JPH11283640A - Cylindrical solid-electrolyte fuel cell - Google Patents

Cylindrical solid-electrolyte fuel cell

Info

Publication number
JPH11283640A
JPH11283640A JP10086373A JP8637398A JPH11283640A JP H11283640 A JPH11283640 A JP H11283640A JP 10086373 A JP10086373 A JP 10086373A JP 8637398 A JP8637398 A JP 8637398A JP H11283640 A JPH11283640 A JP H11283640A
Authority
JP
Japan
Prior art keywords
sealing member
cylindrical
cell
cell body
gas seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10086373A
Other languages
Japanese (ja)
Inventor
Yuji Tateishi
勇二 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10086373A priority Critical patent/JPH11283640A/en
Publication of JPH11283640A publication Critical patent/JPH11283640A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical solid-electrolyte fuel cell such that a cell main body can be easily and surely gas-sealed and the gas seal is easy to check. SOLUTION: An air electrode is formed on one side of a cylindrical solid- electrolyte and a fuel electrode is formed on the other side. A cap-shaped sealing member 11 made of ceramics, which comprises a base bottom part 14 and a cylinder part 13, is fitted over the outer peripheral surface of one end of a cylindrical cell main body 8 via a gas seal layer 9 made of ceramics with a thickness of 70 to 250 μm, the cell main body 8 being electrically connected to the air electrode or the fuel electrode and having a current collector exposed to the outer surface thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒状固体電解質
型燃料電池セルに関するものである。
The present invention relates to a cylindrical solid oxide fuel cell.

【0002】[0002]

【従来技術】従来より、固体電解質燃料電池はその作動
温度が900〜1050℃と高温であるため発電効率が
高く、第3世代の発電システムとして期待されている。
2. Description of the Related Art Conventionally, a solid electrolyte fuel cell has a high power generation efficiency since its operating temperature is as high as 900 to 1050 ° C., and is expected as a third generation power generation system.

【0003】一般に、固体電解質型燃料電池セルには、
円筒型と平板型が知られている。平板型の燃料電池セル
は、発電の単位体積当たり出力密度が高いという特徴を
有するが、実用化に関してはガスシール不完全性やセル
内の温度分布の不均一性などの問題がある。それに対し
て、円筒型の燃料電池セルでは、出力密度は低いものの
セルの機械的強度が高く、セルの温度の均一性が保てる
という特徴がある。
[0003] In general, solid oxide fuel cells include:
A cylindrical type and a flat type are known. The flat-plate type fuel cell has the feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas sealing and non-uniform temperature distribution in the cell in practical use. On the other hand, the cylindrical fuel cell has a feature that although the output density is low, the mechanical strength of the cell is high and the uniformity of the cell temperature can be maintained.

【0004】両形状の固体電解質型燃料電池セルとも、
それぞれの特徴をを生かして積極的に研究開発が進めら
れている。
In both types of solid oxide fuel cells,
Research and development are being actively pursued by taking advantage of each feature.

【0005】円筒状固体電解質型燃料電池セルは、図3
に示したように、LaMnO3 系材料からなる多孔性の
空気極2を形成し、その表面にY2 3 部分安定化Zr
2からなる固体電解質3を被覆し、さらにこの表面に
多孔性のNi−ジルコニアの燃料極4が設けられてい
る。燃料電池モジュールにおいては、各単セルはLaC
rO3 系の集電体(インターコネクタ)5を介して接続
される。発電は円筒の内部に空気(酸素)6を、外部に
燃料(水素)7を流し、900〜1050℃の温度で行
われる。
A cylindrical solid oxide fuel cell is shown in FIG.
As shown in the above, a porous air electrode 2 made of a LaMnO 3 -based material is formed, and Y 2 O 3 partially stabilized Zr
A solid electrolyte 3 made of O 2 is covered, and a porous Ni-zirconia fuel electrode 4 is provided on this surface. In the fuel cell module, each single cell is LaC
It is connected via an rO 3 -based current collector (interconnector) 5. Power generation is performed at a temperature of 900 to 1050 ° C. by flowing air (oxygen) 6 inside the cylinder and fuel (hydrogen) 7 outside.

【0006】上記のような燃料電池セルを作製する方法
としてはLaMnO3 系材料からなる絶縁粉末を押出し
成形法等により円筒形に成形後、これを焼成して円筒状
の空気極からなる支持体を作製し、この円筒状空気極支
持体の外周面に固体電解質、燃料極、集電体のスラリー
を塗布して順次焼成して積層するか、あるいは円筒状空
気極支持体の表面に電気化学的蒸着法(EDV法)やプ
ラズマ溶射法等により固体電解質、燃料極、集電体を順
次形成することも行われている。
[0006] As a method of producing the above-mentioned fuel cell, a method of extruding an insulating powder made of a LaMnO 3 -based material into a cylindrical shape by an extrusion molding method or the like, and then calcining this to form a support comprising a cylindrical air electrode. A slurry of a solid electrolyte, a fuel electrode, and a current collector is applied to the outer peripheral surface of the cylindrical air electrode support and sequentially fired and laminated, or the surface of the cylindrical air electrode support is electrochemically coated. In some cases, a solid electrolyte, a fuel electrode, and a current collector are sequentially formed by a selective vapor deposition method (EDV method), a plasma spraying method, or the like.

【0007】最近ではセルの製造工程を簡略化するため
に、各構成材料のうち少なくとも2つを同時焼成すると
いう共焼結法も提案されている。この共焼結法は、例え
ば円筒状空気極支持管の成形体に固体電解質成形体およ
び集電体成形体をロール状に巻き付けて同時焼成を行
い、その後固体電解質表面に燃料極層を形成する方法で
ある。この共焼結法は製造工程が少なくなるためにセル
の製造時の歩留まり向上、コスト低減に有利である。
Recently, a co-sintering method has been proposed in which at least two of the constituent materials are simultaneously fired in order to simplify the cell manufacturing process. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound around a molded body of a cylindrical air electrode support tube in a roll shape and simultaneously fired, and then a fuel electrode layer is formed on the surface of the solid electrolyte. Is the way. This co-sintering method is advantageous in improving the yield during cell production and reducing costs since the number of production steps is reduced.

【0008】そして、従来、セルの一端封止は、焼結し
て得られた円筒状のセル本体を実際に発電を行う炉内の
取付部材にセットし、取付部材に形成されたガラス層を
セル本体の一端に当接し、発電を行う際の昇温時に前記
ガラス層を溶融させ、セル本体の一端を前記取付部材に
より封止していた。
[0008] Conventionally, one end of the cell is sealed by setting a cylindrical cell body obtained by sintering to a mounting member in a furnace for actually generating electric power, and attaching a glass layer formed on the mounting member. The glass layer is melted at the time of temperature rise when power is generated by contacting one end of the cell body, and one end of the cell body is sealed by the mounting member.

【0009】また、空気極成形体、および空気極成形体
と同一材料により有底筒状の封止部材成形体を作製し、
空気極成形体の一端と封止部材用成形体の一端を当接し
焼成した後、前述のように電気化学的蒸着法(EDV
法)やプラズマ溶射法等により封止部材の表面に緻密質
セラミックス層を形成し、封止部材からのガスリークを
防止していた。
[0009] Further, an air electrode molded body and a bottomed cylindrical sealing member molded body made of the same material as the air electrode molded body are produced.
After one end of the air electrode molding and one end of the sealing member molding are brought into contact with each other and fired, the electrochemical vapor deposition method (EDV
Method) or a plasma spraying method, a dense ceramic layer was formed on the surface of the sealing member to prevent gas leakage from the sealing member.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、燃料電
池セルの一端をガラス材を用いて取付部材により封止す
る従来の方法では、実際に発電を行う時に封止すること
になるため、完全に封止がなされているか否かの確認が
困難であり、シール不良による単セルの出力低下が生じ
易く、特にスタック化した場合には封止個所の増加によ
りシール不良の発生確率が高くなり、結果として出力が
低下するという問題があった。
However, according to the conventional method of sealing one end of the fuel cell with a mounting member using a glass material, the fuel cell is completely sealed when power is actually generated. It is difficult to confirm whether or not the sealing has been performed, and the output of a single cell is likely to decrease due to sealing failure.In particular, in the case of stacking, the probability of occurrence of sealing failure increases due to an increase in sealing locations, and as a result, There was a problem that the output decreased.

【0011】また、空気極成形体の一端と封止部材成形
体の一端を当接した状態で焼成する方法では、空気極成
形体と封止部材との接合が困難であり、しかも、ガスリ
ークを防止するため、電気化学的蒸着法(EDV法)や
プラズマ溶射法等により封止部材の表面に緻密質セラミ
ック層を形成する必要があり、封止工程が面倒であり、
コスト高であるという問題があった。
Further, in the method of firing in a state where one end of the air electrode molded body and one end of the sealing member molded body are in contact with each other, it is difficult to join the air electrode molded body and the sealing member, and furthermore, the gas leakage is reduced. To prevent this, it is necessary to form a dense ceramic layer on the surface of the sealing member by an electrochemical vapor deposition method (EDV method), a plasma spraying method, or the like, and the sealing process is troublesome.
There was a problem that the cost was high.

【0012】本発明は、セル本体のガスシールを容易か
つ確実に行うことができるとともに、ガスシールの確認
が容易な円筒状固体電解質型燃料電池セルを提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cylindrical solid oxide fuel cell capable of easily and reliably performing gas sealing of a cell body and easily confirming the gas seal.

【0013】[0013]

【課題を解決するための手段】本発明者らは上記問題点
に対して検討を重ねた結果、セル本体の一端部外周面に
ガスシール層用のセラミックスラリーを塗布した上で封
止部材用のセラミック成形体を外嵌して焼成し、封止部
材の焼成収縮により、セル本体の一端部に嵌着すること
により、セル本体の一端を容易かつ確実に封止すること
ができ、しかも封止状態を容易に確認し得ることを見い
出し、本発明に至った。
Means for Solving the Problems As a result of repeated studies on the above problems, the present inventors applied ceramic slurry for a gas sealing layer to the outer peripheral surface of one end of a cell body, and then applied the ceramic slurry for a sealing member. The ceramic molded body is externally fitted and fired, and the sealing member is fitted to one end of the cell main body by firing shrinkage, whereby one end of the cell main body can be easily and reliably sealed. It has been found that the stopped state can be easily confirmed, and the present invention has been achieved.

【0014】即ち、本発明の固体電解質燃料電池セル
は、円筒状の固体電解質の片面に空気極、他面に燃料極
が形成されるとともに、前記空気極または前記燃料極に
電気的に接続され、かつ外面に露出する集電体を具備す
る円筒状のセル本体の一端部外周面に、厚み70〜25
0μmのセラミックスからなるガスシール層を介して、
基底部と円筒部からなるセラミックス製のキャップ状封
止部材を外嵌してなるものである。ここで、ガスシール
層およびキャップ状封止部材が、Y2 3 を含有するZ
rO2 からなることが望ましい。
That is, the solid electrolyte fuel cell of the present invention has an air electrode formed on one side and a fuel electrode formed on the other side of a cylindrical solid electrolyte, and is electrically connected to the air electrode or the fuel electrode. And a thickness of 70 to 25 on the outer peripheral surface of one end of a cylindrical cell body having a current collector exposed on the outer surface.
Through a gas seal layer made of 0 μm ceramic,
A ceramic cap-shaped sealing member consisting of a base portion and a cylindrical portion is externally fitted. Here, the gas sealing layer and the cap-shaped sealing member are made of Z 2 containing Y 2 O 3.
Desirably, it is composed of rO 2 .

【0015】また、封止部材の軸方向の全長をL1 、基
底部の外径をD1 、円筒部の軸方向の長さをL2 、円筒
部の外径をD2 、円筒部の内径をD3 とした時、D1
2が0.78〜0.84の範囲を満足するとともに、
2 /Lが0.3〜0.7の範囲を満足し、かつL2
3 が0.3〜0.7の範囲を満足することが望まし
い。
Further, the overall length of the sealing member in the axial direction is L 1 , the outer diameter of the base portion is D 1 , the axial length of the cylindrical portion is L 2 , the outer diameter of the cylindrical portion is D 2 , and the outer diameter of the cylindrical portion is D 2 . when an inner diameter set to D 3, D 1 /
D 2 satisfies the range of 0.78 to 0.84,
L 2 / L satisfies the range of 0.3 to 0.7, and L 2 / L
It is desirable that D 3 satisfies the range of 0.3 to 0.7.

【0016】[0016]

【作用】本発明の円筒状固体電解質型燃料電池セルは、
従来のように、セル本体を炉内にセットし発電を行う際
にセル本体の一端を取付部材により封止するのではな
く、セル製造段階でセル本体の一端を緻密質セラミック
スにより封止するため、セル本体の一端の封止を容易か
つ確実に行うことができるとともに、発電用セル本体を
炉内にセットする前に封止状態を確認することができ、
発電を継続して行う際のガスシール性が十分に保証され
る。
The cylindrical solid oxide fuel cell according to the present invention comprises:
Instead of sealing one end of the cell body with a mounting member when setting the cell body in a furnace and performing power generation as in the past, one end of the cell body is sealed with dense ceramics at the cell manufacturing stage. In addition to being able to easily and reliably seal one end of the cell body, it is possible to check the sealing state before setting the power generation cell body in the furnace,
Gas sealing performance when power generation is continued is sufficiently ensured.

【0017】即ち、セル本体の一端部にガスシール層を
介して封止部材の円筒部が嵌着すると同時に、焼成時に
セル本体の外面と封止部材円筒部の内側面とが接合する
ため、セル本体の一端の封止を容易かつ確実に行うこと
ができる。また、セル本体の端面と封止部材の基底部の
内底面が接合することにより、封止部材をセル本体に強
固に固着できる。
That is, the cylindrical portion of the sealing member is fitted to one end of the cell body via the gas seal layer, and at the same time, the outer surface of the cell body and the inner surface of the sealing member cylindrical portion are joined at the time of firing. One end of the cell body can be easily and reliably sealed. In addition, the sealing member can be firmly fixed to the cell body by joining the end surface of the cell body and the inner bottom surface of the base of the sealing member.

【0018】さらに、複数のセルを用いてスタックを組
む際においては、発電を行う段階でのシール箇所を極力
少なくすることができるためにシステム設計を容易にす
ることが可能となる。
Further, when assembling a stack using a plurality of cells, the number of sealing portions at the stage of generating power can be reduced as much as possible, thereby facilitating system design.

【0019】そして、セル本体の一端部外周面に、厚み
70〜250μmのセラミックスからなるガスシール層
を介して、基底部と円筒部からなるセラミックス製のキ
ャップ状封止部材を外嵌したので、発電において長時間
ガスリークがなく、信頼性を向上できるとともに、セル
本体の直径方向の大型化を防止することができる。
Then, a ceramic cap-shaped sealing member consisting of a base portion and a cylindrical portion was fitted over the outer peripheral surface of one end of the cell body via a gas seal layer made of ceramic having a thickness of 70 to 250 μm. In the power generation, there is no gas leak for a long time, the reliability can be improved, and the size of the cell body in the diameter direction can be prevented from increasing.

【0020】即ち、円筒状固体電解質型燃料電池セルの
表面には、たとえば、固体電解質や集電体などの複数の
部分が存在し、それらの境界線部分には各部分の厚み程
度の数十〜百数十μmの段差が存在するが、厚み70〜
250μmのセラミックスからなるガスシール層によ
り、段差によるセル本体と封止部材との隙間を無くし、
ガスリークの発生を防止できる。
That is, a plurality of portions such as a solid electrolyte and a current collector are present on the surface of a cylindrical solid oxide fuel cell, and a boundary between these portions is several tens of thickness of each portion. Although there is a step of about one hundred and several tens μm,
The gas seal layer made of 250 μm ceramic eliminates the gap between the cell body and the sealing member due to the step,
The occurrence of gas leak can be prevented.

【0021】また、本発明によれば、例えば、ガスシー
ル層や封止部材としてZrO2 やLaCrO3 系の磁器
を用いた場合は、この磁器の焼成温度(1300℃以
上)は、実際の発電温度(1000℃)より高いので、
発電時におけるガスリークの発生の怖れがなく、結果と
して出力の信頼性、長寿命化が図れる。
Further, according to the present invention, for example, when a ZrO 2 or LaCrO 3 porcelain is used as a gas seal layer or a sealing member, the firing temperature of the porcelain (1300 ° C. or higher) is set to the actual power generation. Higher than the temperature (1000 ° C)
There is no fear of gas leak during power generation, and as a result, reliability of output and longer life can be achieved.

【0022】さらに、封止部材の成形体を焼結する際の
セル本体の姿勢は、長い円筒状のセル本体を直立させる
姿勢より、横倒しの姿勢とした方が安定である。その場
合、封止部材の成形体は横倒しのセル本体の一端に挿入
しても十分安定な形状とする必要がある。また、セル本
体の端面と封止部材基底部の内底面との接触が不十分だ
と、焼成後のセル本体と封止部材との一体化が不完全と
なり、セル本体と封止部材との接合部分が破壊する怖れ
がある。本発明では、焼結させた後の封止部材の円筒部
の内径D3 に対して、封止部材の円筒部の長さL2 を3
0%以上とし、焼結させた後の封止部材の軸方向の全長
1 に対して封止部材の円筒部の軸方向の長さL2 を3
0%以上としたので、セル本体が横倒しの姿勢でも、セ
ル本体に挿入された封止部材を安定した状態で接合でき
る。
Further, the posture of the cell body when sintering the molded body of the sealing member is more stable when the cell body is turned sideways than when the long cylindrical cell body is erected. In this case, the molded body of the sealing member needs to have a shape that is sufficiently stable even when inserted into one end of the cell body that is turned over. Also, if the contact between the end surface of the cell body and the inner bottom surface of the base of the sealing member is insufficient, the integration of the cell body and the sealing member after firing becomes incomplete, and the connection between the cell body and the sealing member becomes incomplete. There is a fear that the joint will be destroyed. In the present invention, the length L 2 of the cylindrical portion of the sealing member is set to 3 with respect to the inner diameter D 3 of the cylindrical portion of the sealing member after sintering.
0% or more, in the axial direction of the cylindrical portion of the sealing member relative to the total axial length L 1 of the sealing member after sintering the length L 2 3
Since it is 0% or more, the sealing member inserted into the cell main body can be bonded in a stable state even when the cell main body is lying down.

【0023】[0023]

【発明の実施の形態】本発明の円筒状固体電解質型燃料
電池セルにおけるセル本体は、例えば、円筒状の空気極
の表面に固体電解質を形成し、この固体電解質の表面に
燃料極を形成し、さらに、空気極と電気的に接続する集
電体を設けてセル本体が形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION A cell body of a cylindrical solid oxide fuel cell according to the present invention has, for example, a structure in which a solid electrolyte is formed on the surface of a cylindrical air electrode, and a fuel electrode is formed on the surface of the solid electrolyte. Further, a current collector electrically connected to the air electrode is provided to form the cell body.

【0024】そして、図1および図2に示すように、セ
ル本体8の一端部の外周面にはセラミックスからなるガ
スシール層9が形成され、このガスシール層9の表面に
は.キャップ形状の緻密質セラミックスからなる封止部
材11が外嵌されており、セル本体8とガスシール層
9、封止部材11が焼成により、一体化されている。
As shown in FIGS. 1 and 2, a gas seal layer 9 made of ceramic is formed on the outer peripheral surface of one end of the cell body 8. A sealing member 11 made of a dense ceramic having a cap shape is externally fitted, and the cell body 8, the gas seal layer 9, and the sealing member 11 are integrated by firing.

【0025】即ち、セル本体8の一端部外周面にセラミ
ックススラリーを塗布することにより、セル本体8外周
面の凸凹を無くし、平坦化した後、封止部材用セラミッ
クス成形体を外嵌して焼成することにより、封止部材用
セラミックスが焼成収縮し、セル本体8の一端部に嵌着
すると同時に、焼成時にセル本体8の外周面と封止部材
11の内面とが、ガスシール層9を介して接合してい
る。尚、封止部材11は、円筒部13と基底部14とか
ら構成されている。
That is, by applying a ceramic slurry to the outer peripheral surface of one end of the cell main body 8, the outer peripheral surface of the cell main body 8 is eliminated and flattened, and then the ceramic molded body for a sealing member is fitted and fired. As a result, the ceramic for the sealing member shrinks by firing, and is fitted to one end of the cell body 8, and at the same time, the outer peripheral surface of the cell body 8 and the inner surface of the sealing member 11 are interposed via the gas seal layer 9 during firing. Are joined. Note that the sealing member 11 includes a cylindrical portion 13 and a base portion 14.

【0026】ガスシール層9は、例えば、部分安定化Z
rO2 や安定化ZrO2 、LaCrO3 系などの種々の
材料を用いることができるが、特には、熱膨張率の観点
から固体電解質材料と同一の材料から構成することが望
ましい。
The gas seal layer 9 is made of, for example, a partially stabilized Z
Various materials such as rO 2 , stabilized ZrO 2 , and LaCrO 3 can be used, but it is particularly preferable to use the same material as the solid electrolyte material from the viewpoint of the coefficient of thermal expansion.

【0027】また、セル本体8の表面には固体電解質と
集電体の境界部分に80〜150μm程度の段差が形成
される。この段差を平坦化させることによって発電状態
の雰囲気の高温下で安定してガスリークの発生を防止す
る。ガスシール層9を形成する場合、厚みが大きいと形
成の過程でガスシール層9が破損し易くなったり、形成
したガスシール槽の厚みが不均一になって焼成や発電中
の加熱中に亀裂が発生してガスリークが発生しやすくな
り、また、円筒状固体電解質型燃料電池セルの封止部材
11部分の直径が増大するため、円筒状固体電解質型燃
料電池セル同士を接続する際の間隔が大きくなり、燃料
電池が大型化する。
On the surface of the cell body 8, a step of about 80 to 150 μm is formed at the boundary between the solid electrolyte and the current collector. By flattening the steps, gas leakage can be prevented stably at a high temperature in an atmosphere in a power generation state. When the gas seal layer 9 is formed, if the thickness is large, the gas seal layer 9 is easily damaged during the formation process, or the thickness of the formed gas seal tank becomes non-uniform, and cracks occur during firing or heating during power generation. Is generated, gas leaks are likely to occur, and the diameter of the sealing member 11 portion of the cylindrical solid electrolyte fuel cell increases, so that the interval when connecting the cylindrical solid electrolyte fuel cells is reduced. The size of the fuel cell increases and the size of the fuel cell increases.

【0028】ガスリークの発生を安定して防止し、円筒
状固体電解質型燃料電池セル作製の過程で安定してガス
シール層9を形成し、かつ、直径増大を抑制するには、
ガスシール層9の厚みdは70〜250μmの範囲にあ
る必要がある。特に、ガスシール層9の厚みdは80〜
200μmの範囲にあることが望ましい。
To stably prevent the occurrence of gas leak, stably form the gas seal layer 9 in the process of manufacturing a cylindrical solid oxide fuel cell, and suppress the increase in diameter,
The thickness d of the gas seal layer 9 needs to be in the range of 70 to 250 μm. Particularly, the thickness d of the gas seal layer 9 is 80 to
It is desirable to be in the range of 200 μm.

【0029】即ち、ガスシール層9はセラミックスラリ
ーを塗布することによって形成するが、厚みが大きくな
ると形成の課程で破損しやすくなり、また、円筒状固体
電解質型燃料電池セルの直径が増大することになること
から、ガスシール層9の平均厚みは250μm以下とす
る。特にガスシール層9の平均厚みを200μm以下と
する事が望ましい。
That is, the gas seal layer 9 is formed by applying a ceramic slurry. However, when the thickness is increased, the gas seal layer 9 is easily broken during the formation process, and the diameter of the cylindrical solid oxide fuel cell increases. Therefore, the average thickness of the gas seal layer 9 is set to 250 μm or less. In particular, it is desirable that the average thickness of the gas seal layer 9 be 200 μm or less.

【0030】封止部材11はガスリークを防止するため
緻密質セラミックスからなるものであるが、緻密質セラ
ミックスとは、例えば、ガスシール層9と同様の材料を
用いることができる。また、ガスシール層9と同様に、
熱膨張率の観点から固体電解質材料と同一の材料から構
成することが望ましい。また、封止部材11、ガスシー
ル層9の熱膨張率は、Y2 3 部分安定化ZrO2 の場
合、Y2 3 とZrO2 の比を変化させることにより調
整できる。
The sealing member 11 is made of dense ceramics in order to prevent gas leakage. The dense ceramics may be, for example, the same material as the gas seal layer 9. Further, similarly to the gas seal layer 9,
From the viewpoint of the coefficient of thermal expansion, it is desirable to be made of the same material as the solid electrolyte material. In the case of Y 2 O 3 partially stabilized ZrO 2 , the coefficient of thermal expansion of the sealing member 11 and the gas seal layer 9 can be adjusted by changing the ratio of Y 2 O 3 to ZrO 2 .

【0031】また、セル本体8の外表面に当接する封止
部材11の円筒部13の厚みtは、セルの直径の増大を
抑え、かつ、封止部材11の収縮応力によって円筒状固
体電解質型燃料電池セルの端部の破損を防止するため、
1.2mm以下が望ましい。
The thickness t of the cylindrical portion 13 of the sealing member 11 which is in contact with the outer surface of the cell body 8 is such that the increase in the diameter of the cell is suppressed and the cylindrical solid electrolyte type To prevent damage to the end of the fuel cell,
1.2 mm or less is desirable.

【0032】また、封止部材11の厚みtは焼結時の収
縮の応力で自らが破損しないようにするために0.3m
m以上が望ましい。
The thickness t of the sealing member 11 is 0.3 m in order to prevent the sealing member 11 from being damaged by shrinkage stress during sintering.
m or more is desirable.

【0033】このような円筒状固体電解質型燃料電池セ
ルの製造方法について詳述する。まず、セル本体を作製
するために、自己支持管としての機能を有する円筒状の
空気極成形体を押し出し成形により作製し、その後12
00〜1300℃の温度で5〜20時間程度脱バインダ
ー・仮焼をおこない、空気極仮焼体を作製する。
A method for manufacturing such a cylindrical solid oxide fuel cell will be described in detail. First, in order to produce a cell body, a cylindrical air electrode molded body having a function as a self-supporting tube is produced by extrusion molding, and thereafter, a 12
Binder removal and calcination are performed at a temperature of 00 to 1300 ° C. for about 5 to 20 hours to prepare a cathode calcined body.

【0034】次に空気極仮焼体の表面に固体電解質を構
成する材料の成形体層を形成する。
Next, a molded layer of a material constituting the solid electrolyte is formed on the surface of the calcined cathode.

【0035】この固体電解質成形体層は、平均粒径が
0.5〜3μmのY2 3 等の周知の安定化剤により安
定化されたZrO2 からなる粉体を用いてスラリーを調
製し、その後ドクターブレード法などにより作製された
グリーンシートを巻き付けて形成される。
A slurry is prepared by using a powder of ZrO 2 stabilized with a known stabilizer such as Y 2 O 3 having an average particle diameter of 0.5 to 3 μm. Then, a green sheet produced by a doctor blade method or the like is wound and formed.

【0036】そして、空気極/固体電解質成形体を10
00〜1300℃の温度で1〜3時間程度仮焼し、その
後集電体の積層箇所となる固体電解質仮焼体の表面を平
滑に研磨し、空気極仮焼体を露出させ、固体電解質仮焼
体および空気極仮焼体の表面に集電体用成形体を積層す
る。集電体用成形体はLaCrO3 系の材料を使用し、
固体電解質成形体と同様にグリーンシートを積層して形
成される。
Then, the air electrode / solid electrolyte molded body is
The calcined body is calcined at a temperature of 00 to 1300 ° C. for about 1 to 3 hours, and thereafter, the surface of the calcined solid electrolyte, which is to be a laminated portion of the current collector, is polished smoothly to expose the calcined cathode. A molded body for a current collector is laminated on the surface of the calcined body and the calcined cathode. The molded body for the current collector uses a LaCrO 3 material,
It is formed by laminating green sheets in the same manner as the solid electrolyte molded body.

【0037】この様にして作製した積層体は、大気など
の酸化雰囲気中、1300〜1600℃の温度で3〜1
5時間程度同時焼成することにより共焼結させ、円筒状
のセル本体を作製する。
The laminate thus manufactured is placed in an oxidizing atmosphere such as air at a temperature of 1300 to 1600 ° C. and 3 to 1 ° C.
Co-sintering is performed by co-firing for about 5 hours to produce a cylindrical cell body.

【0038】また、燃料極はNiを30〜80重量%含
有し残部が安定化ZrO2 (Y2 3 等の安定化剤含
む)からなる多孔質のサーメット材料を使用し、前記積
層焼結体の所定箇所に成形体を形成して焼結させるか、
あるいは前記空気極/固体電解質/集電体成形体を形成
した後、さらに燃料極成形体を積層し、これらを同時に
焼成し、円筒状のセル本体を作製することもできる。
The fuel electrode is made of a porous cermet material containing 30 to 80% by weight of Ni and the balance of stabilized ZrO 2 (including a stabilizer such as Y 2 O 3 ). Forming a molded body at a predetermined part of the body and sintering it,
Alternatively, after the formation of the air electrode / solid electrolyte / current collector molded body, the fuel electrode molded body may be further laminated and fired at the same time to produce a cylindrical cell body.

【0039】次に、例えば、固体電解質成形体と同様の
スラリーを用い、スラリー中にセル本体の一端部を浸潰
(ディッピング)することにより、セル本体の一端部の
外表面にガスシール層用のセラミックスラリーを塗布
し、100〜150℃で1〜3時間乾燥する。セラミッ
クススラリーを塗布する方法としては、他にスプレー、
刷毛などによる塗布がある。セラミックススラリーは、
封止部材が外嵌される部分よりもわずかに広い面積で塗
布されることが望ましい。
Next, for example, a slurry similar to the solid electrolyte molded body is used, and one end of the cell main body is immersed (dipped) in the slurry, so that the outer surface of one end of the cell main body has a gas sealing layer. And dried at 100 to 150 ° C. for 1 to 3 hours. Other methods of applying ceramic slurry include spraying,
There is application by brush or the like. Ceramic slurry is
It is desirable that the sealing member be applied in a slightly larger area than a portion to be externally fitted.

【0040】封止部材は発電の際にガスシール性が要求
されるため、例えば平均結晶粒径が0.5〜3μm程度
のZrO2 系やLaCrO3 系酸化物粉末を押し出し成
形や静水圧成形(ラバープレス)等により成形し、キャ
ップ形状に切削加工を行い封止部材用セラミックス成形
体を作製する。ガスシール層および封止部材は、イット
リア部分安定化ジルコニアを用いることが望ましい。
Since the sealing member is required to have gas sealing properties at the time of power generation, for example, ZrO 2 -based or LaCrO 3 -based oxide powder having an average crystal grain size of about 0.5 to 3 μm is extruded or hydrostatically molded. (Rubber press) or the like, and cut into a cap shape to produce a ceramic molded body for a sealing member. It is desirable to use yttria partially stabilized zirconia for the gas seal layer and the sealing member.

【0041】この時の封止部材用成形体は、セル本体の
外周面に当接し、締め付ける円筒部の成形体厚みは、
0.7〜1.5mmであることが望ましい。これは、
0.7mmよりも薄い時には焼成時に封止部材が破損す
る場合があるためである。また、1.5mmより厚い場
合には、封止部材の焼結収縮時にセル本体や未焼結のガ
スシール層が破損するおそれがあり、また、複数の固体
電解質型燃料電池セルによりスタックを作製する際の円
筒状固体電解質型燃料電池セル間の間隔が大きくなり、
電気的な接続が困難になるからである。
At this time, the molded body for the sealing member is in contact with the outer peripheral surface of the cell body, and the molded body thickness of the cylindrical portion to be tightened is:
Desirably, it is 0.7 to 1.5 mm. this is,
If the thickness is smaller than 0.7 mm, the sealing member may be damaged during firing. If the thickness is more than 1.5 mm, the cell body and the unsintered gas seal layer may be damaged at the time of sintering shrinkage of the sealing member, and a stack is formed by a plurality of solid oxide fuel cells. The space between the cylindrical solid oxide fuel cells during the process increases,
This is because electrical connection becomes difficult.

【0042】このような封止部材によって封止を行う場
合、円筒部の厚みの分だけ外径が増大するので、外径の
増大を抑制するため封止部材の円筒部の厚みを薄くする
ことが要求され、薄くても十分な強度を有するイットリ
ア部分安定化ジルコニアが望ましい。
When sealing is performed with such a sealing member, the outer diameter increases by the thickness of the cylindrical portion. Therefore, the thickness of the cylindrical portion of the sealing member must be reduced to suppress the increase in the outer diameter. And yttria partially stabilized zirconia which has sufficient strength even if it is thin is desirable.

【0043】横倒しにしたセル本体に封止部材成形体を
挿入しても十分に安定してセル本体の一端部に封止部材
が配置されている状態にするために、焼結後に封止部材
用成形体の全長に対する円筒部の長さは40%以上、か
つ、封止部材用成形体の円筒部の内径に対する円筒部の
長さは40%以上とすることが望ましい。
In order to ensure that the sealing member is arranged at one end of the cell main body with sufficient stability even when the sealing member molded body is inserted into the cell body turned over, the sealing member is sintered. It is preferable that the length of the cylindrical portion with respect to the entire length of the molding for sealing is 40% or more, and the length of the cylindrical portion with respect to the inner diameter of the cylindrical portion of the molding for sealing member is 40% or more.

【0044】セル本体の端面と封止部材用成形体の基底
部の接触を十分に確保するためには、封止部材用成形体
の基底部内底面と円筒部内側面の境界部に形成するr面
は200μm以下とすることが望ましい。
In order to ensure sufficient contact between the end surface of the cell body and the base of the molding for sealing member, an r-plane formed at the boundary between the inner bottom surface of the base of the molding for sealing member and the inner surface of the cylindrical portion. Is desirably 200 μm or less.

【0045】このように封止部材用成形体の基底部の内
底面と円筒部の内側面の境界部のr面の曲率半径を20
0μ以下とすることにより、セル本体を横倒しにしても
焼結過程で封止部材の基底部の内底面とセル本体の端面
の接触を確保できる。そのため、封止部材用成形体をセ
ル本体に外嵌して焼結させる際にセル本体を横倒しの安
定な姿勢を取らせることができるため、円筒状固体電解
質型燃料電池セルの倒壊を防ぐことができる。
As described above, the radius of curvature of the r-plane at the boundary between the inner bottom surface of the base portion of the molded body for a sealing member and the inner surface of the cylindrical portion is set to 20.
By setting it to 0 μm or less, it is possible to secure contact between the inner bottom surface of the base portion of the sealing member and the end surface of the cell body in the sintering process even if the cell body is turned over. Therefore, when the molded body for a sealing member is externally fitted to the cell body and sintered, the cell body can be placed in a stable posture in which the cell body is overturned, thereby preventing the collapse of the cylindrical solid oxide fuel cell. Can be.

【0046】また、セル本体の一端が挿入される封止部
材用成形体の円筒部の内径は、セル本体の外径の1.0
5から1.25倍であることが望ましい。これは、円筒
部の内径がセル本体の1.05倍より小さい場合には、
焼成時に封止部材に歪みによるわれが生じやすく、1.
25倍より大きい場合には、封止部材とセル本体の間に
隙間が生じ、封止できなくなる場合があるからである。
また、封止部材を単独で焼結させた場合の円筒部の内径
は、セル本体の外径よりも小さくなるように、封止部材
用成形体の寸法、材料などが決定されている。
The inner diameter of the cylindrical portion of the molding for the sealing member into which one end of the cell body is inserted is 1.0 mm of the outer diameter of the cell body.
Preferably, it is 5 to 1.25 times. This is because when the inner diameter of the cylindrical portion is smaller than 1.05 times the cell body,
During firing, the sealing member is easily cracked by distortion.
If it is larger than 25 times, a gap may be formed between the sealing member and the cell body, and sealing may not be performed.
In addition, the size and material of the molded body for the sealing member are determined so that the inner diameter of the cylindrical portion when the sealing member is sintered alone is smaller than the outer diameter of the cell body.

【0047】この後、図2に示すように、セル本体8の
一端部を封止部材用成形体11aの円筒部13aに挿入
し、セル本体8の端面を封止部材用成形体11aの基底
部14aの内底面に当接し、大気などの酸化雰囲気中、
1300〜1600℃の温度で1〜5時間程度焼成し、
セル本体の一端部に、ガスシール層を介して封止部材を
嵌着し、本発明の円筒状固体電解質型燃料電池セルを得
る。
Thereafter, as shown in FIG. 2, one end of the cell body 8 is inserted into the cylindrical portion 13a of the molding 11a for the sealing member, and the end face of the cell body 8 is attached to the base of the molding 11a for the sealing member. Abuts against the inner bottom surface of the portion 14a, and in an oxidizing atmosphere such as air,
Firing at a temperature of 1300 to 1600 ° C. for about 1 to 5 hours,
A sealing member is fitted to one end of the cell body via a gas seal layer to obtain a cylindrical solid oxide fuel cell of the present invention.

【0048】即ち、セル本体の焼結後に改めて封止部材
を焼結させるため、ガスシール層や封止部材の焼結温度
はセル本体の焼結温度以下であることが要求される。例
えばLaCrO3 系材料を用いた燃料電池セルなどは1
500℃程度で焼結されるが、イットリア部分安定化ジ
ルコニアはそれ以下の1400℃で焼結させることがで
きるため、封止部材やガスシール層としてイットリア部
分安定化ジルコニアが望ましい。
That is, in order to newly sinter the sealing member after sintering the cell body, the sintering temperature of the gas seal layer and the sealing member is required to be lower than the sintering temperature of the cell body. For example, a fuel cell using LaCrO 3 -based material
Although it is sintered at about 500 ° C., yttria partially stabilized zirconia can be sintered at a lower temperature of 1400 ° C., so that yttria partially stabilized zirconia is desirable as a sealing member or a gas seal layer.

【0049】封止部材の円筒部の内側面とガスシール層
とは焼成時に一体化し、さらにガスシール層とセル本体
一端部の外周面とも焼成時に一体化し、これにより、封
止部材の円筒部の内側面がガスシール層を介してセル本
体の一端部外周面に接合されることになる。また、封止
部材の基底部の内底面とセル本体の端面が焼成時に一体
化することにより、封止部材とセル本体が強固に固着さ
れることになる。ガスシール層および緻密質セラミック
スからなる封止部材は、ガスリークを防止することがで
きればよく、特に開気孔率5%以下であることが望まし
い。
The inner surface of the cylindrical portion of the sealing member and the gas seal layer are integrated at the time of firing, and the gas seal layer and the outer peripheral surface of one end of the cell body are also integrated at the time of firing. Is joined to the outer peripheral surface of one end of the cell body via the gas seal layer. Further, by integrating the inner bottom surface of the base portion of the sealing member and the end surface of the cell body at the time of firing, the sealing member and the cell body are firmly fixed. The gas sealing layer and the sealing member made of the dense ceramics only need to be able to prevent gas leakage, and particularly preferably have an open porosity of 5% or less.

【0050】尚、本発明では、燃料極スラリーを、空気
極、固体電解質、集電体を有するセル本体に塗布した
後、セル本体を封止部材用成形体の円筒部に挿入し、燃
料極塗布膜と同時に前記封止部材用成形体を焼成し、燃
料極を固体電解質表面に焼き付けてもよい。この場合に
は、燃料極のみを焼き付けるための処理行程を省略でき
る。
In the present invention, after the anode slurry is applied to a cell body having an air electrode, a solid electrolyte, and a current collector, the cell body is inserted into the cylindrical portion of the molded member for a sealing member, and The fuel electrode may be baked on the surface of the solid electrolyte by firing the molded body for a sealing member simultaneously with the application film. In this case, a processing step for burning only the fuel electrode can be omitted.

【0051】[0051]

【実施例】セル本体を共焼結により作製するため、まず
円筒状空気極成形体を以下のようにして作製した。市販
の純度99.9%以上のLa2 3 、CaCO3 、Mn
23 を出発原料として、これをLa0.8 Ca0.2 Mn
3 の組成になるように秤量混合した後、1500℃で
3時間仮焼し粉砕して平均粒径が5μmの固溶体粉末を
得た。また、この固溶体粉末にバインダーを添加し、押
し出し成型法で円筒状の空気極成形体を作製した。前記
空気極成形体は、乾燥後1250℃で10時間脱バイン
ダー・仮焼する事により円筒状の空気極仮焼体を作製し
た。
EXAMPLES In order to produce a cell body by co-sintering, first, a cylindrical air electrode molded body was produced as follows. La 2 O 3 , CaCO 3 , Mn having a purity of 99.9% or more commercially available
Starting from 2 O 3 , it is La 0.8 Ca 0.2 Mn
After weighing and mixing to obtain an O 3 composition, the mixture was calcined at 1500 ° C. for 3 hours and pulverized to obtain a solid solution powder having an average particle size of 5 μm. Further, a binder was added to the solid solution powder, and a cylindrical air electrode molded body was produced by an extrusion molding method. After drying, the air electrode molded body was debindered and calcined at 1250 ° C. for 10 hours to produce a cylindrical air electrode calcined body.

【0052】次に、共沈法により得られたY2 3 を8
mol%の割合で含有する平均粒径が1μmのZrO2
粉末に、トルエンとバインダーを添加してスラリーを調
整し、ドクターブレード法により厚み130μmの固体
電解質シートを作製した。
Next, Y 2 O 3 obtained by the coprecipitation method was added to 8
mol% ZrO 2 having an average particle size of 1 μm
Toluene and a binder were added to the powder to prepare a slurry, and a 130 μm-thick solid electrolyte sheet was prepared by a doctor blade method.

【0053】次に、市販の純度99.9%以上のLa2
3 、Cr2 3 、MgOを出発原料として、これをL
a(Mg0.3 Cr0.7 0.973 の組成になるように秤
量混合した後、1500℃で3時間仮焼し粉砕して、平
均粒径が2μmの固溶体粉末を得た。次に、この固溶体
粉末にトルエンとバインダーを添加してスラリーを調整
し、ドクターブレード法により厚み130μmの集電体
シートを作製した。
Next, commercially available La 2 having a purity of 99.9% or more is used.
Starting from O 3 , Cr 2 O 3 and MgO, this is
a (Mg 0.3 Cr 0.7 ) 0.97 O 3 The mixture was weighed and mixed so as to obtain a composition, and then calcined at 1500 ° C. for 3 hours and pulverized to obtain a solid solution powder having an average particle diameter of 2 μm. Next, toluene and a binder were added to the solid solution powder to prepare a slurry, and a current collector sheet having a thickness of 130 μm was prepared by a doctor blade method.

【0054】前記円筒状空気極仮焼体に前記固体電解質
シートをロール状に巻き付け、1100℃で3時間の仮
焼を行った。仮焼後、集電体シートの積層箇所となる固
体電解質仮焼体の表面を平面研磨し、露出した空気極仮
焼体まで表面上を平面研磨し、前記集電体シートを所定
箇所に帯状に巻き付けた。その後、大気中1500℃で
6時間の条件で共焼結を試みた。
The solid electrolyte sheet was wound in a roll around the cylindrical air electrode calcined body, and calcined at 1100 ° C. for 3 hours. After calcination, the surface of the solid electrolyte calcined body which is to be a laminated portion of the current collector sheet is polished flat, and the surface is polished up to the exposed air electrode calcined body. Wrapped around. Thereafter, co-sintering was attempted at 1500 ° C. for 6 hours in the atmosphere.

【0055】共焼結後、NiO粉末にZrO2 (10m
ol%Y2 3 含有)粉末を重量比80:20の割合で
混合した混合粉末に水を溶媒として加えて燃料極スラリ
ーを調整し、燃料極スラリーを積層焼結体表面に厚み5
0μmで塗布乾燥し、外径約15mm、厚み2mmのセ
ル本体を作製した。
After co-sintering, ZrO 2 (10 m
ol% Y 2 O 3 ) powder was mixed at a weight ratio of 80:20, and water was added as a solvent to prepare a fuel electrode slurry.
The coating was dried at 0 μm to prepare a cell body having an outer diameter of about 15 mm and a thickness of 2 mm.

【0056】次に、Y2 3 を3mol%の割合でそれ
ぞれ含有する平均粒径が1μmのZrO2 粉末に水を溶
媒として加えてガスシール層用のスラリーを調整し、こ
のスラリーにセル本体の一端部を浸潰し、ディッピング
法により、セラミックススラリーをセル本体の片端部の
外周面に塗布し、120℃で1時間乾燥した。厚みの調
整はスラリーの粘度を変化させて実施した。焼結後のガ
スシール層の平均厚みを表1に示す。セラミックススラ
リーを塗布されたセル本体の端面は、封止部材の基底部
の内底面と密着させるために、研磨して平面としてお
く。
Next, water was added as a solvent to ZrO 2 powder having an average particle diameter of 1 μm containing Y 2 O 3 at a ratio of 3 mol% to prepare a slurry for the gas sealing layer. Was immersed, and a ceramic slurry was applied to the outer peripheral surface of one end of the cell body by a dipping method, and dried at 120 ° C. for 1 hour. The thickness was adjusted by changing the viscosity of the slurry. Table 1 shows the average thickness of the gas seal layer after sintering. The end face of the cell body coated with the ceramic slurry is polished and flattened so as to be in close contact with the inner bottom face of the base of the sealing member.

【0057】次に、封止部材としてのキャップ形状の成
形体を作製する。まず、前記ガスシール層用のスラリー
組成と同じ組成である、Y2 3 を3mol%の割合で
それぞれ含有する平均粒径が1μmのZrO2 系の粉末
を用いて静水圧成形(ラバープレス)を行いキャップ形
状に切削加工した。その後、セル本体の一端部を封止部
材用成形体の円筒部に挿入した。
Next, a cap-shaped molded body as a sealing member is manufactured. First, isostatic pressing (rubber pressing) is performed using a ZrO 2 -based powder having the same composition as the slurry composition for the gas seal layer and containing Y 2 O 3 at a ratio of 3 mol% and an average particle size of 1 μm. And cut into a cap shape. Thereafter, one end of the cell body was inserted into the cylindrical portion of the molded body for a sealing member.

【0058】焼結後において、封止部材の軸方向の全長
をL1 、基底部の外径をD1 、円筒部の外径をD2 、長
さをL2 、内径を3Dとする。各試料の封止部材のサイ
ズはL2 /L1 =0.55、L2 /D3 =0.50、D
1 /D2 =0.80となるように作製した。
After sintering, the overall length of the sealing member in the axial direction is L 1 , the outer diameter of the base portion is D 1 , the outer diameter of the cylindrical portion is D 2 , the length is L 2 , and the inner diameter is 3D. The size of the sealing member of each sample L 2 / L 1 = 0.55, L 2 / D 3 = 0.50, D
It was manufactured so that 1 / D 2 = 0.80.

【0059】セル本体の一端部外周面と当接し、セル本
体を締め付ける封止部材用成形体の円筒部の肉厚tを
0.7mmに設計した。焼結後の肉厚は約0.5mmと
なり、セル全体の直径の増大は約1mmとなる。
The wall thickness t of the cylindrical portion of the molded body for a sealing member, which comes into contact with the outer peripheral surface at one end of the cell body and tightens the cell body, was designed to be 0.7 mm. The thickness after sintering is about 0.5 mm, and the increase in the diameter of the entire cell is about 1 mm.

【0060】その後、大気中で1400℃で2時間の焼
成を行うことにより、燃料極層を形成するとともに、セ
ル本体の一端部外周面にガスシール層を介してキャップ
形状の封止部材を接合した。
Thereafter, the fuel electrode layer is formed by sintering at 1400 ° C. for 2 hours in the air, and a cap-shaped sealing member is joined to the outer peripheral surface of one end of the cell body via a gas seal layer. did.

【0061】そして、封止を行わなかった側の開口端か
ら、外気圧に対しセル本体内部の内気圧を外気圧よりも
+1kgf/cm2 高くなるようにAirを加圧して注
入し、これを水没させ、気泡の発生の有無により、初期
時のリークの有無を観察した。
Air is pressurized and injected from the open end on the side where sealing is not performed so that the internal air pressure inside the cell body becomes higher than the external air pressure by +1 kgf / cm 2 with respect to the external air pressure. It was immersed in water, and the presence or absence of bubbles was observed for the presence or absence of a leak at the initial stage.

【0062】この試料をAir雰囲気1000℃の高温
下に放置し、1000時間経過後で常温まで冷却したも
の、さらに、Air雰囲気下で、常温から1000℃ま
で加熱し、1000℃から常温まで冷却する行程を10
サイクル繰り返してサイクル負荷を与えたもの、セル内
部をAir雰囲気とし、セル外部をH2 雰囲気とし、1
000℃で1時間および100時間放置して還元処理を
行ったものについても上記と同様にリークの有無を観察
した。その結果を表1に示す。
This sample was allowed to stand at a high temperature of 1000 ° C. in an air atmosphere, cooled to room temperature after 1000 hours, and further heated from room temperature to 1000 ° C. in an air atmosphere, and cooled from 1000 ° C. to room temperature. 10 steps
A cycle load was given by repeating the cycle. The inside of the cell was set to an Air atmosphere, and the outside of the cell was set to an H 2 atmosphere.
Leakage was observed in the same manner as above for those subjected to reduction treatment by leaving them at 000 ° C. for 1 hour and 100 hours. Table 1 shows the results.

【0063】[0063]

【表1】 [Table 1]

【0064】この表1から、焼結後のガスシール層の厚
みが70μm〜250μmである場合、セル本体の一端
を効果的に封止する事ができ、Air高温負荷試験、A
irサイクル負荷試験、高温還元雰囲気下での耐久性に
優れていることがわかる。
As shown in Table 1, when the thickness of the gas seal layer after sintering is 70 μm to 250 μm, one end of the cell body can be effectively sealed.
It can be seen that the ir cycle load test and the durability under a high-temperature reducing atmosphere are excellent.

【0065】しかし、焼結後のガスシール層が250μ
mを越える試料については、スラリーの粘度が高くな
り、円周方向に一様に形成する事が困難になり、また、
断面を平面研磨する場合に乾燥させたスラリーが崩れや
すくなった。ちなみに試料No.9では、乾燥させたスラ
リーがセル本体の端面を研摩する際に崩れた。また、ガ
スシール層が250μmを越える場合には、セラミック
スラリーにバインダーを多量に添加して粘度を高くした
場合、スラリーの不均一に起因すると考えられるクラッ
クがガスシール層に発生するようになり、還元処理によ
ってガスリークを発生した(試料No.8)。
However, the sintered gas seal layer has a thickness of 250 μm.
For samples exceeding m, the viscosity of the slurry increases, making it difficult to form the slurry uniformly in the circumferential direction.
When the cross section was planarly polished, the dried slurry became easily broken. Incidentally, in sample No. 9, the dried slurry collapsed when the end face of the cell body was polished. Further, when the gas seal layer exceeds 250 μm, when a large amount of binder is added to the ceramic slurry to increase the viscosity, cracks considered to be caused by non-uniformity of the slurry are generated in the gas seal layer, A gas leak was generated by the reduction treatment (Sample No. 8).

【0066】一方、ガスシール層が70μm未満では還
元処理によってガスリークが発生し、充分なガスシール
効果が得られなかった。
On the other hand, if the gas seal layer is less than 70 μm, gas leakage occurs due to the reduction treatment, and a sufficient gas seal effect cannot be obtained.

【0067】次に、ガスリーク層の平均厚みが100μ
mになるようにセラミックススラリーを塗布し、封止部
材の形状を変化させて封止を行った試料のガスリークの
結果を表2に示す。焼結後における封止部材の軸方向の
全長をL1 、基底部の外径をD1 、円筒部の外径を
2 、長さをL2 、内径をD3 とした。
Next, the average thickness of the gas leak layer is 100 μm.
Table 2 shows the result of gas leak of a sample which was sealed by applying a ceramic slurry so as to have a thickness of m and changing the shape of the sealing member. The overall length in the axial direction of the sealing member after sintering was L 1 , the outer diameter of the base portion was D 1 , the outer diameter of the cylindrical portion was D 2 , the length was L 2 , and the inner diameter was D 3 .

【0068】[0068]

【表2】 [Table 2]

【0069】この表2から、L2 /L1 が0.3〜0.
7、L2 /D3 が0.3〜0.7、D1 /D2 比が0.
78〜0.84の範囲を満足する場合には、焼結収縮に
おける応力による破損を防止でき、Air高温負荷試
験、Airサイクル負荷試験、還元処理に対して優れて
いることが判る。
From Table 2, it can be seen that L 2 / L 1 is in the range of 0.3 to 0.3.
7, L 2 / D 3 is 0.3~0.7, D 1 / D 2 ratio is 0.
When satisfying the range of 78 to 0.84, breakage due to stress in sintering shrinkage can be prevented, and it can be seen that it is excellent for the Air high temperature load test, the Air cycle load test, and the reduction treatment.

【0070】[0070]

【発明の効果】以上詳述したように、本発明によれば、
従来のように、発電用セル本体を炉内にセットし発電を
行う際にセル本体の一端を取付部材により封止するので
はなく、セル製造段階でセル本体の一端を緻密質セラミ
ックスにより封止するため、セル本体の一端の封止を容
易かつ確実に行うことができるとともに、発電用セル本
体を炉内にセットする前に封止状態を確認することがで
き、発電を継続して行う際のガスシール性が十分に保証
される。そして、セル本体の一端部外周面に、厚み70
〜250μmのセラミックスからなるガスシール層を介
して、基底部と円筒部からなるセラミックス製のキャッ
プ状封止部材を外嵌したので、発電において長時間ガス
リークがなく、信頼性を向上できるとともに、セル本体
の大型化を防止することができる。
As described in detail above, according to the present invention,
Instead of sealing the one end of the cell body with the mounting member when setting the cell body for power generation in the furnace and performing power generation as in the past, one end of the cell body is sealed with dense ceramics at the cell manufacturing stage. Therefore, one end of the cell body can be easily and reliably sealed, and the sealed state can be checked before the power generation cell body is set in the furnace. Is sufficiently guaranteed. Then, a thickness 70
A ceramic cap-shaped sealing member consisting of a base portion and a cylindrical portion was externally fitted via a gas seal layer made of ceramics having a thickness of up to 250 μm. The size of the main body can be prevented from increasing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒状固体電解質型燃料電池セルの断
面図である。
FIG. 1 is a sectional view of a cylindrical solid oxide fuel cell according to the present invention.

【図2】セル本体にガスシール層用セラミックスラリー
を塗布し、封止部材用成形体を挿入した断面図である。
FIG. 2 is a cross-sectional view in which a ceramic slurry for a gas seal layer is applied to a cell body and a molded body for a sealing member is inserted.

【図3】円筒状固体電解質型燃料電池セルを示す斜視図
である。
FIG. 3 is a perspective view showing a cylindrical solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

9・・・セル本体 8・・・ガスシール層 11・・・封止部材 13・・・円筒部 14・・・基底部 9 Cell body 8 Gas seal layer 11 Sealing member 13 Cylindrical part 14 Base part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】円筒状の固体電解質の片面に空気極、他面
に燃料極が形成されるとともに、前記空気極または前記
燃料極に電気的に接続され、かつ外面に露出する集電体
を具備する円筒状のセル本体の一端部外周面に、厚み7
0〜250μmのセラミックスからなるガスシール層を
介して、基底部と円筒部からなるセラミックス製のキャ
ップ状封止部材を外嵌してなることを特徴とする円筒状
固体電解質型燃料電池セル。
An air electrode is formed on one surface of a cylindrical solid electrolyte, and a fuel electrode is formed on the other surface, and a current collector electrically connected to the air electrode or the fuel electrode and exposed on the outer surface is provided. A thickness of 7 mm is provided on the outer peripheral surface of one end of the cylindrical cell body provided.
A cylindrical solid oxide fuel cell comprising a ceramic cap-shaped sealing member consisting of a base portion and a cylindrical portion externally fitted through a gas seal layer made of ceramic having a thickness of 0 to 250 μm.
【請求項2】ガスシール層およびキャップ状封止部材
が、Y2 3 を含有するZrO2 からなることを特徴と
する請求項1記載の円筒状固体電解質型燃料電池セル。
2. The cylindrical solid oxide fuel cell according to claim 1, wherein the gas sealing layer and the cap-shaped sealing member are made of ZrO 2 containing Y 2 O 3 .
【請求項3】封止部材の軸方向の全長をL1 、基底部の
外径をD1 、円筒部の軸方向の長さをL2 、円筒部の外
径をD2 、円筒部の内径をD3 とした時、D1/D2
0.78〜0.84の範囲を満足するとともに、L2
1 が0.3〜0.7の範囲を満足し、かつL2 /D3
が0.3〜0.7の範囲を満足することを特徴とする請
求項1または2記載の円筒状固体電解質型燃料電池セ
ル。
3. The overall length of the sealing member in the axial direction is L 1 , the outer diameter of the base portion is D 1 , the axial length of the cylindrical portion is L 2 , the outer diameter of the cylindrical portion is D 2 , and the outer diameter of the cylindrical portion is D 2 . when an inner diameter set to D 3, together with the D 1 / D 2 satisfies the range of 0.78 to 0.84, L 2 /
L 1 satisfies the range of 0.3 to 0.7, and L 2 / D 3
3 satisfies the range of 0.3 to 0.7.
JP10086373A 1998-03-31 1998-03-31 Cylindrical solid-electrolyte fuel cell Pending JPH11283640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10086373A JPH11283640A (en) 1998-03-31 1998-03-31 Cylindrical solid-electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10086373A JPH11283640A (en) 1998-03-31 1998-03-31 Cylindrical solid-electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH11283640A true JPH11283640A (en) 1999-10-15

Family

ID=13885086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10086373A Pending JPH11283640A (en) 1998-03-31 1998-03-31 Cylindrical solid-electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH11283640A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273913A (en) * 2000-03-28 2001-10-05 Kyocera Corp Solid electrolytic type fuel cell and fuel cell
JP2003068322A (en) * 2001-08-28 2003-03-07 Kyocera Corp Solid electrolytic fuel cell and fuel cell
JP2007265750A (en) * 2006-03-28 2007-10-11 Kyocera Corp Fuel cell device and fuel cell assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273913A (en) * 2000-03-28 2001-10-05 Kyocera Corp Solid electrolytic type fuel cell and fuel cell
JP4721487B2 (en) * 2000-03-28 2011-07-13 京セラ株式会社 Solid electrolyte fuel cell and fuel cell
JP2003068322A (en) * 2001-08-28 2003-03-07 Kyocera Corp Solid electrolytic fuel cell and fuel cell
JP2007265750A (en) * 2006-03-28 2007-10-11 Kyocera Corp Fuel cell device and fuel cell assembly

Similar Documents

Publication Publication Date Title
JP3349245B2 (en) Method for manufacturing solid oxide fuel cell
KR100281493B1 (en) Method of attaching dense, high temperature electrically conductive interconnects on electrode structures and self-supporting breathable electrically conductive electrodes
JP3495654B2 (en) Cell tube seal structure
EP0552052B1 (en) Formation of ceramic thin film on ceramic body
JP2005228740A (en) Manufacturing method of solid oxide fuel cell
JP4462727B2 (en) Solid electrolyte fuel cell
CN113488689B (en) Solid oxide fuel cell stack and method for preparing the same
JPH11283640A (en) Cylindrical solid-electrolyte fuel cell
JP3238086B2 (en) Solid oxide fuel cell
JP3238087B2 (en) Solid oxide fuel cell
JP4460881B2 (en) Fuel cell manufacturing method
JP3389469B2 (en) Solid oxide fuel cell
JP3310866B2 (en) Cylindrical horizontal stripe solid electrolyte fuel cell
JP3285779B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP6486716B2 (en) Fuel cell, fuel cell manufacturing method, and fuel cell repair method
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP3281814B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3389468B2 (en) Solid oxide fuel cell
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell
JP4822633B2 (en) Solid electrolyte fuel cell and fuel cell
JP3285856B2 (en) Solid oxide fuel cell
JP3217695B2 (en) Cylindrical fuel cell
JP3595215B2 (en) Solid oxide fuel cell
JP4721487B2 (en) Solid electrolyte fuel cell and fuel cell
JP2001185160A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040812