JP2003036863A - Cell for solid electrolyte type fuel cell and fuel cell - Google Patents

Cell for solid electrolyte type fuel cell and fuel cell

Info

Publication number
JP2003036863A
JP2003036863A JP2001222971A JP2001222971A JP2003036863A JP 2003036863 A JP2003036863 A JP 2003036863A JP 2001222971 A JP2001222971 A JP 2001222971A JP 2001222971 A JP2001222971 A JP 2001222971A JP 2003036863 A JP2003036863 A JP 2003036863A
Authority
JP
Japan
Prior art keywords
air electrode
solid electrolyte
fuel cell
exposed surface
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001222971A
Other languages
Japanese (ja)
Inventor
Masahito Nishihara
雅人 西原
Junji Tsumagari
順司 津曲
Shoji Yamashita
祥二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001222971A priority Critical patent/JP2003036863A/en
Publication of JP2003036863A publication Critical patent/JP2003036863A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a cell for a solid electrolyte fuel cell and a fuel cell in which an electric collector is surely connected to the exposed face of an air electrode in the cell for the solid electrolyte fuel cell with a diameter not less than 10 mm and the failure of the exposed surface of the air electrode thereof is prevented. SOLUTION: A solid electrolyte 31 is formed exposed on the surface of a cylindrical air electrode 30 as a part of the air electrode 3. A fuel electrode 33 is formed on the surface of the solid electrolyte 31. An electric collector 35 is formed on the exposed face 37 of the air electrode 30 and the surface of the solid electrolyte 31 near the electrode 30. The solid electrolyte type fuel cell 59 is formed by heating the air electrode 30, solid electrolyte 31 and electric collector 35 at the same time. The solid electrolyte fuel cell 59 has a diameter R that is less than 10 mm, and the cross sectional shape of the exposed face 37 of the air electrode is arcuate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池セル及び燃料電池に関し、特に、外径10mm以下
の円筒状の固体電解質型燃料電池セル及び燃料電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell and a fuel cell, and more particularly to a cylindrical solid oxide fuel cell having an outer diameter of 10 mm or less and a fuel cell.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池はその作
動温度が900〜1050℃と高温であるため発電効率
が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, a solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as 900 to 1050 ° C., and is expected as a third generation power generation system.

【0003】従来の円筒型燃料電池の単セルは、図4に
示すように開気孔率30〜40%程度のLaMnO3
材料からなる多孔性の空気極2を形成し、その表面にY
23安定化ZrO2からなる固体電解質3を被覆し、さ
らにこの表面に多孔性のNi−ジルコニアの燃料極4を
設けて構成されている。
As shown in FIG. 4, a unit cell of a conventional cylindrical fuel cell has a porous air electrode 2 made of a LaMnO 3 type material having an open porosity of about 30 to 40%, and Y is formed on the surface thereof.
A solid electrolyte 3 made of 2 O 3 stabilized ZrO 2 is coated, and a porous Ni-zirconia fuel electrode 4 is further provided on the surface.

【0004】燃料電池のモジュールにおいては、各単セ
ルはLaCrO3系の集電体(インターコネクタ)5を
介して接続される。発電は、空気極2内部に空気(酸
素)6を、外部に燃料(水素)7を流し、1000〜1
050℃の温度で行われる。
In the fuel cell module, each unit cell is connected via a LaCrO 3 type current collector (interconnector) 5. For power generation, air (oxygen) 6 is flown inside the air electrode 2 and fuel (hydrogen) 7 is flown outside, and 1000 to 1
It is carried out at a temperature of 050 ° C.

【0005】上記のような燃料電池セルを製造する方法
としては、製造工程を簡略化し且つ製造コストを低減す
るために、各構成材料のうち少なくとも2つを同時焼成
する、いわゆる共焼結法が提案されている。この共焼結
法は、例えば、円筒状の空気極成形体に固体電解質成形
体及び集電体成形体をロール状に巻き付けて同時焼成を
行い、その後固体電解質層表面に燃料極層を形成する方
法である。またプロセス簡略化のために、固体電解質成
形体の表面にさらに燃料極成形体を積層して、同時焼成
する共焼結法も提案されている。
As a method of manufacturing the fuel cell as described above, there is a so-called co-sintering method in which at least two of the constituent materials are co-fired in order to simplify the manufacturing process and reduce the manufacturing cost. Proposed. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound around a cylindrical air electrode molded body in a roll shape and simultaneously fired, and then a fuel electrode layer is formed on the surface of the solid electrolyte layer. Is the way. In order to simplify the process, a co-sintering method has also been proposed in which a fuel electrode compact is further laminated on the surface of a solid electrolyte compact, and co-firing is performed.

【0006】従来、円筒状の空気極成形体に巻き付けら
れた固体電解質成形体の両端部間を研磨し、空気極成形
体の露出面の幅が4〜5mm程度の平面を形成し、この
平面に集電体成形体を積層し、焼成することにより、肉
厚が2mm以上の空気極と電気的に接続した集電体を形
成し、外径が15mm以上の円筒状の固体電解質型燃料
電池セルを作製していた。
Conventionally, a space between both ends of a solid electrolyte molded body wound around a cylindrical air electrode molded body is polished to form a flat surface having an exposed surface width of about 4 to 5 mm. A solid electrolyte fuel cell having a cylindrical shape with an outer diameter of 15 mm or more is formed by stacking a current collector molded body on and firing it to form a current collector electrically connected to an air electrode having a thickness of 2 mm or more. I was making a cell.

【0007】近年においては、固体電解質型燃料電池セ
ルを車載用若しくはポータブル型の携帯用電源として商
品化しようとする動きが高まっており、そのために固体
電解質型燃料電池セルの外径を10mm以下とし、コン
パクト化、軽量化するための設計上の工夫が行われてい
る。
In recent years, there has been an increasing trend toward commercializing the solid oxide fuel cell unit as a vehicle-mounted or portable portable power source. For this reason, the outer diameter of the solid oxide fuel cell unit is set to 10 mm or less. The design has been made to reduce the size and weight.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、外径が
10mm以下の固体電解質型燃料電池セルを作製しよう
とすると、固体電解質型燃料電池セル内に挿入する空気
導入管の径も考慮すると、空気極の肉厚を0.5〜1.
5mmにする必要がある。従って、このような薄い肉厚
の空気極成形体に、上記と同様に研磨して平面を作製し
ようとすると、集電体との接合を確実に行うため空気極
の露出面幅を広げる必要があり、このように露出面幅を
広げると、この露出面部分の空気極の厚みが薄くなり、
それ以降の工程で、破損する危険性が非常に高いという
問題があった。
However, when a solid oxide fuel cell having an outer diameter of 10 mm or less is produced, the air electrode is inserted in consideration of the diameter of the air introduction tube inserted into the solid oxide fuel cell. The wall thickness of 0.5-1.
It needs to be 5 mm. Therefore, if an attempt is made to polish such a thin-walled air electrode molded body in the same manner as described above to form a flat surface, it is necessary to widen the exposed surface width of the air electrode in order to ensure bonding with the current collector. Yes, if the width of the exposed surface is widened in this way, the thickness of the air electrode on this exposed surface becomes thinner,
There was a problem that the risk of breakage was extremely high in the subsequent steps.

【0009】逆に、空気極の露出面の厚みとして所定の
厚みを確保しようとすると、空気極の露出面幅を広げる
ことができず、集電体との接合を十分に行うことができ
ず、この部分から、固体電解質型燃料電池セル内部の空
気が漏出するという問題があった。
On the contrary, if it is attempted to secure a predetermined thickness as the thickness of the exposed surface of the air electrode, the width of the exposed surface of the air electrode cannot be widened and the current collector cannot be sufficiently joined. The air inside the solid oxide fuel cell unit leaks from this portion.

【0010】本発明は、外径10mm以下の固体電解質
型燃料電池セルにおいて、集電体を空気極の露出面に確
実に接合できるとともに、空気極の露出面の破損を防止
できる固体電解質型燃料電池セル及び燃料電池を提供す
ることを目的とする。
According to the present invention, in a solid oxide fuel cell having an outer diameter of 10 mm or less, a current collector can be reliably joined to the exposed surface of the air electrode, and damage to the exposed surface of the air electrode can be prevented. It is an object to provide a battery cell and a fuel cell.

【0011】[0011]

【課題を解決するための手段】本発明の固体電解質型燃
料電池セルは、円筒状の空気極の表面に、該空気極の一
部が露出するように固体電解質を形成し、該固体電解質
の表面に燃料極を形成するとともに、前記空気極の露出
面及びその近傍の固体電解質表面に、集電体を形成して
なり、少なくとも前記空気極、前記固体電解質及び前記
集電体を同時焼成してなる固体電解質型燃料電池セルで
あって、外径Rが10mm以下であるとともに、前記空
気極の露出面の断面形状が円弧状であることを特徴とす
る。
In the solid oxide fuel cell of the present invention, a solid electrolyte is formed on the surface of a cylindrical air electrode so that a part of the air electrode is exposed. Along with forming a fuel electrode on the surface, the exposed surface of the air electrode and the solid electrolyte surface in the vicinity thereof, a current collector is formed, and at least the air electrode, the solid electrolyte and the current collector are co-fired. The solid electrolyte fuel cell having the outer diameter R of 10 mm or less and the exposed surface of the air electrode having an arc-shaped cross section.

【0012】本発明では、固体電解質から露出した空気
極の露出面の断面形状を円弧状、言い換えれば円弧板状
としたので、固体電解質型燃料電池セルの外径Rを10
mm以下とし、空気極の肉厚が薄くなったとしても、そ
れほど露出面の肉厚を薄くすることなく、集電体の接合
面積を拡大することができ、空気極の露出面の破損を防
止できるとともに、集電体を空気極の露出面に確実に接
合でき、さらには露出面幅の実長が平面加工で得た露出
幅の実長よりも長くなるため、集電体による電気的な集
電性能を向上できる。
In the present invention, since the cross-sectional shape of the exposed surface of the air electrode exposed from the solid electrolyte is arcuate, that is, arcuate plate-like, the outer diameter R of the solid oxide fuel cell is 10
Even if the thickness of the air electrode is less than or equal to mm, the junction area of the current collector can be expanded without thinning the thickness of the exposed surface, preventing damage to the exposed surface of the air electrode. In addition, the current collector can be securely joined to the exposed surface of the air electrode, and the actual length of the exposed surface width is longer than the actual length of the exposed width obtained by flattening. The current collection performance can be improved.

【0013】即ち、厚みが薄くて径が大きい空気極を用
いた固体電解質型燃料電池セルは、形状保持が困難であ
るため、作製が困難であるが、空気極を薄くすることで
固体電解質への酸素含有ガス(空気)の供給率を向上で
き、発電性能を向上できる。一方、集電体が形成される
部分では確実に酸素含有ガスの漏出を防止することが必
要であるため、空気極の露出面の断面形状を円弧状とし
たのである。
That is, a solid oxide fuel cell using an air electrode having a small thickness and a large diameter is difficult to manufacture because it is difficult to maintain its shape. The oxygen-containing gas (air) supply rate can be improved, and the power generation performance can be improved. On the other hand, since it is necessary to reliably prevent the oxygen-containing gas from leaking in the portion where the current collector is formed, the exposed electrode of the air electrode has an arc-shaped cross section.

【0014】また、本発明では、空気極の露出面の周方
向における幅Bが、0.2R〜0.6Rを満足すること
が望ましい。空気極の露出面の周方向の幅Bを適正な範
囲とすることにより、空気極の露出面及びその近傍の固
体電解質表面の研磨工程を容易に行うことができるとと
もに、集電体端部からのガスリークや集電体の内部クラ
ックを防止でき、さらに、集電体との接合を確実に行う
ことができ、集電性能も向上できる。
Further, in the present invention, it is desirable that the width B in the circumferential direction of the exposed surface of the air electrode satisfies 0.2R to 0.6R. By setting the width B in the circumferential direction of the exposed surface of the air electrode in an appropriate range, the polishing process of the exposed surface of the air electrode and the solid electrolyte surface in the vicinity thereof can be easily performed, and at the same time from the end of the current collector. It is possible to prevent the gas leak and the internal crack of the current collector, and moreover, it is possible to surely join the current collector and improve the current collecting performance.

【0015】さらに、本発明では、空気極の厚みtが
0.5〜1.5mmであることが望ましい。このような
厚みtとすることにより、内部に空気導入管を挿入でき
る空間を形成できるとともに、このように薄くても、露
出した空気極の露出面をそれほど研磨しなくても良いた
め、空気極の破損を防止できる。
Further, in the present invention, it is desirable that the thickness t of the air electrode is 0.5 to 1.5 mm. With such a thickness t, a space into which the air introduction tube can be inserted can be formed, and even if it is thin as described above, the exposed surface of the exposed air electrode does not need to be polished so much. Can be prevented from being damaged.

【0016】本発明の燃料電池は、反応容器内に、上記
の固体電解質型燃料電池セルを複数収容してなるもので
ある。本発明では、外径Rが10mm以下の固体電解質
型燃料電池セルを作製しても、集電体を空気極の露出面
に確実に接合できるとともに、空気極の露出面の破損を
防止できるため、小型の燃料電池を作製することができ
るとともに、長期使用が可能になる。
The fuel cell of the present invention comprises a reaction vessel containing a plurality of the solid oxide fuel cell cells. In the present invention, even when a solid oxide fuel cell having an outer diameter R of 10 mm or less is produced, the current collector can be reliably joined to the exposed surface of the air electrode and damage to the exposed surface of the air electrode can be prevented. A small fuel cell can be manufactured and long-term use becomes possible.

【0017】[0017]

【発明の実施の形態】図1は本発明の固体電解質型燃料
電池セルの横断面を示すもので、固体電解質型燃料電池
セルの外径Rは10mm以下の円筒形状とされている。
固体電解質型燃料電池セルは、円筒状の多孔質な空気極
30の上面に固体電解質31が形成され、この固体電解
質31の上面には多孔質な燃料極33が形成されてセル
本体34が形成されており、空気極30には集電体(イ
ンターコネクタ)35が電気的に接続されている。尚、
固体電解質型燃料電池セルの外径Rとは、固体電解質型
燃料電池セルにおける最大外径を意味し、この例では、
集電体35と対向して形成された燃料極33の部分と直
交する方向の直径である。外径Rは、5mm以下である
ことが、小型化の点から望ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a cross section of a solid oxide fuel cell according to the present invention. The solid oxide fuel cell has an outer diameter R of 10 mm or less in a cylindrical shape.
In the solid oxide fuel cell, a solid electrolyte 31 is formed on the upper surface of a cylindrical porous air electrode 30, and a porous fuel electrode 33 is formed on the upper surface of this solid electrolyte 31 to form a cell body 34. A current collector (interconnector) 35 is electrically connected to the air electrode 30. still,
The outer diameter R of the solid oxide fuel cell means the maximum outer diameter of the solid oxide fuel cell, and in this example,
It is the diameter in the direction orthogonal to the portion of the fuel electrode 33 formed facing the current collector 35. The outer diameter R is preferably 5 mm or less from the viewpoint of miniaturization.

【0018】即ち、固体電解質31の両端部が開口して
おり、固体電解質31の内面に形成されている空気極3
0の一部が露出し、この露出面37及び固体電解質31
の両端部表面が集電体35により被覆され、集電体35
が、固体電解質31の両端部表面及び空気極30の露出
面37に接合されている。この集電体35は、固体電解
質31の両端部間の空気極30の露出面37から、セル
本体34の内部の空気が漏出しないように確実に接合す
る必要がある。空気極30と電気的に接続する集電体3
5はセル本体34の外面に形成され、燃料極33とは電
気的に接続されていない。空気極30の露出面37は、
セル本体34の長手方向に形成されている。
That is, both ends of the solid electrolyte 31 are open, and the air electrode 3 formed on the inner surface of the solid electrolyte 31.
The exposed surface 37 and the solid electrolyte 31 are partially exposed.
The surfaces of both ends of the current collector 35 are covered with the current collector 35.
Are bonded to both end surfaces of the solid electrolyte 31 and the exposed surface 37 of the air electrode 30. The current collector 35 needs to be securely joined so that the air inside the cell body 34 does not leak from the exposed surface 37 of the air electrode 30 between both ends of the solid electrolyte 31. Current collector 3 electrically connected to the air electrode 30
5 is formed on the outer surface of the cell body 34 and is not electrically connected to the fuel electrode 33. The exposed surface 37 of the air electrode 30 is
It is formed in the longitudinal direction of the cell body 34.

【0019】集電体35が接合される空気極30の露出
面37及び固体電解質31の両端部表面は、横断面が円
弧状に形成され、その露出面37及び固体電解質31の
両端部を含めた部分の曲率半径は、固体電解質型燃料電
池セルの半径(外径R/2)と同一、あるいはそれより
も少々大きくされている。即ち、空気極30の露出面3
7の曲率半径は、露出面37以外の空気極30の半径よ
りも大きく、固体電解質型燃料電池セルの半径(外径R
/2)と同一、あるいはそれよりも少々大きくされてい
る。
The exposed surface 37 of the air electrode 30 to which the current collector 35 is joined and both end surfaces of the solid electrolyte 31 are formed in an arc-shaped cross section, and the exposed surface 37 and both end portions of the solid electrolyte 31 are included. The radius of curvature of the open portion is the same as or slightly larger than the radius (outer diameter R / 2) of the solid oxide fuel cell unit. That is, the exposed surface 3 of the air electrode 30
The radius of curvature of 7 is larger than the radius of the air electrode 30 other than the exposed surface 37, and the radius of the solid oxide fuel cell (outer diameter R
/ 2), or slightly larger than that.

【0020】空気極30の露出面37の周方向における
幅Bは、図2に示すように、固体電解質型燃料電池セル
の外径をRとすると、0.2R〜0.6Rを満足してい
る。このような範囲の幅Bとすることにより、空気極3
0の露出面37及びその近傍の固体電解質の両端部表面
の研磨工程を容易に行うことができるとともに、集電体
35を空気極30の露出面37及びその近傍の固体電解
質31の両端部表面に確実に接合することができ、集電
体35端部からのガスリークや集電体35の内部クラッ
クを防止でき、さらに、空気極30の露出面37と十分
な面積で接合しているため、十分な集電性能を向上でき
る。
The width B in the circumferential direction of the exposed surface 37 of the air electrode 30 satisfies 0.2R to 0.6R, where R is the outer diameter of the solid oxide fuel cell, as shown in FIG. There is. By setting the width B in such a range, the air electrode 3
No. 0 exposed surface 37 and the surface of both ends of the solid electrolyte in the vicinity thereof can be easily performed, and the current collector 35 is exposed to the exposed surface 37 of the air electrode 30 and surfaces of both ends of the solid electrolyte 31 in the vicinity thereof. Since it is possible to reliably bond the electrode to the exposed surface 37 of the air electrode 30 and to prevent gas leakage from the end of the current collector 35 and internal cracks in the current collector 35, Sufficient current collection performance can be improved.

【0021】一方、幅Bが0.2Rよりも小さくなる
と、円弧状のスロープを形成するための固体電解質31
の両端部の段差除去の加工が困難で、一部段差部が残存
したり、又は固体電解質31の両端部が欠けやすくな
り、セルを作製しても、集電体の端部からガスリークが
発生し易くなる。一方、幅Bが0.6Rよりも大きくな
ると、円弧状のスロープは容易に形成できるものの、
スリークを阻止するための集電体が固体電解質31の端
部に積層される部位の厚みが薄くなるため、上記と同様
一部ガスリーク不良が生じ易い箇所が生成しやすい。
気極30の露出面37の周方向における幅Bは、特に
0.3R〜0.5Rであることが望ましい。
On the other hand, when the width B becomes smaller than 0.2R, the solid electrolyte 31 for forming the arc-shaped slope is formed.
It is difficult to remove the steps at the both ends of the solid electrolyte, and some of the steps remain, or both ends of the solid electrolyte 31 are easily chipped. Even if a cell is produced, a gas leak occurs from the end of the current collector. Easier to do. On the other hand, when the width B becomes larger than 0.6R, although arcuate slope can be easily formed, moth
The current collector for preventing the leak is the end of the solid electrolyte 31.
Same as above, because the thickness of the part that is laminated to the part becomes thin.
It is easy for some parts to generate gas leak defects. The width B of the exposed surface 37 of the air electrode 30 in the circumferential direction is particularly preferably 0.3R to 0.5R.

【0022】空気極30の厚みtは、0.5〜1.5m
mであることが望ましい。このような厚みtとすること
により、外径Rが10mm以下、特には5mm以下であ
っても、内部に空気導入管を挿入できる空間を形成でき
るとともに、このように薄くても、露出した空気極30
の露出面37をそれほど研磨しなくても良いため、空気
極30の破損を防止できる。一方、空気極30の厚みt
が0.5mmよりも薄い場合にはセル作製が困難であ
り、1.5mmよりも厚くなると外径Rが5mm以下と
なった場合に空気導入管の挿入が困難になる傾向にあ
る。空気極30の厚みtは、5mm以下の外径Rに十分
対応できるという点から0.5〜1mmであることが望
ましい。
The thickness t of the air electrode 30 is 0.5 to 1.5 m.
It is desirable that it is m. With such a thickness t, even if the outer diameter R is 10 mm or less, particularly 5 mm or less, a space into which the air introduction tube can be inserted can be formed, and even if it is thin, exposed air Pole 30
Since the exposed surface 37 of the air electrode 30 does not need to be polished so much, damage to the air electrode 30 can be prevented. On the other hand, the thickness t of the air electrode 30
When it is less than 0.5 mm, it is difficult to fabricate cells, and when it is more than 1.5 mm, it tends to be difficult to insert the air introduction pipe when the outer diameter R is 5 mm or less. The thickness t of the air electrode 30 is preferably 0.5 to 1 mm from the viewpoint that it can sufficiently cope with an outer diameter R of 5 mm or less.

【0023】固体電解質31は、例えば3〜15モル%
のY23含有した部分安定化あるいは安定化ZrO2
用いられる。また、空気極30としては、例えば、La
をCa又はSrで10〜30原子%、Yで5〜20原子
%置換したLaMnO3が用いられ、集電体35として
は、例えば、CrをMgで10〜30原子%置換したL
aCrO3が用いられる。
The solid electrolyte 31 contains, for example, 3 to 15 mol%.
Partially stabilized or stabilized ZrO 2 containing Y 2 O 3 is used. Further, as the air electrode 30, for example, La
LaMnO 3 in which 10 to 30 atomic% of Ca or Sr is substituted with 5 to 20 atomic% of Y is used, and as the current collector 35, for example, L in which Cr is substituted with 10 to 30 atomic% of L is used.
aCrO 3 is used.

【0024】燃料極33としては、50〜80重量%N
iを含むZrO2(Y23含有)サーメットが用いられ
る。固体電解質31、集電体35、燃料極33として
は、上記例に限定されるものではなく、公知材料を用い
ても良い。空気極30としては、少なくともLaおよび
Mnを含有するペロブスカイト型複合酸化物からなるも
のであれば良い。
As the fuel electrode 33, 50 to 80% by weight N
A ZrO 2 (Y 2 O 3 containing) cermet containing i is used. The solid electrolyte 31, the current collector 35, and the fuel electrode 33 are not limited to the above examples, and known materials may be used. The air electrode 30 may be made of a perovskite type composite oxide containing at least La and Mn.

【0025】以上のように構成された固体電解質型燃料
電池セルの製法は、まず、円筒状の空気極成形体を形成
する。この円筒状の空気極成形体は、例えば所定の調合
組成に従いLa23、Y23、CaCO3およびMn2
3の素原料を秤量、混合する。
In the method of manufacturing the solid oxide fuel cell having the above structure, first, a cylindrical air electrode molded body is formed. This cylindrical air electrode formed body has, for example, La 2 O 3 , Y 2 O 3 , CaCO 3 and Mn 2 O according to a predetermined composition.
Weigh and mix the 3 raw materials.

【0026】この後、例えば、1500℃程度の温度で
2〜10時間仮焼し、その後4〜8μmの粒度に粉砕調
製する。調製した粉体に、バインダーを混合、混練し押
出成形法により円筒状の空気極成形体を作製し、さらに
脱バインダー処理し、1200〜1250℃で仮焼を行
うことで円筒状の空気極仮焼体を作製する。
Thereafter, for example, calcination is performed at a temperature of about 1500 ° C. for 2 to 10 hours, and then pulverized to a particle size of 4 to 8 μm. The prepared powder is mixed with a binder and kneaded to prepare a cylindrical air electrode formed body by an extrusion molding method, and further subjected to binder removal treatment and calcination at 1200 to 1250 ° C. to form a cylindrical air electrode temporary body. Create a fired body.

【0027】次に、Y23、CaOの少なくとも一種を
含有するZrO2粉末とY23、又はSm23を所定量
含有するCeO2粉末とを混合仮焼し、その後粒度調製
した上記混合粉末に溶媒としてトルエンを添加し作製
し、Mn拡散防止層としての機能を有するペーストを作
製する。このペーストを円筒状の空気極仮焼体の表面に
塗布してMn拡散防止層の塗布膜を形成した。
Next, ZrO 2 powder containing at least one of Y 2 O 3 and CaO and CeO 2 powder containing a predetermined amount of Y 2 O 3 or Sm 2 O 3 are mixed and calcined, and then the particle size is adjusted. Toluene is added to the above mixed powder as a solvent to prepare a paste having a function as a Mn diffusion preventing layer. This paste was applied to the surface of a cylindrical air electrode calcined body to form a coating film of the Mn diffusion preventing layer.

【0028】次に、シート状の第1固体電解質成形体と
して、所定粉末にトルエン、バインダー、市販の分散剤
を加えてスラリー化したものをドクターブレード等の方
法により、例えば、100〜120μmの厚さに成形し
たものを用い、円筒状の空気極仮焼体の表面に形成され
たMn拡散防止層の塗布膜の表面に、第1固体電解質成
形体を、その両端部が所定間隔おいて離間されるように
巻き付けて仮焼し、空気極仮焼体の表面に第1固体電解
質仮焼体を形成する。尚、第1固体電解質成形体を仮焼
したが、仮焼しなくても良い。
Next, a sheet-shaped first solid electrolyte molded body is prepared by adding toluene, a binder, and a commercially available dispersant to a predetermined powder to make a slurry, and by a method such as a doctor blade, for example, a thickness of 100 to 120 μm. The first solid electrolyte molded body is separated from the surface of the coating film of the Mn diffusion preventive layer formed on the surface of the cylindrical air electrode calcined body at predetermined intervals at both ends. It is wound and calcined as described above to form a first solid electrolyte calcined body on the surface of the air electrode calcined body. Although the first solid electrolyte molded body was calcined, it may not be calcined.

【0029】次に、第1固体電解質仮焼体の両端部間及
び空気極仮焼体の露出面の横断面が円弧状となるよう
に、所定曲率の円弧状凹溝からなる研磨面を有する研磨
治具を用いて、第1固体電解質仮焼体の両端部間及び空
気極仮焼体の露出面を同時に研磨する。
Next, a polishing surface having an arc-shaped groove having a predetermined curvature is provided so that the cross section between both ends of the first solid electrolyte calcined body and the exposed surface of the air electrode calcined body has an arc shape. A polishing jig is used to simultaneously polish both end portions of the first solid electrolyte calcined body and the exposed surface of the air electrode calcined body.

【0030】次に、シート状の第1燃料極成形体を作製
する。まず、例えば、所定比率に調製したNi/YSZ
混合粉体にトルエン、バインダーを加えてスラリー化し
たものを準備する。前記第1固体電解質成形体の作製と
同様、成形、乾燥し、例えば、15μmの厚さのシート
状の第2固体電解質成形体を形成する。
Next, a sheet-shaped first fuel electrode compact is prepared. First, for example, Ni / YSZ prepared in a predetermined ratio
Toluene and a binder are added to the mixed powder to prepare a slurry. Similar to the preparation of the first solid electrolyte molded body, it is molded and dried to form, for example, a sheet-shaped second solid electrolyte molded body having a thickness of 15 μm.

【0031】この第2固体電解質成形体上に第1燃料極
層成形体用のスラリーを印刷、乾燥した後、第1固体電
解質仮焼体上に、第1燃料極層成形体が形成された第2
固体電解質成形体を、第1固体電解質仮焼体の研磨面以
外の部分に第2固体電解質成形体が当接するように巻き
付け、積層する。
After the slurry for the first fuel electrode layer molded body was printed on the second solid electrolyte molded body and dried, the first fuel electrode layer molded body was formed on the first solid electrolyte calcined body. Second
The solid electrolyte compact is wound and laminated so that the second solid electrolyte compact is in contact with the portion other than the polished surface of the first solid electrolyte calcined body.

【0032】次に、円弧状の空気極仮焼体の露出面およ
び該露出面近傍の第1固体電解質仮焼体の両端部に、1
00〜120μmの厚さに成形した集電体成形体を貼り
付け、積層する。
Next, 1 is attached to the exposed surface of the arc-shaped calcinated air electrode body and both end portions of the first solid electrolyte calcined body near the exposed surface.
A current collector molded body having a thickness of 00 to 120 μm is attached and laminated.

【0033】このようにして作製された円筒状の積層成
形体は、断面が三角形状の溝を有するジルコニア質の台
板に、その集電体成形体が下を向くように溝内に収納す
る。次に、上記積層成形体の両端部を台板側に押圧する
ために、ジルコニア質のブロックを積層成形体の両端部
上面に載置し、これらのジルコニア質のブロックの上面
に、ジルコニア質の円筒状セラミックを1/3に分割し
た円弧板状のセラミックを掛け渡して載置し、焼成す
る。
The cylindrical laminated compact thus manufactured is housed in a groove on a zirconia base plate having a groove having a triangular cross section so that the collector compact faces downward. . Next, in order to press both ends of the laminated molded body to the base plate side, zirconia-based blocks are placed on the upper surfaces of both end portions of the laminated molded body, and on the upper surfaces of these zirconia-based blocks, zirconia-based Cylindrical ceramic is divided into ⅓ and circular arc plate-shaped ceramics are laid over and placed, and fired.

【0034】焼成は、大気などの酸化雰囲気中、130
0〜1600℃の温度で1〜10時間程度同時に焼成す
ることにより共焼結させる。
The firing is carried out in an oxidizing atmosphere such as air at 130.
Co-sintering is performed by simultaneously firing at a temperature of 0 to 1600 ° C. for about 1 to 10 hours.

【0035】次に、第2燃料極成形体を形成する。所定
比率に調製したNi粉体、Y23を含有するZrO
2(YSZ)粉体、ZrおよびYの金属有機塩に、トル
エン、バインダーを加えてスラリー化したものを準備
し、共焼結により作製したセルの第1燃料極膜の表面に
厚さ50〜100μmになるようにスラリー塗布し、乾
燥する。その後、大気などの酸化雰囲気中、1000〜
1300℃の温度で熱処理(焼き付け)し、第2燃料極
を成膜したセルを作製する。
Next, a second fuel electrode compact is formed. ZrO containing Ni powder and Y 2 O 3 prepared in a predetermined ratio
2 (YSZ) powder, Zr and Y metal organic salt to which toluene and a binder were added to prepare a slurry, which was prepared by co-sintering. The slurry is applied so as to have a thickness of 100 μm and dried. After that, in an oxidizing atmosphere such as the air, 1000-
Heat treatment (baking) is performed at a temperature of 1300 ° C., and a cell having the second fuel electrode formed is formed.

【0036】尚、上記例では、空気極仮焼体、第1固体
電解質仮焼体を形成した例について説明したが、これら
が、空気極成形体、第1固体電解質成形体であっても良
い。
In the above example, an example in which the air electrode calcined body and the first solid electrolyte calcined body were formed was explained, but these may be the air electrode molded body and the first solid electrolyte molded body. .

【0037】本発明の燃料電池は、例えば、図3に示す
ように、反応容器51内に、酸素含有ガス室仕切板5
3、燃焼室仕切板55、燃料ガス室仕切板57を用いて
酸素含有ガス室A、燃焼室B、反応室C、燃料ガス室D
が形成されている。反応容器51内には、上記した複数
の有底筒状の固体電解質型燃料電池セル59が収容され
ており、これらの固体電解質型燃料電池セル59は、燃
焼室仕切板55に形成されたセル挿入孔60に挿入固定
されており、その開口部61は燃焼室仕切板55から燃
焼室B内に突出しており、その内部には酸素含有ガス室
仕切板53に固定された酸素含有ガス導入管(空気導入
管)63の一端が挿入されている。燃焼室仕切板55に
は、余剰の未反応燃料ガスを反応室Cから燃焼室Bに排
出するために、複数の排気孔64が形成されており、燃
料ガス室仕切板57には、燃料ガス室Dから反応室C内
に供給するための供給孔が形成されている。
In the fuel cell of the present invention, for example, as shown in FIG. 3, an oxygen-containing gas chamber partition plate 5 is provided in a reaction vessel 51.
3, the combustion chamber partition plate 55 and the fuel gas chamber partition plate 57 are used to form the oxygen-containing gas chamber A, the combustion chamber B, the reaction chamber C, and the fuel gas chamber D.
Are formed. The plurality of bottomed cylindrical solid oxide fuel cell units 59 are housed in the reaction vessel 51, and these solid oxide fuel cell units 59 are formed on the combustion chamber partition plate 55. The opening 61 is inserted and fixed in the insertion hole 60, and the opening 61 projects from the combustion chamber partition plate 55 into the combustion chamber B, and the oxygen-containing gas introduction pipe fixed to the oxygen-containing gas chamber partition plate 53 is provided therein. One end of (air introducing pipe) 63 is inserted. In the combustion chamber partition plate 55, a plurality of exhaust holes 64 are formed in order to discharge the excess unreacted fuel gas from the reaction chamber C to the combustion chamber B. A supply hole for supplying the reaction gas from the chamber D into the reaction chamber C is formed.

【0038】また、反応容器51には、例えば水素から
なる燃料ガスを導入する燃料ガス導入口65、例えば、
空気を導入する酸素含有ガス導入口67、燃焼室B内で
燃焼したガスを排出するための排気口69が形成されて
いる。
Further, in the reaction vessel 51, a fuel gas inlet port 65 for introducing a fuel gas composed of hydrogen, for example,
An oxygen-containing gas introduction port 67 for introducing air and an exhaust port 69 for discharging the gas burned in the combustion chamber B are formed.

【0039】このような固体電解質型燃料電池は、酸素
含有ガス室Aからの酸素含有ガス、例えば空気を、酸素
含有ガス導入管63を介して固体電解質型燃料電池セル
59内にそれぞれ供給し、かつ、燃料ガス室Dからの燃
料ガスを複数の固体電解質型燃料電池セル59間に供給
し、反応室Cにて反応させ発電し、余剰の空気と未反応
燃料ガスを燃焼室Bにて燃焼させ、燃焼したガスが排気
口69から外部に排出される。
In such a solid oxide fuel cell, the oxygen containing gas from the oxygen containing gas chamber A, eg, air, is supplied into the solid oxide fuel cell 59 via the oxygen containing gas introducing pipe 63, respectively. In addition, the fuel gas from the fuel gas chamber D is supplied between the plurality of solid oxide fuel cell units 59 to react in the reaction chamber C to generate electricity, and excess air and unreacted fuel gas are burned in the combustion chamber B. Then, the burned gas is discharged to the outside through the exhaust port 69.

【0040】尚、本発明の燃料電池は、上記した図3の
燃料電池に限定されるものではなく、反応容器内に、上
記した燃料電池セルを複数収容していれば良い。
The fuel cell of the present invention is not limited to the fuel cell shown in FIG. 3 described above, and it is sufficient that a plurality of the above-mentioned fuel cells are accommodated in the reaction vessel.

【0041】[0041]

【実施例】円筒状の固体電解質型燃料電池セルを共焼結
法により作製するため、まず円筒状の空気極仮焼体を以
下の手順で作製した。市販の純度99.9%以上のLa
23、Y23、CaCO3、Mn23を出発原料とし
て、1500℃で3時間仮焼し、(La0.560.14Ca
0.30.97MnO3を作製し、その後、4μmの粒度に粉
砕調整した。
Example In order to manufacture a cylindrical solid oxide fuel cell unit by the co-sintering method, first, a cylindrical air electrode calcined body was manufactured by the following procedure. La with a purity of 99.9% or more on the market
2 O 3 , Y 2 O 3 , CaCO 3 , and Mn 2 O 3 were used as starting materials, and calcined at 1500 ° C. for 3 hours to obtain (La 0.56 Y 0.14 Ca
0.3 ) 0.97 MnO 3 was prepared, and then pulverized to a particle size of 4 μm.

【0042】粒度調製した固溶体粉末にバインダーを添
加し、押出成形法で外径の異なる円筒状の空気極成形体
を作製した。前記空気極成形体は、乾燥後1250℃で
10時間脱バインダー・仮焼することにより、円筒状の
空気極仮焼体を作製した。
A binder was added to the solid solution powder of which particle size was adjusted, and cylindrical air electrode molded bodies having different outer diameters were produced by an extrusion molding method. The air electrode formed body was dried and then debindered and calcined at 1250 ° C. for 10 hours to prepare a cylindrical air electrode calcined body.

【0043】次に、共沈法により得られたY23を8モ
ル%の割合で含有する平均粒径が1〜2μmのZrO2
粉末を用いてスラリーを調製し、ドクターブレード法に
より厚さ100μmと厚さ15μmの第1及び第2固体
電解質成形体としてのシートを作製した。
Next, ZrO 2 containing Y 2 O 3 obtained by the coprecipitation method in an amount of 8 mol% and having an average particle size of 1 to 2 μm is used.
A slurry was prepared using the powder, and sheets having a thickness of 100 μm and a thickness of 15 μm as first and second solid electrolyte molded bodies were prepared by a doctor blade method.

【0044】次に、第1および第2燃料極成形体の作製
について説明する。第1燃料極成形体は、平均粒径が
0.4μmのNi粉末に対し、平均粒径が0.6μmの
23を8モル%の割合で含有するZrO2粉末を準備
し、Ni/YSZ比率(重量分率)が65/35になる
ように調合し、粉砕混合処理を行い、スラリー化した。
その後、調製したスラリーを第2固体電解質成形体上
に、30μmの厚さになるように全面に印刷し、乾燥し
た。
Next, the production of the first and second fuel electrode compacts will be described. For the first fuel electrode compact, a ZrO 2 powder containing Y 2 O 3 having an average particle size of 0.6 μm in an amount of 8 mol% with respect to Ni powder having an average particle size of 0.4 μm was prepared. / YSZ ratio (weight fraction) was adjusted to 65/35, pulverized and mixed, and slurried.
Then, the prepared slurry was printed on the entire surface of the second solid electrolyte molded body so as to have a thickness of 30 μm, and dried.

【0045】一方、第2燃料極成形体は、平均粒径が1
0μmのNi粉末に対し、平均粒径が1〜2μmのY2
3を8モル%の割合で含有するZrO2粉末、およびZ
r、Yのそれぞれの金属有機塩を準備し、Ni/YSZ
比率(重量分率)が72/28になるように調合混合
し、その後、市販の有機溶媒とバインダーでスラリーを
調製し、粘度を調製した。
On the other hand, the second fuel electrode compact has an average particle size of 1
Y 2 having an average particle size of 1 to 2 μm with respect to Ni powder of 0 μm
ZrO 2 powder containing O 3 in a proportion of 8 mol%, and Z
Prepare each metal organic salt of r and Y, Ni / YSZ
The mixture was prepared and mixed so that the ratio (weight fraction) was 72/28, and then a slurry was prepared by using a commercially available organic solvent and a binder to adjust the viscosity.

【0046】次に、市販の純度99.9%以上のLa2
3、Cr23、MgOを出発原料として、これをLa
(Mg0.3Cr0.70.973の組成になるように秤量混
合した後1500℃で3時間仮焼粉砕し、この固溶体粉
末を用いてスラリーを調製し、ドクターブレード法によ
り厚さ100μmの集電体成形体を作製した。
Next, commercially available La 2 having a purity of 99.9% or more is used.
O 3 , Cr 2 O 3 , and MgO are used as starting materials, and La
(Mg 0.3 Cr 0.7 ) 0.97 O 3 Weighed and mixed to obtain a composition, calcinated and pulverized at 1500 ° C. for 3 hours, and a slurry is prepared using this solid solution powder. A molded body was produced.

【0047】Mn拡散防止層としてのペーストは、Y2
3を8mol%含有するZrO2粉末(8YSZ)と、
組成式(CeO20.7(Y230.3で表わされるYD
C粉末とを8YSZ:YDC=1:9(重量分率)にな
るように混合し、この混合粉末に溶媒としてトルエンを
添加し作製した。
The paste used as the Mn diffusion preventing layer is Y 2
ZrO 2 powder (8YSZ) containing 8 mol% of O 3 ,
YD represented by the composition formula (CeO 2 ) 0.7 (Y 2 O 3 ) 0.3
C powder was mixed so that 8YSZ: YDC = 1: 9 (weight fraction), and toluene was added to this mixed powder as a solvent to prepare.

【0048】まず、外径が異なる4種類の円筒状の前記
空気極仮焼体を準備した。これらの前記空気極仮焼体の
表面に、Mn拡散防止層のペーストを塗布し、この塗布
膜に、前記第1固体電解質成形体を、その両端部が0.
5mm幅開口するようにロール状に巻き付け1150℃
で5時間の条件で仮焼した。
First, four kinds of cylindrical air electrode calcined bodies having different outer diameters were prepared. The paste of the Mn diffusion preventive layer was applied to the surface of the air electrode calcined body, and the first solid electrolyte compact was applied to this coating film at both ends.
Wrap it in a roll with an opening of 5 mm width 1150 ° C
It was calcined under the condition of 5 hours.

【0049】仮焼後、第1固体電解質仮焼体の両端部間
を、表1に示すそれぞれの露出幅Bで空気極仮焼体を露
出させるように、曲率半径がR/2の円弧状凹溝からな
る研磨面を有する研磨治具を長さ方向に摺動させ、或い
は平板状の研磨治具を用いて、第1固体電解質仮焼体の
両端部間及び空気極仮焼体の露出面を同時に研磨し、加
工した。
After the calcination, a radius of curvature of R / 2 is formed between the both ends of the first solid electrolyte calcined body so as to expose the air electrode calcined body with each exposed width B shown in Table 1. From the groove
It is sliding the polishing jig in the longitudinal direction having a polishing surface that, or by using a flat polishing jig, between the two ends of the first solid electrolyte calcined body and the exposed surface of the air electrode calcined body at the same time Polished and processed.

【0050】次に、第1固体電解質仮焼体表面に、燃料
極成形体が形成された第2固体電解質成形体を、第1固
体電解質仮焼体と第2固体電解質成形体が当接するよう
に積層し、乾燥した後、上記研磨した部分に集電体成形
体を貼り付けた。
Next, the second solid electrolyte compact having the fuel electrode compact formed on the surface of the first solid electrolyte calcined compact is brought into contact with the first solid electrolyte calcined compact and the second solid electrolyte compact. After being laminated and dried, a current collector molded body was attached to the above-mentioned polished portion.

【0051】その後、ジルコニア質の台板の溝に前記円
筒状の積層成形体を横にして収容し、積層成形体の両端
部上面にジルコニア質のブロック(ジルコニア質チュー
ブを半割した長さ20mmの焼結体)をそれぞれ配置
し、このブロック上にジルコニアチューブを半割りした
セラミックスを掛け渡し、大気中1500℃で6時間の
条件で共焼結を試みた。
Then, the cylindrical laminated compact was placed sideways in the groove of the zirconia base plate, and a zirconia block (a length of 20 mm obtained by dividing a zirconia tube in half) was formed on the upper surfaces of both ends of the laminated compact. The ceramics obtained by dividing a zirconia tube in half were laid over each block, and co-sintering was attempted under the conditions of 1500 ° C. for 6 hours in the atmosphere.

【0052】作製した共焼結体の第1燃料極の表面に、
準備しておいた第2燃料極のスラリーを塗布・乾燥し、
その後1300℃で1時間の条件で熱処理(焼き付け)
を行うことにより、円筒状の固体電解質型セルを作製し
た。
On the surface of the first fuel electrode of the produced co-sintered body,
Apply and dry the prepared slurry of the second fuel electrode,
Then heat treatment (baking) at 1300 ° C for 1 hour
By carrying out, a cylindrical solid electrolyte type cell was produced.

【0053】そして、得られた固体電解質型燃料電池セ
ルにおいて、セル外径Rを測定するとともに、空気極の
露出面の幅B、空気極の厚みtを測定するとともに、集
電体の両端部からのガスリーク検査、セル断面内部の破
壊の有無、さらに発電による初期の出力密度の測定評価
を実施した。これらの結果を、併せて表1に示す。
Then, in the obtained solid oxide fuel cell, the outer diameter R of the cell was measured, the width B of the exposed surface of the air electrode and the thickness t of the air electrode were measured, and both ends of the current collector were measured. A gas leak test was conducted, the presence or absence of breakage inside the cell cross section, and the initial power density measurement by power generation were evaluated. The results are also shown in Table 1.

【0054】発電は、上記各セルを用いて1000℃で
セルの内側に空気を、外側に水素を流し、出力値が安定
した際の初期値を測定評価した。
For power generation, air was flown inside the cell and hydrogen was flown outside at 1000 ° C. using each of the above cells, and the initial value when the output value became stable was measured and evaluated.

【0055】[0055]

【表1】 [Table 1]

【0056】この表1より、空気極の露出面を平面加工
した試料No.9は、その露出幅Bが1.5mmと広い
ものの、セル外径Rが10mm以下、特に5mm以下と
なることにより、空気極の露出面の厚みが薄く、この部
分にクラックが発生していた。これにより、空気極の実
抵抗が高くなり、初期出力密度が低くなった。
From Table 1, sample No. 1 in which the exposed surface of the air electrode was flat-machined In No. 9, the exposed width B was as wide as 1.5 mm, but the cell outer diameter R was 10 mm or less, particularly 5 mm or less, so that the exposed surface of the air electrode was thin and cracks were generated in this portion. . This increased the actual resistance of the air electrode and lowered the initial power density.

【0057】一方、空気極の露出面を円弧状に曲面加工
した本発明の試料では、セル外径Rが10mm以下、特
に5mm以下であっても空気極の露出面の露出幅Bを一
定以上とることができ、集電体の両端部からのガスリー
クもなく、セル断面内部の破壊もなく、さらに発電によ
る初期出力密度も0.41W/cm2以上と高いことが
判る。
On the other hand, in the sample of the present invention in which the exposed surface of the air electrode is curved in an arc shape, even if the cell outer diameter R is 10 mm or less, particularly 5 mm or less, the exposed width B of the exposed surface of the air electrode is not less than a certain value. It can be seen that there is no gas leakage from both ends of the current collector, no destruction inside the cell cross section, and the initial output density due to power generation is as high as 0.41 W / cm 2 or more.

【0058】[0058]

【発明の効果】以上詳述したように、本発明の固体電解
質型燃料電池セルでは、固体電解質から露出した空気極
の露出面の断面形状を円弧状、言い換えれば円弧板状と
したので、固体電解質型燃料電池セルの外径Rを10m
m以下とし、空気極の肉厚が薄くなったとしても、それ
ほど露出面の肉厚を薄くすることなく、集電体の接合面
積を拡大することができ、空気極の露出面の破損を防止
できるとともに、集電体を空気極の露出面に確実に接合
でき、さらには露出面幅の実長が平面加工で得た露出幅
の実長よりも長くなるため、集電体による電気的な集電
性能を向上できる。これにより、ガスリークの不具合、
またセルの破損によるセル性能への悪影響を防止でき、
安定した高い出力密度を発現維持することが可能とな
る。
As described above in detail, in the solid oxide fuel cell of the present invention, the exposed surface of the air electrode exposed from the solid electrolyte has an arc-shaped cross section, in other words, an arc plate shape. The outer diameter R of the electrolyte fuel cell is 10 m
Even if the thickness is less than m, even if the thickness of the air electrode is thin, the junction area of the current collector can be expanded without reducing the thickness of the exposed surface so much, preventing damage to the exposed surface of the air electrode. In addition, the current collector can be securely joined to the exposed surface of the air electrode, and the actual length of the exposed surface width is longer than the actual length of the exposed width obtained by flattening. The current collection performance can be improved. As a result, a gas leak problem,
In addition, it is possible to prevent adverse effects on cell performance due to cell damage,
It becomes possible to maintain and maintain a stable and high power density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の円筒状の固体電解質型燃料電池セルを
示す横断面図である。
FIG. 1 is a cross-sectional view showing a cylindrical solid oxide fuel cell unit of the present invention.

【図2】空気極の露出面を説明するための横断面図であ
る。
FIG. 2 is a transverse sectional view for explaining an exposed surface of an air electrode.

【図3】本発明の燃料電池を示す説明図である。FIG. 3 is an explanatory view showing a fuel cell of the present invention.

【図4】従来の円筒状の固体電解質型燃料電池セルを示
す斜視図である。
FIG. 4 is a perspective view showing a conventional cylindrical solid oxide fuel cell unit.

【符号の説明】[Explanation of symbols]

30・・・空気極 31・・・固体電解質 33・・・燃料極 35・・・集電体 37・・・露出面 R・・・固体電解質型燃料電池セルの外径 B・・・空気極の露出面の周方向における幅 t・・・空気極の厚み 30 ... Air electrode 31 ... Solid electrolyte 33 ... Fuel pole 35 ... Current collector 37 ... exposed surface R ... Outer diameter of solid oxide fuel cell B: circumferential width of exposed surface of air electrode t ... Air electrode thickness

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H026 AA06 BB01 CC01 CV02 CX06 EE11 HH03    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5H026 AA06 BB01 CC01 CV02 CX06                       EE11 HH03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】円筒状の空気極の表面に、該空気極の一部
が露出するように固体電解質を形成し、該固体電解質の
表面に燃料極を形成するとともに、前記空気極の露出面
及びその近傍の固体電解質表面に、集電体を形成してな
り、少なくとも前記空気極、前記固体電解質及び前記集
電体を同時焼成してなる固体電解質型燃料電池セルであ
って、外径Rが10mm以下であるとともに、前記空気
極の露出面の断面形状が円弧状であることを特徴とする
固体電解質型燃料電池セル。
1. A solid electrolyte is formed on a surface of a cylindrical air electrode so that a part of the air electrode is exposed, a fuel electrode is formed on the surface of the solid electrolyte, and an exposed surface of the air electrode is formed. And a solid electrolyte fuel cell having a current collector formed on the surface of the solid electrolyte in the vicinity thereof and at least the air electrode, the solid electrolyte and the current collector being co-fired. Is 10 mm or less, and the cross-sectional shape of the exposed surface of the air electrode is an arc shape.
【請求項2】空気極の露出面の周方向における幅Bが、
0.2R〜0.6Rを満足することを特徴とする請求項
1記載の固体電解質型燃料電池セル。
2. The width B in the circumferential direction of the exposed surface of the air electrode is
The solid oxide fuel cell according to claim 1, which satisfies 0.2R to 0.6R.
【請求項3】空気極の厚みtが0.5〜1.5mmであ
ることを特徴とする請求項1又は2記載の固体電解質型
燃料電池セル。
3. The solid oxide fuel cell according to claim 1, wherein the thickness t of the air electrode is 0.5 to 1.5 mm.
【請求項4】反応容器内に、請求項1乃至3のうちいず
れかに記載の固体電解質型燃料電池セルを複数収容して
なることを特徴とする燃料電池。
4. A fuel cell, characterized in that a plurality of solid oxide fuel cell units according to any one of claims 1 to 3 are housed in a reaction vessel.
JP2001222971A 2001-07-24 2001-07-24 Cell for solid electrolyte type fuel cell and fuel cell Withdrawn JP2003036863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222971A JP2003036863A (en) 2001-07-24 2001-07-24 Cell for solid electrolyte type fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222971A JP2003036863A (en) 2001-07-24 2001-07-24 Cell for solid electrolyte type fuel cell and fuel cell

Publications (1)

Publication Number Publication Date
JP2003036863A true JP2003036863A (en) 2003-02-07

Family

ID=19056376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222971A Withdrawn JP2003036863A (en) 2001-07-24 2001-07-24 Cell for solid electrolyte type fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP2003036863A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103217A (en) * 2005-10-06 2007-04-19 National Institute Of Advanced Industrial & Technology Electrochemical reactor tube cell and electrochemical reaction system constituted from it
JP2007265650A (en) * 2006-03-27 2007-10-11 National Institute Of Advanced Industrial & Technology Manifold for electrochemical reactor cell, stack, and electrochemical reaction system composed of them
JP2009532849A (en) * 2006-04-05 2009-09-10 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド SOFC laminate with high temperature bonded semi-rack interconnect and method of manufacturing the same
JP2013140737A (en) * 2012-01-05 2013-07-18 Mitsubishi Heavy Ind Ltd Method for manufacturing solid electrolyte fuel cell, and solid electrolyte fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103217A (en) * 2005-10-06 2007-04-19 National Institute Of Advanced Industrial & Technology Electrochemical reactor tube cell and electrochemical reaction system constituted from it
JP2007265650A (en) * 2006-03-27 2007-10-11 National Institute Of Advanced Industrial & Technology Manifold for electrochemical reactor cell, stack, and electrochemical reaction system composed of them
JP2009532849A (en) * 2006-04-05 2009-09-10 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド SOFC laminate with high temperature bonded semi-rack interconnect and method of manufacturing the same
JP2013140737A (en) * 2012-01-05 2013-07-18 Mitsubishi Heavy Ind Ltd Method for manufacturing solid electrolyte fuel cell, and solid electrolyte fuel cell

Similar Documents

Publication Publication Date Title
JP3996861B2 (en) Fuel cell and fuel cell
RU2310952C2 (en) Tubular cell (alternatives), tubular-cell battery with current passage over generating line, and method for its manufacture
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JP5281950B2 (en) Horizontally-striped fuel cell stack, manufacturing method thereof, and fuel cell
JP4462727B2 (en) Solid electrolyte fuel cell
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JPH1021935A (en) Solid electrolyte fuel cell
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP3238086B2 (en) Solid oxide fuel cell
JPH09129245A (en) Cell for solid electrolyte fuel cell
JP4812176B2 (en) Solid oxide fuel cell and fuel cell
RU2310256C2 (en) Tubular cell (alternatives) for batteries of high-temperature electrochemical devices using thin-layer solid electrolyte and method for its manufacture
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JP4721487B2 (en) Solid electrolyte fuel cell and fuel cell
JP5646785B1 (en) Fuel cell
JP4683830B2 (en) Support for fuel cell, fuel cell and fuel cell
JP4638070B2 (en) Cylindrical fuel cell, method for producing the same, and fuel cell
JP3652932B2 (en) Solid oxide fuel cell
JP3217695B2 (en) Cylindrical fuel cell
JP3389469B2 (en) Solid oxide fuel cell
JPH11283640A (en) Cylindrical solid-electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408