JP2001236969A - Cell for solid electrolyte fuel cell and method of producing the same as well as fuel battery - Google Patents

Cell for solid electrolyte fuel cell and method of producing the same as well as fuel battery

Info

Publication number
JP2001236969A
JP2001236969A JP2000046429A JP2000046429A JP2001236969A JP 2001236969 A JP2001236969 A JP 2001236969A JP 2000046429 A JP2000046429 A JP 2000046429A JP 2000046429 A JP2000046429 A JP 2000046429A JP 2001236969 A JP2001236969 A JP 2001236969A
Authority
JP
Japan
Prior art keywords
solid electrolyte
air electrode
fuel cell
electrode
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000046429A
Other languages
Japanese (ja)
Other versions
JP4508340B2 (en
Inventor
Kenichi Tajima
健一 田島
Kazuhiro Nishizono
和博 西薗
Masahito Nishihara
雅人 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000046429A priority Critical patent/JP4508340B2/en
Publication of JP2001236969A publication Critical patent/JP2001236969A/en
Application granted granted Critical
Publication of JP4508340B2 publication Critical patent/JP4508340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell of a solid electrolyte fuel cell having a good generating performance and possible durability improved and a method of producing the same as well as a fuel cell. SOLUTION: A cell of a solid electrolyte fuel cell 59 has a solid electrolyte 31 containing zirconia as a main component and a fuel electrode 33 laminated in sequence on the surface of an air electrode 32 containing Mn. The cell has a low porosity layer 43 whose porosity is smaller than that of the other area 45 of the air electrode 32 on the solid electrolyte 31 side of the air electrode 32.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気極の表面に固
体電解質、燃料極を具備する固体電解質型燃料電池セル
及びその製法並びに燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell having a solid electrolyte and a fuel electrode on the surface of an air electrode, a method for producing the same, and a fuel cell.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池はその作
動温度が900〜1100℃と高温であるため発電効率
が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, a solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as 900 to 1100 ° C., and is expected as a third generation power generation system.

【0003】一般に固体電解質型燃料電池セルには、円
筒型と平板型が知られている。平板型燃料電池セルは、
発電の単位体積当たり出力密度は高いという特徴を有す
るが、実用化に関してはガスシール不完全性やセル内の
温度分布の不均一性などの問題がある。それに対して、
円筒型燃料電池セルでは、出力密度は低いものの、セル
の機械的強度が高く、またセル内の温度の均一性が保て
るという特徴がある。両形状の固体電解質型燃料電池セ
ルとも、それぞれの特徴を生かして積極的に研究開発が
進められている。
[0003] In general, a cylindrical type and a flat type are known as solid oxide fuel cells. Flat fuel cells are
Although it has the feature that the power density per unit volume of power generation is high, there are problems such as incomplete gas sealing and non-uniformity of temperature distribution in the cell in practical use. On the other hand,
Cylindrical fuel cells are characterized by low mechanical strength of the cells, while maintaining a uniform temperature within the cells, although the output density is low. Both types of solid oxide fuel cells are being actively researched and developed utilizing their respective characteristics.

【0004】円筒型燃料電池の単セルは、例えば、図6
に示したように開気孔率30〜40%程度のLaMnO
3系材料からなる多孔性の空気極支持管2を形成し、そ
の表面にY23安定化ZrO2からなる固体電解質3を
被覆し、さらにこの表面に多孔性のNi−ZrO2の燃
料極4を設けて構成されている。
A single cell of a cylindrical fuel cell is, for example, shown in FIG.
As shown in the figure, LaMnO having an open porosity of about 30 to 40%
Porous form an air electrode support tube 2 made of 3 based material, coating the solid electrolyte 3 made of Y 2 O 3 stabilized ZrO 2 on the surface thereof, further a porous fuel Ni-ZrO 2 on the surface It is configured with poles 4.

【0005】燃料電池のモジュールにおいては、各単セ
ルはLaCrO3系の集電体(インターコネクタ)5を
介して接続される。発電は、空気極支持管2内部に空気
(酸素)6を、外部に燃料(水素)7を流し、900〜
1100℃の温度で行われる。また空気極としての機能
を合わせ持つ空気極支持管2材料としては、例えば、L
aをCaで20原子%又はSrで10〜15原子%置換
した固溶体材料が用いられている。
In the fuel cell module, each single cell is connected via a LaCrO 3 -based current collector (interconnector) 5. In the power generation, air (oxygen) 6 flows inside the cathode support tube 2 and fuel (hydrogen) 7 flows outside, and 900 to
It is performed at a temperature of 1100 ° C. Further, as a material of the cathode support tube 2 having a function as an cathode, for example, L
A solid solution material in which a is substituted with 20 at% by Ca or 10 to 15 at% by Sr is used.

【0006】近年ではセルの製造工程を簡略化し且つ製
造コストを低減するために、各構成材料のうち少なくと
も2つを同時焼成する、いわゆる共焼結法が提案されて
いる。この共焼結法は、例えば、円筒状の空気極成形体
に固体電解質成形体及び集電体成形体をロール状に巻き
付けて同時焼成を行い、その後固体電解質表面に燃料極
を形成する方法である。またプロセス簡略化のために、
固体電解質成形体の表面にさらに燃料極成形体を積層し
て、空気極、固体電解質、燃料極、集電体を同時焼成す
る共焼結法も提案されている。
In recent years, a so-called co-sintering method has been proposed, in which at least two of the constituent materials are simultaneously fired in order to simplify the manufacturing process of the cell and reduce the manufacturing cost. This co-sintering method is, for example, a method in which a solid electrolyte molded body and a current collector molded body are wound around a cylindrical air electrode molded body in a roll shape and fired simultaneously, and then a fuel electrode is formed on the solid electrolyte surface. is there. Also, to simplify the process,
A co-sintering method has also been proposed in which a fuel electrode molded body is further laminated on the surface of the solid electrolyte molded body, and the air electrode, the solid electrolyte, the fuel electrode, and the current collector are simultaneously fired.

【0007】この共焼結法は非常に簡単なプロセスで製
造工程数も少なく、セルの製造時の歩留まり向上、コス
ト低減に有利である。このような共焼結法による燃料電
池セルでは、Y23安定化または部分安定化ZrO2
らなる固体電解質を用い、この固体電解質に熱膨張係数
を合致させる等のため、空気極材料として、LaMnO
3からなるペロブスカイト型複合酸化物のLaの一部を
YおよびCaで置換したものが用いられている(特開平
10−162847号公報等参照)。また、集電体材料
として、LaCrO3系材料が用いられている。
This co-sintering method is a very simple process with a small number of manufacturing steps, and is advantageous in improving the yield and cost reduction in manufacturing cells. In such a fuel cell by the co-sintering method, a solid electrolyte composed of Y 2 O 3 stabilized or partially stabilized ZrO 2 is used, and the coefficient of thermal expansion matches the solid electrolyte. , LaMnO
The perovskite-type composite oxide of No. 3 in which a part of La is substituted with Y and Ca is used (see Japanese Patent Application Laid-Open No. 10-162847). In addition, a LaCrO 3 material is used as a current collector material.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
た共焼結法を用いて円筒型燃料電池セルを作製すると、
共焼結の際に、空気極の構成成分であるMn元素が、固
体電解質型燃料電池セルの周囲の雰囲気中に蒸発し、こ
の蒸発したMnが燃料極内部に拡散し、その結果、燃料
極中のMn量が増加し、燃料極サイトの分極値およびセ
ル構成成分の実抵抗値が高くなり、その結果初期におけ
る出力密度が低いという問題があった。
However, when a cylindrical fuel cell is manufactured using the above-described co-sintering method,
During co-sintering, the Mn element, which is a component of the air electrode, evaporates into the atmosphere around the solid oxide fuel cell, and the evaporated Mn diffuses inside the fuel electrode. The Mn content in the fuel cell increases, the polarization value of the fuel electrode site and the actual resistance value of the cell constituent components increase, and as a result, there is a problem that the power density in the initial stage is low.

【0009】特に、従来から、LaCrO3系材料は難
焼結性であることが知られているが、上述した共焼結法
を用いて燃料電池セルを作製する際に、LaCrO3
材料からなる集電体を焼結させるために焼成温度を高く
したり、あるいは長時間焼成すると、空気極中のMnが
雰囲気中に拡散し、このMnが燃料極表面から内部へ拡
散し易くなり、燃料極サイトの分極値が増大し、初期に
おける出力密度が低いという問題があった。
Particularly, LaCrO 3 -based materials have been known to be difficult to sinter. However, when a fuel cell is manufactured using the above-described co-sintering method, LaCrO 3 -based materials are used. If the sintering temperature is increased to sinter the current collector, or sintering is performed for a long time, Mn in the air electrode diffuses into the atmosphere, and the Mn easily diffuses from the surface of the fuel electrode to the inside, and the fuel There is a problem that the polarization value of the pole site increases and the output density in the initial stage is low.

【0010】従って、燃料極内部へのMnの拡散を抑制
するためには、焼成温度を低下させ、短時間で焼成する
必要があるが、このような低温短時間の焼成では、集電
体を充分緻密化できず、あるいは固体電解質と空気極界
面の密着強度が弱く、固体電解質型燃料電池セルが作動
する900℃〜1100℃の使用環境では耐久性に劣
り、経時的に出力性能が低下し、さらには1000℃か
ら室温まで冷却させると、固体電解質と空気極界面にク
ラックが発生し、その後に再度発電させた場合には出力
性能が著しく低下するという問題があった。
Therefore, in order to suppress the diffusion of Mn into the inside of the fuel electrode, it is necessary to lower the firing temperature and perform firing in a short time. It cannot be sufficiently densified, or the adhesion strength between the solid electrolyte and the air electrode interface is weak. In the operating environment of 900 to 1100 ° C in which the solid electrolyte fuel cell operates, the durability is poor, and the output performance decreases with time. Further, when the temperature is cooled from 1000 ° C. to room temperature, cracks occur at the interface between the solid electrolyte and the air electrode, and when power is generated again, there is a problem that the output performance is significantly reduced.

【0011】従って、コスト低減に優れる共焼結法で作
製された燃料電池セルにおいて、発電性能に優れ、同時
に耐久性を満足することは非常に困難であり、そのこと
が固体電解質燃料電池を実用化する上で大きな障害にな
っていた。
[0011] Therefore, it is very difficult for fuel cells manufactured by the co-sintering method, which are excellent in cost reduction, to have excellent power generation performance and satisfy durability at the same time. Has become a major obstacle in the transformation.

【0012】本発明は、出力性能に優れるとともに、耐
久性を向上できる固体電解質型燃料電池セル及びその製
法並びに燃料電池を提供することを目的とする。
An object of the present invention is to provide a solid oxide fuel cell having excellent output performance and improved durability, a method for producing the same, and a fuel cell.

【0013】[0013]

【課題を解決するための手段】本発明の固体電解質型燃
料電池セルは、Mnを含有する空気極の表面に、ジルコ
ニアを主成分とする固体電解質、燃料極を順次積層して
なる固体電解質型燃料電池セルであって、前記空気極の
前記固体電解質側に、前記空気極の他の領域よりも気孔
率が小さい低気孔率層を有するものである。
The solid electrolyte fuel cell according to the present invention is a solid electrolyte fuel cell comprising a manganese-containing air electrode and a zirconia-based solid electrolyte and a fuel electrode laminated in that order on the surface of the Mn-containing air electrode. A fuel cell, comprising a low porosity layer having a porosity smaller than other regions of the air electrode on the solid electrolyte side of the air electrode.

【0014】このように空気極の固体電解質側に低気孔
率層を形成するには、Mnを含有する空気極成形体(空
気極仮焼体も含む意味である)の表面に、ジルコニアを
主成分とする固体電解質成形体(固体電解質仮焼体も含
む意味である)を形成してなる積層成形体を、周波数1
〜30GHzのマイクロ波を照射して焼結させることに
より得られる。固体電解質成形体の表面に燃料極成形体
を形成した積層成形体をマイクロ波焼成しても良い。
In order to form the low porosity layer on the solid electrolyte side of the air electrode as described above, zirconia is mainly applied to the surface of the Mn-containing air electrode formed body (including the air electrode calcined body). The laminated molded body formed by forming the solid electrolyte molded body as a component (including the solid electrolyte calcined body) is subjected to a frequency 1
It is obtained by sintering by irradiating microwaves of up to 30 GHz. The laminated molded body in which the fuel electrode molded body is formed on the surface of the solid electrolyte molded body may be subjected to microwave firing.

【0015】本発明の固体電解質型燃料電池セルでは、
空気極の固体電解質側に低気孔率層を有するため、理由
は明確ではないが、密着性を向上でき、高い出力性能を
維持しつつ耐久性を向上できる。即ち、積層成形体自体
を直接加熱させるマイクロ波加熱法を用い、さらに空気
極に固体電解質よりマイクロ波吸収特性の小さい材料を
使用することで低温短時間で共焼結でき、同時に空気極
から燃料極中へのMnの拡散が抑制され、かつ耐久性に
優れる、つまり、繰り返し使用しても発電効率に優れる
固体電解質型燃料電池セルを得ることができる。
In the solid oxide fuel cell according to the present invention,
Since the low porosity layer is provided on the solid electrolyte side of the air electrode, although the reason is not clear, the adhesion can be improved, and the durability can be improved while maintaining high output performance. That is, by using a microwave heating method of directly heating the laminated molded body itself, and by using a material having a smaller microwave absorption characteristic than the solid electrolyte for the air electrode, co-sintering can be performed at a low temperature and in a short time, and at the same time, the fuel is discharged from the air electrode. It is possible to obtain a solid oxide fuel cell cell in which diffusion of Mn into the electrode is suppressed and the durability is excellent, that is, the power generation efficiency is excellent even when used repeatedly.

【0016】具体的に説明すると、高い出力性能を維持
しつつ耐久性を向上させるためには、まず空気極の固体
電解質に接する部分(低気孔率層)が、その他の部分と
比べて気孔率が低いことが必要である。
More specifically, in order to improve durability while maintaining high output performance, first, a portion (low porosity layer) of the air electrode in contact with the solid electrolyte has a higher porosity than other portions. Needs to be low.

【0017】ここでの耐久性とは、高温での長時間の出
力、例えば1000℃で1000時間の発電中に出力性
能が劣化しないこと、また発電後室温まで冷却させた後
に、再度発電させても再び高い出力性能が発揮できるこ
とを指す。この耐久性が劣化する際にはそのほとんどが
空気極と固体電解質との界面のクラックによるものであ
った。そのため、耐久性を向上させるためには空気極と
固体電解質との密着性を高める必要があったが、上記し
たように、本発明では、空気極の固体電解質側に低気孔
率層を形成することにより、空気極と固体電解質との界
面におけるクラックの生成を抑制でき、高い密着性を得
ることができ、耐久性を向上できる。
Here, the durability means that the output performance does not deteriorate during a long-term output at a high temperature, for example, at 1000 ° C. for 1000 hours, and after the power is cooled down to room temperature, the power is again generated. Indicates that high output performance can be demonstrated again. When the durability deteriorated, most of the deterioration was due to cracks at the interface between the air electrode and the solid electrolyte. Therefore, in order to improve the durability, it was necessary to increase the adhesion between the air electrode and the solid electrolyte. However, as described above, in the present invention, a low porosity layer is formed on the solid electrolyte side of the air electrode. Thereby, generation of cracks at the interface between the air electrode and the solid electrolyte can be suppressed, high adhesion can be obtained, and durability can be improved.

【0018】低気孔率層を有することで耐久性が著しく
向上するメカニズムは明確にはわかっていないが、一般
にZrO2等の固体電解質の熱膨張係数はLaMnO3
の空気極のそれよりも小さいために、セル自体には空気
極周方向(円筒セルの場合)あるいは水平方向(平面セ
ルの場合)に大きな応力が作用しており、この応力によ
って長時間の使用中、あるいは繰り返しの熱履歴によっ
て空気極と固体電解質の界面にクラックを発生させるも
のと考えられるが、本発明においては、空気極の気孔率
変化によって熱膨張係数の差に起因する応力を緩和し、
同時に密着性が高いために界面のクラック生成を抑制し
ているものと思われる。
Although the mechanism by which the low porosity layer significantly improves durability is not clearly understood, the thermal expansion coefficient of a solid electrolyte such as ZrO 2 is generally smaller than that of a LaMnO 3 -based air electrode. Therefore, a large stress acts on the cell itself in the air electrode circumferential direction (in the case of a cylindrical cell) or in the horizontal direction (in the case of a planar cell), and this stress causes long-term use or repeated thermal history. Although it is considered that a crack is generated at the interface between the cathode and the solid electrolyte, in the present invention, stress caused by a difference in thermal expansion coefficient due to a change in porosity of the cathode is reduced,
At the same time, it is considered that the generation of cracks at the interface is suppressed due to the high adhesion.

【0019】また、低温短時間で焼結できるため、Mn
を含有する空気極成形体の表面に、固体電解質成形体、
燃料極成形体を順次積層した積層成形体を共焼結して
も、空気極中のMnが蒸発し、燃料極中に拡散する量を
低減でき、燃料極中の分極値を小さくすることができ、
初期における出力密度を向上できる。
Further, since sintering can be performed at a low temperature in a short time, Mn
On the surface of the air electrode molded body containing, a solid electrolyte molded body,
Even when co-sintering a laminated compact in which the anode compacts are sequentially laminated, the amount of Mn in the air electrode evaporating and diffusing into the anode can be reduced, and the polarization value in the anode can be reduced. Can,
The power density in the initial stage can be improved.

【0020】本発明の固体電解質型燃料電池セルでは、
空気極の固体電解質側に形成された低気孔率層と、他の
領域との気孔率差が0.5%以上であることが望まし
い。これにより、出力性能をさらに向上できるととも
に、空気極と固体電解質との密着性を向上してさらに耐
久性を向上できる。
In the solid oxide fuel cell according to the present invention,
It is desirable that the difference in porosity between the low porosity layer formed on the solid electrolyte side of the air electrode and other regions is 0.5% or more. As a result, the output performance can be further improved, and the adhesion between the air electrode and the solid electrolyte can be improved to further improve the durability.

【0021】また、燃料極中のMn量が0.1重量%以
下であることが望ましい。これにより、燃料極サイトの
分極値を低減し、初期における出力密度を向上できる。
It is desirable that the amount of Mn in the fuel electrode be 0.1% by weight or less. Thereby, the polarization value of the fuel electrode site can be reduced, and the power density in the initial stage can be improved.

【0022】さらに、本発明の固体電解質型燃料電池セ
ルでは、1〜30GHzの室温における空気極の誘電損
率が、固体電解質の誘電損率よりも小さく、空気極が、
少なくともLa及びMnを含有するペロブスカイト型複
合酸化物を主成分とすることが望ましい。
Further, in the solid oxide fuel cell of the present invention, the dielectric loss factor of the air electrode at room temperature of 1 to 30 GHz is smaller than the dielectric loss factor of the solid electrolyte,
It is desirable that a perovskite-type composite oxide containing at least La and Mn be used as a main component.

【0023】さらに、本発明の燃料電池は、反応容器内
に、上記した固体電解質型燃料電池セルを複数収容して
なるものである。
Further, the fuel cell of the present invention comprises a plurality of the above-mentioned solid oxide fuel cells in a reaction vessel.

【0024】[0024]

【発明の実施の形態】本発明における代表的な固体電解
質型燃料電池セルの形状は、図1に示すように円筒状の
固体電解質31の内面に空気極32、外面に燃料極33
を形成してセル本体34を形成し、空気極32には集電
体35(インターコネクタ)が電気的に接続されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a typical solid oxide fuel cell of the present invention has a cylindrical solid electrolyte 31 having an air electrode 32 on the inner surface and a fuel electrode 33 on the outer surface.
Is formed to form a cell body 34, and a current collector 35 (interconnector) is electrically connected to the air electrode 32.

【0025】即ち、固体電解質31の一部に切欠部36
が形成され、固体電解質31の内面に形成されている空
気極32の一部が露出しており、この露出面37及び切
欠部36近傍の固体電解質31の表面が集電体35によ
り被覆され、集電体35が、固体電解質31の両端部表
面及び固体電解質31の切欠部36から露出した空気極
32の表面に接合されている。
That is, the notch 36 is formed in a part of the solid electrolyte 31.
Is formed, a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the surface of the solid electrolyte 31 near the exposed surface 37 and the notch 36 is covered with the current collector 35, Current collectors 35 are joined to the surfaces of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31.

【0026】空気極32と電気的に接続する集電体35
は、セル本体34の外面に形成され、ほぼ段差のない連
続同一面39を覆うように形成されており、燃料極33
とは電気的に接続されていない。この集電体35は、セ
ル同士間を接続する際に他のセルの燃料極にNiフェル
ト等を介して電気的に接続され、これにより燃料電池モ
ジュールが構成される。連続同一面39は、固体電解質
の両端部と空気極の一部とが連続したほぼ同一面となる
まで、固体電解質の両端部間を研磨することにより形成
される。
Current collector 35 electrically connected to air electrode 32
Are formed on the outer surface of the cell body 34 so as to cover the continuous same surface 39 having almost no level difference.
And are not electrically connected. The current collector 35 is electrically connected to the fuel electrode of another cell via Ni felt or the like when connecting the cells, thereby forming a fuel cell module. The continuous same surface 39 is formed by polishing between both ends of the solid electrolyte until both ends of the solid electrolyte and a part of the air electrode become continuous and almost the same surface.

【0027】固体電解質31は、例えば3〜15モル%
のY23を含有した部分安定化あるいは安定化ZrO2
が用いられる。このような組成であれば1〜30GHz
における誘電損率が充分大きく、マイクロ波を効率よく
吸収できる。
The solid electrolyte 31 is, for example, 3 to 15 mol%
Of partially stabilized or stabilized ZrO 2 containing Y 2 O 3
Is used. With such a composition, 1 to 30 GHz
Has a sufficiently large dielectric loss factor to efficiently absorb microwaves.

【0028】また、空気極32としては、La及びMn
を含有するペロブスカイト型複合酸化物LaMnO3
主成分とすることにより、固体電解質に比べて充分小さ
い誘電損率になり、マイクロ波を選択的に固体電解質に
吸収させることが可能になる。このとき固体電解質との
熱膨張差を小さくするために、例えば、LaMnO3
LaをCa又はSrで10〜30原子%、Yで5〜20
原子%置換しても良い。集電体35としては、例えば、
主としてCrをMgで10〜30原子%置換したLaC
rO3系磁器が用いられる。
As the air electrode 32, La and Mn are used.
By using LaMnO 3 as a main component, the perovskite-type composite oxide contains a sufficiently low dielectric loss factor as compared with the solid electrolyte, and allows the solid electrolyte to selectively absorb microwaves. At this time, in order to reduce the thermal expansion difference from the solid electrolyte, for example, La of LaMnO 3 is 10 to 30 atomic% in Ca or Sr, and 5 to 20 atomic% in Y.
Atomic% may be substituted. As the current collector 35, for example,
LaC in which Cr is mainly substituted with 10 to 30 atomic% of Mg
rO 3 porcelain is used.

【0029】燃料極33としては、例えば、50〜80
重量%Niを含むZrO2(Y23含有)サーメットが
用いられる。これら集電体、燃料極いずれも固体電解質
に比べて誘電損率が充分小さいものを使用する必要があ
る。
As the fuel electrode 33, for example, 50 to 80
A ZrO 2 (containing Y 2 O 3 ) cermet containing wt% Ni is used. Both the current collector and the fuel electrode need to have a sufficiently small dielectric loss factor as compared with the solid electrolyte.

【0030】本発明における誘電損率の大小について
は、公知にしられる空洞共振器法、円柱誘電体共振器法
などによって測定し得られる。あるいは、マイクロ波加
熱炉中で一定出力のマイクロ波を同一体積の試料に照射
し、平衡に達するときの温度によって簡易的に推測する
ことができる。そのときの温度上昇が大きい材料を近似
的に誘電損率が大きいとみなすことができる。
The magnitude of the dielectric loss factor in the present invention can be measured by a known cavity resonator method, cylindrical dielectric resonator method, or the like. Alternatively, it can be simply estimated by irradiating a sample of the same volume with a microwave having a constant output in a microwave heating furnace, and the temperature at which equilibrium is reached. A material having a large temperature rise at that time can be approximately regarded as having a large dielectric loss factor.

【0031】そして、本発明の固体電解質型燃料電池セ
ルでは、空気極32の固体電解質31側に低気孔率層4
3が形成されている。この低気孔率層43は、空気極3
2の他の領域45、即ち、空気極32の内面側の部分よ
りも気孔率が小さい。
In the solid oxide fuel cell of the present invention, the low porosity layer 4 is provided on the solid electrolyte 31 side of the air electrode 32.
3 are formed. This low porosity layer 43 is
The porosity is smaller than that of the other region 45, that is, the portion on the inner surface side of the air electrode 32.

【0032】また、この多孔質の空気極32の気孔率は
20〜50%程度であり、燃料電池の性能を高める上で
は30〜40%が望ましい。低気孔率層43と、他の領
域45との気孔率差は、耐久性を高める上では0.1%
以上が必要である。特に、密着性を向上し、耐久性を向
上するという点から、0.5%以上、さらには0.5〜
2.0%であることが望ましい。
The porosity of the porous air electrode 32 is about 20 to 50%, and preferably 30 to 40% in order to enhance the performance of the fuel cell. The porosity difference between the low porosity layer 43 and the other region 45 is 0.1% for improving durability.
The above is necessary. Particularly, from the viewpoint of improving adhesion and improving durability, 0.5% or more, and further, 0.5 to
Desirably, it is 2.0%.

【0033】低気孔率層43の厚みは20μm以上形成
することが望ましく、空気極32の厚みの1〜20%で
あることが望ましい。また、低気孔率層43における気
孔率は、空気極32の他の領域45側に向けて次第に大
きくなることが、固体電解質と空気極との熱膨張差を小
さくするという点から望ましい。さらに、空気極におけ
る気孔は、殆どが開気孔とされている。
The thickness of the low porosity layer 43 is desirably 20 μm or more, and desirably 1 to 20% of the thickness of the air electrode 32. Further, it is desirable that the porosity of the low porosity layer 43 gradually increases toward the other region 45 side of the air electrode 32 from the viewpoint of reducing the difference in thermal expansion between the solid electrolyte and the air electrode. Further, most of the pores in the air electrode are open pores.

【0034】1〜30GHzの室温における空気極の誘
電損率は、固体電解質の誘電損率よりも小さく、空気極
は、少なくともLa及びMnを含有するペロブスカイト
型複合酸化物を主成分とすることが望ましい。空気極と
しては、少なくともLa及びMnを含有するペロブスカ
イト型複合酸化物を主成分とするものであればよく、上
記した例に限定されるものではない。
The dielectric loss factor of the air electrode at room temperature of 1 to 30 GHz is smaller than the dielectric loss factor of the solid electrolyte, and the air electrode is preferably composed mainly of a perovskite-type composite oxide containing at least La and Mn. desirable. The air electrode is not limited to the above example as long as it is mainly composed of a perovskite-type composite oxide containing at least La and Mn.

【0035】また、本発明では、燃料極中のMn量が
0.1重量%以下、特には0.05重%以下であること
が、燃料極中の分極値を低下させるという点で望まし
い。
In the present invention, it is desirable that the amount of Mn in the fuel electrode be 0.1% by weight or less, particularly 0.05% by weight or less, from the viewpoint of reducing the polarization value in the fuel electrode.

【0036】本発明の固体電解質型燃料電池セルは、ペ
ロブスカイト型複合酸化物を主成分とする空気極成形体
の表面に、ジルコニアを主成分とする固体電解質成形体
を具備する積層成形体を、周波数1〜30GHzのマイ
クロ波を照射することにより焼結することにより形成さ
れる。
The solid oxide fuel cell of the present invention comprises a laminate molded article having a solid electrolyte molded article mainly composed of zirconia on the surface of an air electrode molded article mainly composed of a perovskite composite oxide. It is formed by sintering by irradiating a microwave having a frequency of 1 to 30 GHz.

【0037】具体的には、まず、円筒状の空気極成形体
を形成する。この円筒状の空気極成形体は、例えば所定
の調合組成に従いLa23、Y23、CaCO3、Mn
2の素原料を秤量、混合する。この際、空気極成形体
を構成するペロブスカイト型複合酸化物のA/B比は、
0.95〜0.99であることが望ましい。
Specifically, first, a cylindrical air electrode molded body is formed. The cylindrical air electrode molded body is made of, for example, La 2 O 3 , Y 2 O 3 , CaCO 3 , Mn according to a predetermined composition.
The raw material of O 2 is weighed and mixed. At this time, the A / B ratio of the perovskite-type composite oxide constituting the air electrode molded body is:
0.95 to 0.99 is desirable.

【0038】この後、例えば、1500℃程度の温度で
2〜10時間仮焼し、その後4〜8μmの粒度に粉砕調
製する。調製した粉体に、バインダーを混合、混練し押
出成形法により円筒状の空気極成形体を作製し、さらに
脱バインダー処理し、1200〜1250℃で仮焼を行
うことで円筒状の空気極仮焼体を作製する。
Thereafter, for example, the mixture is calcined at a temperature of about 1500 ° C. for 2 to 10 hours, and then pulverized to a particle size of 4 to 8 μm. A binder is mixed and kneaded with the prepared powder to produce a cylindrical air electrode molded body by an extrusion molding method, further debindered, and calcined at 1200 to 1250 ° C. to form a cylindrical air electrode temporary body. Prepare a fired body.

【0039】シート状の第1固体電解質成形体として、
3〜15モル%のY23を含有したZrO2粉末にトル
エン、バインダー、市販の分散剤を加えてスラリー化し
たものをドクターブレード等の方法により、例えば、1
00〜120μmの厚さに成形したものを用い、上記円
筒状の空気極仮焼体の表面に固体電解質成形体を貼り付
けて仮焼し、空気極仮焼体の表面に第1固体電解質仮焼
体を形成する。
As a sheet-like first solid electrolyte molded body,
A slurry obtained by adding toluene, a binder, and a commercially available dispersant to ZrO 2 powder containing 3 to 15 mol% of Y 2 O 3 is prepared, for example, by a doctor blade method, for example, to obtain 1 slurry.
Using a molded body having a thickness of 100 to 120 μm, a solid electrolyte molded body is adhered to the surface of the cylindrical air electrode calcined body and calcined, and the first solid electrolyte Form a fired body.

【0040】次に、シート状の燃料極成形体を作製す
る。まず、例えば、所定比率に調製したNi/YSZ混
合粉体にトルエン、バインダーを加えてスラリー化した
ものを準備する。前記第1固体電解質成形体の作製と同
様、成形、乾燥し、例えば、15μmの厚さのシート状
の第2固体電解質成形体を形成する。
Next, a sheet-shaped fuel electrode molded body is manufactured. First, for example, a slurry prepared by adding toluene and a binder to a Ni / YSZ mixed powder prepared at a predetermined ratio is prepared. Similarly to the production of the first solid electrolyte molded body, the molded body is dried and formed into a sheet-shaped second solid electrolyte molded body having a thickness of, for example, 15 μm.

【0041】この第2固体電解質成形体上に燃料極層成
形体を印刷、乾燥した後、第1固体電解質仮焼体上に、
燃料極層成形体が形成された第2固体電解質成形体を、
第1固体電解質仮焼体に第2固体電解質成形体が当接す
るように巻き付け、積層する。
After printing and drying the fuel electrode layer formed body on the second solid electrolyte formed body, the fuel electrode layer formed body is dried on the first solid electrolyte calcined body.
The second solid electrolyte molded body on which the fuel electrode layer molded body is formed,
The first solid electrolyte calcined body is wound and laminated so that the second solid electrolyte molded body is in contact with the first solid electrolyte calcined body.

【0042】燃料極層成形体を構成するNi/YSZ混
合粉体は、Ni粉末の平均粒径が0.2〜0.4μm、
YSZ粉末の平均粒径が0.4〜0.8μmの原料粉体
を用い、所定比率に調合した後分散性を高めるためにZ
rO2ボールを用いて湿式粉砕混合してスラリー化し
た。
The Ni / YSZ mixed powder constituting the fuel electrode layer compact has an average particle diameter of the Ni powder of 0.2 to 0.4 μm,
The raw material powder having an average particle size of YSZ powder of 0.4 to 0.8 μm is used.
The slurry was formed by wet pulverization and mixing using rO 2 balls.

【0043】次に、固体電解質成形体の調製同様、Cr
をMgで10〜30原子%置換したLaCrO3からな
り、100〜120μmの厚さに成形した集電体成形体
を所定箇所に貼り付ける。
Next, as in the preparation of the solid electrolyte molded body,
Of LaCrO 3, which is substituted with 10 to 30 atomic% of Mg, and molded to a thickness of 100 to 120 μm, is attached to a predetermined position.

【0044】この後、円筒状空気極仮焼体の表面に、第
1固体電解質仮焼体、第2固体電解質成形体、燃料極成
形体および集電体成形体を積層した積層成形体にマイク
ロ波を照射し加熱焼結させる。マイクロ波源としては、
マグネトロン、クライストロン、ジャイロトロンといっ
た数kW程度の出力が得られる発振管を用いる。
Thereafter, the first molded body of the solid electrolyte, the second molded body of the solid electrolyte, the molded body of the fuel electrode, and the molded body of the current collector were laminated on the surface of the calcined body of the cylindrical air electrode in a micro form. Irradiate waves and heat and sinter. As a microwave source,
An oscillation tube such as a magnetron, a klystron, and a gyrotron that can obtain an output of about several kW is used.

【0045】このときに使用するマイクロ波の周波数は
1〜30GHzであれば良いが、装置コスト等から2.
45GHzあるいは28GHzのマグネトロンあるいは
ジャイロトロンを発振管とする加熱炉を用いることが好
ましい。周波数としては1〜30GHzが好ましく、こ
れ以上では、出力の制御が困難で、1GHzより低いと
試料自体が加熱されにくくなるためである。マイクロ波
加熱の機構は、セラミックス等の誘電体中の双極子がマ
イクロ波によって振動、回転し、そのときの摩擦熱が熱
エネルギーに変換されるものであるが、その熱エネルギ
ーは、マイクロ波周波数、電界強度が一定の場合、試料
の誘電損率(誘電率と誘電損失の積)に依存する。
The frequency of the microwave used at this time may be 1 to 30 GHz.
It is preferable to use a heating furnace having a 45 GHz or 28 GHz magnetron or gyrotron as an oscillation tube. The frequency is preferably 1 to 30 GHz, and if it is higher than this, it is difficult to control the output, and if it is lower than 1 GHz, the sample itself becomes difficult to be heated. The mechanism of microwave heating is such that dipoles in dielectrics such as ceramics vibrate and rotate with microwaves, and the frictional heat at that time is converted into thermal energy. When the electric field intensity is constant, it depends on the dielectric loss factor (the product of the dielectric constant and the dielectric loss) of the sample.

【0046】積層成形体はマイクロ波加熱炉アプリケー
タ−内に設置されるが、このとき表面からの熱の逃げを
抑える観点から、アルミナまたはマグネシアのるつぼを
使用するのが好ましい。
The laminated molded product is placed in a microwave heating furnace applicator. At this time, it is preferable to use an alumina or magnesia crucible from the viewpoint of suppressing the escape of heat from the surface.

【0047】さらに、るつぼは低熱伝導率のアルミナフ
ァイバーの成形体を断熱材として使用する。試料は熱電
対にて測定され、焼成条件としては、1300〜160
0℃、保持時間は10分〜60分で焼結する。このと
き、マイクロ波を照射し続けると燃料極中のMn量が増
加しやすくなるために、マイクロ波加熱の条件として
は、組成によっても異なるが1300〜1600℃で特
に保持時間を2時間以下にすることが望ましく、特に1
300〜1500℃で10〜60分が好ましい。このよ
うな条件で加熱された空気極は固体電解質近傍から低気
孔率層が形成され、その気孔率は傾斜的になり、その結
果高い耐久性が得られる。
Further, the crucible uses a molded body of alumina fiber having a low thermal conductivity as a heat insulating material. The sample was measured with a thermocouple, and firing conditions were 1300 to 160
Sintering is performed at 0 ° C. for a holding time of 10 minutes to 60 minutes. At this time, if microwave irradiation is continued, the amount of Mn in the fuel electrode tends to increase. Therefore, the condition of microwave heating varies depending on the composition, but the holding time at 1300 to 1600 ° C. is particularly set to 2 hours or less. It is desirable to
It is preferably at 300 to 1500 ° C. for 10 to 60 minutes. In the air electrode heated under such conditions, a low porosity layer is formed from the vicinity of the solid electrolyte, and the porosity becomes inclined, so that high durability is obtained.

【0048】従って、固体電解質に誘電損率の大きいジ
ルコニアを主成分とする材料を使用し、空気極に固体電
解質よりも誘電損率の小さい、すなわちマイクロ波によ
る加熱が小さい材料、具体的には少なくともLa,Mn
を含むペロブスカイト型複合酸化物を主成分とする材料
を使用することによって、固体電解質が優先的に加熱さ
れ、その結果、空気極の固体電解質に接する部分が接し
ていない部分よりも温度が高くなるために高密度化し、
密着性を高めることができる。
Therefore, a material containing zirconia having a large dielectric loss factor as a main component is used for the solid electrolyte, and a material having a smaller dielectric loss factor than the solid electrolyte for the air electrode, that is, a material that is less heated by microwaves, specifically, At least La, Mn
By using a material containing a perovskite-type composite oxide containing as a main component, the solid electrolyte is preferentially heated, and as a result, the temperature of the portion of the air electrode that is in contact with the solid electrolyte is higher than that of the portion that is not in contact For high density,
Adhesion can be improved.

【0049】尚、上記例では、円筒状空気極仮焼体の表
面に、第1固体電解質仮焼体、第2固体電解質成形体、
燃料極成形体および集電体成形体を積層した積層成形体
をマイクロ波焼成した例について説明したが、本発明で
は、空気極成形体の表面に固体電解質成形体、燃料極成
形体および集電体成形体を積層した積層成形体をマイク
ロ波焼成してもよい。
In the above example, a first solid electrolyte calcined body, a second solid electrolyte molded body,
Although the example in which the laminated body obtained by laminating the fuel electrode molded body and the current collector molded body is microwave-fired has been described, in the present invention, the solid electrolyte molded body, the fuel electrode molded body and the current collector are formed on the surface of the air electrode molded body. The laminated molded body obtained by laminating the molded bodies may be subjected to microwave firing.

【0050】また、本発明では、少なくとも空気極成形
体の表面に固体電解質成形体を積層した積層成形体をマ
イクロ波焼成すればよく、燃料極成形体および集電体成
形体は必ずしも同時に焼成する必要はないが、コスト
的、工程減少という点から、空気極、固体電解質、燃料
極、集電体を4層同時に焼成することが望ましい。
Further, in the present invention, it is sufficient that the laminate formed by laminating the solid electrolyte molded body on at least the surface of the air electrode molded body is subjected to microwave firing, and the fuel electrode molded body and the current collector molded body are necessarily fired simultaneously. Although it is not necessary, it is desirable to fire four layers of the air electrode, the solid electrolyte, the fuel electrode, and the current collector simultaneously from the viewpoint of cost and reduction in the number of steps.

【0051】また、上記例では、円筒型について説明し
たが、本発明では平板型であってもよい。
In the above example, the cylindrical type is described, but the present invention may be a flat type.

【0052】本発明の燃料電池は、例えば、図2に示す
ように、反応容器51内に、酸素含有ガス室仕切板5
3、燃焼室仕切板55、燃料ガス室仕切板57を用いて
酸素含有ガス室A、燃焼室B、反応室C、燃料ガス室D
が形成されている。
For example, as shown in FIG. 2, the fuel cell according to the present invention comprises an oxygen-containing gas chamber partition plate 5 in a reaction vessel 51.
3. Oxygen-containing gas chamber A, combustion chamber B, reaction chamber C, fuel gas chamber D using combustion chamber partition plate 55 and fuel gas chamber partition plate 57.
Are formed.

【0053】反応容器51内には、上記した複数の有底
筒状の固体電解質型燃料電池セル59が収容されてお
り、これらの固体電解質型燃料電池セル59は、燃焼室
仕切板55に形成されたセル挿入孔60に挿入固定され
ており、その開口部61は燃焼室仕切板55から燃焼室
B内に突出しており、その内部には酸素含有ガス室仕切
板53に固定された酸素含有ガス導入管63の一端が挿
入されている。
A plurality of the above-described bottomed cylindrical solid oxide fuel cells 59 are housed in the reaction vessel 51, and these solid oxide fuel cells 59 are formed on the combustion chamber partition plate 55. The opening 61 protrudes from the combustion chamber partition plate 55 into the combustion chamber B, and contains therein the oxygen-containing gas chamber partition plate 53 fixed to the oxygen-containing gas chamber partition plate 53. One end of the gas introduction pipe 63 is inserted.

【0054】燃焼室仕切板55には、余剰の未反応燃料
ガスを反応室Cから燃焼室Bに排出するために、複数の
排気孔64が形成されており、燃料ガス室仕切板57に
は、燃料ガス室Dから反応室C内に供給するための供給
孔が形成されている。
The combustion chamber partition plate 55 is provided with a plurality of exhaust holes 64 for discharging excess unreacted fuel gas from the reaction chamber C to the combustion chamber B. The fuel gas chamber partition plate 57 has In addition, a supply hole for supplying from the fuel gas chamber D into the reaction chamber C is formed.

【0055】また、反応容器51には、例えば水素から
なる燃料ガスを導入する燃料ガス導入口65、例えば、
空気を導入する酸素含有ガス導入口67、燃焼室B内で
燃焼したガスを排出するための排気口69が形成されて
いる。
The reaction vessel 51 has a fuel gas inlet 65 for introducing a fuel gas made of, for example, hydrogen.
An oxygen-containing gas inlet 67 for introducing air and an outlet 69 for discharging gas burned in the combustion chamber B are formed.

【0056】このような固体電解質型燃料電池は、酸素
含有ガス室Aからの酸素含有ガス、例えば空気を、酸素
含有ガス導入管63を介して固体電解質型燃料電池セル
59内にそれぞれ供給し、かつ、燃料ガス室Dからの燃
料ガスを複数の固体電解質型燃料電池セル59間に供給
し、反応室Cにて反応させ発電し、余剰の空気と未反応
燃料ガスを燃焼室Bにて燃焼させ、燃焼したガスが排気
口69から外部に排出される。
In such a solid oxide fuel cell, the oxygen-containing gas, for example, air from the oxygen-containing gas chamber A is supplied into the solid oxide fuel cell 59 via the oxygen-containing gas introducing pipe 63, respectively. In addition, the fuel gas from the fuel gas chamber D is supplied between the plurality of solid oxide fuel cells 59 and reacted in the reaction chamber C to generate power, and excess air and unreacted fuel gas are burned in the combustion chamber B. Then, the burned gas is discharged to the outside through the exhaust port 69.

【0057】尚、本発明の燃料電池は、上記した図2の
燃料電池に限定されるものではなく、反応容器内に、上
記した燃料電池セルを複数収容していれば良い。
The fuel cell of the present invention is not limited to the fuel cell shown in FIG. 2, but it is sufficient that a plurality of the above-mentioned fuel cells are accommodated in a reaction vessel.

【0058】[0058]

【実施例】円筒状の空気極仮焼体として押出成形により
成形し仮焼した(La0.560.14Ca0.30.98MnO3
を作製した。固体電解質としてY23を8モル%の割合
で含有する安定化ジルコニアを用いてドクターブレード
法により、厚さ100μmのシート状の第1固体電解質
成形体を、さらに厚さ15μmのシート状の第2固体電
解質成形体をそれぞれ作製した。
EXAMPLE A cylindrical air electrode calcined body was molded by extrusion and calcined (La 0.56 Y 0.14 Ca 0.3 ) 0.98 MnO 3.
Was prepared. Using a stabilized zirconia containing Y 2 O 3 at a rate of 8 mol% as a solid electrolyte, a 100 μm-thick sheet-shaped first solid electrolyte molded body was further formed by a doctor blade method, and further a 15 μm-thick sheet-shaped. The second solid electrolyte molded bodies were produced.

【0059】次に、燃料極成形体の作製について説明す
る。平均粒径が0.4μmのNi粉末に対し、平均粒径
が0.6μmのY23を8モル%の割合で含有するZr
2粉末を準備し、Ni/YSZ比率(重量分率)が6
5/35になるように調合し、粉砕混合処理を行い、ス
ラリー化した。その後、調製したスラリーを第2固体電
解質成形体上に、30μmになるように全面に印刷し
た。
Next, the production of the fuel electrode molded body will be described. Zr containing 8 mol% of Y 2 O 3 having an average particle diameter of 0.6 μm with respect to Ni powder having an average particle diameter of 0.4 μm.
O 2 powder was prepared and the Ni / YSZ ratio (weight fraction) was 6
The mixture was prepared to be 5/35, crushed and mixed, and slurried. Thereafter, the prepared slurry was printed on the entire surface of the second solid electrolyte molded body so as to have a thickness of 30 μm.

【0060】次に、市販の純度99.9%以上のLa2
3、Cr23、MgOを出発原料として、これをLa
(Mg0.3Cr0.70.973の組成になるように秤量混
合した後1500℃で3時間仮焼粉砕し、この固溶体粉
末を用いてスラリーを調製し、ドクターブレード法によ
り厚さ100μmの集電体成形体を作製した。
Next, commercially available La 2 having a purity of 99.9% or more is used.
Starting from O 3 , Cr 2 O 3 , and MgO, this
(Mg 0.3 Cr 0.7 ) After weighing and mixing to a composition of 0.97 O 3 , the mixture was calcined and pulverized at 1500 ° C. for 3 hours, a slurry was prepared using the solid solution powder, and a 100 μm-thick current collector was obtained by a doctor blade method. A molded body was produced.

【0061】まず、前記空気極仮焼体に前記第1固体電
解質成形体を、その両端部が開口するようにロール状に
巻き付け1150℃で5時間の条件で仮焼した。仮焼
後、第1固体電解質仮焼体の両端部間を空気極仮焼体が
露出するように平坦に研磨し、連続した同一面を形成す
るように加工した。
First, the first solid electrolyte molded body was wound around the air electrode calcined body in a roll shape so that both ends were opened, and calcined at 1150 ° C. for 5 hours. After calcining, the first solid electrolyte calcined body was polished flat so as to expose the air electrode calcined body and worked so as to form a continuous same surface.

【0062】次に、第1固体電解質仮焼体表面に、燃料
極成形体が形成された第2固体電解質成形体を、第1固
体電解質仮焼体と第2固体電解質成形体が当接するよう
に積層し、乾燥した後、上記連続同一面に集電体成形体
を貼り付け積層成形体を作製した。
Next, the second solid electrolyte molded body having the fuel electrode molded body formed thereon is placed on the surface of the first solid electrolyte calcined body so that the first solid electrolyte calcined body and the second solid electrolyte molded body come into contact with each other. After drying, a current collector molded body was attached to the same continuous surface to produce a laminated molded body.

【0063】得られた積層成形体をアルミナチューブる
つぼ中に入れ、マイクロ波焼成炉(A,B,C)および
抵抗加熱炉(R)中に設置し、大気雰囲気にて、表1に
示す条件にて焼成した。なおマイクロ波加熱の測温は、
白金でシースされたW−Re熱電対を試料に直接接触さ
せて行い、またマイクロ波源として周波数2.45GH
z、出力5kWのマグネトロン(A)、6GHz、10
kWのクライストロン(B)、28GHz、10kWの
ジャイロトロン(C)を用い、それぞれ異なる導波管を
使用した。
The obtained laminate was placed in an alumina tube crucible, placed in a microwave firing furnace (A, B, C) and a resistance heating furnace (R). And fired. In addition, the temperature measurement of microwave heating
A W-Re thermocouple sheathed with platinum was brought into direct contact with the sample, and was used as a microwave source at a frequency of 2.45 GHz.
z, magnetron (A) with output 5 kW, 6 GHz, 10
Different waveguides were used using a kW klystron (B), 28 GHz, and a 10 kW gyrotron (C).

【0064】加熱に際してあらかじめ第1固体電解質成
形体を200枚積層した試料と空気極成形体それぞれの
みで周波数28GHzで1.0kWの一定出力で加熱し
て1000℃まで加熱し、そのときの温度上昇カーブを
図3に示す。この図3から固体電解質のジルコニアの誘
電損率がLaMnO3の空気極に比べて大きいことがわ
かる。
At the time of heating, only the sample in which 200 first solid electrolyte molded bodies were laminated in advance and the air electrode molded body alone were heated at a constant output of 1.0 kW at a frequency of 28 GHz and heated to 1000 ° C., and the temperature rise at that time The curve is shown in FIG. From FIG. 3, it can be seen that the dielectric loss factor of the solid electrolyte zirconia is larger than that of the LaMnO 3 air electrode.

【0065】得られたセルの空気極の厚みは2mmであ
り、固体電解質の厚み100μmであった。この焼結体
の一部を切断し、その断面の走査型電子顕微鏡(SE
M)写真を画像解析装置を用いて気孔率を算出した。測
定は、空気極の固体電解質側の面から0.1mmまでの
部分と、空気極の内面側から0.1〜0.2mmまでの
部分について幅0.1mmに渡って算出した。その結果
を表1に示した。図4(a)に、表1の試料No.3の
空気極の固体電解質側の面から0.1mmの範囲近傍の
SEM写真を、図4(b)に、空気極の内面側から0.
1〜0.2mmの範囲近傍のSEM写真を示した。
The thickness of the air electrode of the obtained cell was 2 mm, and the thickness of the solid electrolyte was 100 μm. A part of this sintered body is cut, and a section thereof is taken with a scanning electron microscope (SE).
M) The porosity of the photograph was calculated using an image analyzer. The measurement was performed over a portion of 0.1 mm from the surface of the air electrode on the solid electrolyte side and a portion of 0.1 to 0.2 mm from the inner surface of the air electrode over a width of 0.1 mm. The results are shown in Table 1. FIG. FIG. 4 (b) shows an SEM photograph in the vicinity of a range of 0.1 mm from the surface on the solid electrolyte side of the air electrode of FIG.
An SEM photograph near the range of 1 to 0.2 mm was shown.

【0066】また、上記共焼結体を用いて、燃料極中の
Mn拡散量を評価した。評価は燃料極断面において、X
線マイクロアナライザ(EPMA)を用いて、全構成成
分の定量を行い、これからMn成分の燃料極全成分に対
する含有濃度を算出し、その結果を表1に記載した。
Using the above co-sintered body, the amount of Mn diffusion in the fuel electrode was evaluated. The evaluation was performed using X
Using a line microanalyzer (EPMA), all the constituent components were quantified, and from this, the concentration of the Mn component with respect to all the fuel electrode components was calculated, and the results are shown in Table 1.

【0067】さらに、本発明の試料のSEM写真より、
空気極の固体電解質側の面から0.1mmピッチで気孔
率を測定したところ、低気孔率層の厚みは20μm以上
であり、低気孔率層の気孔率は、空気極内面へ向けて次
第に大きくなっていた。表1の試料No.12における
気孔率を図5に記載した。この図5より、低気孔率層の
厚みは0.4mmであり、空気極の厚みの20%である
ことがわかる。
Further, from the SEM photograph of the sample of the present invention,
When the porosity was measured at a pitch of 0.1 mm from the surface of the cathode on the solid electrolyte side, the thickness of the low porosity layer was 20 μm or more, and the porosity of the low porosity layer gradually increased toward the inner surface of the cathode. Had become. In Table 1, the sample No. The porosity at 12 is shown in FIG. 5 that the thickness of the low porosity layer is 0.4 mm, which is 20% of the thickness of the air electrode.

【0068】次に、発電用の円筒型セルを作製するた
め、前記共焼結体片端部に封止部材の接合を行った。封
止部材の接合は、以下のような手順で行った。Y23
8モル%の割合で含有する平均粒子径が1μmのZrO
2粉末に水を溶媒として加えてスラリーを調製し、この
スラリーに前記共焼結体の片端部を浸漬し、厚さ100
μmになるように片端部外周面に塗布し乾燥した。封止
部材としてのキャップ形状を有する成形体は、前記スラ
リー組成と同組成の粉末を用いて静水圧成形(ラバープ
レス)を行い切削加工した。その後、前記スラリーを被
覆した前記共焼結体片端部を封止部材用成形体に挿入
し、大気中1300℃の温度で1時間焼成を行った。
Next, in order to manufacture a cylindrical cell for power generation, a sealing member was joined to one end of the co-sintered body. The joining of the sealing member was performed in the following procedure. ZrO containing Y 2 O 3 at a ratio of 8 mol% and having an average particle size of 1 μm
(2) A slurry was prepared by adding water to the powder as a solvent, and one end of the co-sintered body was immersed in the slurry to a thickness of 100
It was applied to the outer peripheral surface at one end to a thickness of μm and dried. A molded body having a cap shape as a sealing member was subjected to isostatic pressing (rubber pressing) using a powder having the same composition as the slurry composition, and was cut. Thereafter, one end of the co-sintered body coated with the slurry was inserted into a molding for a sealing member, and baked at a temperature of 1300 ° C. for 1 hour in the atmosphere.

【0069】発電は、1000℃でセルの内側に空気
を、外側に水素を流し、出力値が安定した際の初期値と
1000時間保持後の値でそれぞれの性能を測定評価し
た。さらに1000時間保持後に出力値が安定した試料
はその後室温まで冷却した後、再度発電させて出力密度
を測定した。これらの測定結果を表1に示す。
For power generation, air was flowed inside the cell and hydrogen was flown outside at 1000 ° C., and the performance was measured and evaluated based on the initial value when the output value was stabilized and the value after holding for 1000 hours. The sample whose output value was stabilized after further holding for 1000 hours was then cooled to room temperature, and then again generated to measure the output density. Table 1 shows the measurement results.

【0070】[0070]

【表1】 [Table 1]

【0071】この表1から、抵抗加熱炉を用いた従来の
焼成方法では、試料No.1のように1450℃で60
0分焼成した場合には、集電体の緻密化が不足し、また
空気極の緻密化が促進し、再出力値が低下した。
As shown in Table 1, in the conventional firing method using the resistance heating furnace, the sample No. 60 at 1450 ° C as in 1.
In the case of baking for 0 minutes, the current collector was insufficiently densified, and the air electrode was accelerated, and the re-output value was reduced.

【0072】また、試料No.2のように1550℃で
360分間焼成した場合には、空気極中のMnが燃料極
中に0.49重量%と多く拡散し、燃料極の分極値が高
くなり、初期性能が低く、経時的にも劣化することが判
る。
The sample No. In the case of baking at 1550 ° C. for 360 minutes as in 2, Mn in the air electrode diffuses as much as 0.49% by weight in the fuel electrode, the polarization value of the fuel electrode increases, the initial performance is low, and It can be seen that the deterioration also occurs.

【0073】一方、マイクロ波焼成した本発明の試料で
は、空気極の固体電解質側に、空気極の他の領域よりも
気孔率が小さい低気孔率層が形成されており、燃料極中
のMn量が0.1重量%以下と非常に少ないため、燃料
極の分極値も低く、その結果、初期値において高い出力
密度が得られるとともに、1000時間経過後において
も、また再発電時にも高い出力密度が得られた。
On the other hand, in the sample of the present invention fired by microwave, a low porosity layer having a smaller porosity than other regions of the air electrode is formed on the solid electrolyte side of the air electrode, and Mn in the fuel electrode is formed. Since the amount is as small as 0.1% by weight or less, the polarization value of the fuel electrode is low. As a result, a high output density is obtained at the initial value, and a high output is obtained even after 1000 hours and at the time of re-generation. Density was obtained.

【0074】[0074]

【発明の効果】本発明の固体電解質型燃料電池セルで
は、マイクロ波加熱法を用い、さらに空気極に固体電解
質よりマイクロ波吸収特性の小さい材料を使用すること
で低温短時間で共焼結でき、空気極の固体電解質側に、
空気極の他の領域よりも気孔率が小さい低気孔率層が形
成されるとともに、燃料極中に拡散するMn量を低減で
き、燃料極の分極値を低くでき、初期性能を向上できる
とともに、繰り返し使用しても発電効率に優れる固体電
解質型燃料電池セルを得ることができる。
The solid oxide fuel cell of the present invention can be co-sintered in a short time at a low temperature by using a microwave heating method and using a material having a smaller microwave absorption characteristic than the solid electrolyte for the air electrode. , On the solid electrolyte side of the air electrode,
A low porosity layer having a smaller porosity than other regions of the cathode is formed, the amount of Mn diffused into the anode can be reduced, the polarization value of the anode can be reduced, and the initial performance can be improved. Even when used repeatedly, a solid oxide fuel cell having excellent power generation efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒型の固体電解質型燃料電池セルを
示す断面図である。
FIG. 1 is a sectional view showing a cylindrical solid oxide fuel cell according to the present invention.

【図2】本発明の燃料電池を示す概念図である。FIG. 2 is a conceptual diagram showing a fuel cell of the present invention.

【図3】固体電解質と空気極にマイクロ波を一定照射し
たときの温度上昇を示すグラフである。
FIG. 3 is a graph showing a temperature rise when microwaves are constantly irradiated to a solid electrolyte and an air electrode.

【図4】試料No.3のSEM写真を示す。FIG. 3 shows an SEM photograph.

【図5】試料No.12の空気極の固体電解質側の面か
ら距離に対する気孔率を示す図である。
FIG. 12 is a diagram showing porosity with respect to distance from the surface of the air electrode 12 on the solid electrolyte side. FIG.

【図6】従来の円筒型の固体電解質型燃料電池セルを示
す斜視図である。
FIG. 6 is a perspective view showing a conventional cylindrical solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

31・・・固体電解質 32・・・空気極 33・・・燃料極 43・・・低気孔率層 45・・・空気極の他の領域 51・・・反応容器 59・・・固体電解質型燃料電池セル DESCRIPTION OF SYMBOLS 31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel electrode 43 ... Low porosity layer 45 ... Other area of an air electrode 51 ... Reaction vessel 59 ... Solid electrolyte type fuel Battery cell

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS02 AS03 BB01 CC03 EE13 HH04 HH05 HH06 5H026 AA06 BB00 BB01 CV02 EE13 HH04 HH05 HH06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H018 AA06 AS02 AS03 BB01 CC03 EE13 HH04 HH05 HH06 5H026 AA06 BB00 BB01 CV02 EE13 HH04 HH05 HH06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Mnを含有する空気極の表面に、ジルコニ
アを主成分とする固体電解質、燃料極を順次積層してな
る固体電解質型燃料電池セルであって、前記空気極の前
記固体電解質側に、前記空気極の他の領域よりも気孔率
が小さい低気孔率層を有することを特徴とする固体電解
質型燃料電池セル。
1. A solid electrolyte fuel cell comprising a manganese-containing air electrode and a zirconia-based solid electrolyte and a fuel electrode sequentially laminated on the surface of the Mn-containing air electrode, wherein the solid electrolyte side of the air electrode is on the solid electrolyte side. And a low porosity layer having a lower porosity than other regions of the air electrode.
【請求項2】空気極の固体電解質側に形成された低気孔
率層と、前記空気極の他の領域との気孔率差が0.5%
以上であることを特徴とする請求項1記載の固体電解質
型燃料電池セル。
2. The porosity difference between the low porosity layer formed on the solid electrolyte side of the air electrode and other regions of the air electrode is 0.5%.
2. The solid oxide fuel cell according to claim 1, wherein:
【請求項3】燃料極中のMn量が0.1重量%以下であ
ることを特徴とする請求項1又は2記載の固体電解質型
燃料電池セル。
3. The solid oxide fuel cell according to claim 1, wherein the amount of Mn in the fuel electrode is 0.1% by weight or less.
【請求項4】空気極が、少なくともLa及びMnを含有
するペロブスカイト型複合酸化物を主成分とすることを
特徴とする請求項1乃至3のうちいずれかに記載の固体
電解質型燃料電池セル。
4. The solid oxide fuel cell according to claim 1, wherein the air electrode mainly comprises a perovskite-type composite oxide containing at least La and Mn.
【請求項5】Mnを含有する空気極成形体の表面に、ジ
ルコニアを主成分とする固体電解質成形体を具備する積
層成形体を、周波数1〜30GHzのマイクロ波を照射
することにより焼結させることを特徴とする固体電解質
型燃料電池セルの製法。
5. A laminated molded article comprising a solid electrolyte molded article containing zirconia as a main component is irradiated on a surface of an air electrode molded article containing Mn by irradiating a microwave having a frequency of 1 to 30 GHz. A method for producing a solid oxide fuel cell unit, comprising:
【請求項6】反応容器内に、請求項1乃至4のうちいず
れかに記載の固体電解質型燃料電池セルを複数収容して
なることを特徴とする燃料電池。
6. A fuel cell comprising a plurality of solid oxide fuel cells according to claim 1 in a reaction vessel.
JP2000046429A 2000-02-23 2000-02-23 Manufacturing method of solid electrolyte fuel cell Expired - Fee Related JP4508340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046429A JP4508340B2 (en) 2000-02-23 2000-02-23 Manufacturing method of solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046429A JP4508340B2 (en) 2000-02-23 2000-02-23 Manufacturing method of solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2001236969A true JP2001236969A (en) 2001-08-31
JP4508340B2 JP4508340B2 (en) 2010-07-21

Family

ID=18568838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046429A Expired - Fee Related JP4508340B2 (en) 2000-02-23 2000-02-23 Manufacturing method of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4508340B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
JP2007087745A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2009134981A (en) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2010238617A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel battery
WO2022119284A1 (en) * 2020-12-04 2022-06-09 한국과학기술원 Method for manufacturing protonic ceramic fuel cell, and protonic ceramic fuel cell manufactured thereby

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301369A (en) * 1991-03-28 1992-10-23 Ngk Insulators Ltd Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the electrode
JPH0562688A (en) * 1991-09-04 1993-03-12 Murata Mfg Co Ltd Solid electrolyte type fuel cell
JPH05190183A (en) * 1992-01-13 1993-07-30 Ngk Insulators Ltd Solid electrolyte type fuel cell
JPH06502957A (en) * 1990-09-11 1994-03-31 アライド・シグナル・インコーポレーテツド Apparatus and method for manufacturing monolithic solid oxide fuel cells
JPH0950812A (en) * 1995-08-07 1997-02-18 Nippon Telegr & Teleph Corp <Ntt> Electrode substrate for solid electrolytic fuel cell and its production
JPH1021935A (en) * 1996-07-05 1998-01-23 Toto Ltd Solid electrolyte fuel cell
JPH1074528A (en) * 1996-09-02 1998-03-17 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte fuel cell and its manufacture
JPH10275622A (en) * 1997-03-31 1998-10-13 Kyocera Corp Cylindrical solid electrolyte fuel cell
JPH11273697A (en) * 1998-03-19 1999-10-08 Kyocera Corp Solid electrolyte fuel cell
JP2000030728A (en) * 1998-07-09 2000-01-28 Toto Ltd Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502957A (en) * 1990-09-11 1994-03-31 アライド・シグナル・インコーポレーテツド Apparatus and method for manufacturing monolithic solid oxide fuel cells
JPH04301369A (en) * 1991-03-28 1992-10-23 Ngk Insulators Ltd Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the electrode
JPH0562688A (en) * 1991-09-04 1993-03-12 Murata Mfg Co Ltd Solid electrolyte type fuel cell
JPH05190183A (en) * 1992-01-13 1993-07-30 Ngk Insulators Ltd Solid electrolyte type fuel cell
JPH0950812A (en) * 1995-08-07 1997-02-18 Nippon Telegr & Teleph Corp <Ntt> Electrode substrate for solid electrolytic fuel cell and its production
JPH1021935A (en) * 1996-07-05 1998-01-23 Toto Ltd Solid electrolyte fuel cell
JPH1074528A (en) * 1996-09-02 1998-03-17 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte fuel cell and its manufacture
JPH10275622A (en) * 1997-03-31 1998-10-13 Kyocera Corp Cylindrical solid electrolyte fuel cell
JPH11273697A (en) * 1998-03-19 1999-10-08 Kyocera Corp Solid electrolyte fuel cell
JP2000030728A (en) * 1998-07-09 2000-01-28 Toto Ltd Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
JP2007087745A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2009134981A (en) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2010238617A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel battery
WO2022119284A1 (en) * 2020-12-04 2022-06-09 한국과학기술원 Method for manufacturing protonic ceramic fuel cell, and protonic ceramic fuel cell manufactured thereby

Also Published As

Publication number Publication date
JP4508340B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
JP4383092B2 (en) Electrochemical element
JP4462727B2 (en) Solid electrolyte fuel cell
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JP4508340B2 (en) Manufacturing method of solid electrolyte fuel cell
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3339998B2 (en) Cylindrical fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP2002134133A (en) Cell of solid electrolyte fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JPH09129245A (en) Cell for solid electrolyte fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP3652932B2 (en) Solid oxide fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP3238086B2 (en) Solid oxide fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JP3740342B2 (en) Solid oxide fuel cell
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell
JPH0536433A (en) Solid electrolytic fuel cell and manufacture thereof
KR100707117B1 (en) Anode-supported solid oxide fuel cells using the same, and fabricating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees