Q≤2.8X10- 9 ms- ^ a- In 1 preferred than a force Q≤2.8X10- 1 <3 ms- ^ a- 1 Not in the range. On the other hand, in Example C14, more preferable Q≤2.8X10— “s—Pa— 1 . Considering the gas permeability of the electrolyte, the pore diameter dl of the air electrode and the pore diameter d2 of the first layer are considered. It can be seen that the pore diameter d3 of the second layer is preferably dl>d2> d3.
また、第二の層における空隙率としては、 3— 40%がより好ましいことが分かる。  Further, it can be seen that the porosity of the second layer is more preferably 3-40%.
[0279] 以下、空気側電極反応層の第二の層の厚さについて試験した。  [0279] Hereinafter, the thickness of the second layer of the air-side electrode reaction layer was tested.
[0280] 実施例 C8  [0280] Example C8
第二の層の厚さを 3 μ mとしたこと以外は実施例 C1と同様にして、燃料電池を得た [0281] 実施例 C9  A fuel cell was obtained in the same manner as in Example C1, except that the thickness of the second layer was 3 μm. [0281] Example C9
第二の層の厚さを 5 μ mとしたこと以外は実施例 C1と同様にして、燃料電池を得た  A fuel cell was obtained in the same manner as in Example C1, except that the thickness of the second layer was set to 5 μm.
[0282] 実施例 C 10 [0282] Example C 10
第二の層の厚さを 30 xmとしたこと以外は実施例 C1と同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Example C1, except that the thickness of the second layer was 30 xm.
[0283] 実施例 C 11 第二の層の厚さを 50 μ ΐηとしたこと以外は実施例 CIと同様にして、燃料電池を得 た。 Example C 11 A fuel cell was obtained in the same manner as in Example CI, except that the thickness of the second layer was set to 50 μΐη.
[0284] 実施例 C 12  Example C 12
第二の層の厚さを 55 μ mとしたこと以外は実施例 C1と同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Example C1, except that the thickness of the second layer was 55 μm.
[0285] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。  [0285] The fuel cell obtained as described above was subjected to the Mn content on the surface of the electrolyte on the fuel electrode side, a gas leak test, a power generation test, and a durability test. The results were as shown in the display below.
[表 32]  [Table 32]
Figure imgf000069_0001
Figure imgf000069_0001
[表 33] [Table 33]
40000時間 初期電位後 1000時間後 1500時間後 2000時間後 40000 hours After initial potential After 1000 hours After 1500 hours After 2000 hours
( V) ( V) ( V) ( V) 後推定電位  (V) (V) (V) (V) Estimated potential
( V) 実施例 C 1 0.61 0.61 0.61 0.61 0.58 実施例 C 8 0.55 0.55 0.55 0.55 0.51 実施例 C 9 0.59 0.59 0.59 0.59 0.56 実施例 C 10 0.62 0.62 0.62 0.62 0.59 実施例 C 11 0.60 0.60 0.60 0.60 0.57 実施例 C12 0.55 0.55 0.55 0.55 0.52 [0286] 以上により、第二の層の厚さとしては 5— 50 /i mの範囲力 より好ましいことが分か る。 (V) Example C 1 0.61 0.61 0.61 0.61 0.58 Example C 8 0.55 0.55 0.55 0.55 0.51 Example C 9 0.59 0.59 0.59 0.59 0.56 Example C 10 0.62 0.62 0.62 0.62 0.59 Example C 11 0.60 0.60 0.60 0.60 0.57 Example C12 0.55 0.55 0.55 0.55 0.52 [0286] From the above, it is understood that the thickness of the second layer is more preferable than the force in the range of 5-50 / im.
電解質の燃料極側表面におけるマンガン成分の含有量が 0· 3— 4重量%であるこ とがより好ましいことが分かる。  It can be seen that the manganese component content on the fuel electrode side surface of the electrolyte is more preferably 0.3-4% by weight.
[0287] 以下、空気側電極反応層の第一の層における厚さについて試験した。 [0287] Hereinafter, the thickness of the first layer of the air-side electrode reaction layer was tested.
[0288] 実施例 C 13 Example C 13
第一の層の厚さが 3 μ mとした以外は実施例 C1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example C1, except that the thickness of the first layer was 3 μm.
[0289] 実施例 C 14 Example C 14
第一の層の厚さが 5 μ mとした以外は実施例 C1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example C1, except that the thickness of the first layer was 5 μm.
[0290] 実施例 C 15 [0290] Example C 15
第一の層の厚さが 30 μ mとした以外は実施例 C1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example C1, except that the thickness of the first layer was 30 μm.
[0291] 実施例 C 16 [0291] Example C 16
第一の層の厚さが 50 μ mとした以外は実施例 C1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example C1, except that the thickness of the first layer was changed to 50 μm.
[0292] 実施例 C 17 [0292] Example C 17
第一の層の厚さが 55 μ mとした以外は実施例 C1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example C1, except that the thickness of the first layer was 55 μm.
[0293] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。 [0293] The fuel cell obtained as described above was subjected to the Mn content on the surface of the electrolyte on the fuel electrode side, a gas leak test, a power generation test, and a durability test. The results were as shown in the display below.
34] 厚み ガス透過量 M n量 初期電位 (^ m) (xlO !Oms !Pa 1) (w t %) ( V ) 実施例 C 1 20 1.8 2.8 0.61 実施例 C 13 3 4.0 4.5 0.55 実施例 C 14 5 2.5 4.0 0.58 実施例 C 15 30 1.5 2.7 0.61 実施例 C 16 50 2.8 2.5 0.59 実施例 C 17 55 4.0 2.4 0.55 [表 35] 34] Thickness Gas permeation amount M n amount Initial potential (^ m) (xlO! Oms! Pa 1 ) (wt%) (V) Example C 1 20 1.8 2.8 0.61 Example C 13 3 4.0 4.5 0.55 Example C 14 5 2.5 4.0 0.58 Example C 15 30 1.5 2.7 0.61 Example C 16 50 2.8 2.5 0.59 Example C 17 55 4.0 2.4 0.55 [Table 35]
Figure imgf000071_0001
Figure imgf000071_0001
[0294] 以上により、第一の層における厚さとして 5— 50 /i mの範囲がより好ましいことが分 かる。 [0294] From the above, it is understood that the thickness of the first layer is more preferably in the range of 5-50 / im.
[0295] 以下、空気側電極反応層の第一の層および第二の層における材料を変えて試験 した。  [0295] Hereinafter, tests were performed by changing the materials in the first layer and the second layer of the air-side electrode reaction layer.
[0296] 実施例 C 18  [0296] Example C 18
第二の層の材料を ScYSZとし、組成を 90mol%ZrO— 5mol%Sc〇— 5mol%Y  The material of the second layer is ScYSZ, and the composition is 90 mol% ZrO— 5 mol% Sc〇— 5 mol% Y
2 2 3  2 2 3
Oとした。 Zr、 Scおよび Yの各々の硝酸塩水溶液を用いて、前記組成になるように O was set. Using the respective nitrate aqueous solutions of Zr, Sc and Y,
2 3 twenty three
調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御した原料 粉末を得た。平均粒子径は 2 μ πιであった。上記以外は実施例 C1と同様にして、燃 料電池を得た。  After the preparation, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 2 μπι. Except for the above, a fuel cell was obtained in the same manner as in Example C1.
[0297] 実施例 C 19 Example C 19
第一の層を(La A ) MnOと SSZが均一に混合された層とし、その組成および The first layer is a layer in which (La A) MnO and SSZ are uniformly mixed, and the composition and
-x 3  -x 3
その重量比率が La Sr MnO /90mol%ZrO -10mol%Sc O = 50/50  The weight ratio is La Sr MnO / 90mol% ZrO -10mol% Sc O = 50/50
0. 75 0. 25 3 2 2 3 であるものを調製して用いた。 La、 Sr、 Mn、 Zr、および Scの各々の硝酸塩水溶液を 用いて、前記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処 理を施し、粒径を制御した原料粉末を得た。平均粒子径は 5 mであった。上記以 外は実施例 C1と同様にして、燃料電池を得た。  0.75 0.25 3 2 2 3 was prepared and used. Using the respective nitrate aqueous solutions of La, Sr, Mn, Zr, and Sc, they were prepared to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 m. Except for the above, a fuel cell was obtained in the same manner as in Example C1.
[0298] 実施例 C20 第一の層を(La A ) (Mn Ni ) Oと SSZが均一に混合された層とし、その組成 [0298] Example C20 The first layer is a layer in which (La A) (Mn Ni) O and SSZ are uniformly mixed, and its composition
1— 1— ό  1— 1— ό
およびその重量比率が(La Sr ) (Mn Ni )〇 /90mol%ZrO 一 lOmol  And its weight ratio is (La Sr) (Mn Ni) 〇 / 90mol% ZrO 1 lOmol
0. 75 0. 25 0. 95 0. 05 3 2  0.75 0.25 0.95 0.05 3 2
%Sc O = 50/50であるものを調製して用いた。 La、 Sr、 Mn、 Ni、 Zr、および Sc % Sc O = 50/50 was prepared and used. La, Sr, Mn, Ni, Zr, and Sc
2 3 twenty three
の各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸による 共沈を行った。さらに熱処理を施し、粒径を制御した原料粉末を得た。平均粒子径 は 5 μ mであった。上記以外は実施例 C1と同様にして、燃料電池を得た。  Were prepared to have the above-mentioned composition using the respective nitrate aqueous solutions, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 μm. Except for the above, a fuel cell was obtained in the same manner as in Example C1.
[0299] 実施例 C21 [0299] Example C21
第一の層を(La A ) (Mn Ni ) Oと ScYSZが均一に混合された層とし、その  The first layer is a layer in which (La A) (Mn Ni) O and ScYSZ are uniformly mixed.
1— 1— 3  1— 1— 3
組成およびその重量比率が(La Sr ) (Mn Ni )〇 /90mol%ZrO—5  The composition and its weight ratio are (La Sr) (Mn Ni) 〇 / 90mol% ZrO-5
0. 75 0. 25 0. 95 0. 05 3 2 mol%Sc〇 -5mol%Y〇 = 50/50であるものを調製して用いた。 La、 Sr、 Mn、  0.75 0.25 0.95 0.055 2 mol% Sc〇 -5 mol% Y〇 = 50/50 was prepared and used. La, Sr, Mn,
2 3 2 3  2 3 2 3
Ni、 Zr、 Y、および Scの各々の硝酸塩水溶液を用いて、前記組成になるように調合 した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御した原料粉末 を得た。平均粒子径は 5 μ ΐηであった。上記以外は実施例 C1と同様にして、燃料電 池を得た。  Using the nitrate aqueous solution of each of Ni, Zr, Y, and Sc, they were prepared to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 μΐη. Except for the above, a fuel cell was obtained in the same manner as in Example C1.
[0300] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。  [0300] The fuel cell obtained as described above was subjected to the Mn content on the fuel electrode side surface of the electrolyte, a gas leak test, a power generation test, and a durability test. The results were as shown in the display below.
[表 36]  [Table 36]
Figure imgf000072_0001
Figure imgf000072_0001
[表 37] 40000時間 初期雷位後 1000時間後 1500時間後 2000時間後 [Table 37] 40000 hours After initial lightning 1000 hours 1500 hours 2000 hours
( V) ( V ) ( V) ( V) 後推定電位  (V) (V) (V) (V) Estimated potential
( V ) 実施例 C 1 0.61 0.61 0.61 0.61 0.58 実施例 C18 0.59 0.59 0.59 0.59 0.56 実施例 C19 0.64 0.64 0.64 0.64 0.61 実施例 C20 0.69 0.69 0.69 0.69 0.66 実施例 C21 0.68 0.68 0.68 0.68 0.65  (V) Example C 1 0.61 0.61 0.61 0.61 0.58 Example C18 0.59 0.59 0.59 0.59 0.56 Example C19 0.64 0.64 0.64 0.64 0.61 Example C20 0.69 0.69 0.69 0.69 0.66 Example C21 0.68 0.68 0.68 0.68 0.65
[0301] 電解質の構成について[0301] Composition of electrolyte
Figure imgf000073_0001
Figure imgf000073_0001
電解質の材料を ScYSZとし、その組成は 90mol%ZrO _5mol%Sc O -5mol%  The material of the electrolyte is ScYSZ, and its composition is 90 mol% ZrO_5 mol% ScO-5 mol%
2 2 3  2 2 3
Y Oとした。 Zr、 Y、 Scの各々の硝酸塩水溶液を用いて、前記組成になるように調 Y O. Using the aqueous nitrate solutions of Zr, Y, and Sc, adjust to the above composition.
2 3 twenty three
合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御した原料粉 末を得た。平均粒子径は 0. 5 / mであった。上記以外は実施例 C1と同様にして、燃 料電池を得た。  After combining, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0.5 / m. Except for the above, a fuel cell was obtained in the same manner as in Example C1.
[0302] 実施例 C23 [0302] Example C23
電解質の材料を SSZとし、その組成は 90mol%Zr〇 _10mol%Sc Oとした。 Zr、  The material of the electrolyte was SSZ, and its composition was 90 mol% Zr〇_10 mol% ScO. Zr,
2 2 3  2 2 3
Scの各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸に よる共沈を行った。さらに熱処理を施し、粒径を制御した原料粉末を得た。平均粒子 径は 0. であった。上記以外は実施例 C1と同様にして、燃料電池を得た。  After each Sc was mixed to have the above-mentioned composition using each nitrate aqueous solution, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0. Except for the above, a fuel cell was obtained in the same manner as in Example C1.
[0303] 実施例 C24  [0303] Example C24
電解質の材料を SSZおよび YSZとし、その組成は 90mol%Zr〇 -10mol%Sc O  The material of the electrolyte is SSZ and YSZ, and its composition is 90 mol% Zr〇 -10 mol% ScO
2 2 および 90mol%ZrO -10mol%Y Oとした。第二の層表面上に YSZをスラリーコ 22 and 90 mol% ZrO-10 mol% YO. YSZ slurry on the surface of the second layer
3 2 2 3 3 2 2 3
ート法で成膜した後、 YSZ表面上に SSZをスラリーコート法で成膜した。 1400°Cで 焼結させた。なお、各々の層の厚さは 15 x mであった。上記以外は実施例 C1と同様 にして、燃料電池を得た。  After forming the film by the coating method, SSZ was formed on the YSZ surface by the slurry coating method. Sintered at 1400 ° C. The thickness of each layer was 15 × m. A fuel cell was obtained in the same manner as Example C1, except for the above.
[0304] 実施例 C25 [0304] Example C25
電解質の材料を SSZおよび YSZとし、その組成は 90mol%Zr〇 _10mol%Sc O  The electrolyte material is SSZ and YSZ, and its composition is 90 mol% Zr〇 _10 mol% ScO
2 2 および 90mol%ZrO _10mol%Y Oとした。第二の層表面上に SSZをスラリーコtwenty two And 90 mol% ZrO -10 mol% YO. Slurry SSZ on the second layer surface
3 2 2 3 3 2 2 3
ート法で成膜した後、 SSZ表面上に YSZをスラリーコート法で成膜し、さらに YSZ表 面上に SSZをスラリーコート法で成膜した。各々の層を 1400°Cで共焼結させた。な お、各々の層の厚さは 10 z mであった。上記以外は実施例 C1と同様にして、燃料 電池を得た。  After forming the film by the coating method, YSZ was formed on the SSZ surface by the slurry coating method, and then SSZ was formed on the YSZ surface by the slurry coating method. Each layer was co-sintered at 1400 ° C. The thickness of each layer was 10 zm. Except for the above, a fuel cell was obtained in the same manner as in Example C1.
[0305] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。  [0305] The fuel cell obtained as described above was subjected to the Mn content on the fuel electrode side surface of the electrolyte, a gas leak test, a power generation test, and a durability test. The results were as shown in the display below.
[表 38]  [Table 38]
Figure imgf000074_0001
Figure imgf000074_0001
[表 39] [Table 39]
Figure imgf000074_0002
Figure imgf000074_0002
[0306] 実施例 D1 Example D1
(1)空気極支持体の作製 気極は、 La Sr MnO組成になるように調合した Srを固溶させた (1) Preparation of cathode support For the air electrode, a solid solution of Sr prepared to be La Sr MnO composition
0. 75 0. 25  0.75 0.25
:、共沈法で作製後熱処理して空気極原料粉末を得た。平均粒子径 は、 30 μ ΐηであった。押し出し成形法によって円筒状成形体を作製した。さらに、 15 00°Cで焼成を行い、空気極支持体とした。その細孔径は 14 z m、空隙率は 45%、 肉厚は 1. 5mmであった。  : Air electrode raw material powder was obtained by heat treatment after production by a coprecipitation method. The average particle size was 30 μΐη. A cylindrical molded body was produced by an extrusion molding method. Further, firing was performed at 1500 ° C. to obtain an air electrode support. The pore size was 14 zm, the porosity was 45%, and the wall thickness was 1.5 mm.
[0307] (2)空気側電極反応層の作製 (2) Preparation of air-side electrode reaction layer
空気側電極反応層を(La A ) MnOと YSZが均一に混合された層とし、その組  The air-side electrode reaction layer is a layer in which (La A) MnO and YSZ are uniformly mixed,
1— 3  13
成および重量比率が La Sr MnO /90mol%Zr〇— 10mol%Y〇 = 50/5  La Sr MnO / 90mol% Zr〇—10mol% Y〇 = 50/5
0. 75 0. 25 3 2 2 3  0.75 0.25 3 2 2 3
0であるものを調製して用いた。 La、 Sr、 Mn、 Zr、および Yの各々の硝酸塩水溶液を 用いて、前記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処 理を施し、粒径を制御した原料粉末を得た。平均粒子径は 5 z mであった。この粉末 40重量部を溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2重量部 、分散剤(ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソル ビタンセスキォレート) 1重量部とを混合した後、十分攪拌してスラリーを調製した。こ のスラリー粘度は lOOmPasであった。このスラリーを、空気極支持体表面上にスラリ 一コート法で成膜した後に 1400°Cで焼結させた。厚さは 30 μ mであった。  What was 0 was prepared and used. Using the aqueous nitrate solutions of La, Sr, Mn, Zr, and Y, the mixture was prepared to have the above-mentioned composition, and coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 zm. 40 parts by weight of this powder are 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. This slurry was formed into a film on the surface of the cathode support by a slurry coating method and then sintered at 1400 ° C. The thickness was 30 μm.
[0308] (3)電解質のスラリー作製: (3) Preparation of Electrolyte Slurry:
電解質の材料を YSZとし、該組成は、 90mol%ZrO -10mol%Y Oであるものを  The material of the electrolyte is YSZ, and the composition is 90 mol% ZrO-10 mol% YO.
2 2 3  2 2 3
調製して用いた。 Zr, Yの各々の硝酸塩水溶液を用いて、前記組成になるように調 合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御した原料粉 末を得た。平均粒子径は 0. 5 / mであった。この粉末 40重量部を、溶媒 (エタノール ) 100重量部、バインダー(ェチルセルロース) 2重量部、分散剤(ポリオキシエチレン アルキルリン酸エステル) 1重量部、消泡剤(ソルビタンセスキォレート) 1重量部と混 合した後、十分攪拌してスラリーを調整した。このスラリー粘度は 140mPasであった。  Prepared and used. Using the respective nitrate aqueous solutions of Zr and Y, the mixture was adjusted to have the above composition, and then coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0.5 / m. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), 1 part by weight of an antifoaming agent (sorbitan sesquiolate) After mixing with parts by weight, the slurry was sufficiently stirred to prepare a slurry. The slurry viscosity was 140 mPas.
[0309] (4)電解質の作製 (4) Preparation of electrolyte
調製したスラリーを空気側電極反応層の表面に、スラリーコート法で成膜し、 1400 °Cで焼結させた。得られた電解質の厚さは、 30 x mであった。なお、後工程でインタ 一コネクターを成膜する部分にっレ、てはマスキングを施し、膜が塗布されなレ、ように しておいた。空隙率は 1%であった。 The prepared slurry was formed into a film on the surface of the air-side electrode reaction layer by a slurry coating method and sintered at 1400 ° C. The thickness of the obtained electrolyte was 30 xm. It should be noted that, in the subsequent step, the portion where the interconnector is to be formed is masked and the film is not applied. I did it. The porosity was 1%.
[0310] (5)ジノレコニァを含む蛍石型酸化物からなる多孔質層のスラリー作製 (5) Slurry preparation of porous layer composed of fluorite-type oxide containing dinoreconia
ジノレコニァを含む蛍石型酸化物からなる多孔質層の材料を SSZとし、その組成は 9 0mol%ZrO -10mol%Sc〇とした。 Zr  The material of the porous layer made of fluorite-type oxide containing dinoreconia was SSZ, and the composition was 90 mol% ZrO-10 mol% ScS. Zr
2 2 3 、 Scの各々の硝酸塩水溶液を用いて、前 記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、 粒径を制御した原料粉末を得た。平均粒子径は 0. であった。この粉末 20重量 部を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 5重量部、分散 剤(ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタン セスキォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。このスラリ 一粘度は 200mPasであった。  Each of the aqueous solutions of 22 3 and Sc was mixed so as to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0. 20 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 5 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate) After mixing with the mixture, the mixture was sufficiently stirred to prepare a slurry. The viscosity of this slurry was 200 mPas.
[0311] (6)ジノレコニァを含む蛍石型酸化物からなる多孔質層の作製  [0311] (6) Preparation of porous layer composed of fluorite-type oxide containing dinoreconia
調製したスラリーを電解質層の表面に、スラリーコート法で成膜し、 1400°Cで焼結 させた。得られた多孔質層の厚さは、 20 μ ΐηであった。なお、後工程でインターコネ クタ一を成膜する部分についてはマスキングを施し、膜が塗布されないようにしてお いた。なお、空隙率は 15%、細孔径は 0. 3 μ ΐηであった。  The prepared slurry was formed into a film on the surface of the electrolyte layer by a slurry coating method and sintered at 1400 ° C. The thickness of the obtained porous layer was 20 μΐη. The portion where the interconnector film is formed in a later step is masked so that the film is not applied. The porosity was 15% and the pore size was 0.3 μΐη.
[0312] (7)燃料側電極反応層のスラリー作製  [0312] (7) Preparation of slurry for fuel-side electrode reaction layer
燃料側電極反応層の材料を Ni〇/SSZとし、その組成は NiO/ (ZrO ) (Sc  The material of the fuel-side electrode reaction layer is Ni〇 / SSZ, and its composition is NiO / (ZrO) (Sc
2 0. 90 2 2 0. 90 2
O ) とした。 Ni、 Zrおよび Sc各々の硝酸塩水溶液を用いて、前記組成になるようO). Using the nitrate aqueous solution of each of Ni, Zr and Sc,
3 0. 10 3 0. 10
に調合した後、シユウ酸を加え沈殿させた。沈殿物と上澄み液を乾燥した後、さらに 熱処理を施し、粒径を制御して原料を得た。燃料側電極反応層の重量比率が NiO / (ZrO ) (Sc O ) = 20/80と、 50/50の 2種類を作製した。平均粒子径  After that, oxalic acid was added for precipitation. After drying the precipitate and the supernatant, the mixture was further subjected to a heat treatment to control the particle size to obtain a raw material. Two types of the fuel-side electrode reaction layer were manufactured, in which the weight ratio of NiO / (ZrO) (ScO) = 20/80 and 50/50. Average particle size
2 0. 90 2 3 0. 10  2 0.90 2 3 0.10
はいずれも 0. であった。この粉末 100重量部と、有機溶媒(エタノール) 500重 量部、バインダー(ェチルセルロース) 10重量部、分散剤(ポリオキシエチレンアルキ ノレリン酸エステル) 5重量部、消泡剤(ソルビタンセスォキォレート) 1重量部、および 可塑剤(DBP) 5重量部を混合した後、十分攪拌してスラリーを調整した。このスラリ 一の粘度は 70mPasであった。  Was 0. 100 parts by weight of this powder, 500 parts by weight of an organic solvent (ethanol), 10 parts by weight of a binder (ethyl cellulose), 5 parts by weight of a dispersant (polyoxyethylene alkynoleic acid ester), and an antifoaming agent (sorbitan sesozoate) Rate) and 5 parts by weight of a plasticizer (DBP), and then sufficiently stirred to prepare a slurry. The viscosity of this slurry was 70 mPas.
[0313] (8)燃料側電極反応層の作製 [0313] (8) Preparation of fuel-side electrode reaction layer
上記(6)で調製した多孔質層をマスキングし、有効面積が 150cm2になるようにし、 スラリーコート法により多孔質層上へ Ni〇/ (Zr〇) (Sc O ) (平均粒子径) = Mask the porous layer prepared in (6) above so that the effective area is 150 cm 2 , Ni〇 / (Zr〇) (Sc O) (average particle size) = on the porous layer by slurry coating method
2 0. 90 2 3 0. 10  2 0.90 2 3 0.10
20/80 (0. 5 μ m)、 50/50 (0. 5 /i m)の順に成膜した。膜厚(焼結後)は 10 /i m とした。  Films were formed in the order of 20/80 (0.5 μm) and 50/50 (0.5 / im). The film thickness (after sintering) was 10 / im.
[0314] (9)燃料極のスラリー作製:  (9) Slurry preparation of fuel electrode:
燃料極の材料を Ni〇/YSZとし、その組成は Ni〇/ (Zr〇 ) (Y O ) とした  The fuel electrode material was Ni〇 / YSZ and its composition was Ni〇 / (Zr〇) (Y O).
2 0. 90 2 3 0. 10 2 0.90 2 3 0.10
。 Ni、 Zr、および Y各々の硝酸塩水溶液を用いて、前記組成になるように調合した後 、シユウ酸をカ卩ぇ沈殿させた。沈殿物と上澄み液を乾燥した後、さらに熱処理を施し、 粒径を制御した後原料を得た。組成およびその重量比率は Ni〇/ (Zr〇 ) (Y O . After using the respective nitrate aqueous solutions of Ni, Zr and Y to prepare the above composition, oxalic acid was precipitated. After the precipitate and the supernatant were dried, they were further subjected to a heat treatment to control the particle size and obtain a raw material. The composition and its weight ratio is Ni〇 / (Zr〇) (Y O
2 0. 90 2 2 0. 90 2
) = 70/30であり、平均粒径が 2 μ mであった。この粉末 100重量部と、有機溶) = 70/30, and the average particle size was 2 μm. 100 parts by weight of this powder and organic solvent
3 0. 10 3 0. 10
媒(エタノール) 500重量部、バインダー(ェチルセルロース) 20重量部、分散剤(ポリ ォキシエチレンアルキルリン酸エステル) 5重量部、消泡剤(ソルビタンセスォキォレ ート) 1重量部、および可塑剤(DBP) 5重量部を混合した後、十分攪拌してスラリーを 調整した。このスラリーの粘度は 250mPasであった。 500 parts by weight of a medium (ethanol), 20 parts by weight of a binder (ethyl cellulose), 5 parts by weight of a dispersant (polyoxyethylene alkyl phosphate), 1 part by weight of an antifoaming agent (sorbitan sesquioleate), After mixing with 5 parts by weight of a plasticizer (DBP), the slurry was sufficiently stirred to prepare a slurry. The viscosity of this slurry was 250 mPas.
[0315] (10)燃料極の作製 [0315] (10) Preparation of fuel electrode
燃料側電極反応層上に燃料極スラリーをスラリーコート法により成膜した。膜厚 (焼 結後)は 90 μ ΐηとした。さらに、燃料側電極反応層と燃料極を 1400°Cで共焼結させ た。  A fuel electrode slurry was formed on the fuel-side electrode reaction layer by a slurry coating method. The film thickness (after sintering) was 90 μΐη. Further, the fuel electrode reaction layer and the fuel electrode were co-sintered at 1400 ° C.
[0316] (11)インターコネクターの作製:  [0316] (11) Preparation of interconnectors
組成 La Ca CrOで表される Caを固溶させたランタンクロマイトのインターコネ Composition of lanthanum chromite in which Ca represented by composition La Ca CrO is dissolved
0. 70 0. 30 3 0.70 0.30 3
クタ一を作製した。噴霧熱分解法で原料粉末を作製後、熱処理を施して得た。得ら れた粉末の平均粒子径は 1 μ ΐηであった。この粉末 40重量部を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2重量部、分散剤(ポリオキシエチレン アルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセスキォレート) 1重量 部と混合した後、十分攪拌してスラリーを調製した。このスラリー粘度は lOOmPasで あった。スラリーコート法によりインターコネクターを成膜し、 1400°Cで焼結させた。 焼結後の厚さは 40 μ mであった。  Kuta 1 was made. The raw material powder was prepared by a spray pyrolysis method and then heat-treated. The average particle size of the obtained powder was 1 μΐη. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. An interconnector was formed by a slurry coating method and sintered at 1400 ° C. The thickness after sintering was 40 μm.
ここで示す厚さとは、電池を切断し、空気極から燃料極にかけての切断面を SEM 観察し、写真のスケールから算出したものである。 [0317] 実施例 D2 The thickness shown here was obtained by cutting the cell, observing the cross section from the air electrode to the fuel electrode by SEM, and calculating from the scale of the photograph. [0317] Example D2
多孔質層の厚さを 5 / mにしたこと以外は実施例 Dlと同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Example Dl, except that the thickness of the porous layer was set to 5 / m.
[0318] 実施例 D3  [0318] Example D3
多孔質層の厚さを 10 zmにしたこと以外は実施例 D1と同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Example D1, except that the thickness of the porous layer was changed to 10 zm.
[0319] 実施例 D4  [0319] Example D4
多孔質層の厚さを 30 zmにしたこと以外は実施例 D1と同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Example D1, except that the thickness of the porous layer was changed to 30 zm.
[0320] 実施例 D5  [0320] Example D5
多孔質層の厚さを 40 zmにしたこと以外は実施例 D1と同様にして、燃料電池を得た  A fuel cell was obtained in the same manner as in Example D1, except that the thickness of the porous layer was set to 40 zm.
[表 40] [Table 40]
Figure imgf000078_0001
Figure imgf000078_0001
[表 41] 40000時間 初期電 後 1000時間後 1500時間後 2000時間後 [Table 41] 40000 hours After initial power 1000 hours After 1500 hours After 2000 hours
( V ) ( V) ( V) ( V) 後推定電位  (V) (V) (V) (V)
( \ V v )ノ 実施例。 1 0.59 0.59 0.59 0.59 0.56 実施例 D 2 0.54 0.54 0.54 0.54 0.51 実施例 D 3 0.58 0.58 0.58 0.58 0.55 実施例!) 4 0.58 0.58 0.58 0.58 0.55 実施例 D 5 0.55 0.55 0.55 0.55 0.52 (\ V v ) NO Example. 1 0.59 0.59 0.59 0.59 0.56 Example D 2 0.54 0.54 0.54 0.54 0.51 Example D 3 0.58 0.58 0.58 0.58 0.55 Example! ) 4 0.58 0.58 0.58 0.58 0.55 Example D 5 0.55 0.55 0.55 0.55 0.52
[0321] 以下、多孔質層の空隙率、細孔径を変えて試験した。 [0321] Hereinafter, tests were performed by changing the porosity and pore diameter of the porous layer.
[0322] 実施例 D6 [0322] Example D6
ジノレコニァを含む蛍石型酸化物からなる多孔質層の材料を SSZとし、その組成は 9 0mol%ZrO -10mol%Sc〇とした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前  The material of the porous layer made of a fluorite-type oxide containing dinoreconia was SSZ, and the composition was 90 mol% ZrO-10 mol% Sc〇. Using the respective nitrate aqueous solutions of Zr and Sc,
2 2 3  2 2 3
記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、 粒径を制御した原料粉末を得た。平均粒子径は 0. であった。この粉末 20重量 部を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2重量部、分散 剤(ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタン セスキォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。調製したス ラリーを電解質の表面に、スラリーコート法で成膜し、 1400°Cで焼結させた。得られ た多孔質層の厚さは 20 /i mであり、空隙率は 3%、細孔径は 0. 1 /i mであった。上 記以外は実施例 D1と同様にして、燃料電池を得た。  After being prepared to have the composition described above, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0. 20 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate) After mixing with the mixture, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed on the surface of the electrolyte by a slurry coating method and sintered at 1400 ° C. The thickness of the obtained porous layer was 20 / im, the porosity was 3%, and the pore diameter was 0.1 / im. Except for the above, a fuel cell was obtained in the same manner as in Example D1.
[0323] 実施例 D7 Example D7
ジノレコニァを含む蛍石型酸化物からなる多孔質層の材料を SSZとし、その組成は 9 0mol%ZrO _10mol%Sc〇とした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前  The material of the porous layer made of a fluorite-type oxide containing dinoreconia was SSZ, and the composition was 90 mol% ZrO — 10 mol% Sc〇. Using the respective nitrate aqueous solutions of Zr and Sc,
2 2 3  2 2 3
記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、 粒径を制御した原料粉末を得た。平均粒子径は 0. であった。この粉末 20重量 部を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2重量部、分散 剤(ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタン セスキォレート) 1重量部とを混合した後、十分攪拌してスラリーを調製した。調製した スラリーを電解質の表面に、スラリーコート法で成膜し、 1380°Cで焼結させた。得ら れた多孔質層の厚さは、 20 /i mであり、空隙率は 8%、細孔径は 0. 05 μ ΐηであった 。上記以外は実施例 D1と同様にして、燃料電池を得た。 After being prepared to have the composition described above, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0. 20 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate) After mixing, the mixture was sufficiently stirred to prepare a slurry. Prepared The slurry was formed on the surface of the electrolyte by a slurry coating method and sintered at 1380 ° C. The thickness of the obtained porous layer was 20 / im, the porosity was 8%, and the pore diameter was 0.05 μΐη. A fuel cell was obtained in the same manner as Example D1 except for the above.
[0324] 実施例 D8 [0324] Example D8
ジノレコニァを含む蛍石型酸化物からなる多孔質層の材料を SSZとし、その組成は 9 0mol%ZrO -10mol%Sc〇とした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前  The material of the porous layer made of a fluorite-type oxide containing dinoreconia was SSZ, and the composition was 90 mol% ZrO-10 mol% Sc〇. Using the respective nitrate aqueous solutions of Zr and Sc,
2 2 3  2 2 3
記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、 粒径を制御した原料粉末を得た。平均粒子径は l x mであった。この粉末 20重量部 を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2重量部、分散剤 (ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセ スキォレート) 1重量部とを混合した後、十分攪拌してスラリーを調製した。調製したス ラリーを電解質の表面に、スラリーコート法で成膜し、 1400°Cで焼結させた。得られ た多孔質層の厚さは 20 /i mであり、空隙率は 15%、細孔径は 0. 8 /i mであった。上 記以外は実施例 D1と同様にして、燃料電池を得た。  After being prepared to have the composition described above, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was l x m. 20 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate) After mixing, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed on the surface of the electrolyte by a slurry coating method and sintered at 1400 ° C. The thickness of the obtained porous layer was 20 / im, the porosity was 15%, and the pore diameter was 0.8 / im. Except for the above, a fuel cell was obtained in the same manner as in Example D1.
[0325] 実施例 D9 [0325] Example D9
ジノレコニァを含む蛍石型酸化物からなる多孔質層の材料を SSZとし、その組成は 9 0mol%ZrO _10mol%Sc〇とした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前  The material of the porous layer made of a fluorite-type oxide containing dinoreconia was SSZ, and the composition was 90 mol% ZrO — 10 mol% Sc〇. Using the respective nitrate aqueous solutions of Zr and Sc,
2 2 3  2 2 3
記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、 粒径を制御した原料粉末を得た。平均粒子径は 1 μ ΐηであった。この粉末 20重量部 を、溶媒 (エタノール) 100重量部、ノくインダー(ェチルセルロース) 5重量部、分散剤 (ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセ スキォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。調製したスラ リーを電解質の表面に、スラリーコート法で成膜し、 1400°Cで焼結させた。得られた 多孔質層の厚さは 20 x mであり、空隙率は 20。/ο、細孔径は 2 x mであった。上記以 外は実施例 D1と同様にして、燃料電池を得た。  After being prepared to have the composition described above, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 1 μΐη. 20 parts by weight of this powder are mixed with 100 parts by weight of a solvent (ethanol), 5 parts by weight of a solid indica (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed on the surface of the electrolyte by a slurry coating method, and sintered at 1400 ° C. The thickness of the obtained porous layer is 20 × m, and the porosity is 20. / ο, the pore size was 2 x m. Except for the above, a fuel cell was obtained in the same manner as in Example D1.
[0326] 実施例 D 10 [0326] Example D 10
ジノレコニァを含む蛍石型酸化物からなる多孔質層の材料を SSZとし、その組成は、 90mol%ZrO -10mol%Sc〇とした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前  The material of the porous layer made of a fluorite-type oxide containing dinoreconia was SSZ, and its composition was 90 mol% ZrO-10 mol% ScS. Using the respective nitrate aqueous solutions of Zr and Sc,
2 2 3 記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、 粒径を制御した原料粉末を得た。平均粒子径は 1 μ ΐηであった。この粉末 20重量部 を、溶媒 (エタノール) 100重量部、ノくインダー(ェチルセルロース) 5重量部、分散剤 (ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセ スキォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。調製したスラ リーを電解質の表面に、スラリーコート法で成膜し、 1350°Cで焼結させた。得られた 多孔質層の厚さは 20 x mであり、空隙率は 30。/ο、細孔径は 1. であった。上記 以外は実施例 D1と同様にして、燃料電池を得た。 2 2 3 After being prepared to have the composition described above, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 1 μΐη. 20 parts by weight of this powder are mixed with 100 parts by weight of a solvent (ethanol), 5 parts by weight of a solid indica (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed on the surface of the electrolyte by a slurry coating method and sintered at 1350 ° C. The thickness of the obtained porous layer is 20 xm, and the porosity is 30. / ο, the pore size was 1. Except for the above, a fuel cell was obtained in the same manner as in Example D1.
[0327] 実施例 D 11 Example D 11
ジノレコニァを含む蛍石型酸化物からなる多孔質層の材料を SSZとし、その組成は 9 0mol%ZrO -10mol%Sc〇とした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前  The material of the porous layer made of a fluorite-type oxide containing dinoreconia was SSZ, and the composition was 90 mol% ZrO-10 mol% Sc〇. Using the respective nitrate aqueous solutions of Zr and Sc,
2 2 3  2 2 3
記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、 粒径を制御した原料粉末を得た。平均粒子径は 0. 2 μ ΐηであった。この粉末 30重量 部を、溶媒 (エタノール) 100重量部、ノくインダー(ェチルセルロース) 2重量部、分散 剤(ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタン セスキォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。調製したス ラリーを電解質の表面に、スラリーコート法で成膜し、 1400°Cで焼結させた。得られ た多孔質層の厚さは 20 /i mであり、空隙率は 2%、細孔径は 0. 04 /i mであった。上 記以外は実施例 D1と同様にして、燃料電池を得た。  After being prepared to have the composition described above, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0.2 μΐη. 30 parts by weight of this powder are mixed with 100 parts by weight of a solvent (ethanol), 2 parts by weight of a solid indica (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed on the surface of the electrolyte by a slurry coating method and sintered at 1400 ° C. The thickness of the obtained porous layer was 20 / im, the porosity was 2%, and the pore diameter was 0.04 / im. Except for the above, a fuel cell was obtained in the same manner as in Example D1.
[0328] 実施例 D 12 Example D 12
ジノレコニァを含む蛍石型酸化物からなる多孔質層の材料を SSZとし、その組成は 9 0mol%ZrO -10mol%Sc〇とした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前  The material of the porous layer made of a fluorite-type oxide containing dinoreconia was SSZ, and the composition was 90 mol% ZrO-10 mol% Sc〇. Using the respective nitrate aqueous solutions of Zr and Sc,
2 2 3  2 2 3
記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、 粒径を制御した原料粉末を得た。平均粒子径は 2 x mであった。この粉末 20重量部 を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 5重量部、分散剤 (ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセ スキォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。調製したスラ リーを電解質の表面に、スラリーコート法で成膜し、 1400°Cで焼結させた。得られた 多孔質層の厚さは 20 μ πιであり、空隙率は 32%、細孔径は 2. 5 /i mであった。上記 以外は実施例 D1と同様にして、燃料電池を得た。 After being prepared to have the composition described above, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 2 xm. 20 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 5 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitansesquiolate) After mixing with the mixture, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed on the surface of the electrolyte by a slurry coating method, and sintered at 1400 ° C. Got The thickness of the porous layer was 20 μπι, the porosity was 32%, and the pore diameter was 2.5 / im. Except for the above, a fuel cell was obtained in the same manner as in Example D1.
42]  42]
Figure imgf000082_0001
Figure imgf000082_0001
[表 43] [Table 43]
Figure imgf000082_0002
Figure imgf000082_0002
[0329] 以下、多孔質層の材料について試験した。  [0329] Hereinafter, the material of the porous layer was tested.
[0330] 実施例 D 13 [0330] Example D 13
孔質層の材料を ScYSZとし、その組成は 90mol%ZrO _5mol%Sc O _5mol  The material of the porous layer is ScYSZ, and its composition is 90 mol% ZrO_5 mol% ScO_5 mol
2 2 3 %Y Oとした。 Zr、 Sc、 Yの各々の硝酸塩水溶液を用いて、前記組成になるように2 2 3 % YO. Using the aqueous solutions of nitrates of Zr, Sc, and Y, respectively,
2 3 twenty three
調合した後、シユウ酸による共沈を行った。上記以外は実施例 D1と同様にして、燃 料電池を得た。  After the preparation, coprecipitation with oxalic acid was performed. Except for the above, a fuel cell was obtained as in Example D1.
[0331] 実施例 D 14 [0331] Example D 14
多孔質層の材料を YSZとし、その組成は 90mol%ZrO -10mol%Y Oとした。 Zr  The material of the porous layer was YSZ, and the composition was 90 mol% ZrO-10 mol% YO. Zr
2 2 3 2 2 3
、 Yの各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸に よる共沈を行った。上記以外は実施例 D1と同様にして、燃料電池を得た。 , And Y were mixed so as to have the above-mentioned composition, and then coprecipitated with oxalic acid. A fuel cell was obtained in the same manner as Example D1 except for the above.
[0332] 比較例 D5 [0332] Comparative Example D5
電解質と燃料側電極反応層の間に (CeO ) (Sm O ) で表されるセリウム含有  Cerium-containing (CeO) (SmO) between the electrolyte and the fuel-side electrode reaction layer
2 0. 8 2 3 0. 1  2 0.8 2 3 0.1
酸化物からなる層を設けた。 Ce、 Smの各々の硝酸塩水溶液を用いて、前記組成に なるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制 御した原料粉末を得た。平均粒子径は 0. であり、空隙率が 18%、細孔径が 0 An oxide layer was provided. After using the aqueous nitrate solutions of Ce and Sm to prepare the above composition, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size is 0, the porosity is 18%, and the pore size is 0.
. 5 / mであった。この層を設けた以外は実施例 D1と同様にして、燃料電池を得た。 5 / m. A fuel cell was obtained in the same manner as in Example D1, except that this layer was provided.
[0333] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。 [0333] The fuel cell obtained as described above was subjected to the Mn content, gas leak test, power generation test, and durability test on the surface of the electrolyte on the fuel electrode side. The results were as shown in the display below.
[表 44]  [Table 44]
Figure imgf000083_0001
Figure imgf000083_0001
[表 45] 40000時間 初期電 ¼後 1000時間後 1500時間後 2000時間俊 [Table 45] 40000 hours After initial power supply 1000 hours after 1500 hours after 2000 hours
後推定電位 ( V) ( V) ( V) ( V )  Estimated potential after (V) (V) (V) (V)
( V) 実施例 D 1 0.59 0.59 0.59 0.59 0.56 実施例 D 13 0.58 0.58 0.58 0.58 0.55 実施例 D 14 0.56 0.56 0.56 0.56 0.53 比較例 D 5 0.55 0.55 0.545 0.54 0.35  (V) Example D 1 0.59 0.59 0.59 0.59 0.56 Example D 13 0.58 0.58 0.58 0.58 0.55 Example D 14 0.56 0.56 0.56 0.56 0.53 Comparative example D 5 0.55 0.55 0.545 0.54 0.35
[0334] 以下、空気側電極反応層の材料について試験した。 [0334] Hereinafter, the material of the air-side electrode reaction layer was tested.
[0335] 実施例 D 15 Example D 15
空気側電極反応層は、(La A ) (Mn Ni )〇と SSZが均一に混合された層と  The air-side electrode reaction layer is a layer in which (La A) (Mn Ni) 〇 and SSZ are uniformly mixed.
1— 1—  1— 1—
し、その組成およびその重量比率が(La Sr ) (Mn Ni ) 0 /90mol%Z  And its composition and its weight ratio are (La Sr) (Mn Ni) 0 / 90mol% Z
0. 75 0. 25 0. 95 0. 05 3  0.75 0.25 0.95 0.05 3
r〇 -10mol%Sc〇 = 50/50であるものを調製して用いた。 La、 Sr、 Mn、 Ni、 Zr Those having r〇−10 mol% Sc〇 = 50/50 were prepared and used. La, Sr, Mn, Ni, Zr
2 2 3 2 2 3
および Scの各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シュ ゥ酸による共沈を行った。さらに熱処理を施し、粒径を制御した原料粉末を得た。平 均粒子径は 5 μ mであった。上記以外は実施例 D1と同様にして、燃料電池を得た。  After mixing with the respective nitrate aqueous solutions of Sc and Sc so as to have the above-mentioned composition, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 μm. A fuel cell was obtained in the same manner as Example D1 except for the above.
[0336] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。 [0336] The fuel cell obtained as described above was subjected to a Mn content on the fuel electrode side surface of the electrolyte, a gas leak test, a power generation test, and a durability test. The results were as shown in the display below.
[表 46]  [Table 46]
Figure imgf000084_0001
Figure imgf000084_0001
[表 47] 40000時間 初期電位後 1000時間後 1500時間後 2000時間後 [Table 47] 40000 hours After initial potential After 1000 hours After 1500 hours After 2000 hours
後推定電位 ( V ) ( V ) ( V) ( V)  Estimated potential (V) (V) (V) (V)
( V) 実施例 D 1 0.59 0.59 0.59 0.59 0.56 実施例 D 15 0.66 0.66 0.66 0.66 0.63  (V) Example D 1 0.59 0.59 0.59 0.59 0.56 Example D 15 0.66 0.66 0.66 0.66 0.63
[0337] 以下、電解質の構成を変えて試験した。 [0337] Hereinafter, tests were performed with the electrolyte composition changed.
[0338] 実施例 D 16 [0338] Example D 16
電解質の材料は ScYSZとし、その組成は 90mol%Zr〇 _5mol%Sc O _5mol  The electrolyte material is ScYSZ, and its composition is 90 mol% Zr〇 _5 mol% ScO _5 mol
2 2 3  2 2 3
%Y Oとした。 Zr、 Y、 Scの各々の硝酸塩水溶液を用いて、前記組成になるように % Y O. Using the nitrate aqueous solution of each of Zr, Y, and Sc,
2 3 twenty three
調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御した原料 粉末を得た。平均粒子径は 0. 5 / mであった。上記以外は実施例 D1と同様にして、 燃料電池を得た。  After the preparation, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0.5 / m. Except for the above, a fuel cell was obtained in the same manner as in Example D1.
[0339] 実施例 D 17 [0339] Example D 17
電解質の材料は SSZとし、その組成は 90mol%ZrO -10mol%Sc〇とした。 Zr  The material of the electrolyte was SSZ, and the composition was 90 mol% ZrO-10 mol% Sc〇. Zr
2 2 3  2 2 3
, Scの各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸に よる共沈を行った。さらに熱処理を施し、粒径を制御した原料粉末を得た。平均粒子 径は 0. であった。上記以外は実施例 D1と同様にして、燃料電池を得た。  , Sc were prepared using the respective nitrate aqueous solutions to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0. A fuel cell was obtained in the same manner as Example D1 except for the above.
[0340] 実施例 D 18  Example D 18
電解質の材料としては SSZおよび YSZとし、その組成は 90mol%Zr〇 _10mol%  The electrolyte material is SSZ and YSZ, and the composition is 90 mol% Zr〇 _10 mol%
2  2
Sc Oおよび 90mol%Zr〇 -10mol%Y〇とした。空気側電極反応層の表面上に Sc 2 O and 90 mol% Zr〇-10 mol% Y〇. Air-side electrode
2 3 2 2 3 2 3 2 2 3
SSZをスラリーコート法で成膜した後、 SSZ表面上に YSZをスラリーコート法で成膜 した。 1400°Cで焼結させた。なお、各々の層の厚さは 15 /i mであった。上記以外は 実施例 D1と同様にして、燃料電池を得た。  After SSZ was formed by the slurry coating method, YSZ was formed on the SSZ surface by the slurry coating method. Sintered at 1400 ° C. The thickness of each layer was 15 / im. Except for the above, a fuel cell was obtained in the same manner as in Example D1.
[0341] 実施例 D 19 [0341] Example D 19
電解質の材料は SSZおよび YSZとし、その組成は 90mol%Zr〇 _10mol%Sc〇  The material of the electrolyte is SSZ and YSZ, and its composition is 90mol% Zr〇 _10mol% Sc〇
2 2 および 90mol%ZrO _10mol%Y Oとした。空気側電極反応層の表面上に SSZ 22 and 90 mol% ZrO_10 mol% YO. SSZ on the surface of the air-side electrode reaction layer
3 2 2 3 3 2 2 3
をスラリーコート法で成膜した後、 SSZ表面上に YSZをスラリーコート法で成膜し、さ らに YSZ表面上に SSZをスラリーコート法で成膜した。各々の層を 1400°Cで共焼結 させた。各々の層の厚さは 10 z mであった。上記以外は実施例 D1と同様にして、燃 料電池を得た。 Was formed by the slurry coating method, YSZ was formed on the SSZ surface by the slurry coating method, and SSZ was formed on the YSZ surface by the slurry coating method. Each layer was co-sintered at 1400 ° C. The thickness of each layer was 10 zm. Except for the above, the same as in Example D1, Battery was obtained.
[0342] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。  [0342] The fuel cell obtained as described above was subjected to the Mn content on the surface of the electrolyte on the fuel electrode side, a gas leak test, a power generation test, and a durability test. The results were as shown in the display below.
[表 48]  [Table 48]
Figure imgf000086_0001
Figure imgf000086_0001
[表 49][Table 49]
Figure imgf000086_0002
Figure imgf000086_0002
[0343] 実施例 E1 [0343] Example E1
空気側電極反応層を以下の通り二層とした以外は、実施例 D1と同様にして、燃料 電池を得た。  A fuel cell was obtained in the same manner as in Example D1, except that the air-side electrode reaction layer was changed to two layers as follows.
[0344] (1)空気側電極反応層(第一の層)の作製  [0344] (1) Preparation of air-side electrode reaction layer (first layer)
第一の層は(La A ) Mn〇と YSZが均一に混合された層であり、組成およびそ  The first layer is a layer in which (La A) Mn〇 and YSZ are uniformly mixed, and the composition and its
1— 3  13
の重量比率が La Sr Mn〇 /90mol%ZrO— 10mol%Y〇 = 50/50であ  Weight ratio of La Sr Mn〇 / 90mol% ZrO—10mol% Y〇 = 50/50
0. 75 0. 25 3 2 2 3  0.75 0.25 3 2 2 3
るものを調製して用いた。 La、 Sr、 Mn、 Zr、および Yの各々の硝酸塩水溶液を用い て、前記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を 施し、粒径を制御した原料粉末を得た。平均粒子径は 5 μ ΐηであった。この粉末 40 重量部を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2重量部、 分散剤(ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビ タンセスキォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。このス ラリー粘度は lOOmPasであった。このスラリーを、空気極支持体(外径 15mm、肉厚 1. 5mm、有効長 400mm)表面上にスラリーコート法で成膜した後に 1400°Cで焼結 させた。第一の層の細孔径は 5 μ m、空隙率は 28%、厚さは 20 μ mであった。 Were prepared and used. La, Sr, Mn, Zr, and Y Then, after being prepared to have the above-mentioned composition, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 μΐη. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and an antifoaming agent (sorbitan sesquiolate) After mixing with 1 part by weight, the slurry was sufficiently stirred to prepare a slurry. The slurry viscosity was 100 mPas. This slurry was formed on a surface of an air electrode support (outside diameter: 15 mm, wall thickness: 1.5 mm, effective length: 400 mm) by a slurry coating method, and then sintered at 1400 ° C. The pore size of the first layer was 5 μm, the porosity was 28%, and the thickness was 20 μm.
[0345] (2)空気側電極反応層(第二の層)の作製 [0345] (2) Preparation of air-side electrode reaction layer (second layer)
第二の層は SSZとし、組成は 90mol%Zr〇 _10mol%Sc Oとした。 Zr、 Scの各  The second layer was SSZ, and the composition was 90 mol% Zr〇_10 mol% ScO. Zr and Sc
2 2 3  2 2 3
々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸による共沈 を行った。さらに熱処理を施し、粒径を制御した原料粉末を得た。平均粒子径は 2 μ mであった。この粉末 40重量部を、溶媒 (エタノール) 100重量部、バインダー(ェチ ルセルロース) 2重量部、分散剤(ポリオキシエチレンアルキルリン酸エステル) 1重量 部、および消泡剤(ソルビタンセスキォレート) 1重量部と混合した後、十分攪拌してス ラリーを調製した。このスラリー粘度は lOOmPasであった。このスラリーを、第一の層 表面上にスラリーコート法で成膜した後に 1400°Cで焼結させた。第二の層の細孔径 は 1 · 5 μ ΐη、空隙率は 14%、厚さは 10 μ ΐηであった。  After mixing using the various nitrate aqueous solutions so as to have the above composition, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 2 μm. 40 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and a defoamer (sorbitan sesquiolate) After mixing with 1 part by weight, a slurry was prepared by sufficiently stirring. The slurry viscosity was 100 mPas. The slurry was formed on the surface of the first layer by a slurry coating method and then sintered at 1400 ° C. The pore size of the second layer was 1.5 μ μη, the porosity was 14%, and the thickness was 10 μΐη.
[0346] 実施例 E2 [0346] Example E2
多孔質層の厚さを 5 μ mにしたこと以外は実施例 Elと同様にして、燃料電池を得た [0347] 実施例 E3  A fuel cell was obtained in the same manner as in Example El, except that the thickness of the porous layer was set to 5 μm. [0347] Example E3
多孔質層の厚さを 10 μ mにしたこと以外は実施例 Elと同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Example El, except that the thickness of the porous layer was changed to 10 μm.
[0348] 実施例 E4  [0348] Example E4
多孔質層の厚さを 30 μ mにしたこと以外は実施例 Elと同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Example El, except that the thickness of the porous layer was changed to 30 μm.
[0349] 実施例 E5 多孔質層の厚さを 40 μ mにしたこと以外は実施例 Elと同様にして、燃料電池を得 た。 [0349] Example E5 A fuel cell was obtained in the same manner as in Example El, except that the thickness of the porous layer was changed to 40 μm.
[0350] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。  [0350] The fuel cell obtained as described above was subjected to the Mn content on the surface of the electrolyte on the fuel electrode side, a gas leak test, a power generation test, and a durability test. The results were as shown in the display below.
[表 50]  [Table 50]
Figure imgf000088_0001
Figure imgf000088_0001
[表 51] [Table 51]
Figure imgf000088_0002
Figure imgf000088_0002
[0351] 空気側電極反応層の第二の層の細孔径について試験した。 [0351] The pore size of the second layer of the air-side electrode reaction layer was tested.
[0352] 実施例 E6 Example E6
第二の層の原料の平均粒子径を 0. 5 μ πιとし、第一の層表面上にスラリーコート法 で成膜した後、 1350°Cで焼結させたこと以外は実施例 E1と同様にして、燃料電池 を得た。 [0353] 実施例 E7 Same as Example E1 except that the average particle size of the raw material of the second layer was 0.5 μππ, the film was formed on the surface of the first layer by the slurry coating method, and then sintered at 1350 ° C. Thus, a fuel cell was obtained. [0353] Example E7
第二の層の原料の平均粒子径を 0. 5 μ ΐηとし、第一の層表面上にスラリーコート法 で成膜した後、 1380°Cで焼結させたこと以外は実施例 E1と同様にして、燃料電池 を得た。  Same as Example E1 except that the average particle size of the raw material of the second layer was 0.5 μΐη, the film was formed on the surface of the first layer by the slurry coating method, and then sintered at 1380 ° C. Thus, a fuel cell was obtained.
[0354] 実施例 E8 [0354] Example E8
第二の層の原料の平均粒子径を 0. とし、第一の層表面上にスラリーコート法 で成膜した後、 1400°Cで焼結させたこと以外は実施例 E1と同様にして、燃料電池 を得た。  The average particle diameter of the raw material of the second layer was set to 0, and the film was formed on the surface of the first layer by the slurry coating method, and then sintered at 1400 ° C in the same manner as in Example E1. A fuel cell was obtained.
[0355] 実施例 E9 Example E9
第二の層の原料の平均粒子径を 2 μ mとし、第一の層表面上にスラリーコート法で 成膜した後、 1430°Cで焼結させたこと以外は実施例 E1と同様にして、燃料電池を 得た。  The average particle diameter of the material of the second layer was set to 2 μm, and a film was formed on the surface of the first layer by the slurry coating method, and then sintered at 1430 ° C in the same manner as in Example E1. And a fuel cell was obtained.
[0356] 実施例 E 10 [0356] Example E 10
第二の層の原料の平均粒子径を 5 β mとし、第一の層表面上にスラリーコート法で 成膜した後、 1430°Cで焼結させたこと以外は実施例 E1と同様にして、燃料電池を 得た。 The average particle diameter of the raw material of the second layer was set to 5 βm, and a film was formed on the surface of the first layer by a slurry coating method, and then sintered at 1430 ° C. Thus, a fuel cell was obtained.
[0357] 実施例 E 11 [0357] Example E 11
第二の層の原料の平均粒子径を 5 β mとし、第一の層表面上にスラリーコート法で 成膜した後、 1450°Cで焼結させたこと以外は実施例 E1と同様にして、燃料電池を 得た。 The same procedure as in Example E1 was performed, except that the average particle diameter of the raw material of the second layer was set to 5 βm, and a film was formed on the surface of the first layer by a slurry coating method and then sintered at 1450 ° C. Thus, a fuel cell was obtained.
[表 52] [Table 52]
¾ iし 隙率 -刀Hスマ ι¾:ΐΐ¾ m Μ π量 初期電 ¾ i porosity-Sword H Smart ι¾: ΐΐ¾ m Μ π amount Initial electricity
(j m) (%) (xlO " 10ms " !Pa ' (wt %) (V) 実施例 E 1 2 14 2.3 1.1 0.66 実施例 E 6 0.2 6 1.3 1.4 0.66 実施例 E 7 0.1 3 1.1 1.4 0.66 実施例 E 8 0.08 2 0.6 1.5 0.63 実施例 E 9 5 25 3.2 2.5 0.66 実施例 E 10 10 40 8.5 2.2 0.65 実施例 Ell 12 43 14.5 3.3 0.63 (jm) (%) (xlO " 10 ms"! Pa '(wt%) (V) Example E 1 2 14 2.3 1.1 0.66 Example E 6 0.2 6 1.3 1.4 0.66 Example E 7 0.1 3 1.1 1.4 0.66 Example E 8 0.08 2 0.6 1.5 0.63 Example E 9 5 25 3.2 2.5 0.66 Example E 10 10 40 8.5 2.2 0.65 Example Ell 12 43 14.5 3.3 0.63
[表 53] [Table 53]
Figure imgf000090_0001
Figure imgf000090_0001
[0358] 電解質のガス透過量を比較すると実施例 9一 11では好ましい Q≤2. 8X 10_9ms Pa 1の範囲内ではある力 より好ましい Q≤2. 8 X 10 ms 1 Pa 1の範囲内にはなレ、 。一方、実施例 E1, 6 8はより好ましい Q≤2. 8X 10— 1Qms— Pa— 1の範囲内である。 電解質のガス透過性を考慮すると、空気極の細孔径 dlと第一の層の細孔径 d2と第 二の層の細孔径 d3は dl>d2>d3であることが好ましいことが分かる。 [0358] In Example 9 one 11 compares the gas permeability of the electrolyte preferably Q≤2. 8X 10 _9 ms Pa preferred than a force in the range of 1 Q≤2. Of 8 X 10 ms 1 Pa 1 range Inside, On the other hand, examples E1, 6 8 are the more preferred Q≤2. 8X 10- 1Q ms- Pa- 1 range. Considering the gas permeability of the electrolyte, it can be seen that the pore diameter dl of the air electrode, the pore diameter d2 of the first layer, and the pore diameter d3 of the second layer are preferably dl>d2> d3.
[0359] 以下、空気側電極反応層の第二の層の厚さについて試験した。  [0359] Hereinafter, the thickness of the second layer of the air-side electrode reaction layer was tested.
[0360] 実施例 E 12  [0360] Example E 12
第二の層の厚さを 3 μ mとしたこと以外は実施例 Elと同様にして、燃料電池を得た [0361] 実施例 El 3 A fuel cell was obtained in the same manner as in Example El, except that the thickness of the second layer was 3 μm. [0361] Example El 3
第二の層の厚さを 5 β mとしたこと以外は実施例 Elと同様にして、燃料電池を得た A fuel cell was obtained in the same manner as in Example El, except that the thickness of the second layer was set to 5 βm .
[0362] 実施例 E 14 Example E 14
第二の層の厚さを 30 μ mとしたこと以外は実施例 E1と同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Example E1, except that the thickness of the second layer was 30 μm.
[0363] 実施例 E 15  Example E 15
第二の層の厚さを 50 μ mとしたこと以外は実施例 E1と同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Example E1, except that the thickness of the second layer was set to 50 μm.
[0364] 実施例 E 16  [0364] Example E 16
第二の層の厚さを 55 μ mとしたこと以外は実施例 Elと同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Example El, except that the thickness of the second layer was 55 μm.
[0365] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表に示される通りであった。  [0365] The fuel cell obtained as described above was subjected to the Mn content on the fuel electrode side surface of the electrolyte, a gas leak test, a power generation test, and a durability test. The results were as shown in the table below.
54]  54]
Figure imgf000091_0001
Figure imgf000091_0001
[表 55] 40000時間 初期電位後 1000時間後 1500時間後 2000時間後 "Wt [Table 55] 40000 hours After initial potential After 1000 hours After 1500 hours After 2000 hours "Wt
( V ) ( V ) ( V) ( V )  (V) (V) (V) (V)
( V ) 実施例 E 1 0.66 0.66 0.66 0.66 0.63 実施例 E 12 0.62 0.62 0.62 0.62 0.59 実施例 E 13 0.65 0.65 0.65 0.65 0.62 実施例 E 14 0.66 0.66 0.66 0.66 0.63 実施例 E 15 0.65 0.65 0.65 0.65 0.62 実施例 E 16 0.62 0.62 0.62 0.62 0.59  (V) Example E 1 0.66 0.66 0.66 0.66 0.63 Example E 12 0.62 0.62 0.62 0.62 0.59 Example E 13 0.65 0.65 0.65 0.65 0.62 Example E 14 0.66 0.66 0.66 0.66 0.63 Example E 15 0.65 0.65 0.65 0.65 0.62 Example E 16 0.62 0.62 0.62 0.62 0.59
[0366] 以下、空気側電極反応層の第一の層の厚さについて試験した。 [0366] Hereinafter, the thickness of the first layer of the air-side electrode reaction layer was tested.
[0367] 実施例 E 17  [0367] Example E 17
第一の層の厚さを 3 μ mとした以外は実施例 E1と同様にして、燃料電池を得た。 A fuel cell was obtained in the same manner as in Example E1, except that the thickness of the first layer was 3 μm .
[0368] 実施例 E 18  Example E 18
第一の層の厚さを 5 μ mとした以外は実施例 E1と同様にして、燃料電池を得た。 A fuel cell was obtained in the same manner as in Example E1, except that the thickness of the first layer was changed to 5 μm .
[0369] 実施例 E 19 [0369] Example E 19
第一の層の厚さを 30 μ mとして以外は実施例 Elと同様にして、燃料電池を得た。 A fuel cell was obtained in the same manner as in Example El, except that the thickness of the first layer was 30 μm .
[0370] 実施例 E20 [0370] Example E20
第一の層の厚さを 50 μ mとして以外は実施例 E1と同様にして、燃料電池を得た。  A fuel cell was obtained in the same manner as in Example E1, except that the thickness of the first layer was changed to 50 μm.
[0371] 実施例 E 21 [0371] Example E 21
第一の層の厚さを 55 x mであること以外は実施例 E1と同様にして、燃料電池を得 た。  A fuel cell was obtained in the same manner as in Example E1, except that the thickness of the first layer was 55 × m.
[0372] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表に示される通りであった。  [0372] The fuel cell obtained as described above was subjected to the Mn content on the fuel electrode side surface of the electrolyte, a gas leak test, a power generation test, and a durability test. The results were as shown in the table below.
[表 56]
Figure imgf000093_0001
[Table 56]
Figure imgf000093_0001
[表 57]  [Table 57]
Figure imgf000093_0002
Figure imgf000093_0002
[0373] 以下、多孔質層の空隙率、細孔径について試験した。 [0373] Hereinafter, the porosity and the pore diameter of the porous layer were tested.
[0374] 実施例 E 22 Example E 22
ジノレコユアを含む蛍石型酸化物からなる多孔質層材料を SSZとし、その組成は 90 mol%ZrO 一 10mol%Sc Oとした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前記  The porous layer material composed of fluorite-type oxide containing dinorecoure was SSZ, and its composition was 90 mol% ZrO-1 10 mol% ScO. Using the aqueous nitrate solutions of Zr and Sc,
2 2 3  2 2 3
組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒 径を制御した原料粉末を得た。平均粒子径は 0· 3 μ ΐηであった。この粉末 20重量部 を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2重量部、分散剤 (ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセ スキォレート) 1重量部と混合した後、十分攪拌してスラリーを調子した。調製したスラ リーを電解質の表面に、スラリーコート法で成膜し、 1400°Cで焼結させた。得られた 多孔質層の厚さは、 20 μ ΐηであり、空隙率は 3%、細孔径は 0. 1 /i mであった。上記 以外は実施例 E1と同様にして、燃料電池を得た。 After being prepared to have a composition, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0.3 μΐη. 20 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate) After mixing, the slurry was sufficiently stirred to prepare the slurry. The prepared slurry was formed on the surface of the electrolyte by a slurry coating method, and sintered at 1400 ° C. Got The thickness of the porous layer was 20 μΐη, the porosity was 3%, and the pore diameter was 0.1 / im. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0375] 実施例 E 23 Example E 23
ジノレコニァを含む蛍石型酸化物からなる多孔質層材料を SSZとし、その組成は 90 mol%ZrO -10mol%Sc Oとした。 Zr  The porous layer material composed of a fluorite-type oxide containing dinoreconia was SSZ, and its composition was 90 mol% ZrO-10 mol% ScO. Zr
2 2 3 、 Scの各々の硝酸塩水溶液を用いて、前記 組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒 径を制御した原料粉末を得た。平均粒子径は 0. であった。この粉末 20重量部 を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2重量部、分散剤 (ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセ スキォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。調製したスラ リーを電解質の表面に、スラリーコート法で成膜し、 1380°Cで焼結させた。得られた 多孔質層の厚さは、 20 x mであり、空隙率は 8%、細孔径は 0. 05 z mであった。上 記以外は実施例 E1と同様にして、燃料電池を得た。  After using the aqueous solution of each of 222 and Sc to prepare the above-mentioned composition, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0. 20 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate) After mixing with the mixture, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed on the surface of the electrolyte by a slurry coating method and sintered at 1380 ° C. The thickness of the obtained porous layer was 20 × m, the porosity was 8%, and the pore diameter was 0.05 zm. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0376] 実施例 E 24 [0376] Example E 24
ジノレコニァを含む蛍石型酸化物からなる多孔質層材料を SSZとし、その組成は 90 mol%ZrO -10mol%Sc Oとした。 Zr  The porous layer material composed of a fluorite-type oxide containing dinoreconia was SSZ, and its composition was 90 mol% ZrO-10 mol% ScO. Zr
2 3 、 Scの各々の硝酸塩水溶液を用いて、前記 23 Using the respective nitrate aqueous solution of Sc,
2 2
組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒 径を制御した原料粉末を得た。平均粒子径は 1 μ ΐηであった。この粉末 20重量部を 、溶媒 (エタノール) 100重量部、バインダー(ェチルセルロース) 2重量部、分散剤( ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセス キォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。調製したスラリ 一を電解質の表面に、スラリーコート法で成膜し、 1400°Cで焼結させた。得られた多 孔質層の厚さは、 20 x mであり、空隙率は 15%、細孔径は 0. であった。上記 以外は実施例 E1と同様にして、燃料電池を得た。  After being prepared to have a composition, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 1 μΐη. 20 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitanses chelate) 1 After mixing with parts by weight, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed into a film on the surface of the electrolyte by a slurry coating method and sintered at 1400 ° C. The thickness of the obtained porous layer was 20 x m, the porosity was 15%, and the pore size was 0. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0377] 実施例 E 25 [0377] Example E 25
ジノレコニァを含む蛍石型酸化物からなる多孔質層材料を SSZとし、その組成は 90 mol%ZrO -10mol%Sc Oとした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前記  The porous layer material composed of a fluorite-type oxide containing dinoreconia was SSZ, and its composition was 90 mol% ZrO-10 mol% ScO. Using the aqueous nitrate solutions of Zr and Sc,
2 2 3  2 2 3
組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒 径を制御した原料粉末を得た。平均粒子径は 1 μ ΐηであった。この粉末 20重量部を 、溶媒 (エタノール) 100重量部、バインダー(ェチルセルロース) 5重量部、分散剤( ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセス キォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。調製したスラリ 一を電解質の表面に、スラリーコート法で成膜し、 1400°Cで焼結させた。得られた多 孔質層の厚さは、 20 x mであり、空隙率は 20%、細孔径は 2 z mであった。上記以 外は実施例 E1と同様にして、燃料電池を得た。 After being prepared to have a composition, coprecipitation with oxalic acid was performed. Further heat treatment, grain A raw material powder having a controlled diameter was obtained. The average particle size was 1 μΐη. 20 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 5 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitanses chelate) 1 After mixing with parts by weight, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed into a film on the surface of the electrolyte by a slurry coating method and sintered at 1400 ° C. The thickness of the obtained porous layer was 20 xm, the porosity was 20%, and the pore size was 2 zm. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0378] 実施例 E 26 [0378] Example E 26
ジノレコニァを含む蛍石型酸化物からなる多孔質層材料を SSZとし、その組成は 90 mol%ZrO -10mol%Sc O とした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前記  The porous layer material composed of a fluorite-type oxide containing dinoreconia was SSZ, and the composition was 90 mol% ZrO-10 mol% ScO. Using the aqueous nitrate solutions of Zr and Sc,
2 2 3  2 2 3
組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒 径を制御した原料粉末を得た。平均粒子径は l x mであった。この粉末 20重量部を 、溶媒 (エタノール) 100重量部、バインダー(ェチルセルロース) 5重量部、分散剤( ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセス キォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。調製したスラリ 一を電解質の表面に、スラリーコート法で成膜し、 1350°Cで焼結させた。得られた多 孔質層の厚さは、 20 μ ΐηであり、空隙率は 30%、細孔径は 1. 2 /i mであった。上記 以外は実施例 E1と同様にして、燃料電池を得た。  After being prepared to have a composition, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was l x m. 20 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 5 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate ester), and 1 part by weight of an antifoaming agent (sorbitanes sesquiate) 1 After mixing with parts by weight, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed on the surface of the electrolyte by a slurry coating method and sintered at 1350 ° C. The thickness of the obtained porous layer was 20 μΐη, the porosity was 30%, and the pore diameter was 1.2 / im. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0379] 実施例 E 27 [0379] Example E 27
ジノレコニァを含む蛍石型酸化物からなる多孔質層材料を SSZとし、その組成は 90 mol%ZrO -10mol%Sc Oとした。 Zr  The porous layer material composed of a fluorite-type oxide containing dinoreconia was SSZ, and its composition was 90 mol% ZrO-10 mol% ScO. Zr
2 2 3 、 Scの各々の硝酸塩水溶液を用いて、前記 組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒 径を制御した原料粉末を得た。平均粒子径は 0. であった。この粉末 30重量部 を、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 2重量部、分散剤 (ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセ スキォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。調製したスラ リーを電解質の表面に、スラリーコート法で成膜し、 1400°Cで焼結させた。得られた 多孔質層の厚さは、 20 x mであり、空隙率は 2%、細孔径は 0. 04 z mであった。上 記以外は実施例 Elと同様にして、燃料電池を得た。 After using the aqueous solution of each of 222 and Sc to prepare the above-mentioned composition, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0. 30 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate ester), and 1 part by weight of an antifoaming agent (sorbitan sesquiolate) After mixing with the mixture, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed on the surface of the electrolyte by a slurry coating method, and sintered at 1400 ° C. The thickness of the obtained porous layer was 20 xm, the porosity was 2%, and the pore diameter was 0.04 zm. Up Except for the above, a fuel cell was obtained in the same manner as in Example El.
実施例 E 28 Example E 28
ジノレコニァを含む蛍石型酸化物からなる多孔質層材料を SSZとし、この組成は 90 mol%ZrO一 10mol%Sc Oとした。 Zr、 Scの各々の硝酸塩水溶液を用いて、前記  The porous layer material composed of a fluorite-type oxide containing dinoreconia was SSZ, and the composition was 90 mol% ZrO-1 10 mol% ScO. Using the aqueous nitrate solutions of Zr and Sc,
2 2 3  2 2 3
組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒 径を制御した原料粉末を得た。平均粒子径は 2 x mであった。この粉末 20重量部を 、溶媒(エタノール) 100重量部、バインダー(ェチルセルロース) 5重量部、分散剤( ポリオキシエチレンアルキルリン酸エステル) 1重量部、および消泡剤(ソルビタンセス キォレート) 1重量部と混合した後、十分攪拌してスラリーを調製した。調製したスラリ 一を電解質の表面に、スラリーコート法で成膜し、 1400°Cで焼結させた。得られた多 孔質層の厚さは、 20 x mであり、空隙率は 32%、細孔径は 2. であった。上記 以外は実施例 E1と同様にして、燃料電池を得た。 After being prepared to have a composition, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 2 × m. 20 parts by weight of this powder, 100 parts by weight of a solvent (ethanol), 5 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate), and 1 part by weight of an antifoaming agent (sorbitanses chelate) 1 After mixing with parts by weight, the mixture was sufficiently stirred to prepare a slurry. The prepared slurry was formed into a film on the surface of the electrolyte by a slurry coating method and sintered at 1400 ° C. The thickness of the obtained porous layer was 20 × m, the porosity was 32%, and the pore diameter was 2. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[表 58] [Table 58]
Figure imgf000096_0001
Figure imgf000096_0001
[表 59] 40000時間 初期電 11Z俟 丄 υυυ狩 f¾俊 丄 oUU時 f¾俊 時間俊 [Table 59] 40000 hours Initial train 11Z 丄 υυυ υυυ f¾ ¾ 丄 oUU f ¾ ¾ time 時間
( V ) 後推定電位 ( V ) ( V ) ( V )  (V) Estimated potential after (V) (V) (V)
( V ) 実施例 E 1 0.66 0.66 0.66 0.66 0.63 実施例 E 22 0.65 0.65 0.65 0.65 0.62 実施例 E 23 0.66 0.66 0.66 0.66 0.63 実施例 E 24 0.66 0.66 0.66 0.66 0.63 実施例 E 25 0.66 0.66 0.66 0.66 0.63 実施例 E 26 0.65 0.65 0.65 0.65 0.62 実施例 E 27 0.62 0.62 0.62 0.62 0.59 実施例 E 28 0.62 0.62 0.62 0.62 0.59  (V) Example E 1 0.66 0.66 0.66 0.66 0.63 Example E 22 0.65 0.65 0.65 0.65 0.62 Example E 23 0.66 0.66 0.66 0.66 0.63 Example E 24 0.66 0.66 0.66 0.66 0.63 Example E 25 0.66 0.66 0.66 0.66 0.63 Example E 26 0.65 0.65 0.65 0.65 0.62 Example E 27 0.62 0.62 0.62 0.62 0.59 Example E 28 0.62 0.62 0.62 0.62 0.59
[0381] 以下、空気側電極反応層の第一の層および第二の層の材料について試験した。 [0381] Hereinafter, the materials of the first layer and the second layer of the air-side electrode reaction layer were tested.
[0382] 実施例 Ε 29 [0382] Example Ε 29
第二の層を ScYSZとし、その組成は 90mol%ZrO— 5mol%Sc O— 5mol%Y O  The second layer is made of ScYSZ, and its composition is 90 mol% ZrO-5 mol% ScO-5 mol% YO
2 2 3 2 とした。 Zr、 Scおよび Yの各々の硝酸塩水溶液を用いて、前記組成になるように調 2 2 3 2 Using the aqueous nitrate solutions of Zr, Sc and Y, adjust to the above composition.
3 Three
合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御した原料粉 末を得た。平均粒子径は 2 . mであった。上記以外は実施例 E1と同様にして、燃料 電池を得た。  After combining, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 2.m. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0383] 実施例 E30 Example E30
第一の層を(La A ) MnOと SSZが均一に混合された層とし、その組成および  The first layer is a layer in which (La A) MnO and SSZ are uniformly mixed, and the composition and
1— 3  13
その重量比率が La Sr MnO /90mol%Zr〇 -10mol%Sc〇 = 50/50  The weight ratio is La Sr MnO / 90mol% Zr〇 -10mol% Sc〇 = 50/50
0. 75 0. 25 3 2 2 3  0.75 0.25 3 2 2 3
であるものを調製して用いた。 La、 Sr、 Mn、 Zr、および Scの各々の硝酸塩水溶液を 用いて、前記組成になるように調合した後、シユウ酸による共沈を行った。さらに熱処 理を施し、粒径を制御した原料粉末を得た。平均粒子径は 5 z mであった。上記以 外は実施例 E1と同様にして、燃料電池を得た。  Was prepared and used. Using the respective nitrate aqueous solutions of La, Sr, Mn, Zr, and Sc, they were prepared to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 zm. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0384] 実施例 E 31 Example E 31
第一の層を(La A ) (Mn Ni ) Oと SSZが均一に混合された層とし、その組成 およびその重量比率が(La Sr ) (Mn Ni ) 0 /90mol%ZrO -lOmol  The first layer is a layer in which (La A) (Mn Ni) O and SSZ are uniformly mixed, and its composition and its weight ratio are (La Sr) (Mn Ni) 0 / 90mol% ZrO -lOmol
0. 75 0. 25 0. 95 0. 05 3 2 %Sc O = 50/50であるものを調製して用いた。 La、 Sr、 Mn、 Ni、 Zrおよび Scの0.75 0.25 0.95 0.05 3 2 % Sc O = 50/50 was prepared and used. La, Sr, Mn, Ni, Zr and Sc
2 3 twenty three
各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸による共 沈を行った。さらに熱処理を施し、粒径を制御した原料粉末を得た。平均粒子径は 5 z mであった。上記以外は実施例 E1と同様にして、燃料電池を得た。  Each of the aqueous nitrate solutions was blended to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 zm. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0385] 実施例 E 32 [0385] Example E 32
第一の層を(La A ) (Mn Ni ) Oと ScYSZが均一に混合された層とし、その z 3  The first layer is a layer in which (La A) (Mn Ni) O and ScYSZ are uniformly mixed.
組成およびその重量比率が(La Sr ) (Mn Ni ) 0 /90mol%ZrO -5  The composition and its weight ratio are (La Sr) (Mn Ni) 0 / 90mol% ZrO -5
0. 75 0. 25 0. 95 0. 05 3 2 mol%Sc O -5mol%Y O = 50/50であるものを調製して用いた。 La、 Sr、 Mn、  0.75 0.25 0.95 0.055 2 mol% ScO-5 mol% Y2O = 50/50 was prepared and used. La, Sr, Mn,
2 3 2 3  2 3 2 3
Ni、 Zr、 Y、および Scの各々の硝酸塩水溶液を用いて、前記組成になるように調合 した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御した原料粉末 を得た。平均粒子径は 5 x mであった。上記以外は実施例 E1と同様にして、燃料電 池を得た。  Using the nitrate aqueous solution of each of Ni, Zr, Y, and Sc, they were prepared to have the above-mentioned composition, and then coprecipitated with oxalic acid. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 5 x m. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0386] 以上のようにして得られた燃料電池について、電解質の燃料極側の表面における Mnの含有量、ガス漏れ試験、発電試験、および耐久試験を行った。その結果は、以 下の表示に示される通りであった。  [0386] The fuel cell obtained as described above was subjected to the Mn content on the surface of the electrolyte on the fuel electrode side, a gas leak test, a power generation test, and a durability test. The results were as shown in the display below.
[表 60]  [Table 60]
Figure imgf000098_0001
Figure imgf000098_0001
[表 61]
Figure imgf000099_0001
[Table 61]
Figure imgf000099_0001
[0387] 以下、多孔質細孔層の材料について試験した。 [0387] Hereinafter, the material of the porous pore layer was tested.
[0388] 実施例 Ε 33 [0388] Example Ε 33
ジノレコニァを含む蛍石型酸化物からなる多孔質層の材料を ScYSZとし、その組成 は 90mol%ZrO -5mol%Sc O -5mol%Y Oとした。 Zr、 Sc、 Yの各々の硝酸塩  The material of the porous layer composed of a fluorite-type oxide containing dinoreconia was ScYSZ, and its composition was 90 mol% ZrO-5 mol% ScO-5 mol% YO. Each nitrate of Zr, Sc and Y
2 2 3 2 3  2 2 3 2 3
水溶液を用いて、前記組成になるように調合した後、シユウ酸による共沈を行った。 上記以外は実施例 E1と同様にして、燃料電池を得た。  After the aqueous solution was prepared to have the above composition, coprecipitation with oxalic acid was performed. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0389] 実施例 E 34 [0389] Example E 34
ジノレコニァを含む蛍石型酸化物からなる多孔質層の材料を YSZとし、その組成は 9 0mol%ZrO -10mol%Y Oとした。 Zr、 Yの各々の硝酸塩水溶液を用いて、前記  The material of the porous layer made of a fluorite-type oxide containing dinoreconia was YSZ, and its composition was 90 mol% ZrO-10 mol% YO. Using the respective nitrate aqueous solutions of Zr and Y,
2 2 3  2 2 3
組成になるように調合した後、シユウ酸による共沈を行った。上記以外は実施例 E1と 同様にして、燃料電池を得た。  After being prepared to have a composition, coprecipitation with oxalic acid was performed. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0390] 比較例 Ε8 [0390] Comparative Example Ε8
電解質と燃料側電極反応層の間に(CeO ) (Sm O ) で表されるセリウム含有  Cerium containing (CeO) (Sm O) between the electrolyte and the fuel-side electrode reaction layer
2 0. 8 2 3 0. 1  2 0.8 2 3 0.1
酸化物からなる層を設けた。 Ce、 Smの各々の硝酸塩水溶液を用いて、前記組成に なるように調合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制 御した原料粉末を得た。平均粒子径は 0. であり、空隙率が 18%、細孔径が 0 . であった。この層を多孔質層の代わりに設けたこと以外は実施例 E1と同様に して、燃料電池を得た。  An oxide layer was provided. After using the aqueous nitrate solutions of Ce and Sm to prepare the above composition, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0, the porosity was 18%, and the pore size was 0. A fuel cell was obtained in the same manner as in Example E1, except that this layer was provided instead of the porous layer.
[表 62] 刀ス透過直 M n量 初期電位 [Table 62] Mn amount Initial potential
(xlO - !Oms !Pa 1) (w t ) ( V ) (xlO-! Oms! Pa 1 ) (wt) (V)
実施例 E 1 2.3 1.1 0.66  Example E 1 2.3 1.1 0.66
実施例 E 33 1.7 1.5 0.65  Example E 33 1.7 1.5 0.65
実施例 E 34 1.7 1.7 0.63  Example E 34 1.7 1.7 0.63
比較例 E 8 4.8 0.1 0.65  Comparative Example E 8 4.8 0.1 0.65
[表 63][Table 63]
Figure imgf000100_0001
Figure imgf000100_0001
[0391] 以下、電解質の構成を変えて試験した。 [0391] Hereinafter, tests were performed with different configurations of the electrolyte.
[0392] 実施例 E 35 [0392] Example E 35
電解質の材料を ScYSZとし、その組成は 90mol%ZrO -5mol%Sc O -5mol%  The electrolyte material is ScYSZ, and its composition is 90 mol% ZrO -5 mol% ScO -5 mol%
2 2 3  2 2 3
Y Oとした。 Zr、 Y、 Scの各々の硝酸塩水溶液を用いて、前記組成になるように調 Y O. Using the aqueous nitrate solutions of Zr, Y, and Sc, adjust to the above composition.
2 3 twenty three
合した後、シユウ酸による共沈を行った。さらに熱処理を施し、粒径を制御した原料粉 末を得た。平均粒子径は 0. であった。上記以外は実施例 E1と同様にして、燃 料電池を得た。  After combining, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0. Except for the above, a fuel cell was obtained as in Example E1.
[0393] 実施例 E 36 [0393] Example E 36
電解質の材料を SSZとし、その組成は 90mol%Zr〇 _10mol%Sc Oとした。 Zr、  The material of the electrolyte was SSZ, and its composition was 90 mol% Zr〇_10 mol% ScO. Zr,
2 2 3  2 2 3
Scの各々の硝酸塩水溶液を用いて、前記組成になるように調合した後、シユウ酸に よる共沈を行った。さらに熱処理を施し、粒径を制御した原料粉末を得た。平均粒子 径は 0. 5 μ ΐηであった。上記以外は実施例 E1と同様にして、燃料電池を得た。  After each Sc was mixed to have the above-mentioned composition using each nitrate aqueous solution, coprecipitation with oxalic acid was performed. Further heat treatment was performed to obtain a raw material powder having a controlled particle size. The average particle size was 0.5 μΐη. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0394] 実施例 E 37 電解質の材料を SSZおよび YSZとし、その組成は 90mol%Zr〇 _10mol%Sc O [0394] Example E 37 The electrolyte material is SSZ and YSZ, and its composition is 90 mol% Zr〇 _10 mol% ScO
2 2 および 90mol%ZrO _10mol%Y Oとした。第二の層表面上に YSZをスラリーコ 22 and 90 mol% ZrO_10 mol% YO. YSZ slurry on the surface of the second layer
3 2 2 3 3 2 2 3
ート法で成膜した後、 YSZ表面上に SSZをスラリーコート法で成膜した。 1400°Cで 焼結させた。なお、各々の層の厚さは 15 x mであった。上記以外は実施例 E1と同様 にして、燃料電池を得た。  After forming the film by the coating method, SSZ was formed on the YSZ surface by the slurry coating method. Sintered at 1400 ° C. The thickness of each layer was 15 × m. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0395] 実施例 E 38 [0395] Example E 38
電解質の材料を SSZおよび YSZとし、その組成は 90mol%Zr〇 -10mol%Sc O  The material of the electrolyte is SSZ and YSZ, and its composition is 90 mol% Zr〇 -10 mol% ScO
2 2 および 90mol%ZrO -10mol%Y Oとした。第二の層表面上に SSZをスラリーコ 22 and 90 mol% ZrO-10 mol% YO. Slurry SSZ on the second layer surface
3 2 2 3 3 2 2 3
ート法で成膜した後、 SSZ表面上に YSZをスラリーコート法で成膜した。 1400°Cで 焼結させた。なお、各々の層の厚さは 15 x mであった。上記以外は実施例 E1と同様 にして、燃料電池を得た。  After forming the film by the coating method, YSZ was formed on the SSZ surface by the slurry coating method. Sintered at 1400 ° C. The thickness of each layer was 15 × m. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[0396] 実施例 E 39 [0396] Example E 39
電解質の材料を SSZおよび YSZとし、その組成は 90mol%Zr〇 _10mol%Sc O  The electrolyte material is SSZ and YSZ, and its composition is 90 mol% Zr〇 _10 mol% ScO
2 2 および 90mol%ZrO _10mol%Y Oとした。第二の層表面上に SSZをスラリーコ 22 and 90 mol% ZrO_10 mol% YO. Slurry SSZ on the second layer surface
3 2 2 3 Wi 3 2 2 3 Wi
ート法で成膜した後、 SSZ表面上に YSZをスラリーコート法で成膜し、さらに YSZ表 面上に SSZをスラリーコート法で成膜した。各々の層を 1400°Cで共焼結させた。な お、各々の層の厚さは 10 / mであった。上記以外は実施例 E1と同様にして、燃料電 池を得た。  After forming the film by the coating method, YSZ was formed on the SSZ surface by the slurry coating method, and then SSZ was formed on the YSZ surface by the slurry coating method. Each layer was co-sintered at 1400 ° C. The thickness of each layer was 10 / m. Except for the above, a fuel cell was obtained in the same manner as in Example E1.
[表 64] ガス透過量 初期電位  [Table 64] Gas permeation amount Initial potential
(x lO ' ^ms ^Pa - 1) ( V ) (x lO '^ ms ^ Pa -1 ) (V)
実施例 E 1 2.3 1.1 0.66  Example E 1 2.3 1.1 0.66
実施例 E 35 1.4 1.0 0.68  Example E 35 1.4 1.0 0.68
実施例 E 36 10.1 0.4 0.68  Example E 36 10.1 0.4 0.68
実施例 E 37 1.8 0.6 0.69  Example E 37 1.8 0.6 0.69
実施例 E 38 2.5 0.6 0.69  Example E 38 2.5 0.6 0.69
実施例 E 39 2.1 0.4 0.69 [表 65] Example E 39 2.1 0.4 0.69 [Table 65]
40000時間 初期電位後 1000時間後 1500時間後 2000時間後 40000 hours After initial potential After 1000 hours After 1500 hours After 2000 hours
後推定電位 ( V) ( V) ( V) ( V)  Estimated potential after (V) (V) (V) (V)
( V) 実施例 E 1 0.66 0.66 0.66 0.66 0.63 実施例 E 35 0.68 0.68 0.68 0.68 0.65 実施例 E 36 0.68 0.68 0.68 0.68 0.65 実施例 E 37 0.69 0.69 0.69 0.69 0.66 実施例 E 38 0.69 0.69 0.69 0.69 0.66 実施例 E 39 0.69 0.69 0.69 0.69 0.66  (V) Example E 1 0.66 0.66 0.66 0.66 0.63 Example E 35 0.68 0.68 0.68 0.68 0.65 Example E 36 0.68 0.68 0.68 0.68 0.65 Example E 37 0.69 0.69 0.69 0.69 0.66 Example E 38 0.69 0.69 0.69 0.69 0.66 Example E 39 0.69 0.69 0.69 0.69 0.66

Claims

請求の範囲 The scope of the claims
[1] 電解質と、空気極と、燃料極とを少なくとも備えてなる固体酸化物形燃料電池であ つて、  [1] A solid oxide fuel cell comprising at least an electrolyte, an air electrode, and a fuel electrode,
前記空気極が、少なくともマンガンを含むぺロブスカイト型酸化物を含んでなり、 前記燃料極に接する層の、燃料極側の表面におけるマンガンの含有量が 0. 3-4 重量%であることを特徴とする、固体酸化物形燃料電池。  The air electrode includes a perovskite-type oxide containing at least manganese, and the manganese content on the fuel electrode side surface of the layer in contact with the fuel electrode is 0.3 to 4% by weight. A solid oxide fuel cell.
[2] 前記燃料極に接する層が、前記電解質である、請求項 1に記載の固体酸化物形燃 料電池。 2. The solid oxide fuel cell according to claim 1, wherein the layer in contact with the fuel electrode is the electrolyte.
[3] 前記燃料極と、前記電解質との間に多孔質層が設けられてなり、  [3] A porous layer is provided between the fuel electrode and the electrolyte,
前記燃料極に接する層が該多孔質層であり、  The layer in contact with the fuel electrode is the porous layer,
前記多孔質層が、ジルコユアを含む蛍石型酸化物からなり、厚み 5— 40 /i mであり The porous layer is made of a fluorite-type oxide containing zirconia and has a thickness of 5 to 40 / im.
、かつその空隙率が電解質のそれよりも大であるもの And whose porosity is greater than that of the electrolyte
である、請求項 1に記載の固体酸化物形燃料電池。  2. The solid oxide fuel cell according to claim 1, wherein
[4] 前記空気極と前記電解質の間に、空気側電極反応層が設けられてなる、請求項 1 一 3のいずれか一項に記載の固体酸化物形燃料電池。 4. The solid oxide fuel cell according to claim 13, wherein an air-side electrode reaction layer is provided between the air electrode and the electrolyte.
[5] 前記電解質の空気極側の表面におけるマンガンの含有量が、前記電解質の燃料 極側の表面におけるマンガン成分の含有量よりも大である、請求項 1一 4のいずれか 一項に記載の固体酸化物形燃料電池。 5. The method according to claim 14, wherein the manganese content on the air electrode side surface of the electrolyte is larger than the manganese component content on the fuel electrode side surface of the electrolyte. Solid oxide fuel cell.
[6] 前記電解質の燃料極側の表面におけるマンガンの含有量が 0. 6-3. 5重量%で ある、請求項 1一 5のいずれか一項に記載の固体酸化物形燃料電池。 6. The solid oxide fuel cell according to claim 15, wherein the content of manganese on the fuel electrode side surface of the electrolyte is 0.6 to 3.5% by weight.
[7] 前記電解質の燃料極側の表面におけるマンガンの含有量が 0. 9— 3重量%である[7] The manganese content on the fuel electrode side surface of the electrolyte is 0.9 to 3% by weight.
、請求項 1一 6のいずれか一項に記載の固体酸化物形燃料電池。 The solid oxide fuel cell according to any one of claims 11 to 16.
[8] 前記電解質の空気極側の表面におけるマンガンの含有量が 10重量%未満である[8] The manganese content on the air electrode side surface of the electrolyte is less than 10% by weight.
、請求項 1一 7のいずれか一項に記載の固体酸化物形燃料電池。 The solid oxide fuel cell according to any one of claims 17 to 17.
[9] 前記電解質の空気極側の表面におけるマンガンの含有量が 6重量%未満である、 請求項 1一 7のいずれか一項に記載の固体酸化物形燃料電池。 9. The solid oxide fuel cell according to claim 17, wherein the manganese content on the air electrode side surface of the electrolyte is less than 6% by weight.
[10] 前記空気側電極反応層が、マンガンおよびニッケルを含むぺロブスカイト型酸化物 と、ジルコニァを含む酸化物との混合導電性セラミックスからなり、かつ連通した開気 孔を有するものである、請求項 4一 9のいずれか一項に記載の固体酸化物形燃料電 池。 [10] The air-side electrode reaction layer is made of a mixed conductive ceramic of a perovskite-type oxide containing manganese and nickel and an oxide containing zirconia, and is connected to open air. 10. The solid oxide fuel cell according to claim 4, wherein the solid oxide fuel cell has pores.
[11] 前記空気側電極反応層が、マンガンおよびニッケノレを含むぺロブスカイト型酸化物 と、セリウム酸化物との混合導電性セラミックスからなり、かつ連通した開気孔を有す るものである、請求項 4一 9のいずれか一項に記載の固体酸化物形燃料電池。  [11] The air-side electrode reaction layer is made of a mixed conductive ceramic of a perovskite-type oxide containing manganese and nickel oxide and cerium oxide, and has open pores communicating with each other. 10. The solid oxide fuel cell according to any one of items 4 to 9.
[12] 前記空気側電極反応層が、マンガンおよびニッケノレを含むぺロブスカイト型酸化物 と、ランタンおよびガリウムを含むぺロブスカイト型酸化物との混合導電性セラミックス 力 なり、かつ連通した開気孔を有するものである、請求項 4一 9のいずれか一項に 記載の固体酸化物形燃料電池。  [12] The air-side electrode reaction layer is a mixed conductive ceramic of a perovskite-type oxide containing manganese and nickel and a perovskite-type oxide containing lanthanum and gallium, and has open pores communicating with each other. 10. The solid oxide fuel cell according to any one of claims 419, wherein:
[13] 前記マンガンとニッケルを含むぺロブスカイト型酸化物の、空気側電極反応層中の 含有量が 30 70重量%である、請求項 10 12のいずれか一項に記載の固体酸化 物形燃料電池。  13. The solid oxide fuel according to claim 10, wherein a content of the perovskite oxide containing manganese and nickel in the air-side electrode reaction layer is 3070% by weight. battery.
[14] 前記マンガンおよびニッケルを含むぺロブスカイト型酸化物が、(Ln A ) (Mn  [14] The perovskite-type oxide containing manganese and nickel is (Ln A) (Mn
1— x x y 1 z 1— x x y 1 z
Ni ) 0 (式中、 Lnは、 Sc、 Y、 La, Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 z 3 Ni) 0 (where Ln is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, z 3
Er、 Tm、 Yb、および Lu力 なる群力 選ばれるいずれ力 1種または 2種以上のもの を表し、 Αίま、 Caまた ίま Srのレヽずれ力を表し、 χίま 0. 15≤χ≤0. 3を、 yiま 0. 97≤y ≤1を、そして zは 0· 02≤ζ≤0. 10を満足するものである)で表されるものである、請 求項 10— 13のいずれか一項に記載の固体酸化物形燃料電池。  Er, Tm, Yb, and Lu force group force Any one or more of the selected forces. Indicates the misalignment force of Αί, Ca, or Sr. χί 0.15≤χ≤ 0.3, yi or 0.97≤y≤1, and z satisfies 0.02≤ζ≤0.10). The solid oxide fuel cell according to claim 1.
[15] 前記ジルコニァを含む酸化物力 スカンジァを固溶させたジルコニァである、請求 項 10、 13、または 14に記載の固体酸化物形燃料電池。  15. The solid oxide fuel cell according to claim 10, 13, or 14, which is a zirconia obtained by dissolving the zirconia-containing oxide power scandia.
[16] 前記ジルコニァを含む酸化物力 スカンジァとイットリアを固溶させたジルコニァで ある、請求項 10、 13、または 14に記載の固体酸化物形燃料電池。  16. The solid oxide fuel cell according to claim 10, 13 or 14, which is a zirconia in which scandia and yttria are dissolved in a solid solution containing the zirconia.
[17] 前記セリウム酸化物力 式(CeO ) (J O ) (ここで、 Jは、 Sm、 Gd、または Yを  [17] The cerium oxide force formula (CeO) (J O) (where J is Sm, Gd, or Y
2 1-2X1 2 3 XI  2 1-2X1 2 3 XI
表し、 XIは 0. 05≤Χ1≤0. 15を満足するものである)で表されるものである、請求 項 11、 13、または 14に記載の固体酸化物形燃料電池。  15. The solid oxide fuel cell according to claim 11, 13 or 14, wherein XI satisfies 0.05 ≦ Χ1 ≦ 0.15).
[18] 前記空気側電極反応層が前記空気極側の第一の層と、前記電解質側の第二の層 との少なくとも二層力、ら構成されたものである、請求項 4一 15のいずれか一項に記載 の固体酸化物形燃料電池。 18. The air-side electrode reaction layer according to claim 41, wherein the air-side electrode reaction layer is constituted by at least a two-layer force of a first layer on the air electrode side and a second layer on the electrolyte side. The solid oxide fuel cell according to any one of the preceding claims.
[19] 前記第一の層が、マンガンを含むぺロブスカイト型酸化物と、スカンジァおよび/ま たはイットリアを固溶させたジルコニァとの混合物であって、連通した開気孔を有する ものからなり、 [19] The first layer is a mixture of a perovskite-type oxide containing manganese and zirconia in which scandia and / or yttria are dissolved, and has a continuous open pore,
前記第二の層が、スカンジァを固溶させたジルコユアであって、前記電解質よりも 大きな空隙率を有するものからなる  The second layer is made of zirconia in which scandia is dissolved, and has a larger porosity than the electrolyte.
ものである、請求項 18に記載の固体酸化物形燃料電池。  19. The solid oxide fuel cell according to claim 18, wherein
[20] 前記第一の層が、マンガンを含むぺロブスカイト型酸化物とセリウム含有酸化物と の混合物であって、連通した開気孔を有するものからなり、 [20] The first layer is a mixture of a perovskite-type oxide containing manganese and a cerium-containing oxide, and has a continuous open pore,
前記第二の層が、スカンジァを固溶させたジルコユアであって、前記電解質よりも 大きな空隙率を有するものからなる  The second layer is made of zirconia in which scandia is dissolved, and has a larger porosity than the electrolyte.
ものである、請求項 18に記載の固体酸化物形燃料電池。  19. The solid oxide fuel cell according to claim 18, wherein
[21] 前記第一の層が、マンガンを含むぺロブスカイト型酸化物とランタンおよびガリウム を含むぺロブスカイト型酸化物との混合物であって、連通した開気孔を有するものか らなり、 [21] The first layer is a mixture of a perovskite-type oxide containing manganese and a perovskite-type oxide containing lanthanum and gallium, and having a continuous open pore,
前記第二の層が、スカンジァを固溶させたジルコニァであって、前記電解質よりも 大きな空隙率を有するものからなる  The second layer is made of zirconia in which scandia is dissolved, and has a larger porosity than the electrolyte.
ものである、請求項 18に記載の固体酸化物形燃料電池。  19. The solid oxide fuel cell according to claim 18, wherein
[22] 前記第一の層が、ランタンおよびコバルトを含むぺロブスカイト型酸化物であって、 連通した開気孔を有するものからなり、 [22] The first layer is a perovskite-type oxide containing lanthanum and cobalt, and has a continuous open pore,
前記第二の層が、スカンジァを固溶させたジルコニァであって、前記電解質よりも 大きな空隙率を有するものからなる  The second layer is made of zirconia in which scandia is dissolved, and has a larger porosity than the electrolyte.
ものである、請求項 18に記載の固体酸化物形燃料電池。  19. The solid oxide fuel cell according to claim 18, wherein
[23] 前記第一の層が、マンガンを含むぺロブスカイト型酸化物とスカンジァおよび Zま たはイットリアを固溶させたジルコユアとの混合物であって、連通した開気孔を有する ものからなり、 [23] The first layer is a mixture of a perovskite oxide containing manganese and zirconia in which scandia and Z or yttria are dissolved, and has a continuous open pore,
前記第二の層が、セリウム酸化物であって、前記電解質よりも大きな空隙率を有す るものからなる  The second layer is made of cerium oxide and has a higher porosity than the electrolyte.
ものである、請求項 18に記載の固体酸化物形燃料電池。 19. The solid oxide fuel cell according to claim 18, wherein
[24] 前記第二の層が有する細孔の径が 0· 1— 10 /i mである、請求項 18— 23のいずれ か一項に記載の固体酸化物形燃料電池。 24. The solid oxide fuel cell according to any one of claims 18 to 23, wherein a diameter of the pores of the second layer is 0.1-10 / im.
[25] 前記空気極が有する細孔の径 dlと、前記第一の層が有する細孔の径 d2と、前記 第二の層が有する細孔の径 d3と力 dl > d2 > d3の関係を満たすものである、請求 項 18— 24のいずれか一項に記載の固体酸化物形燃料電池。 [25] The relationship between the diameter dl of the pores of the air electrode, the diameter d2 of the pores of the first layer, and the diameter d3 of the pores of the second layer and the force dl> d2> d3 25. The solid oxide fuel cell according to claim 18, which satisfies the following.
[26] 前記第二の層の空隙率が 3 40%である、請求項 18 25のいずれか一項に記載 の固体酸化物形燃料電池。 26. The solid oxide fuel cell according to claim 18, wherein the porosity of the second layer is 340%.
[27] 前記空気極が有する空隙率 alと、前記第一の層が有する空隙率 a2と、前記第二 の層が有する空隙率 a3、前記電解質が有する空隙率 a4とが、 al≥a2≥a3 > a4の 関係を満たすものである、請求項 18 24のいずれか一項に記載の固体酸化物形燃 料電池。 [27] The porosity al of the air electrode, the porosity a2 of the first layer, the porosity a3 of the second layer, and the porosity a4 of the electrolyte are al≥a2≥ 25. The solid oxide fuel cell according to claim 18, wherein the relationship a3> a4 is satisfied.
[28] 前記第二の層の厚さが 5— 50 z mである、請求項 18— 24のいずれか一項に記載 の固体酸化物形燃料電池。  [28] The solid oxide fuel cell according to any one of claims 18 to 24, wherein the thickness of the second layer is 5 to 50 zm.
[29] 前記第一の層の厚さが 5— 50 /i mである、請求項 18— 24のいずれか一項に記載 の固体酸化物形燃料電池。 29. The solid oxide fuel cell according to any one of claims 18 to 24, wherein the thickness of the first layer is 5-50 / im.
[30] 前記第二の層を構成する前記セリウム酸化物が、式 (Ce〇) Q Ο ) (ここで、 [30] The cerium oxide constituting the second layer is represented by the formula (Ce〇) Q Ο) (where
2 1-2X1 2 3 XI  2 1-2X1 2 3 XI
Jは、 Sm、 Gd、または Yを表し、 XIは 0· 05≤Χ1≤0. 15を満足するものである)で 表されるものである、請求項 23— 29のいずれか一項に記載の固体酸化物形燃料電 池。  J represents Sm, Gd, or Y, and XI satisfies 0 · 05≤Χ1≤0.15), and is represented by any one of claims 23 to 29. Solid oxide fuel cell.
[31] 前記第一の層を構成するマンガンを含むぺロブスカイト型酸化物が、 (La A ) M  [31] The perovskite oxide containing manganese constituting the first layer is (La A) M
1— x x y n〇 (ここで、 Αίま Caまた〖ま Srを表し、 x〖ま 0. 15≤x≤0. 3を、 yiま 0. 97≤y≤lを満  1— x x y n〇 (where Αί represents Ca or Sr, and x satisfies 0.15≤x≤0.3, yi satisfies 0.97≤y≤l
3  Three
足するものである)で表されるランタンマンガナイトである、請求項 20、 21、 23— 30の いずれか一項に記載の固体酸化物形燃料電池。  31. The solid oxide fuel cell according to any one of claims 20, 21, 23 to 30, wherein the solid oxide fuel cell is lanthanum manganite represented by the following formula:
[32] 前記第一の層を構成するマンガンを含むぺロブスカイト型酸化物が、 (La A ) ( [32] The perovskite oxide containing manganese constituting the first layer is (La A) (
1— x x y 1— x x y
Mn Ni )〇 (ここで、 Aは Caまたは Srを表し、 xは 0. 15≤x≤0. 3を、 yは 0. 97≤ Mn Ni) 〇 (where A represents Ca or Sr, x is 0.15≤x≤0.3, y is 0.97≤
1— z z  1—z z
y≤lを、 zは 0. 02≤z≤0. 10の関係を満足するものである)で表されるランタンマン ガナイトである、請求項 20、 21、 23 30のいずれか一項に記載の固体酸化物形燃 料電池。 31. The lanthanum manganite represented by y≤l, z satisfying the relationship 0.02≤z≤0.10. Solid oxide fuel cell.
[33] 前記第一の層を構成するセリウム酸化物が、式 (Ce〇) Q Ο ) (ここで、 Jは、 [33] The cerium oxide constituting the first layer is represented by the formula (Ce〇) Q Ο, wherein J is
2 1-2X1 2 3 XI  2 1-2X1 2 3 XI
Sm、 Gd、または Yを表し、 XIは 0· 05≤Χ1≤0. 15を満足するものである)で表され るものである、請求項 20、 24— 32のいずれか一項に記載の固体酸化物形燃料電池  33. Sm, Gd, or Y, and XI satisfies 0 · 05≤Χ1≤0.15), which is represented by any one of claims 20 to 24 to 32. Solid oxide fuel cell
[34] 前記電解質が、スカンジァおよび Ζまたはイットリアを固溶させたジノレコニァからな る層からなるものである、請求項 1一 33のいずれか一項に記載の固体酸化物形燃料 電池。 [34] The solid oxide fuel cell according to any one of [133] to [133], wherein the electrolyte is a layer composed of dinoreconi in which scandia and / or yttria are dissolved.
[35] 前記電解質が少なくとも二層から構成され、前記空気側電極反応層側にイットリア を固溶させたジルコユアからなる層を、そして前記燃料極側にスカンジァを固溶させ たジルコユアからなる層が設けられている、請求項 1一 34のいずれか一項に記載の 固体酸化物形燃料電池。  [35] The electrolyte is composed of at least two layers, a layer made of zirconia in which yttria is dissolved as a solid solution on the air-side electrode reaction layer side, and a layer made of zirconium in which scandia is dissolved in the fuel electrode side. 35. The solid oxide fuel cell according to any one of claims 114, wherein the fuel cell is provided.
[36] 前記電解質が少なくとも二層力 構成され、前記空気側電極反応層側にスカンジ ァを固溶させたジノレコニァからなる層を、そして前記燃料極側にイットリアを固溶させ たジルコニァからなる層が設けられている、請求項 1一 34のいずれか一項に記載の 固体酸化物形燃料電池。  [36] The electrolyte is composed of at least a two-layered structure, and a layer made of dinoreconia in which scandia is dissolved as a solid solution on the air-side electrode reaction layer side, and a layer made of zirconia in which yttria is dissolved as solid solution on the fuel electrode side. 35. The solid oxide fuel cell according to claim 34, wherein:
[37] 前記電解質が少なくとも三層力 構成され、スカンジァを固溶させたジルコエアから なる層、イットリアを固溶させたジルコニァからなる層、そしてスカンジァを固溶させた ジノレコニァからなる層の順に積層されてなる、請求項 1一 34のいずれか一項に記載 の固体酸化物形燃料電池。 [37] The electrolyte is composed of at least a three-layer structure, and is laminated in the order of a layer made of zirconia with solid solution of scandia, a layer made of zirconia with solid solution of yttria, and a layer made of zirconia with solid solution of scandia 35. The solid oxide fuel cell according to any one of claims 1 to 34, comprising:
[38] 前記空気極が、(La A ) Mn〇 (ここで、 Aは Caまたは Srを表し、 Xは 0· 15≤x [38] The air electrode is (La A) Mn〇 (where A represents Ca or Sr, and X is 0 · 15≤x
1— x x y  1— x x y
≤0· 3を、 yは 0. 97≤y≤lを満足するものである)で表されるランタンマンガナイトで ある、請求項 1一 37のいずれか一項に記載の固体酸化物形燃料電池。  38. The solid oxide fuel according to any one of claims 1 to 37, wherein the solid oxide fuel is lanthanum manganite represented by ≤0.3 and y satisfies 0.97≤y≤l). battery.
[39] 前記電解質の空気極側の表面におけるマンガンの含有量が、前記蛍石型酸化物 力 なる多孔質層の燃料極側の表面におけるマンガンの含有量よりも大である、請求 項 3— 38のいずれか一項に記載の固体酸化物形燃料電池。 39. The method according to claim 3, wherein the manganese content on the air electrode side surface of the electrolyte is larger than the manganese content on the fuel electrode side surface of the fluorite-type oxide porous layer. 39. The solid oxide fuel cell according to any one of the items 38.
[40] 前記蛍石型酸化物からなる多孔質層の燃料極側の表面におけるマンガン成分の 含有量が 0. 6-3. 5重量%である、請求項 39に記載の固体酸化物形燃料電池。 40. The solid oxide fuel according to claim 39, wherein the content of the manganese component on the fuel electrode side surface of the porous layer made of the fluorite oxide is 0.6 to 3.5% by weight. battery.
[41] 前記蛍石型酸化物からなる多孔質層の燃料極側の表面におけるマンガン成分の 含有量が 0. 9— 3重量%である、請求項 39に記載の固体酸化物形燃料電池。 [41] The manganese component on the fuel electrode side surface of the porous layer comprising the fluorite oxide The solid oxide fuel cell according to claim 39, wherein the content is 0.9 to 3% by weight.
[42] 前記蛍石型酸化物からなる多孔質層が空隙率 3— 30%を有するものである、請求 項 3— 41のいずれか一項に記載の固体酸化物形燃料電池。 42. The solid oxide fuel cell according to claim 3, wherein the porous layer made of the fluorite-type oxide has a porosity of 3 to 30%.
[43] 前記電解質が有する空隙率 alと、前記蛍石型酸化物からなる多孔質層が有する 空隙率 a2と、前記燃料極が有する空隙率 a3とが、 al < a2 < a3の関係を満足するも のである、請求項 3 42のいずれか一項に記載の固体酸化物形燃料電池。 [43] The porosity al of the electrolyte, the porosity a2 of the porous layer made of the fluorite-type oxide, and the porosity a3 of the fuel electrode satisfy a relationship of al <a2 <a3. 343. The solid oxide fuel cell according to any one of claims 342, wherein
[44] 前記蛍石型酸化物からなる多孔質層が有する細孔の径が 0. 05 2 x mである、 請求項 3— 43のいずれか一項に記載の固体酸化物形燃料電池。 44. The solid oxide fuel cell according to any one of claims 3-43, wherein the pore size of the porous layer made of the fluorite-type oxide is 0.052 x m.
[45] 前記蛍石型酸化物が、スカンジァを固溶させたジルコユアである、請求項 3 44の いずれか一項に記載の固体酸化物形燃料電池。 45. The solid oxide fuel cell according to claim 344, wherein the fluorite-type oxide is zirconia in which scandia is dissolved.
[46] 前記蛍石型酸化物が、スカンジァおよびイットリアを固溶させたジルコユアである、 請求項 3— 44のいずれか一項に記載の固体酸化物形燃料電池。 46. The solid oxide fuel cell according to any one of claims 3-44, wherein the fluorite-type oxide is zirconia in which scandia and yttria are dissolved.
[47] 前記電解質が、前記燃料極側の膜表面にぉレ、て、その結晶粒径の 3%径が 3 μ m 以上で、かつ 97%径が 20 /i m以下のものである、請求項 2に記載の固体酸化物形 燃料電池。 [47] The electrolyte, wherein the electrolyte has a 3% diameter of 3 µm or more and a 97% diameter of 20 / im or less in a crystal grain size on a fuel electrode side membrane surface. Item 3. The solid oxide fuel cell according to Item 2.
PCT/JP2004/011368 2003-08-06 2004-08-06 Solid oxide fuel cell WO2005015671A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/567,239 US20070082254A1 (en) 2003-08-06 2004-08-06 Solid oxide fuel cell
CA002553074A CA2553074A1 (en) 2003-08-06 2004-08-06 Solid oxide fuel cell
JP2005512974A JP4362832B2 (en) 2003-08-06 2004-08-06 Solid oxide fuel cell

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2003288039 2003-08-06
JP2003-288039 2003-08-06
JP2004-044204 2004-02-20
JP2004-044205 2004-02-20
JP2004044205 2004-02-20
JP2004044204 2004-02-20
JP2004076402 2004-03-17
JP2004-076403 2004-03-17
JP2004076403 2004-03-17
JP2004-076402 2004-03-17

Publications (1)

Publication Number Publication Date
WO2005015671A1 true WO2005015671A1 (en) 2005-02-17

Family

ID=34139870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011368 WO2005015671A1 (en) 2003-08-06 2004-08-06 Solid oxide fuel cell

Country Status (3)

Country Link
JP (1) JP4362832B2 (en)
CA (1) CA2553074A1 (en)
WO (1) WO2005015671A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339034A (en) * 2005-06-02 2006-12-14 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell, and method of manufacturing same
JP2007149431A (en) * 2005-11-25 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and its formation method
JP2007324087A (en) * 2006-06-05 2007-12-13 Nippon Telegr & Teleph Corp <Ntt> Ceria family buffer layer for air electrode of solid oxide fuel cell and its manufacturing method
JP2009520320A (en) * 2005-12-16 2009-05-21 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Fuel cell structure having electrolyte dopant
JP2010529591A (en) * 2007-05-16 2010-08-26 本田技研工業株式会社 Solid oxide fuel cell components tuned by atomic layer deposition
JP2015046365A (en) * 2013-08-29 2015-03-12 京セラ株式会社 Cell, cell stack device, module, and module-housing device
JP2015207487A (en) * 2014-04-22 2015-11-19 株式会社ノリタケカンパニーリミテド Low-temperature operation type solid oxide fuel cell, and method for manufacturing the same
JP2016115600A (en) * 2014-12-17 2016-06-23 株式会社日本触媒 Metal support cell
JP2018006319A (en) * 2016-06-28 2018-01-11 ケーセラセル カンパニー リミテッド Scandia-stabilized zirconia electrolyte for solid oxide fuel cell with reduction atmosphere stability improved
JP2018056019A (en) * 2016-09-30 2018-04-05 日本特殊陶業株式会社 Production method of electrochemical reaction single cell, and production method of electrochemical reaction cell stack
JP2022094309A (en) * 2020-12-14 2022-06-24 ブルーム エネルギー コーポレイション Solid oxide electrolysis cell including electrolysis resistant air-side electrode

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536433A (en) * 1991-07-31 1993-02-12 Ngk Insulators Ltd Solid electrolytic fuel cell and manufacture thereof
JPH05190183A (en) * 1992-01-13 1993-07-30 Ngk Insulators Ltd Solid electrolyte type fuel cell
JPH08250134A (en) * 1995-03-14 1996-09-27 Toho Gas Co Ltd Solid electrolytic fuel cell, and manufacture of cell
JPH08250135A (en) * 1995-03-14 1996-09-27 Toho Gas Co Ltd Solid electrolytic fuel cell, and manufacture of its cell
JPH09129252A (en) * 1995-11-06 1997-05-16 Tokyo Gas Co Ltd Highly durable solid electrlyte fuel cell and manufacture thereof
JPH1074528A (en) * 1996-09-02 1998-03-17 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte fuel cell and its manufacture
JPH1145722A (en) * 1997-07-29 1999-02-16 Tokyo Gas Co Ltd Manufacturing method of air pole for solid electrolytic fuel cell and solid electrolytic fuel cell having air pole manufactured by this method
JP2001015129A (en) * 1999-06-30 2001-01-19 Kyocera Corp Solid electrolyte type fuell cell
JP2001185161A (en) * 1999-12-27 2001-07-06 Kyocera Corp Solid electrolyte fuel cell
JP2001185159A (en) * 1999-12-24 2001-07-06 Kyocera Corp Solid electrolyte fuel cell and its manufacture
JP2001236969A (en) * 2000-02-23 2001-08-31 Kyocera Corp Cell for solid electrolyte fuel cell and method of producing the same as well as fuel battery
JP2002015754A (en) * 2000-06-30 2002-01-18 Kyocera Corp Solid electrolyte fuel cell and its manufacturing method
JP2002134133A (en) * 2000-10-27 2002-05-10 Kyocera Corp Cell of solid electrolyte fuel cell
JP2002134132A (en) * 2000-10-27 2002-05-10 Kyocera Corp Solid electrolyte fuel cell and its manufacturing method
JP2003178769A (en) * 2001-12-11 2003-06-27 Toyota Central Res & Dev Lab Inc Thin film laminated body, its manufacturing method, and solid oxide type fuel cell using the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536433A (en) * 1991-07-31 1993-02-12 Ngk Insulators Ltd Solid electrolytic fuel cell and manufacture thereof
JPH05190183A (en) * 1992-01-13 1993-07-30 Ngk Insulators Ltd Solid electrolyte type fuel cell
JPH08250134A (en) * 1995-03-14 1996-09-27 Toho Gas Co Ltd Solid electrolytic fuel cell, and manufacture of cell
JPH08250135A (en) * 1995-03-14 1996-09-27 Toho Gas Co Ltd Solid electrolytic fuel cell, and manufacture of its cell
JPH09129252A (en) * 1995-11-06 1997-05-16 Tokyo Gas Co Ltd Highly durable solid electrlyte fuel cell and manufacture thereof
JPH1074528A (en) * 1996-09-02 1998-03-17 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte fuel cell and its manufacture
JPH1145722A (en) * 1997-07-29 1999-02-16 Tokyo Gas Co Ltd Manufacturing method of air pole for solid electrolytic fuel cell and solid electrolytic fuel cell having air pole manufactured by this method
JP2001015129A (en) * 1999-06-30 2001-01-19 Kyocera Corp Solid electrolyte type fuell cell
JP2001185159A (en) * 1999-12-24 2001-07-06 Kyocera Corp Solid electrolyte fuel cell and its manufacture
JP2001185161A (en) * 1999-12-27 2001-07-06 Kyocera Corp Solid electrolyte fuel cell
JP2001236969A (en) * 2000-02-23 2001-08-31 Kyocera Corp Cell for solid electrolyte fuel cell and method of producing the same as well as fuel battery
JP2002015754A (en) * 2000-06-30 2002-01-18 Kyocera Corp Solid electrolyte fuel cell and its manufacturing method
JP2002134133A (en) * 2000-10-27 2002-05-10 Kyocera Corp Cell of solid electrolyte fuel cell
JP2002134132A (en) * 2000-10-27 2002-05-10 Kyocera Corp Solid electrolyte fuel cell and its manufacturing method
JP2003178769A (en) * 2001-12-11 2003-06-27 Toyota Central Res & Dev Lab Inc Thin film laminated body, its manufacturing method, and solid oxide type fuel cell using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339034A (en) * 2005-06-02 2006-12-14 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell, and method of manufacturing same
JP2007149431A (en) * 2005-11-25 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and its formation method
JP4620572B2 (en) * 2005-11-25 2011-01-26 日本電信電話株式会社 Solid oxide fuel cell and method for producing the same
JP2009520320A (en) * 2005-12-16 2009-05-21 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Fuel cell structure having electrolyte dopant
JP2007324087A (en) * 2006-06-05 2007-12-13 Nippon Telegr & Teleph Corp <Ntt> Ceria family buffer layer for air electrode of solid oxide fuel cell and its manufacturing method
JP2010529591A (en) * 2007-05-16 2010-08-26 本田技研工業株式会社 Solid oxide fuel cell components tuned by atomic layer deposition
JP2015046365A (en) * 2013-08-29 2015-03-12 京セラ株式会社 Cell, cell stack device, module, and module-housing device
JP2015207487A (en) * 2014-04-22 2015-11-19 株式会社ノリタケカンパニーリミテド Low-temperature operation type solid oxide fuel cell, and method for manufacturing the same
JP2016115600A (en) * 2014-12-17 2016-06-23 株式会社日本触媒 Metal support cell
JP2018006319A (en) * 2016-06-28 2018-01-11 ケーセラセル カンパニー リミテッド Scandia-stabilized zirconia electrolyte for solid oxide fuel cell with reduction atmosphere stability improved
JP2018056019A (en) * 2016-09-30 2018-04-05 日本特殊陶業株式会社 Production method of electrochemical reaction single cell, and production method of electrochemical reaction cell stack
JP2022094309A (en) * 2020-12-14 2022-06-24 ブルーム エネルギー コーポレイション Solid oxide electrolysis cell including electrolysis resistant air-side electrode
JP7428686B2 (en) 2020-12-14 2024-02-06 ブルーム エネルギー コーポレイション Solid oxide electrolyzer cell with electrolysis-resistant air-side electrode

Also Published As

Publication number Publication date
CA2553074A1 (en) 2005-02-17
JP4362832B2 (en) 2009-11-11
JPWO2005015671A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
US20070082254A1 (en) Solid oxide fuel cell
US20180205105A1 (en) Electrolyte layer-anode composite member for fuel cell and method for producing the same
JP5746398B2 (en) Solid oxide fuel cell
KR20130022828A (en) Proton conductor for electrolyte of solid oxide fuel cells and solid oxide fuel cells comprising same
JP2009037874A (en) Manufacturing method of air electrode support type single cell for intermediate temperature actuating solid oxide fuel cell
WO2005015671A1 (en) Solid oxide fuel cell
JP2009259746A (en) Solid oxide fuel cell
JP6152171B2 (en) Powder mixture for layers in solid oxide fuel cells
JP6573243B2 (en) Air electrode composition, air electrode and fuel cell including the same
JP2006351406A (en) Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode
JP4524791B2 (en) Solid oxide fuel cell
JP3661676B2 (en) Solid oxide fuel cell
JP2004265746A (en) Solid oxide fuel cell
JP2010108697A (en) Solid oxide fuel battery cell and its manufacturing method
JP2015191810A (en) Anode support substrate for solid oxide fuel batteries and solid oxide fuel battery cell
JP6654765B2 (en) Solid oxide fuel cell stack
JP2010118155A (en) Solid oxide fuel battery cell, and manufacturing method thereof
JP5365123B2 (en) Electrolyte for solid oxide fuel cell and solid oxide fuel cell using the same
JP2004303712A (en) Solid oxide fuel cell
JP2009037873A (en) Tubular single cell for intermediate temperature actuating solid oxide fuel cell and its manufacturing method
JP6524756B2 (en) Solid oxide fuel cell stack
EP4239731A1 (en) Solid oxide electrochemical cell and use thereof
JP6986126B2 (en) Oxygen permeable membrane, its manufacturing method, and reformer
JP7136185B2 (en) cell structure
JP2008258170A (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480029161.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512974

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2553074

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007082254

Country of ref document: US

Ref document number: 10567239

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10567239

Country of ref document: US