JP3238086B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JP3238086B2
JP3238086B2 JP34821796A JP34821796A JP3238086B2 JP 3238086 B2 JP3238086 B2 JP 3238086B2 JP 34821796 A JP34821796 A JP 34821796A JP 34821796 A JP34821796 A JP 34821796A JP 3238086 B2 JP3238086 B2 JP 3238086B2
Authority
JP
Japan
Prior art keywords
sealing member
cell
cell body
cylindrical
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34821796A
Other languages
Japanese (ja)
Other versions
JPH10189015A (en
Inventor
勇二 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP34821796A priority Critical patent/JP3238086B2/en
Publication of JPH10189015A publication Critical patent/JPH10189015A/en
Application granted granted Critical
Publication of JP3238086B2 publication Critical patent/JP3238086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有底筒状の固体電
解質型燃料電池セルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bottomed cylindrical solid oxide fuel cell.

【0002】[0002]

【従来の技術】従来より、固体電解質型燃料電池はその
作動温度が900〜1050℃と高温であるため発電効
率が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, a solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as 900 to 1050 ° C., and is expected as a third generation power generation system.

【0003】一般に、固体電解質型燃料電池セルには、
円筒型と平板型が知られている。平板型燃料電池セル
は、発電の単位体積当り出力密度が高いという特長を有
するが、実用化に関してはガスシール不完全性やセル内
の温度分布の不均一性などの問題がある。それに対し
て、円筒型燃料電池セルでは、出力密度は低いものの、
セルの機械的強度が高く、またセル内の温度の均一性が
保てるという特長がある。
[0003] In general, solid oxide fuel cells include:
A cylindrical type and a flat type are known. The flat fuel cell has the feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas sealing and non-uniformity of the temperature distribution in the cell in practical use. In contrast, cylindrical fuel cells have a low power density,
It has the features that the mechanical strength of the cell is high and that the temperature inside the cell can be kept uniform.

【0004】両形状の固体電解質型燃料電池セルとも、
それぞれの特長を生かして積極的に研究開発が進められ
ている。
In both types of solid oxide fuel cells,
R & D is being actively promoted by taking advantage of each feature.

【0005】円筒型燃料電池の単セルは、図3に示した
ように開気孔率40%程度のCaO安定化ZrO2 を支
持管1とし、その上にLaMnO3 系材料からなる多孔
性の空気極2を形成し、その表面にY2 3 安定化Zr
2 からなる固体電解質3を被覆し、さらにこの表面に
多孔性のNi−ジルコニアの燃料極4が設けられてい
る。燃料電池モジュールにおいては、各単セルはLaC
rO3 系の集電体(インターコネクタ)5を介して接続
される。発電は、支持管1内部に空気(酸素)6を、外
部に燃料(水素)7を流し、900〜1050℃の温度
で行なわれる。
As shown in FIG. 3, a single cell of a cylindrical fuel cell has a support tube 1 made of CaO-stabilized ZrO 2 having an open porosity of about 40%, and a porous air made of LaMnO 3 material on the support tube 1. A pole 2 is formed, and Y 2 O 3 stabilized Zr is formed on its surface.
A solid electrolyte 3 made of O 2 is covered, and a porous Ni-zirconia fuel electrode 4 is provided on this surface. In the fuel cell module, each single cell is LaC
It is connected via an rO 3 -based current collector (interconnector) 5. Power generation is performed at a temperature of 900 to 1050 ° C. by flowing air (oxygen) 6 inside the support tube 1 and fuel (hydrogen) 7 outside.

【0006】近年、このセル作製の工程においてプロセ
スを単純化するため、空気極材料であるLaMnO3
材料が直接多孔性の支持管として使用されている。空気
極としての機能を合わせ持つ支持管材料としては、La
をCaで20原子%又はSrで10〜15原子%置換し
たLaMnO3 固溶体材料が用いられている。
In recent years, a LaMnO 3 -based material, which is an air electrode material, has been used directly as a porous support tube in order to simplify the process in the cell manufacturing process. As a support tube material having the function as an air electrode, La
The LaMnO 3 solid solution material obtained by substituting 10-15 atomic% in 20 atomic% or Sr with Ca is used.

【0007】また、上記のような燃料電池セルを製造す
る方法としては、例えばCaO安定化ZrO2 からなる
絶縁粉末を押出成形法などにより円筒状に成形後、これ
を焼成して円筒状支持体を作製し、この支持体の外周面
に空気極、固体電解質、燃料極、集電体のスラリーを塗
布してこれを順次焼成して積層するか、あるいは円筒状
支持体の表面に電気化学的蒸着法(EVD法)やプラズ
マ溶射法などにより空気極、固体電解質、燃料極、集電
体を順次形成することも行われている。
As a method of manufacturing the above-described fuel cell, for example, an insulating powder composed of CaO-stabilized ZrO 2 is formed into a cylindrical shape by an extrusion molding method or the like, and then fired to form a cylindrical support. A slurry of an air electrode, a solid electrolyte, a fuel electrode, and a current collector is applied to the outer peripheral surface of the support, and the slurry is sequentially fired and laminated, or the surface of the cylindrical support is electrochemically coated. An air electrode, a solid electrolyte, a fuel electrode, and a current collector are sequentially formed by a vapor deposition method (EVD method), a plasma spraying method, or the like.

【0008】最近では、セルの製造工程を簡略化するた
めに、各構成材料のうち少なくとも2つを同時焼成す
る、いわゆる共焼結法も提案されている。この共焼結法
は、例えば、円筒状の空気極支持管の成形体に固体電解
質成形体及び集電体用成形体をロール状に巻き付けて同
時焼成を行い、その後固体電解質層表面に燃料極層を形
成する方法である。この共焼結法は製造工程数が少なく
なるためにセルの製造時の歩留り向上、コスト低減に有
利である。
Recently, a so-called co-sintering method has been proposed in which at least two of the constituent materials are simultaneously fired in order to simplify the manufacturing process of the cell. In this co-sintering method, for example, a solid electrolyte molded body and a molded body for a current collector are wound around a molded body of a cylindrical air electrode support tube in a roll shape and simultaneously fired, and then the fuel electrode is formed on the surface of the solid electrolyte layer. This is a method of forming a layer. This co-sintering method is advantageous for improving the yield and manufacturing cost during the production of the cell since the number of production steps is reduced.

【0009】そして、従来、セルの一端の封止は、焼結
して得られた円筒状のセル本体を実際に発電を行う炉内
の取付部材にセットし、取付部材に形成されたガラス層
をセル本体の一端に当接し、発電を行う際の昇温時に前
記ガラス層を溶融させ、セル本体の一端を前記取付部材
により封止していた。
Conventionally, one end of the cell is sealed by setting a cylindrical cell body obtained by sintering to a mounting member in a furnace for actually generating power, and forming a glass layer formed on the mounting member. Was brought into contact with one end of the cell body, the glass layer was melted at the time of temperature rise during power generation, and one end of the cell body was sealed with the mounting member.

【0010】また、空気極成形体、および空気極成形体
と同一材料により有底筒状の封止部材用成形体を作製
し、空気極成形体の一端と封止部材用成形体の一端を当
接し焼成した後、上記したように、電気化学的蒸着法
(EVD法)やプラズマ溶射法などにより固体電解質、
燃料極、集電体を順次形成するとともに、封止部材の表
面に電気化学的蒸着法(EVD法)やプラズマ溶射法な
どにより緻密質セラミック層を形成し、封止部材からの
ガスリークを防止していた。
Further, a bottomed cylindrical molded body for a sealing member is made of the same material as the air electrode molded body and the air electrode molded body, and one end of the air electrode molded body and one end of the molded body for the sealing member are connected. After the contact and firing, as described above, a solid electrolyte, such as an electrochemical deposition method (EVD method) or a plasma spray method,
A fuel electrode and a current collector are sequentially formed, and a dense ceramic layer is formed on the surface of the sealing member by an electrochemical vapor deposition method (EVD method) or a plasma spraying method to prevent gas leakage from the sealing member. I was

【0011】[0011]

【発明が解決しようとする課題】しかしながら、燃料電
池セルの一端をガラス材を用いて取付部材により封止す
る従来の方法では、実際に発電を行う際に封止すること
になるため完全に封止されているか否かの確認が困難で
あり、シール不良による単セル出力の低下が生じ易く、
特にスタック化した場合には封止箇所の増加によるシー
ル不良が発生し易く、結果として出力が低下するという
問題があった。
However, according to the conventional method of sealing one end of a fuel cell with a mounting member using a glass material, the fuel cell is completely sealed when power is actually generated. It is difficult to confirm whether or not it is stopped, and it is easy for the single cell output to decrease due to poor sealing,
In particular, in the case of stacking, there is a problem that sealing failure is likely to occur due to an increase in the number of sealing portions, and as a result, the output is reduced.

【0012】また、空気極成形体の一端と封止部材用成
形体の一端を当接した状態で焼成する方法では、空気極
成形体と封止部材との接合が困難であり、しかも、ガス
リークを防止するため、電気化学的蒸着法(EVD法)
やプラズマ溶射法などにより封止部材の表面に緻密質セ
ラミック層を形成する必要があり、封止工程が面倒であ
り、コスト高であるという問題があった。
Further, in the method of firing in a state in which one end of the cathode forming body and one end of the sealing member forming body are in contact with each other, it is difficult to join the cathode forming body and the sealing member, and furthermore, the gas leakage Electrochemical deposition method (EVD method)
It is necessary to form a dense ceramic layer on the surface of the sealing member by a plasma spraying method or the like, and there is a problem that the sealing step is troublesome and costly.

【0013】本発明は、セル本体のガスシールを容易か
つ確実に行うことができるとともに、ガスシールの確認
が容易な固体電解質型燃料電池セルを提供することを目
的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a solid oxide fuel cell which can easily and reliably perform gas sealing of a cell body and can easily confirm the gas seal.

【0014】[0014]

【課題を解決するための手段】本発明者らは上記問題点
に対して検討を重ねた結果、セル本体の一端部外周面
に、封止部材用のセラミック成形体を外嵌して焼成し、
封止部材の焼成収縮によりセル本体の一端部に嵌着する
ことにより、セル本体の一端を容易にかつ確実に封止す
ることができ、しかも封止状態を容易に確認し得ること
を見い出し、本発明に至った。
Means for Solving the Problems As a result of repeated studies on the above problems, the present inventors have found that a ceramic molded body for a sealing member is externally fitted to the outer peripheral surface of one end of the cell body and fired. ,
By fitting to one end of the cell body by firing shrinkage of the sealing member, it was found that one end of the cell body could be easily and reliably sealed, and that the sealed state could be easily confirmed, The present invention has been reached.

【0015】即ち、本発明の固体電解質型燃料電池セル
は、円筒状の固体電解質の片面に空気極、他面に燃料極
が形成されるとともに、前記空気極または前記燃料極に
電気的に接続され、かつ外面に露出する集電体を具備す
る円筒状のセル本体の一端部外周面に、基底部と円筒部
からなるセラミックス製のキャップ形状封止部材を外嵌
してなる固体電解質型燃料電池セルにおいて、前記封止
部材が、前記円筒部と前記基底部の外径を同一長さと
し、単独で焼結させた場合の前記円筒部の内径が、前記
セル本体の外径よりも小さくなるような封止部材用成形
体を前記セル本体の一端に当接して焼成されたものであ
り、前記基底部の外径をD1、前記円筒部の外径をD2
した時、D1/D2が0.74〜0.88の範囲を満足す
るものである。
That is, in the solid oxide fuel cell of the present invention, an air electrode is formed on one surface and a fuel electrode is formed on the other surface of a cylindrical solid electrolyte, and the solid electrolyte is electrically connected to the air electrode or the fuel electrode. Solid electrolyte type fuel having a ceramic cap-shaped sealing member consisting of a base portion and a cylindrical portion externally fitted to an outer peripheral surface of one end of a cylindrical cell body provided with a current collector exposed on the outer surface. In the battery cell, the sealing member has the same outer diameter of the cylindrical portion and the base portion, and the inner diameter of the cylindrical portion when sintered alone is smaller than the outer diameter of the cell body. The molded body for a sealing member is fired by being in contact with one end of the cell body. When the outer diameter of the base portion is D 1 and the outer diameter of the cylindrical portion is D 2 , D 1 / D 2 satisfies the range of 0.74 to 0.88.

【0016】ここで、セル本体の一端部外周面に、セラ
ミックスからなるガスシール層を介して封止部材を外嵌
してなることが望ましい。
Here, it is desirable that a sealing member is externally fitted to the outer peripheral surface of one end of the cell body via a gas seal layer made of ceramics.

【0017】[0017]

【作用】本発明の固体電解質型燃料電池セルは、従来の
ように、発電用セル本体を炉内にセットし発電を行う際
にセル本体の一端を取付部材により封止するのではな
く、セル製造段階でセル本体の一端を緻密質セラミック
スにより封止するため、セル本体の一端の封止を容易か
つ確実に行うことができるとともに、発電用セル本体を
炉内にセットする前に封止状態を確認することができ、
発電の際のガスシール性が十分に保証される。
The solid oxide fuel cell according to the present invention is different from the conventional one in that the cell body for power generation is set in a furnace and power is generated, instead of sealing one end of the cell body with a mounting member. At the manufacturing stage, one end of the cell body is sealed with dense ceramics, so that one end of the cell body can be easily and reliably sealed, and the sealed state before setting the power generation cell body in the furnace. Can be confirmed,
Gas sealing performance during power generation is sufficiently ensured.

【0018】即ち、本発明の固体電解質型燃料電池セル
では、セル本体の一端部外周面に、封止部材用セラミッ
ク成形体を外嵌して焼成することにより、封止部材用セ
ラミック成形体が、封止部材の基底部の外径D1 と、円
筒部の外径D2 との比D1 /D2 が0.74〜0.88
の範囲を満足するように焼成収縮し、セル本体の一端部
に封止部材の円筒部が嵌着すると同時に、焼成時にセル
本体の外面と封止部材の円筒部の内面とが接合するた
め、セル本体の一端の封止を容易かつ確実に行うことが
できる。
That is, in the solid oxide fuel cell of the present invention, the ceramic molded body for a sealing member is fitted on the outer peripheral surface of one end of the cell body and fired, so that the ceramic molded body for a sealing member is obtained. The ratio D 1 / D 2 of the outer diameter D 1 of the base portion of the sealing member to the outer diameter D 2 of the cylindrical portion is 0.74 to 0.88.
Sintering to satisfy the range, the cylindrical portion of the sealing member is fitted to one end of the cell body, and at the same time, the outer surface of the cell body and the inner surface of the cylindrical portion of the sealing member are joined during firing, One end of the cell body can be easily and reliably sealed.

【0019】特に、本発明の固体電解質型燃料電池セル
では、セル本体の一端部外周面にセラミックスラリーを
塗布し、セラミックスからなるガスシール層を形成し、
その外周面に封止部材を嵌着することにより、集電体が
セル本体から突出する等によりセル本体の外周面に凹凸
が形成されている場合でも、ガスシール層により封止部
材が嵌着される部分のセル本体外周面が平滑化され、封
止部材とセル本体を隙間なくより密着させることがで
き、ガスシール性を向上できる。
In particular, in the solid oxide fuel cell of the present invention, a ceramic slurry is applied to the outer peripheral surface of one end of the cell body to form a gas seal layer made of ceramics.
By fitting the sealing member to the outer peripheral surface, even when the current collector protrudes from the cell main body and the unevenness is formed on the outer peripheral surface of the cell main body, the sealing member is fitted by the gas seal layer. The outer peripheral surface of the cell main body in the portion to be formed is smoothed, the sealing member and the cell main body can be more closely adhered to each other without any gap, and the gas sealing property can be improved.

【0020】また本発明の方法によれば、例えば、封止
部材としてZrO2 やLaCrO3系の磁器を用いた場
合には、この磁器の焼成温度(1300℃以上)は、実
際の発電温度(1000℃)よりも高いので、発電時に
おけるガスリークの恐れが無く、結果としてセル出力の
信頼性、長寿命化が図れる。さらに、複数のセルを用い
てスタックを組む際においては、発電を行う段階でのシ
ール箇所を極力少なくすることができるためにシステム
設計を容易にすることが可能となる。
According to the method of the present invention, for example, when a ZrO 2 or LaCrO 3 porcelain is used as the sealing member, the firing temperature of the porcelain (1300 ° C. or higher) is set to the actual power generation temperature (1300 ° C. or more). (1000 ° C.), there is no risk of gas leak during power generation, and as a result, the reliability of the cell output and the long life can be achieved. Furthermore, when assembling a stack using a plurality of cells, the number of sealing portions at the stage of generating power can be reduced as much as possible, thereby facilitating system design.

【0021】[0021]

【発明の実施の形態】本発明におけるセル本体は、円筒
状の空気極の表面に固体電解質を形成し、この固体電解
質の表面に燃料極を形成し、さらに、空気極と電気的に
接続する集電体を設けてセル本体が形成されている。
尚、図3に示すようなセル本体を作製しても良い。
BEST MODE FOR CARRYING OUT THE INVENTION The cell body according to the present invention forms a solid electrolyte on the surface of a cylindrical air electrode, forms a fuel electrode on the surface of the solid electrolyte, and is further electrically connected to the air electrode. A cell body is formed by providing a current collector.
In addition, you may manufacture the cell main body as shown in FIG.

【0022】そして、図1および図2に示すように、セ
ル本体8の一端部の外周面には、セラミックスからなる
ガスシール層9が形成され、このガスシール層9の表面
には、キャップ形状の緻密質セラミックスからなる封止
部材11が外嵌されており、セル本体8とガスシール層
9、封止部材11が焼成により一体化されている。即
ち、セル本体8の一端部外周面にセラミックスラリーを
塗布することにより、セル本体8外周面の凹凸を無く
し、平坦化した後、封止部材用セラミック成形体を外嵌
して焼成することにより、封止部材用セラミック成形体
が焼成収縮し、セル本体8の一端部に嵌着すると同時
に、焼成時にセル本体8の外周面と封止部材11の内面
とが、ガスシール層9を介して接合している。
As shown in FIGS. 1 and 2, a gas seal layer 9 made of ceramic is formed on the outer peripheral surface of one end of the cell body 8, and the surface of the gas seal layer 9 has a cap shape. The sealing member 11 made of dense ceramic is fitted outside, and the cell body 8, the gas seal layer 9, and the sealing member 11 are integrated by firing. That is, by applying a ceramic slurry to the outer peripheral surface of one end of the cell main body 8 to eliminate and flatten the outer peripheral surface of the cell main body 8, the ceramic molded body for a sealing member is externally fitted and fired. At the same time, the ceramic molded body for the sealing member shrinks by firing, and is fitted to one end of the cell body 8, and at the same time, the outer peripheral surface of the cell body 8 and the inner surface of the sealing member 11 are interposed via the gas seal layer 9 during firing. Are joined.

【0023】ガスシール層9は、例えば、部分安定化Z
rO2 や安定化ZrO2 、LaCrO3 系等の種々の材
料を用いることができるが、特には、熱膨張率の観点か
ら固体電解質材料と同一の材料から構成することが望ま
しい。ガスシール層9の厚みはセル本体8外表面の凹凸
を無くす程度あれば良いが、50〜300μmが望まし
い。
The gas seal layer 9 is made of, for example, a partially stabilized Z
Various materials such as rO 2 , stabilized ZrO 2 , and LaCrO 3 can be used, but it is particularly preferable to use the same material as the solid electrolyte material from the viewpoint of the coefficient of thermal expansion. The thickness of the gas seal layer 9 may be such that the irregularities on the outer surface of the cell body 8 are eliminated, but is preferably 50 to 300 μm.

【0024】封止部材11はガスリークを防止するため
緻密質セラミックスからなるものであるが、緻密質セラ
ミックスとは、例えば、ガスシール層9と同様の材料を
用いることができる。またガスシール層9と同様に、熱
膨張率の観点から固体電解質材料と同一の材料から構成
することが望ましい。また、封止部材11、ガスシール
層9の熱膨張率は、Y2 3 部分安定化ZrO2 の場
合、Y2 3 とZrO2の比を変化させることにより調
整できる。
The sealing member 11 is made of dense ceramics to prevent gas leakage. The dense ceramics may be, for example, the same material as the gas seal layer 9. Further, similarly to the gas seal layer 9, it is desirable to form the same material as the solid electrolyte material from the viewpoint of the coefficient of thermal expansion. In the case of Y 2 O 3 partially stabilized ZrO 2 , the coefficient of thermal expansion of the sealing member 11 and the gas seal layer 9 can be adjusted by changing the ratio of Y 2 O 3 to ZrO 2 .

【0025】封止部材11は、セル本体8が挿入される
円筒部13と、基底部14とから構成されており、前記
円筒部13と前記基底部14の外径を同一長さとし、単
独で焼結させた場合の前記円筒部13の内径が、前記セ
ル本体8の外径よりも小さくなるような封止部材用成形
体を前記セル本体8の一端に当接して焼成されたもので
あり、封止部材11の基底部14の外径をD1、円筒部
13の外径をD2とした時、D1/D2が0.74〜0.
88の範囲を満足している。これは、この範囲内なら
ば、セル本体8の外面に封止部材11が密着固定し、ガ
スの漏出がないからである。逆にD1/D2が0.74よ
りも小さい場合には円筒部13と基底部14との間にク
ラックが発生し、0.88よりも大きい場合には、円筒
部13によるセル本体8の締付力が弱く、セル本体8と
円筒部13との間からガスが漏出する虞があるからであ
る。D1/D2は、ガスシール性を向上し、かつ封止部材
11のクラックの発生を防止するという点、および高温
負荷試験、サイクル試験において優れているという点か
ら、0.77〜0.82が望ましい。
The sealing member 11 includes a cylindrical portion 13 into which the cell body 8 is inserted, and a base portion 14. The outer diameters of the cylindrical portion 13 and the base portion 14 are the same length, and the sealing member 11 is used alone. A molded body for a sealing member in which the inner diameter of the cylindrical portion 13 when sintered is smaller than the outer diameter of the cell body 8 is fired by abutting one end of the cell body 8. When the outer diameter of the base portion 14 of the sealing member 11 is D 1 and the outer diameter of the cylindrical portion 13 is D 2 , D 1 / D 2 is 0.74 to 0.
88 is satisfied. This is because, within this range, the sealing member 11 is tightly fixed to the outer surface of the cell body 8, and there is no gas leakage. Conversely, when D 1 / D 2 is smaller than 0.74, cracks occur between the cylindrical portion 13 and the base portion 14, and when D 1 / D 2 is larger than 0.88, the cell body 8 by the cylindrical portion 13 is formed. Is weak, and gas may leak from between the cell body 8 and the cylindrical portion 13. D 1 / D 2 is 0.77 to 0.2 from the viewpoint of improving gas sealing properties, preventing cracks in the sealing member 11, and being excellent in high-temperature load tests and cycle tests. 82 is desirable.

【0026】また、セル本体8の外表面に当接する封止
部材11の円筒部13の厚みtは、セルの直径の増大を
抑え、焼結時の収縮の応力で破損しないようにするため
に、0.3〜1.2mmが望ましい。
The thickness t of the cylindrical portion 13 of the sealing member 11 which is in contact with the outer surface of the cell body 8 is set so as to suppress the increase in the diameter of the cell and to prevent the cell from being damaged by the shrinkage stress during sintering. , 0.3 to 1.2 mm.

【0027】このような固体電解質型燃料電池セルの製
造方法について詳述する。まず、セル本体を作製するた
めに、自己支持管としての機能を有する円筒状の空気極
成形体を押出成形により作製し、その後1200〜13
00℃の温度で5〜20時間程度脱バインダー・仮焼を
行い、空気極仮焼体を作製する。この空気極仮焼体は、
ペロブスカイト型結晶相を主相とするLaMnO3 系の
材料で、その平均結晶粒径は3〜20μm、特に5〜1
5μmであることが望ましい。これは、主結晶相の粒径
が3μmより小さいと強度は高いもののガス透過性が低
く、20μmを越えるとガス透過性は高くなるものの強
度が不十分となるためである。なお、空気極の開気孔率
は20〜45%、特に30〜40%が適当である。また
平均細孔径は1.0〜5.0μmの範囲がガス透過性に
優れる。
A method for manufacturing such a solid oxide fuel cell will be described in detail. First, in order to produce a cell main body, a cylindrical air electrode molded body having a function as a self-supporting tube is produced by extrusion molding, and thereafter, 1200 to 13
Binder removal and calcination are performed at a temperature of 00 ° C. for about 5 to 20 hours to produce a calcined cathode. This calcined cathode is
A LaMnO 3 -based material having a perovskite-type crystal phase as a main phase, and having an average crystal grain size of 3 to 20 μm, particularly 5 to 1 μm.
Desirably, it is 5 μm. This is because if the particle diameter of the main crystal phase is smaller than 3 μm, the gas permeability is low although the strength is high, and if it exceeds 20 μm, the gas permeability is high but the strength is insufficient. The open porosity of the air electrode is suitably from 20 to 45%, particularly from 30 to 40%. An average pore diameter in the range of 1.0 to 5.0 μm is excellent in gas permeability.

【0028】次に、空気極仮焼体の表面に固体電解質を
構成する材料の成形体層を形成する。この固体電解質成
形体層は、平均粒径が0.5〜3μmのY2 3 等の周
知の安定化剤により安定化されたZrO2 からなる粉体
を用いてスラリーを調製し、その後ドクターブレード法
等により作製されたグリーンシートを巻き付けて形成さ
れる。
Next, a molded layer of a material constituting the solid electrolyte is formed on the surface of the calcined cathode. This solid electrolyte molded body layer is prepared by using a powder of ZrO 2 stabilized with a known stabilizer such as Y 2 O 3 having an average particle diameter of 0.5 to 3 μm to prepare a slurry, and then a doctor is prepared. It is formed by winding a green sheet produced by a blade method or the like.

【0029】そして空気極/固体電解質成形体を100
0〜1300℃の温度で1〜3時間程度仮焼し、その後
集電体の積層箇所となる固体電解質仮焼体の表面を平滑
に研磨し、空気極仮焼体を露出させ、固体電解質仮焼体
および空気極仮焼体の表面に集電体用成形体を積層す
る。集電体用成形体はLaCrO3 系の材料を使用し、
固体電解質成形体と同様にグリーンシートを積層して形
成される。
Then, the air electrode / solid electrolyte molded body is
The calcined body is calcined at a temperature of 0 to 1300 ° C. for about 1 to 3 hours, and thereafter, the surface of the calcined solid electrolyte, which is a laminated portion of the current collector, is smoothly polished to expose the calcined cathode. A molded body for a current collector is laminated on the surface of the calcined body and the calcined cathode. The molded body for the current collector uses a LaCrO 3 material,
It is formed by laminating green sheets in the same manner as the solid electrolyte molded body.

【0030】このようにして作製した積層体は、大気等
の酸化性雰囲気中、1300〜1600℃の温度で3〜
15時間程度同時焼成することにより共焼結させ、円筒
状のセル本体を作製する。
The laminate thus manufactured is heated at a temperature of 1300 to 1600 ° C. in an oxidizing atmosphere such as air at a temperature of 3 to 1600 ° C.
Co-sintering is performed by simultaneous firing for about 15 hours to produce a cylindrical cell body.

【0031】また、燃料極はNiを30〜80重量%含
有し残部が安定化ZrO2 (Y2 3 等の安定化剤を含
む)からなる多孔質のサーメット材料を使用し、前記積
層焼結体の所定箇所に成形体層を形成して焼結させる
か、あるいは前記空気極/固体電解質/集電体成形体を
形成した後、さらに燃料極成形体を積層し、これらを同
時に焼成し、円筒状のセル本体を作製することもでき
る。
The fuel electrode uses a porous cermet material containing 30 to 80% by weight of Ni and the balance of stabilized ZrO 2 (including a stabilizer such as Y 2 O 3 ). After forming a molded body layer at a predetermined portion of the sintered body and sintering, or after forming the air electrode / solid electrolyte / current collector molded body, a fuel electrode molded body is further laminated and fired simultaneously. Alternatively, a cylindrical cell body can be manufactured.

【0032】次に、例えば、固体電解質成形体と同様の
スラリーを用い、例えば、スラリー中にセル本体の一端
部を浸漬(ディッピング)することにより、セル本体の
一端部の外表面にセラミックスラリーを塗布し、100
〜150℃で1〜3時間乾燥する。セラミックスラリー
を塗布する方法としては、他にスプレー、刷毛等による
塗布がある。セラミックスラリーは、封止部材が外嵌さ
れる部分よりも僅かに広い面積で塗布されることが望ま
しい。塗布厚みについては、セル本体外周面の凹凸がな
くなる程度であれば、特に限定されない。本発明におい
ては、このようなセラミックスラリーの塗布工程(ガス
シール層)は必ずしも必要ではないが、よりガスシール
を確実に行うという点から、あった方が良い。
Next, for example, the same slurry as that of the solid electrolyte molded body is used, and for example, one end of the cell body is immersed (dipped) in the slurry, so that the ceramic slurry is applied to the outer surface of one end of the cell body. Apply, 100
Dry at ~ 150 ° C for 1-3 hours. Other methods of applying the ceramic slurry include spraying, brushing, and the like. It is desirable that the ceramic slurry be applied in an area slightly larger than a portion where the sealing member is externally fitted. The coating thickness is not particularly limited as long as the unevenness on the outer peripheral surface of the cell body is eliminated. In the present invention, such a step of applying the ceramic slurry (gas sealing layer) is not always necessary, but it is preferable to perform gas sealing more reliably.

【0033】封止部材は発電の際にガスシール性を要求
されるため、例えば、平均結晶粒径が0.5〜3μm程
度のZrO2 系やLaCrO3 系酸化物粉末を押出成形
や静水圧成形(ラバープレス)等により成形し、キャッ
プ形状に切削加工を行い封止部材用セラミック成形体を
作製する。ガスシール層および封止部材は、イットリア
部分安定化ジルコニアを用いることが望ましい。
Since the sealing member is required to have gas sealing properties during power generation, for example, ZrO 2 -based or LaCrO 3 -based oxide powder having an average crystal grain size of about 0.5 to 3 μm is extruded or subjected to hydrostatic pressure. It is formed by molding (rubber press) or the like, and cut into a cap shape to produce a ceramic molded body for a sealing member. It is desirable to use yttria partially stabilized zirconia for the gas seal layer and the sealing member.

【0034】この時の封止部材用セラミック成形体は、
セル本体の外周面に当接し、締めつける円筒部の成形体
厚みは、0.7〜2.0mmであることが望ましい。こ
れは、0.7mmよりも薄い場合には焼成時に封止部材
が割れる場合があり、また2.0mmよりも厚い場合に
は、複数の固体電解質型燃料電池セルによりスタックを
作製する際のセル間の電気的な接続が困難になるからで
ある。また、円筒部の厚みの分だけ外径が増加するた
め、なるべく外径の増加をなくすため、封止部材の円筒
部の厚みを薄くすることが要求され、薄くても十分強度
を有するイットリア部分安定化ジルコニアが望ましい。
At this time, the ceramic molding for a sealing member is
It is desirable that the thickness of the molded body of the cylindrical portion which abuts on the outer peripheral surface of the cell body and is tightened is 0.7 to 2.0 mm. This is because if the sealing member is thinner than 0.7 mm, the sealing member may be broken at the time of firing, and if it is thicker than 2.0 mm, a cell when a stack is formed by a plurality of solid oxide fuel cells. This is because electrical connection between them becomes difficult. In addition, since the outer diameter increases by the thickness of the cylindrical portion, it is required to reduce the thickness of the cylindrical portion of the sealing member in order to minimize the increase in the outer diameter as much as possible. Stabilized zirconia is preferred.

【0035】また、セル本体の一端が挿入される封止部
材用セラミック成形体の円筒部の内径は、セル本体の外
径の1.05〜1.25倍であることが望ましい。これ
は、円筒部の内径がセル本体の外径の1.05倍よりも
小さい場合には、封止部材に歪みによる割れが生じ易
く、また1.25倍よりも大きい場合には封止部材とセ
ル本体との間に隙間が生じ、封止できなくなる場合があ
るからである。また、封止部材を単独で焼結させた場合
の円筒部の内径は、セル本体の外径よりも小さくなるよ
うに、封止部材用セラミック成形体の寸法、材料等が決
定されている。
The inner diameter of the cylindrical portion of the ceramic molding for a sealing member into which one end of the cell body is inserted is preferably 1.05 to 1.25 times the outer diameter of the cell body. This is because when the inner diameter of the cylindrical portion is smaller than 1.05 times the outer diameter of the cell body, the sealing member is liable to crack due to distortion, and when the inner diameter is larger than 1.25 times the sealing member. This is because a gap may be formed between the cell and the cell body, and sealing may not be possible. The size, material, and the like of the ceramic molding for a sealing member are determined so that the inner diameter of the cylindrical portion when the sealing member is sintered alone is smaller than the outer diameter of the cell body.

【0036】この後、図2に示すように、セル本体の一
端部を封止部材用セラミック成形体の円筒部に挿入し、
大気等の酸化性雰囲気中、1300〜1600℃の温度
で1〜5時間程度焼成し、セル本体の一端部に、ガスシ
ール層を介して封止部材を嵌着し、本発明の固体電解質
型燃料電池セルを得る。封止部材用セラミック成形体の
焼成温度は、特に1350℃から1500℃の範囲で行
うことが望ましい。即ち、セル本体の焼結後に改めて封
止部材を焼結させるため、ガスシール層や封止部材の焼
結温度はセル本体の焼結温度以下であることが要求され
る。たとえばLaMnO3 系材料を用いた燃料電池セル
などの焼成温度は1500℃程度で焼結されるが、イッ
トリア部分安定化ジルコニアはそれ以下の1400℃程
度で焼結させることができるため、封止部材やガスシー
ル層として、イットリア部分安定化ジルコニアが望まし
い。
Thereafter, as shown in FIG. 2, one end of the cell body is inserted into the cylindrical portion of the ceramic molding for the sealing member.
Baking for about 1 to 5 hours at a temperature of 1300 to 1600 ° C. in an oxidizing atmosphere such as the atmosphere, and fitting a sealing member to one end of the cell body via a gas seal layer to obtain a solid electrolyte type of the present invention. Obtain a fuel cell. The firing temperature of the ceramic molding for a sealing member is desirably in a range of 1350 ° C to 1500 ° C. That is, in order to newly sinter the sealing member after sintering the cell body, the sintering temperature of the gas seal layer and the sealing member is required to be lower than the sintering temperature of the cell body. For example, the sintering temperature of a fuel cell using a LaMnO 3 -based material or the like is sintered at about 1500 ° C., but the yttria partially stabilized zirconia can be sintered at a lower temperature of about 1400 ° C. Yttria partially stabilized zirconia is preferable as the gas seal layer.

【0037】封止部材とガスシール層とは焼成時に一体
化し、さらにガスシール層とセル本体の一端部外周面と
も焼成時に一体化し、これにより、封止部材がガスシー
ル層を介してセル本体の一端部外周面に接合されること
になる。ガスシール層および緻密質セラミックからなる
封止部材は、ガスリークを防止することができれば良
く、特に気孔率5%以下であることが望ましい。
The sealing member and the gas seal layer are integrated at the time of firing, and the gas seal layer and the outer peripheral surface at one end of the cell body are integrated at the time of firing, whereby the sealing member is interposed through the gas seal layer. Is joined to the outer peripheral surface at one end. The sealing member made of the gas sealing layer and the dense ceramic only needs to be able to prevent gas leakage, and particularly preferably has a porosity of 5% or less.

【0038】尚、本発明は、セル本体の一端を封止部材
により封止した点に特徴があり、セル本体の作製方法に
ついては特に限定されず、上記した方法以外の公知の方
法で作製しても良い。
The present invention is characterized in that one end of the cell main body is sealed with a sealing member, and the method for manufacturing the cell main body is not particularly limited, and the cell main body is manufactured by a known method other than the above-described method. May be.

【0039】また、本発明では、燃料極スラリーを、空
気極、固体電解質、集電体を有するセル本体に塗布した
後、セル本体を封止部材用セラミック成形体の円筒部に
挿入し、燃料極塗布膜と同時に前記封止部材用セラミッ
ク成形体を焼成し、燃料極を固体電解質表面に焼き付け
ても良い。この場合には、燃料極のみを焼き付けるため
の熱処理工程を省略できる。
Further, in the present invention, after the fuel electrode slurry is applied to a cell body having an air electrode, a solid electrolyte, and a current collector, the cell body is inserted into a cylindrical portion of a ceramic molding for a sealing member, and At the same time as the electrode coating film, the ceramic molded body for a sealing member may be baked to bake the fuel electrode on the surface of the solid electrolyte. In this case, a heat treatment step for burning only the fuel electrode can be omitted.

【0040】[0040]

【実施例】【Example】

実施例1 円筒型の固体電解質型燃料電池セルを共焼結により作製
するため、まず円筒状空気極成形体を以下のようにして
作製した。市販の純度99.9%以上のLa23 ,Y
2 3 ,CaCO3 ,Mn2 3 を出発原料として、こ
れをLa0.560.14Ca0.3 MnO3 の組成になるよう
に秤量混合した後、1500℃で3時間仮焼し粉砕して
平均粒径が5μmの固溶体粉末を得た。また、この固溶
体粉末にバインダーを添加し、押出成形法で円筒状の空
気極成形体を作製した。前記空気極成形体は、乾燥後1
250℃で10時間脱バインダー・仮焼することにより
円筒状の空気極仮焼体を作製した。
Example 1 In order to produce a cylindrical solid oxide fuel cell by co-sintering, first, a cylindrical air electrode molded body was produced as follows. La 2 O 3 , Y having a purity of 99.9% or more commercially available
Starting materials such as 2 O 3 , CaCO 3 , and Mn 2 O 3 were weighed and mixed so as to have a composition of La 0.56 Y 0.14 Ca 0.3 MnO 3 , then calcined at 1500 ° C. for 3 hours and pulverized to obtain an average particle size. A solid solution powder having a diameter of 5 μm was obtained. Further, a binder was added to the solid solution powder, and a cylindrical air electrode molded body was produced by an extrusion molding method. After drying, the air electrode molded product is 1
A cylindrical air electrode calcined body was prepared by debinding and calcining at 250 ° C. for 10 hours.

【0041】次に、共沈法により得られたY2 3 を8
mol%の割合で含有する平均粒径が1μmのZrO2
粉末に、トルエンとバインダーを添加してスラリーを調
製し、ドクターブレード法により厚み130μmの固体
電解質シートを作製した。
Next, Y 2 O 3 obtained by the coprecipitation method was
mol% ZrO 2 having an average particle size of 1 μm
Toluene and a binder were added to the powder to prepare a slurry, and a 130 μm-thick solid electrolyte sheet was prepared by a doctor blade method.

【0042】次に、市販の純度99.9%以上のLa2
3 ,Cr2 3 ,MgOを出発原料として、これをL
a(Mg0.3 Cr0.7 0.973 の組成になるように秤
量混合した後、1500℃で3時間仮焼し粉砕して、平
均粒径が2μmの固溶体粉末を得た。次に、この固溶体
粉末にトルエンとバインダーを添加してスラリーを調製
し、ドクターブレード法により厚み130μmの集電体
シートを作製した。
Next, commercially available La 2 having a purity of 99.9% or more is used.
Starting from O 3 , Cr 2 O 3 and MgO, this is
a (Mg 0.3 Cr 0.7 ) 0.97 O 3 The mixture was weighed and mixed so as to obtain a composition, and then calcined at 1500 ° C. for 3 hours and pulverized to obtain a solid solution powder having an average particle diameter of 2 μm. Next, a slurry was prepared by adding toluene and a binder to the solid solution powder, and a current collector sheet having a thickness of 130 μm was prepared by a doctor blade method.

【0043】前記円筒状空気極仮焼体に前記固体電解質
シートをロール状に巻き付け、1100℃で3時間の仮
焼を行なった。仮焼後、集電体シートの積層箇所となる
固体電解質仮焼体の表面を平面研磨し、露出した空気極
仮焼体まで表面上を平面研磨し、前記集電体シートを所
定箇所に帯状に巻き付けた。その後、大気中1500℃
で6時間の条件で共焼結を試みた。
The solid electrolyte sheet was wound into a roll around the cylindrical air electrode calcined body, and calcined at 1100 ° C. for 3 hours. After calcination, the surface of the solid electrolyte calcined body which is to be a laminated portion of the current collector sheet is polished flat, and the surface is polished up to the exposed air electrode calcined body. Wrapped around. Then, at 1500 ° C in air
For 6 hours.

【0044】共焼結後、NiO粉末にZrO2 (10m
ol%Y2 3 含有)粉末を重量比で80:20の割合
で混合した混合粉末に水を溶媒として加えて燃料極スラ
リーを調整し、厚み50μmの燃料極スラリーを積層焼
結体表面に塗布乾燥し、外径約15mm、厚み2mmの
セル本体を作製した。
After co-sintering, ZrO 2 (10 m
ol% Y 2 O 3 ) powder was mixed at a weight ratio of 80:20, water was added as a solvent to prepare a fuel electrode slurry, and a 50 μm thick fuel electrode slurry was applied to the surface of the laminated sintered body. It was applied and dried to produce a cell body having an outer diameter of about 15 mm and a thickness of 2 mm.

【0045】次に、Y2 3 を3mol%の割合でそれ
ぞれ含有する平均粒径が1μmのZrO2 粉末に水を溶
媒として加えてスラリーを調整し、このスラリーにセル
本体の一端部を浸漬し、ディッピング法により、厚み1
00μmのセラミックスラリーをセル片端部の外周面に
塗布し、120℃で1時間乾燥した。
Next, water was added as a solvent to ZrO 2 powder having an average particle size of 1 μm and containing Y 2 O 3 at a ratio of 3 mol% to prepare a slurry, and one end of the cell body was immersed in the slurry. And a thickness of 1 by the dipping method
A 00 μm ceramic slurry was applied to the outer peripheral surface of one end of the cell, and dried at 120 ° C. for 1 hour.

【0046】次に、封止部材としてのキャップ形状の成
形体を作製する。まず、前記スラリー組成と同じ組成で
ある、Y2 3 を3mol%の割合でそれぞれ含有する
平均粒径が1μmのZrO2 系の粉末を用いて静水圧成
形(ラバープレス)を行いキャップ形状に切削加工し
た。その後、前記スラリーを被覆した前記セル片端部を
封止部材用成形体に挿入した。封止部材用成形体の円筒
部および基底部の外径の寸法は、焼結した後の寸法が表
1の値となるように制御した。
Next, a cap-shaped molded body as a sealing member is prepared. First, hydrostatic pressing (rubber pressing) is performed using a ZrO 2 -based powder having the same composition as the slurry composition and containing Y 2 O 3 at a ratio of 3 mol% and an average particle diameter of 1 μm to form a cap. It was cut. Thereafter, one end of the cell coated with the slurry was inserted into a molded body for a sealing member. The dimensions of the outer diameter of the cylindrical portion and the base portion of the molded body for a sealing member were controlled such that the dimensions after sintering became the values shown in Table 1.

【0047】セル本体の外周面と当接し、セル本体を締
めつける封止部材用成形体の円筒部の肉厚tを0.7m
mに設定した。即ち、封止部材用成形体の円筒部の長さ
が10mm、肉厚tが0.7mmであり、基底部の軸長
方向の長さは8mmであった。尚、成形体における円筒
部と基底部の外径は同一長さとした。
The thickness t of the cylindrical portion of the molded body for a sealing member which comes into contact with the outer peripheral surface of the cell body and tightens the cell body is 0.7 m.
m. That is, the length of the cylindrical portion of the molded body for a sealing member was 10 mm, the thickness t was 0.7 mm, and the length of the base portion in the axial direction was 8 mm. Note that the outer diameter of the cylindrical portion and the outer diameter of the base portion in the molded body were the same length.

【0048】その後、大気中で1400℃で2時間の焼
成を行うことにより、燃料極層を形成するとともに、セ
ル本体の一端部外周面に、ガスシール層を介してキャッ
プ形状の封止部材を嵌合した。この時の基底部と円筒部
の外径D1 、D2 を測定し、その比D1 /D2 比を求め
た。尚、封止部材用成形体を単独で1400℃で2時間
焼成したところ、その焼結体の円筒部の外径と、成形体
の外径の比は75%であった。
Thereafter, the fuel electrode layer is formed by sintering at 1400 ° C. for 2 hours in the air, and a cap-shaped sealing member is provided on the outer peripheral surface of one end of the cell body via a gas seal layer. Mated. At this time, the outer diameters D 1 and D 2 of the base portion and the cylindrical portion were measured, and the ratio D 1 / D 2 was determined. When the molded body for a sealing member was baked independently at 1400 ° C. for 2 hours, the ratio of the outer diameter of the cylindrical portion of the sintered body to the outer diameter of the molded body was 75%.

【0049】そして、封止を行わなかった側の開口端か
ら、外気圧に対しセル本体内部の内気圧を外気圧よりも
+1kgf/cm2 高くとなるようにAirを加圧して
注入し、これを水没させ、気泡の発生の有無より、リー
クの有無を判断した。これらの結果を表1に記載する。
Then, Air is pressurized and injected from the open end on the side where the sealing is not performed so that the internal air pressure inside the cell body becomes +1 kgf / cm 2 higher than the external air pressure with respect to the external air pressure. Was submerged, and the presence or absence of air bubbles was judged based on the presence or absence of air bubbles. Table 1 shows the results.

【0050】[0050]

【表1】 [Table 1]

【0051】この表1より、D1 /D2 が74〜88%
の範囲を満足する場合にはリークが発生しないが、D1
/D2 が89%の試料ではリークが発生し、72%では
封止部材が破損した。
According to Table 1, D 1 / D 2 is 74 to 88%.
When the range is satisfied, no leak occurs, but D 1
/ D 2 leakage occurs in 89% of the sample, 72% in the sealing member is damaged.

【0052】実施例2 実施例1の試料を1000℃の高温下に放置し、途中1
00時間、500時間、1000時間経過時点で取り出
して、室温まで冷却し、上記と同様にしてリークの有無
を調べた。さらに1000℃から室温まで冷却する工程
を10回繰り返すサイクル負荷後においても、リークの
有無を調べ、その結果を表2に示す。
Example 2 The sample of Example 1 was left at a high temperature of 1000 ° C.
It was taken out after the lapse of 00 hours, 500 hours, and 1000 hours, cooled to room temperature, and examined for leaks in the same manner as described above. Further, even after a cycle load in which the step of cooling from 1000 ° C. to room temperature is repeated 10 times, the presence or absence of leakage was examined. The results are shown in Table 2.

【0053】[0053]

【表2】 [Table 2]

【0054】この表2から、D1 /D2 が74〜82%
の範囲で高温負荷において優れた特性を有することが判
る。そして、表2から、D1 /D2 が77〜82%の場
合には降温負荷試験およびサイクル試験においても優れ
ていることが判る。
From Table 2, D 1 / D 2 is 74-82%.
It can be seen that the composition has excellent characteristics at high temperature load in the range of. Then, from Table 2, D 1 / D 2 is seen to be excellent also in the cooling load test and the cycle test in the case of 77 to 82%.

【0055】[0055]

【発明の効果】以上詳述したように、本発明によれば、
円筒部と基底部の外径を同一長さとし、単独で焼結させ
た場合の前記円筒部の内径が、セル本体の外径よりも小
さくなるような封止部材用成形体を前記セル本体の一端
に当接して焼成し、セル製造段階でセル本体の一端を、
ガスシール層を介して緻密質セラミックスの封止部材に
より封止するとともに、封止部材の基底部の外径D
1と、円筒部の外径D2との比D1/D2を0.74〜0.
88の範囲とすることにより、セル本体の一端の封止を
容易かつ確実に行うことができるとともに、発電用セル
本体を炉内にセットする前に封止状態を確認することが
でき、発電の際のガスシール性が十分に保証され、長期
的に安定したセル性能を維持できる。
As described in detail above, according to the present invention,
The outer diameter of the cylindrical portion and the base portion are the same length, and the inner diameter of the cylindrical portion when sintered alone is smaller than the outer diameter of the cell body. Bake by contacting one end, one end of the cell body at the cell manufacturing stage,
Sealing is performed with a dense ceramic sealing member via a gas seal layer, and an outer diameter D of a base portion of the sealing member.
1 and the ratio D 1 / D 2 of the outer diameter D 2 of the cylindrical portion to 0.74 to 0.1.
By setting the range to 88, it is possible to easily and reliably seal one end of the cell body, and to check the sealed state before setting the power generation cell body in the furnace. In this case, the gas sealing property is sufficiently ensured, and stable cell performance can be maintained for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒型燃料電池セルの構造を示す概念
図である。
FIG. 1 is a conceptual diagram showing the structure of a cylindrical fuel cell according to the present invention.

【図2】封止部材用成形体の円筒部にセル本体の一端を
挿入した状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state where one end of a cell main body is inserted into a cylindrical portion of a molding for a sealing member.

【図3】固体電解質型燃料電池セルのセル本体を示す斜
視図である。
FIG. 3 is a perspective view showing a cell body of the solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

8・・・セル本体 9・・・ガスシール層 11・・・封止部材 13・・・円筒部 14・・・基底部 8 Cell Body 9 Gas Seal Layer 11 Sealing Member 13 Cylindrical Part 14 Base

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円筒状の固体電解質の片面に空気極、他面
に燃料極が形成されるとともに、前記空気極または前記
燃料極に電気的に接続され、かつ外面に露出する集電体
を具備する円筒状のセル本体の一端部外周面に、基底部
と円筒部からなるセラミックス製のキャップ形状封止部
材を外嵌してなる固体電解質型燃料電池セルにおいて、 前記封止部材が、前記円筒部と前記基底部の外径を同一
長さとし、単独で焼結させた場合の前記円筒部の内径
が、前記セル本体の外径よりも小さくなるような封止部
材用成形体を前記セル本体の一端に当接して焼成された
ものであり、前記基底部の外径をD1、前記円筒部の外
径をD2とした時、D1/D2が0.74〜0.88の範
囲を満足することを特徴とする固体電解質型燃料電池セ
ル。
An air electrode is formed on one surface of a cylindrical solid electrolyte, and a fuel electrode is formed on the other surface, and a current collector electrically connected to the air electrode or the fuel electrode and exposed on the outer surface is provided. In a solid oxide fuel cell unit, a ceramic cap-shaped sealing member consisting of a base portion and a cylindrical portion is externally fitted to an outer peripheral surface at one end of a cylindrical cell body provided, wherein the sealing member is An outer diameter of the cylindrical portion and the base portion is the same length, and the inner diameter of the cylindrical portion when sintered alone is smaller than the outer diameter of the cell body. When the outer diameter of the base is D 1 and the outer diameter of the cylindrical part is D 2 , D 1 / D 2 is 0.74 to 0.88. A solid oxide fuel cell that satisfies the following range:
【請求項2】セル本体の一端部外周面に、セラミックス
からなるガスシール層を介して封止部材を外嵌してなる
ことを特徴とする請求項1記載の固体電解質型燃料電池
セル。
2. The solid oxide fuel cell according to claim 1, wherein a sealing member is externally fitted to an outer peripheral surface of one end of the cell body via a gas seal layer made of ceramics.
JP34821796A 1996-12-26 1996-12-26 Solid oxide fuel cell Expired - Lifetime JP3238086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34821796A JP3238086B2 (en) 1996-12-26 1996-12-26 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34821796A JP3238086B2 (en) 1996-12-26 1996-12-26 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH10189015A JPH10189015A (en) 1998-07-21
JP3238086B2 true JP3238086B2 (en) 2001-12-10

Family

ID=18395542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34821796A Expired - Lifetime JP3238086B2 (en) 1996-12-26 1996-12-26 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3238086B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9132384B2 (en) 2010-11-02 2015-09-15 Sumitomo Electric Industries, Ltd. Gas decomposition component, power generation apparatus, and method for decomposing gas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681007B1 (en) * 2006-04-04 2007-02-09 한국에너지기술연구원 The sealing element for anode-supported tubular solid oxide fuel cell, and the sealing method of the same
JP6208616B2 (en) * 2013-04-26 2017-10-04 京セラ株式会社 Cell and module and module housing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9132384B2 (en) 2010-11-02 2015-09-15 Sumitomo Electric Industries, Ltd. Gas decomposition component, power generation apparatus, and method for decomposing gas

Also Published As

Publication number Publication date
JPH10189015A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
JP2706197B2 (en) Method of forming ceramic thin film
JP4462727B2 (en) Solid electrolyte fuel cell
JPH1021935A (en) Solid electrolyte fuel cell
JP3434883B2 (en) Method for manufacturing fuel cell
JP3238086B2 (en) Solid oxide fuel cell
CN113488689B (en) Solid oxide fuel cell stack and method for preparing the same
JP3238087B2 (en) Solid oxide fuel cell
JPH0992294A (en) Solid electrolyte type fuel cell and its manufacture
JP3285779B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3339998B2 (en) Cylindrical fuel cell
JP3389469B2 (en) Solid oxide fuel cell
JP3389468B2 (en) Solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JPH11283640A (en) Cylindrical solid-electrolyte fuel cell
JP3281814B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell
JPH103932A (en) Cylindrical lateral stripe type solid electrolyte fuel cell
JP3285856B2 (en) Solid oxide fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP3217695B2 (en) Cylindrical fuel cell
JP4638070B2 (en) Cylindrical fuel cell, method for producing the same, and fuel cell
JP4721487B2 (en) Solid electrolyte fuel cell and fuel cell
JPH11283634A (en) Cylindrical solid electrolyte fuel cell
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11