JPH1145722A - Manufacturing method of air pole for solid electrolytic fuel cell and solid electrolytic fuel cell having air pole manufactured by this method - Google Patents

Manufacturing method of air pole for solid electrolytic fuel cell and solid electrolytic fuel cell having air pole manufactured by this method

Info

Publication number
JPH1145722A
JPH1145722A JP9203356A JP20335697A JPH1145722A JP H1145722 A JPH1145722 A JP H1145722A JP 9203356 A JP9203356 A JP 9203356A JP 20335697 A JP20335697 A JP 20335697A JP H1145722 A JPH1145722 A JP H1145722A
Authority
JP
Japan
Prior art keywords
air electrode
fuel cell
elements
oxide fuel
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9203356A
Other languages
Japanese (ja)
Inventor
Yuichi Hishinuma
祐一 菱沼
Yoshio Matsuzaki
良雄 松崎
Masahide Akiyama
雅英 秋山
Shoji Yamashita
祥二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Tokyo Gas Co Ltd
Original Assignee
Kyocera Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Tokyo Gas Co Ltd filed Critical Kyocera Corp
Priority to JP9203356A priority Critical patent/JPH1145722A/en
Publication of JPH1145722A publication Critical patent/JPH1145722A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To suppress generation of a reaction product on an interface at the time of firing and make it possible to fire an air pole at a high temperature. SOLUTION: In this method, a solid electrolyte 1 is coated with a paste containing raw material powder as an air pole material, and a pellet 3 containing (A1-x Bx ) (C1-y Dy )O(3+δ) as main constituent, is placed on this coating film 2 and fired. With this, excess of the elements A, B caused by diffusion of the elements C, D into the solid electrolyte 1 on the interface is supplemented by supplying the elements C, D from the pellet 3 and the excess of the elements A, B is suppressed. Here, one or more of La, Y, Sm, and Gd is used as the A, one or more of Sr, Ba, and Ca as the B, one or more of Mn and Co as the C, one or more of Cr, Ni, Mg, Zr, Ce, Fe, and Al as the D, and 0<=x<=0.50, and 0<=y<=0.50 are given.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質型燃料電
池の空気極の作製方法およびこの方法により作製された
空気極を有する固体電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an air electrode of a solid oxide fuel cell and a solid oxide fuel cell having an air electrode manufactured by the method.

【0002】[0002]

【従来の技術】燃料電池は省資源の観点からだけではな
く、環境に対する影響の観点からもエネルギー源として
注目されている。
2. Description of the Related Art Fuel cells are drawing attention as an energy source not only from the viewpoint of resource saving but also from the viewpoint of environmental impact.

【0003】固体電解質型燃料電池(SOFC)は固体
電解質層の片面に燃料極、その反対面に空気極を配置し
た単電池と、隣接するそれぞれ単電池同士を電気的に直
列に接続し、かつ各単電池に燃料と酸化剤ガスとを分配
するセパレータとを交互に積層して複層のスタックとし
て構成されていて、燃料電池の中でも動作温度が700
〜1000℃と高いことから発電効率が高く、構成材料
がすべて固体であるため取扱いが容易であるなどの利点
があるため、実用化が進んでいる。
In a solid oxide fuel cell (SOFC), a unit cell in which a fuel electrode is arranged on one side of a solid electrolyte layer and an air electrode is arranged on the opposite side, and adjacent unit cells are electrically connected in series, and Each cell is alternately laminated with a separator for distributing fuel and oxidant gas to form a multi-layer stack.
Since the temperature is as high as 1000 ° C., the power generation efficiency is high, and since the constituent materials are all solid, there are advantages such as easy handling, and practical use is progressing.

【0004】固体電解質型燃料電池の単電池(セル)は
中心となる固体電解質層の片面に最初に燃料極が145
0℃程度の高温で焼成され、次に反対側の面に空気極が
1150℃程度の低温で焼成されており、これらの電極
はそれぞれ固体電解質層との間に界面を有している。固
体電解質には主に8YSZ(YSZはイットリアをドー
プした安定化ジルコニア)または3YSZが用いられ、
空気極材料としてストロンチウム等をドープしたLaM
nO3 が用いられている。
In a single cell (cell) of a solid oxide fuel cell, a fuel electrode is first placed on one side of a central solid electrolyte layer.
The electrode is fired at a high temperature of about 0 ° C., and then the air electrode is fired at a low temperature of about 1150 ° C. on the opposite surface, and each of these electrodes has an interface with the solid electrolyte layer. For the solid electrolyte, 8YSZ (YSZ is stabilized zirconia doped with yttria) or 3YSZ is mainly used.
LaM doped with strontium etc. as air electrode material
nO 3 is used.

【0005】[0005]

【発明が解決しようとする課題】従来、空気極の作製は
電解質のYSZ上に前述の空気極材料をスクリーン印刷
法やスラリーコート法等の方法で塗布し、1150℃程
度の低温度で焼成していた。
Conventionally, the air electrode is manufactured by applying the above-described air electrode material onto the electrolyte YSZ by a method such as a screen printing method or a slurry coating method, and firing at a low temperature of about 1150 ° C. I was

【0006】1200℃以上の高温度で焼成すると空気
極材料が電解質であるジルコニアと反応し、界面に高抵
抗の反応生成物、ランタンジルコネート(La2 Zr2
7)を生成して、空気極の電極性能を低下させる欠点
がある。また、1200℃以下の温度で焼成すると前記
反応生成物を生成しないが、燃料電池の運転温度(10
00℃)において経時的に電極構造が変化し、運転の長
期安定性に問題を生ずる欠点がある。
When fired at a high temperature of 1200 ° C. or more, the air electrode material reacts with zirconia as an electrolyte, and a high-resistance reaction product, lanthanum zirconate (La 2 Zr 2 ), is formed at the interface.
O 7 ) is generated, which has the disadvantage of deteriorating the electrode performance of the air electrode. Further, when the reaction product is fired at a temperature of 1200 ° C. or less, the reaction product is not generated.
(00 ° C.), there is a drawback that the electrode structure changes over time, causing a problem in long-term stability of operation.

【0007】よって、電極性能を損なうことなしに空気
極を燃料極と共に高温で焼成することができる方法の開
発が待望されていた。
[0007] Therefore, development of a method capable of firing an air electrode and a fuel electrode at a high temperature without impairing the electrode performance has been desired.

【0008】本発明は、上述の点にかんがみてなされた
もので、焼成時に界面における反応生成物の生成を抑制
し且つ空気極を高温で焼成することができ、そのため高
い電極性能を持ち且つ長期安定性にも優れた空気極を作
製することができる固体電解質型燃料電池用空気極の作
製方法およびこの方法により作製された空気極を有する
固体電解質型燃料電池を提供することを目的とするもの
である。
[0008] The present invention has been made in view of the above points, and can suppress the formation of reaction products at the interface during firing, and can fire the air electrode at a high temperature. An object of the present invention is to provide a method for producing an air electrode for a solid oxide fuel cell capable of producing an air electrode having excellent stability, and a solid oxide fuel cell having an air electrode produced by this method. It is.

【0009】[0009]

【課題を解決するための手段】上記問題点を解決するた
め本発明は、空気極材料の主成分が である固体電解質型燃料電池の空気極の作製方法におい
て、固体電解質上に空気極材料の原料粉体を含有するペ
ーストを塗布し、この塗布膜上に を主成分とするペレットを設置して焼成することによ
り、界面での固体電解質中への元素C、Dの拡散による
元素A、Bの過剰が、ペレットからの元素C、Dの供給
によって補なわれ、元素A、Bの過剰が抑制され、ここ
でAはLa、Y、Sm、Gdのいずれか1つ又は2つ以
上の組合せ、BはSr、Ba、Caのいずれか1つ又は
2つ以上の組合せ、CはMn、Coのいずれか1つ又は
2つ以上の組合せ、DはCr、Ni、Mg、Zr、C
e、Fe、Alのいずれか1つ又は2つ以上の組合せで
あり、0≦x≦0.50、 0≦y≦0.50 である
ことを特徴とする。
According to the present invention, there is provided an air electrode material comprising: In the method for producing an air electrode of a solid oxide fuel cell, a paste containing a raw material powder of an air electrode material is applied onto the solid electrolyte, and By arranging and sintering a pellet mainly composed of, the excess of the elements A and B due to the diffusion of the elements C and D into the solid electrolyte at the interface is compensated by the supply of the elements C and D from the pellet. The excess of the elements A and B is suppressed, wherein A is any one or a combination of two or more of La, Y, Sm, and Gd, and B is any one or two of Sr, Ba, and Ca. The above combinations, C is any one or combination of two or more of Mn and Co, and D is Cr, Ni, Mg, Zr, C
e, Fe, or any one or a combination of two or more of Al, wherein 0 ≦ x ≦ 0.50 and 0 ≦ y ≦ 0.50.

【0010】[0010]

【発明の実施の形態】以下本発明を図面に基づいて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0011】図1は本発明による空気極の作製方法を説
明する図である。
FIG. 1 is a view for explaining a method of manufacturing an air electrode according to the present invention.

【0012】本発明による空気極の作製方法は、空気極
材料として、 を主成分とし、イットリアを固溶したジルコニア(YS
Z)との混合体が使用されている。この平均粒径10μ
m以下の空気極材料の原料粉体を、イットリアを固溶し
た安定化ジルコニア又は部分安定化ジルコニアからなる
固体電解質型燃料電池の固体電解質1の上にスクリーン
印刷法等により塗布し、この塗布膜2上に を主成分とするペレット3をに設置して1300℃以上
の温度で焼成することにより、界面での電解質1中への
元素C、Dの拡散による元素A、Bの過剰が、ペレット
からの元素C、Dの供給によって補なわれ(この供給方
向を図1の矢印Sで示す)、元素A、Bの過剰が抑制さ
れる。ここでAはLa、Y、Sm、Gdのいずれか1つ
又は2つ以上の組合せ、BはSr、Ba、Caのいずれ
か1つ又は2つ以上の組合せ、CはMn、Coのいずれ
か1つ又は2つ以上の組合せ、DはCr、Ni、Mg、
Zr、Ce、Fe、Alのいずれか1つ又は2つ以上の
組合せであり、0≦x≦0.50、 0≦y≦0.50
である。
The method for producing an air electrode according to the present invention comprises the steps of: Zirconia with Yttria as a solid solution (YS
A mixture with Z) is used. This average particle size is 10μ.
m or less of a raw material powder of an air electrode material is coated by a screen printing method or the like on a solid electrolyte 1 of a solid oxide fuel cell made of stabilized zirconia or partially stabilized zirconia in which yttria is dissolved. On 2 Is placed in the pellet 3 and baked at a temperature of 1300 ° C. or more, so that the excess of the elements A and B due to the diffusion of the elements C and D into the electrolyte 1 at the interface increases the element from the pellet. The supply of C and D is supplemented (the supply direction is indicated by an arrow S in FIG. 1), and the excess of the elements A and B is suppressed. Here, A is any one or a combination of two or more of La, Y, Sm, and Gd, B is a combination of any one or two or more of Sr, Ba, and Ca, and C is any one of Mn and Co. One or a combination of two or more, D is Cr, Ni, Mg,
Any one or a combination of two or more of Zr, Ce, Fe, and Al, and 0 ≦ x ≦ 0.50, 0 ≦ y ≦ 0.50
It is.

【0013】なお、一度塗布層を1200℃以下の温度
で焼成した後、ペレット3をその上に設置して1300
℃以上の温度で焼成することもある。
After the coating layer is fired once at a temperature of 1200 ° C. or less, the pellet 3 is placed thereon and
It may be fired at a temperature of at least ℃.

【0014】本発明で用いるペレットとしては仮焼体や
燒結体がある。
The pellets used in the present invention include calcined bodies and sintered bodies.

【0015】[0015]

【実施例】次に本発明の比較例、実施例について説明す
る。
EXAMPLES Next, comparative examples and examples of the present invention will be described.

【0016】図1に示すようなセットアップで空気極を
固体電解質上に焼付け、分極特性を評価した。空気極の
組成、粒径、焼付け温度等は以下のとおりである。 比較例1 空気極:材料組成La0.85Sr0.15MnO3 、平均粒径2μm ペレット:なし 電解質への焼付け温度:1450℃ 電解質:10mol %Y23 - 90mol %ZrO2 (10YSZ)板 比較例2 空気極:材料組成La0.85Sr0.15MnO3 、平均粒径2μm ペレット:なし 電解質への焼付け温度:1500℃ 電解質:10mol %Y23 - 90mol %ZrO2 (10YSZ)板 比較例3 空気極:材料組成La0.85Sr0.15MnO 、平均粒径2 μm ペレット:なし 電解質への焼付け温度:1150℃ 電解質:10mol %Y − 90mol %ZrO (10YSZ)板 実施例1 空気極:材料組成La0.85Sr0.15MnO3 、平均粒径2μm ペレット:La0.85Sr0.15MnO3 、厚さ2mm、仮焼温度150 0℃、気孔率30%の仮焼体 電解質への焼付け温度:1450℃ 電解質:10mol %Y23 - 90mol %ZrO2 (10YSZ)板 実施例2 空気極:材料組成La0.85Sr0.15MnO3 、平均粒径2μm ペレット:La0.85Sr0.15MnO3 、厚さ2mm、仮焼温度150 0℃、気孔率30%の仮焼体 電解質への焼付け温度:1500℃ 電解質:10mol %Y23 - 90mol %ZrO2 (10YSZ)板 上記比較例、実施例の評価は次のようである。
The air electrode was baked on the solid electrolyte in a setup as shown in FIG. 1, and the polarization characteristics were evaluated. The composition, particle size, baking temperature and the like of the air electrode are as follows. Comparative Example 1 Air electrode: Material composition La 0.85 Sr 0.15 MnO 3 , average particle size 2 μm Pellets: None Baking temperature on electrolyte: 1450 ° C. Electrolyte: 10 mol% Y 2 O 3 -90 mol% ZrO 2 (10YSZ) plate Comparative Example 2 Air electrode: Material composition La 0.85 Sr 0.15 MnO 3 , average particle diameter 2 μm Pellets: None Baking temperature on electrolyte: 1500 ° C. Electrolyte: 10 mol% Y 2 O 3 -90 mol% ZrO 2 (10YSZ) plate Comparative example 3 Air electrode: Material composition La 0.85 Sr 0.15 MnO 3 , average particle size 2 μm Pellets: none Baking temperature on electrolyte: 1150 ° C. Electrolyte: 10 mol% Y 2 O 3 -90 mol% ZrO 2 (10YSZ) plate Example 1 Air Electrode: material composition La 0.85 Sr 0.15 MnO 3 , average particle size 2 μm Pellet: La 0.85 Sr 0.15 MnO 3 , thickness 2 mm, calcination temperature 150 A calcined body having a porosity of 0 ° C. and a porosity of 30% Baking temperature to the electrolyte: 1450 ° C. Electrolyte: 10 mol% Y 2 O 3 -90 mol% ZrO 2 (10YSZ) plate Example 2 Air electrode: material composition La 0.85 Sr 0.15 MnO 3 Pellets: La 0.85 Sr 0.15 MnO 3 , thickness of 2 mm, calcining temperature of 1500 ° C., porosity of 30% Calcined body Electrolyte baking temperature: 1500 ° C. Electrolyte: 10 mol% Y 2 O 3 − 90 mol% ZrO 2 (10YSZ) plate The evaluations of the above comparative examples and examples are as follows.

【0017】図2は従来法で高温焼成した空気極の性能
を説明する図である。
FIG. 2 is a diagram for explaining the performance of an air electrode fired at a high temperature by a conventional method.

【0018】図3は本発明の方法で高温焼成した空気極
の性能を従来法で低温焼成した空気極の性能と比較して
説明する図である。
FIG. 3 is a diagram for explaining the performance of an air electrode fired at a high temperature by the method of the present invention in comparison with the performance of an air electrode fired at a low temperature by the conventional method.

【0019】図2は1000℃で一定電流密度通電し続
けた時の空気極の分極の時間変化を示すもので、縦軸に
過電圧(v)、横軸に通電時間(hr)を示す。電流密
度は0.3A/cm2 である。図2から比較例1、2と
も劣化はみられないが、分極の絶対値が大きく、電極性
能がはじめから低いことが分かる。
FIG. 2 shows the change over time of the polarization of the air electrode when a constant current density is continuously applied at 1000 ° C., where the vertical axis indicates the overvoltage (v) and the horizontal axis indicates the energization time (hr). The current density is 0.3 A / cm 2 . FIG. 2 shows that no deterioration was observed in Comparative Examples 1 and 2, but the absolute value of the polarization was large and the electrode performance was low from the beginning.

【0020】図3は1000℃で一定電流密度通電し続
けた時の空気極の分極の時間変化を示すもので、縦軸に
過電圧(v)、横軸に通電時間(hr)を示す。図3か
ら比較例3では時間とともに劣化しているが、実施例
1、2は劣化していないことが分かる。なお、図中の1
0YSZとはY23 が10モル、ZrO2 が90モル
のYSZを言う。電流密度は0.3A/cm2 である。
FIG. 3 shows the change over time in the polarization of the air electrode when a constant current density is continuously applied at 1000 ° C., where the vertical axis indicates the overvoltage (v) and the horizontal axis indicates the energization time (hr). From FIG. 3, it can be seen that Comparative Example 3 deteriorated with time, but Examples 1 and 2 did not deteriorate. In addition, 1 in the figure
0YSZ refers to YSZ having 10 mol of Y 2 O 3 and 90 mol of ZrO 2 . The current density is 0.3 A / cm 2 .

【0021】[0021]

【発明の効果】以上説明したように、本発明では空気極
の焼成時に空気極材料と同様の組成を有するペレットを
空気極上に設置して焼成するようにしたので次のような
極めて優れた効果が得られる。 (1) 焼成時に界面における反応生成物の生成を抑制
し且つ空気極を高温で焼成することができ、その結果高
い電極性能を持ち且つ長期安定性にも優れた空気極を作
製することができるようになった。 (2)従来は単電池の製作にあたり、最初に中心となる
固体電解質層の片面に燃料極を1450℃程度の高温で
焼成し、次に固体電解質層の反対側の面に空気極を11
50℃程度の低温で焼成していたが、本発明により燃料
極と空気極を高温度で同時に焼成できるようになつた。
As described above, in the present invention, the pellet having the same composition as that of the cathode material is placed on the cathode during the firing of the cathode, and the pellet is fired. Is obtained. (1) The generation of reaction products at the interface during firing is suppressed, and the air electrode can be fired at a high temperature. As a result, an air electrode having high electrode performance and excellent long-term stability can be produced. It became so. (2) Conventionally, in manufacturing a unit cell, first, a fuel electrode is fired at a high temperature of about 1450 ° C. on one surface of a solid electrolyte layer serving as a center, and then an air electrode is formed on an opposite surface of the solid electrolyte layer.
Although firing was performed at a low temperature of about 50 ° C., the present invention has enabled the fuel electrode and the air electrode to be simultaneously fired at a high temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による空気極の作製方法を説明する図で
ある。
FIG. 1 is a diagram for explaining a method for producing an air electrode according to the present invention.

【図2】従来法で高温焼成した空気極の性能を説明する
図である。
FIG. 2 is a diagram illustrating the performance of an air electrode fired at a high temperature by a conventional method.

【図3】本発明の方法で高温焼成した空気極の性能を従
来法で低温焼成した空気極の性能と比較して説明する図
である。
FIG. 3 is a diagram illustrating the performance of an air electrode fired at a high temperature by the method of the present invention in comparison with the performance of an air electrode fired at a low temperature by a conventional method.

【符号の説明】[Explanation of symbols]

1 固体電解質 2 塗布膜 3 ペレット 1 solid electrolyte 2 coating film 3 pellet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋山 雅英 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 (72)発明者 山下 祥二 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Masahide Akiyama 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Kyocera Research Institute (72) Inventor Shoji Yamashita 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Kyocera Shikisha Research Institute

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 空気極材料の主成分が である固体電解質型燃料電池の空気極の作製方法におい
て、固体電解質上に空気極材料の原料粉体を含有するペ
ーストを塗布し、この塗布膜上に を主成分とするペレットを設置して焼成することによ
り、界面での固体電解質中への元素C、Dの拡散による
元素A、Bの過剰が、ペレットからの元素C、Dの供給
によって補なわれ、元素A、Bの過剰が抑制され、 ここでAはLa、Y、Sm、Gdのいずれか1つ又は2
つ以上の組合せ、BはSr、Ba、Caのいずれか1つ
又は2つ以上の組合せ、CはMn、Coのいずれか1つ
又は2つ以上の組合せ、DはCr、Ni、Mg、Zr、
Ce、Fe、Alのいずれか1つ又は2つ以上の組合せ
であり、0≦x≦0.50、 0≦y≦0.50 であ
る、ことを特徴とする固体電解質型燃料電池の空気極の
作製方法。
The main component of the air electrode material is In the method for producing an air electrode of a solid oxide fuel cell, a paste containing a raw material powder of an air electrode material is applied onto the solid electrolyte, and By arranging and sintering a pellet mainly composed of, the excess of the elements A and B due to the diffusion of the elements C and D into the solid electrolyte at the interface is compensated by the supply of the elements C and D from the pellet. The excess of the elements A and B is suppressed, where A is any one of La, Y, Sm and Gd or 2
One or more combinations, B is any one or two or more combinations of Sr, Ba, Ca, C is any one or two or more combinations of Mn, Co, D is Cr, Ni, Mg, Zr ,
An air electrode of a solid oxide fuel cell, wherein the air electrode is any one or a combination of two or more of Ce, Fe, and Al, and 0 ≦ x ≦ 0.50 and 0 ≦ y ≦ 0.50. Method of manufacturing.
【請求項2】 前記空気極材料が を主成分とし、イットリアを固溶したジルコニア(YS
Z)との混合体であることを特徴とする請求項1に記載
の固体電解質型燃料電池の空気極の作製方法。
2. The air electrode material is Zirconia with Yttria as a solid solution (YS
The method for producing an air electrode of a solid oxide fuel cell according to claim 1, wherein the air electrode is a mixture with Z).
【請求項3】 前記焼成が1300℃以上の温度で行
えることを特徴とする請求項1に記載の固体電解質型燃
料電池の空気極の作製方法。
3. The method according to claim 1, wherein the calcination can be performed at a temperature of 1300 ° C. or higher.
【請求項4】 前記空気極材料の原料粉体が平均粒径
10μm以下であることを特徴とする請求項1に記載の
固体電解質型燃料電池の空気極の作製方法。
4. The method for producing an air electrode of a solid oxide fuel cell according to claim 1, wherein the raw material powder of the air electrode material has an average particle size of 10 μm or less.
【請求項5】 前記固体電解質がイットリアを固溶し
た安定化ジルコニア又は部分安定化ジルコニアであるこ
とを特徴とする請求項1に記載の固体電解質型燃料電池
の空気極の作製方法。
5. The method for producing an air electrode of a solid oxide fuel cell according to claim 1, wherein the solid electrolyte is stabilized zirconia or a partially stabilized zirconia in which yttria is dissolved.
【請求項6】 前記塗布膜がスクリーン印刷法により
固体電解質上に形成されることを特徴とする請求項1に
記載の固体電解質型燃料電池の空気極の作製方法。
6. The method according to claim 1, wherein the coating film is formed on the solid electrolyte by a screen printing method.
【請求項7】 一度塗布層を1200℃以下の温度で
焼成した後、ペレットをその上に設置して1300℃以
上の温度で焼成することを特徴とする請求項1に記載の
固体電解質型燃料電池の空気極の作製方法。
7. The solid electrolyte type fuel according to claim 1, wherein once the coating layer is fired at a temperature of 1200 ° C. or less, pellets are placed thereon and fired at a temperature of 1300 ° C. or more. How to make a battery air electrode.
【請求項8】 請求項1−7のいずれか1項に記載の
方法により作製された空気極を有することを特徴とする
固体電解質型燃料電池。
8. A solid oxide fuel cell having an air electrode manufactured by the method according to claim 1. Description:
JP9203356A 1997-07-29 1997-07-29 Manufacturing method of air pole for solid electrolytic fuel cell and solid electrolytic fuel cell having air pole manufactured by this method Withdrawn JPH1145722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9203356A JPH1145722A (en) 1997-07-29 1997-07-29 Manufacturing method of air pole for solid electrolytic fuel cell and solid electrolytic fuel cell having air pole manufactured by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9203356A JPH1145722A (en) 1997-07-29 1997-07-29 Manufacturing method of air pole for solid electrolytic fuel cell and solid electrolytic fuel cell having air pole manufactured by this method

Publications (1)

Publication Number Publication Date
JPH1145722A true JPH1145722A (en) 1999-02-16

Family

ID=16472682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9203356A Withdrawn JPH1145722A (en) 1997-07-29 1997-07-29 Manufacturing method of air pole for solid electrolytic fuel cell and solid electrolytic fuel cell having air pole manufactured by this method

Country Status (1)

Country Link
JP (1) JPH1145722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
RU2807442C1 (en) * 2023-04-07 2023-11-14 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" SOLID OXIDE ELECTROLYTE MATERIAL WITH PROTON CONDUCTIVITY BASED ON BARIUM-LANTHANUM INDATE BaLa2In2O7 DOPED WITH STRONTIUM AND CALCIUM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
RU2807442C1 (en) * 2023-04-07 2023-11-14 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" SOLID OXIDE ELECTROLYTE MATERIAL WITH PROTON CONDUCTIVITY BASED ON BARIUM-LANTHANUM INDATE BaLa2In2O7 DOPED WITH STRONTIUM AND CALCIUM

Similar Documents

Publication Publication Date Title
US6492051B1 (en) High power density solid oxide fuel cells having improved electrode-electrolyte interface modifications
JPH0748378B2 (en) Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the same
JPH06140048A (en) Solid electrolyte type fuel cell
JP2001307750A (en) Solid electrolyte fuel battery and its manufacturing method
KR20160108253A (en) Method of manufacturing electrode, electrode manufactured by the method, electorde structure comprising the electrode, fuel cell or metal-air secondary battery comprising the electrode, battery module having the fuel cell or metal-air secondary battery, and composition for manufacturing the electrode
JP2003187811A (en) Method for manufacturing composite air electrode for solid electrolyte fuel cell
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
US5672437A (en) Solid electrolyte for a fuel cell
JP2001283877A (en) Unit cell for solid electrolytic fuel battery and its manufacturing method
JP4524791B2 (en) Solid oxide fuel cell
AU2021204646A1 (en) Electrochemical cell and electrochemical cell stack
JP3347561B2 (en) Solid oxide fuel cell
JP2002015754A (en) Solid electrolyte fuel cell and its manufacturing method
JP3434883B2 (en) Method for manufacturing fuel cell
JP2000030728A (en) Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method
JPH09180731A (en) Solid electrolyte fuel cell
JPH1145722A (en) Manufacturing method of air pole for solid electrolytic fuel cell and solid electrolytic fuel cell having air pole manufactured by this method
JP3342610B2 (en) Solid oxide fuel cell
JPH09306514A (en) Manufacture of solid electrolyte fuel cell
JP2006059611A (en) Ceria based solid electrolyte fuel cell and its manufacturing method
JPH0927330A (en) Fuel electrode of solid electrolyte fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JP2003331874A (en) Interconnector for solid oxide fuel cell and its formation method
JP2006059610A (en) Solid electrolyte fuel cell and its manufacturing method
JPH11224673A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005