JP2001185160A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JP2001185160A
JP2001185160A JP36793599A JP36793599A JP2001185160A JP 2001185160 A JP2001185160 A JP 2001185160A JP 36793599 A JP36793599 A JP 36793599A JP 36793599 A JP36793599 A JP 36793599A JP 2001185160 A JP2001185160 A JP 2001185160A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel electrode
molded body
fuel
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36793599A
Other languages
Japanese (ja)
Other versions
JP3638489B2 (en
Inventor
Masahito Nishihara
雅人 西原
Takashi Shigehisa
高志 重久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36793599A priority Critical patent/JP3638489B2/en
Publication of JP2001185160A publication Critical patent/JP2001185160A/en
Application granted granted Critical
Publication of JP3638489B2 publication Critical patent/JP3638489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell capable of preventing separation of a fuel pole and reducing difference in burnt contraction between the fuel pole and a solid electrolyte. SOLUTION: The solid electrolyte fuel cell comprises an air pole mold 51 solid electrolyte molds 53, 55 and a fuel pole mold 54 stacked in this sequence and burned, the fuel pole 33 having a thickness of 5-20 μm. The solid electrolyte fuel cell is formed by, for example, stacking first solid electrolyte mold 53 on the air pole molding 51 and laminating on the first solid electrolyte mold 53 the second solid electrolyte mold 55 on which the fuel pole mold 54 is stacked, so that the first solid electrolyte mold 53 contacts the second solid electrolyte mold 55, followed by burning.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気極の表面に、
固体電解質、燃料極を順次積層してなる固体電解質型燃
料電池セルに関するものである。
BACKGROUND OF THE INVENTION The present invention relates to
The present invention relates to a solid oxide fuel cell in which a solid electrolyte and a fuel electrode are sequentially laminated.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池はその作
動温度が900〜1050℃と高温であるため発電効率
が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, since a solid oxide fuel cell has a high operating temperature of 900 to 1050 ° C., it has a high power generation efficiency and is expected as a third generation power generation system.

【0003】一般に固体電解質型燃料電池セルには、円
筒型と平板型が知られている。平板型燃料電池セルは、
発電の単位体積当たり出力密度は高いという特徴を有す
るが、実用化に関してはガスシール不完全性やセル内の
温度分布の不均一性などの問題がある。それに対して、
円筒型燃料電池セルでは、出力密度は低いものの、セル
の機械的強度が高く、またセル内の温度の均一性が保て
るという特徴がある。両形状の固体電解質型燃料電池セ
ルとも、それぞれの特徴を生かして積極的に研究開発が
進められている。
[0003] In general, a cylindrical type and a flat type are known as solid oxide fuel cells. Flat fuel cells are
Although it has the feature that the power density per unit volume of power generation is high, there are problems such as incomplete gas sealing and non-uniformity of temperature distribution in the cell in practical use. On the other hand,
Cylindrical fuel cells are characterized by low mechanical strength of the cells, while maintaining a uniform temperature within the cells, although the output density is low. Both types of solid oxide fuel cells are being actively researched and developed utilizing their respective characteristics.

【0004】円筒型燃料電池の単セルは、図6に示した
ように開気孔率30〜40%程度のLaMnO3 系材料
からなる多孔性の空気極支持管2を形成し、その表面に
23 安定化ZrO2 からなる固体電解質3を被覆
し、さらにこの表面に多孔性のNi−ジルコニアの燃料
極4が設けられている。燃料電池のモジュールにおいて
は、各単セルはLaCrO3 系の集電体(インターコネ
クタ)5を介して接続される。発電は、空気極支持管2
内部に空気(酸素)6を、外部に燃料(水素)7を流
し、1000〜1050℃の温度で行われる。
As shown in FIG. 6, a single cell of a cylindrical fuel cell has a porous cathode support tube 2 made of a LaMnO 3 -based material having an open porosity of about 30 to 40%, and has a Y surface on its surface. A solid electrolyte 3 made of 2 O 3 stabilized ZrO 2 is coated, and a porous Ni-zirconia fuel electrode 4 is provided on this surface. In the fuel cell module, each single cell is connected via a LaCrO 3 -based current collector (interconnector) 5. The power is generated by the cathode support tube 2
Air (oxygen) 6 is supplied inside, and fuel (hydrogen) 7 is supplied outside, and the temperature is set at 1000 to 1050 ° C.

【0005】上記のような燃料電池セルを製造する方法
としては、例えばCaO安定化ZrO2 からなる絶縁粉
末を押出成形法などにより円筒状に成形後、これを焼成
して円筒状支持体を作製し、この支持体の外周面に空気
極、固体電解質、燃料極、集電体のスラリーを塗布して
これを順次焼成して積層するか、あるいは円筒状支持体
の表面に電気化学的蒸着法(EVD法)やプラズマ溶射
法などにより空気極、固体電解質、燃料極、集電体を順
次形成することも行われている。
As a method of manufacturing the above-described fuel cell, for example, an insulating powder made of CaO-stabilized ZrO 2 is formed into a cylindrical shape by an extrusion method or the like, and then fired to form a cylindrical support. Then, a slurry of an air electrode, a solid electrolyte, a fuel electrode, and a current collector is applied to the outer peripheral surface of the support, and the slurry is sequentially fired and laminated, or an electrochemical vapor deposition method is applied to the surface of the cylindrical support. An air electrode, a solid electrolyte, a fuel electrode, and a current collector are sequentially formed by (EVD method), a plasma spraying method, or the like.

【0006】近年ではセルの製造工程を簡略化し且つ製
造コストを低減するために、各構成材料のうち少なくと
も2つを同時焼成する、いわゆる共焼結法が提案されて
いる。この共焼結法は、例えば、円筒状の空気極成形体
に固体電解質成形体及び集電体成形体をロール状に巻き
付けて同時焼成を行い、その後、固体電解質層表面に燃
料極層を形成する方法である。またプロセス簡略化のた
めに、固体電解質成形体の表面にさらに燃料極成形体を
積層して、同時焼成する共焼結法も提案されている。
In recent years, a so-called co-sintering method has been proposed, in which at least two of the constituent materials are simultaneously fired in order to simplify the manufacturing process of the cell and reduce the manufacturing cost. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound in a roll shape around a cylindrical air electrode molded body and simultaneously fired, and thereafter, a fuel electrode layer is formed on the surface of the solid electrolyte layer. How to Further, for simplification of the process, a co-sintering method has been proposed in which a fuel electrode compact is further laminated on the surface of the solid electrolyte compact and fired simultaneously.

【0007】この共焼結法は非常に簡単なプロセスで製
造工程数も少なく、セルの製造時の歩留まり向上、コス
ト低減に有利である。このような共焼結法による燃料電
池セルでは、Y2 3 安定化または部分安定化ZrO2
からなる固体電解質を用い、この固体電解質に熱膨張係
数を合致させる等のため、空気極材料として、LaMn
3 からなるペロブスカイト型複合酸化物のLaの一部
をYおよびCaで置換したものが用いられている(特開
平10−162847号公報等参照)。
This co-sintering method is a very simple process with a small number of manufacturing steps, and is advantageous in improving the yield and cost reduction in manufacturing cells. In such a fuel cell by the co-sintering method, Y 2 O 3 stabilized or partially stabilized ZrO 2 is used.
LaMn is used as an air electrode material in order to match the coefficient of thermal expansion with the solid electrolyte.
A perovskite-type composite oxide composed of O 3 in which a part of La is substituted with Y and Ca is used (see Japanese Patent Application Laid-Open No. 10-162847).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、円筒状
の空気極成形体に、固体電解質成形体、燃料極成形体を
積層し、共焼結法を用いて円筒型燃料電池セルを作製す
ると、焼結後において燃料極自体が剥離したり、燃料極
と固体電解質との焼成収縮差が大きいことに基づき、発
電性能が悪化するという問題があった。
However, when a solid electrolyte molded body and a fuel electrode molded body are laminated on a cylindrical air electrode molded body, and a cylindrical fuel cell is manufactured by using a co-sintering method, the burning becomes difficult. There is a problem that the fuel electrode itself peels off after the sintering, or the power generation performance deteriorates due to a large difference in firing shrinkage between the fuel electrode and the solid electrolyte.

【0009】即ち、従来、共焼結法においては、燃料極
の厚みが最適化されておらず、例えば、燃料極成形体の
厚みが厚い場合には、燃料極と固体電解質での熱膨張率
の不具合を緩和できずに、焼結後に燃料極自体が剥離す
るという問題があった。
That is, in the conventional co-sintering method, the thickness of the fuel electrode has not been optimized. For example, when the thickness of the fuel electrode compact is large, the thermal expansion coefficient between the fuel electrode and the solid electrolyte is large. However, there has been a problem that the fuel electrode itself peels off after sintering without being able to alleviate the above problem.

【0010】また、燃料極成形体の厚みが薄い場合に
は、固体電解質成形体のセル長さ方向の端面に対して、
燃料極成形体のセル長さ方向の端面を合致させて積層し
ても、焼結後には、燃料極の端面が固体電解質の端面か
ら大きく内方へ移動し、即ち、燃料極が固体電解質に対
して大きく収縮し、その界面組織を観察すると、燃料極
と固体電解質との界面から固体電解質内部へ向かってク
ラック(亀裂)が進行しており、この結果、燃料ガスが
漏出したり、また、発電性能上の観点からは、上記収縮
差が大きくなるにつれ、燃料極サイトの分極値、および
セル構成成分の実抵抗値が初期段階から高くなるという
問題があった。
[0010] When the thickness of the fuel electrode molded body is small, the solid electrolyte molded body has an end face in the cell length direction.
Even when the end faces of the fuel electrode formed body are aligned with each other in the cell length direction, after sintering, the end face of the fuel electrode moves largely inward from the end face of the solid electrolyte, that is, the fuel electrode is turned into the solid electrolyte. Observation of the interface structure shows that cracks (cracks) are progressing from the interface between the fuel electrode and the solid electrolyte toward the inside of the solid electrolyte. As a result, fuel gas leaks out, From the viewpoint of power generation performance, there has been a problem that, as the contraction difference increases, the polarization value of the fuel electrode site and the actual resistance value of the cell component increase from the initial stage.

【0011】本発明は、燃料極の剥離を防止できるとと
もに、燃料極と固体電解質との焼成収縮差を小さくし
て、発電性能を向上できる固体電解質型燃料電池セルを
提供することを目的とする。
An object of the present invention is to provide a solid oxide fuel cell which can prevent fuel electrode separation and reduce the difference in firing shrinkage between the fuel electrode and the solid electrolyte, thereby improving power generation performance. .

【0012】[0012]

【課題を解決するための手段】本発明の固体電解質型燃
料電池セルは、空気極成形体(仮焼したものも包含する
意味である)、固体電解質成形体(仮焼したものも包含
する意味である)、燃料極成形体を順次積層し、同時焼
成してなる固体電解質型燃料電池セルにおいて、燃料極
の厚みが5〜20μmであることを特徴とする。
Means for Solving the Problems The solid oxide fuel cell according to the present invention includes an air electrode molded product (including a calcined product) and a solid electrolyte molded product (including a calcined product). ), In a solid oxide fuel cell unit in which fuel electrode molded bodies are sequentially laminated and fired simultaneously, the fuel electrode has a thickness of 5 to 20 μm.

【0013】このような構成を採用することにより、空
気極成形体、固体電解質成形体、燃料極成形体を順次積
層し、同時焼成したとしても、部材間に発生する焼成収
縮率差に伴う応力を緩和できるため、固体電解質からの
燃料極の剥離を防止できるとともに、燃料極と固体電解
質との焼成収縮差を小さくできる。
By adopting such a configuration, even if the air electrode molded body, the solid electrolyte molded body, and the fuel electrode molded body are sequentially laminated and fired simultaneously, the stress caused by the difference in firing shrinkage generated between the members. Therefore, the fuel electrode can be prevented from being separated from the solid electrolyte, and the difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced.

【0014】このように、燃料極と固体電解質との焼成
収縮差を小さくできるため、固体電解質と燃料極の界面
から固体電解質内部に生成するクラック(亀裂)を阻止
することが可能となる。その結果、燃料極と固体電解質
間の分極値の増大、また固体電解質成分の実抵抗値の増
大を防止でき、これに伴い初期の高い出力密度を長期的
に亘って維持できる。
As described above, since the difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced, it is possible to prevent cracks generated in the solid electrolyte from the interface between the solid electrolyte and the fuel electrode. As a result, an increase in the polarization value between the fuel electrode and the solid electrolyte and an increase in the actual resistance value of the solid electrolyte component can be prevented, and accordingly, an initial high power density can be maintained for a long period of time.

【0015】また、空気極成形体(仮焼したものも包含
する意味である)上に第1固体電解質成形体を積層し、
該第1固体電解質成形体(仮焼したものも包含する意味
である)上に、燃料極成形体が積層された第2固体電解
質成形体を、前記第1固体電解質成形体と前記第2固体
電解質成形体が当接するように積層し、これを焼成して
なることが望ましい。
Further, the first solid electrolyte molded body is laminated on the air electrode molded body (meaning that the calcined one is included),
The second solid electrolyte molded body in which the fuel electrode molded body is laminated on the first solid electrolyte molded body (meaning that the calcined one is included) is combined with the first solid electrolyte molded body and the second solid molded body. It is desirable that the electrolyte molded bodies be laminated so as to be in contact with each other and then fired.

【0016】例えば、空気極成形体の表面に形成された
ZrO2 を含有する第1固体電解質成形体に、ZrO2
を含有する第2固体電解質成形体と金属粒子を含有する
燃料極成形体との積層体からなるシート状の積層成形体
を、第1固体電解質成形体に前記第2固体電解質成形体
が当接するように積層した後、焼成する。
For example, the first solid electrolyte molded body containing ZrO 2 formed on the surface of the air electrode molded body is provided with ZrO 2.
The second solid electrolyte molded body is brought into contact with the first solid electrolyte molded body in the form of a sheet-shaped laminated molded body composed of a laminate of the second solid electrolyte molded body containing and the fuel electrode molded body containing metal particles. And then firing.

【0017】このように、第2固体電解質成形体と燃料
極成形体とのシート状の積層成形体を作製した後、この
積層成形体を、第1固体電解質成形体に第2固体電解質
成形体が当接するように積層したので、焼成すると燃料
極と固体電解質とを強固に接合でき、燃料極の固体電解
質からの剥離を防止できる。
After a sheet-like laminated molded article of the second solid electrolyte molded article and the fuel electrode molded article is thus produced, this laminated molded article is applied to the first solid electrolyte molded article by the second solid electrolyte molded article. Are laminated so as to abut each other, so that when fired, the fuel electrode and the solid electrolyte can be firmly joined, and the fuel electrode can be prevented from peeling off from the solid electrolyte.

【0018】さらに、燃料極と固体電解質との焼成収縮
差を小さくして、固体電解質の端面と燃料極の端面との
間隔を0.15mm以下とすることが望ましい。
Further, it is desirable that the difference in firing shrinkage between the fuel electrode and the solid electrolyte be reduced so that the distance between the end face of the solid electrolyte and the end face of the fuel electrode is 0.15 mm or less.

【0019】また、燃料極が金属粒子とZrO2 粒子を
含有するとともに、燃料極が、固体電解質側の第1燃料
極層と、該第1燃料極層の表面に形成された第2燃料極
層とからなり、前記第1燃料極層のZrO2 粒子の平均
粒径を、前記第2燃料極層のZrO2 粒子の平均粒径よ
りも小さくすることが望ましい。
The fuel electrode contains metal particles and ZrO 2 particles, and the fuel electrode has a first fuel electrode layer on the solid electrolyte side and a second fuel electrode formed on the surface of the first fuel electrode layer. consists of a layer, the average particle diameter of the ZrO 2 grains of the first fuel electrode layer, it is desirable to be smaller than the average particle size of the ZrO 2 particles of the second fuel electrode layer.

【0020】これは、第1燃料極層の微粒なZrO2
子により、金属粒子の周りを十分に支持して、燃料極の
金属粒子の粒成長を抑制し、燃料極の金属粒子と固体電
解質との接触点を多くすることができ、燃料極サイトの
分極値を小さくできるとともに、第2燃料極層の平均粒
径が大きいZrO2 粒子により、燃料極の焼成収縮を小
さくすることができ、燃料極と固体電解質との焼成収縮
差を小さくできる。
This is because the fine ZrO 2 particles of the first fuel electrode layer sufficiently support the periphery of the metal particles to suppress the growth of the metal particles of the fuel electrode, and the metal particles of the fuel electrode and the solid electrolyte Can be increased, the polarization value of the anode site can be reduced, and the ZrO 2 particles having a large average particle size of the second anode layer can reduce firing shrinkage of the anode, The difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced.

【0021】即ち、燃料極を構成する金属粒子、ZrO
2 粒子の平均粒径においては、ZrO2 粒子の平均粒径
が小さいほど、金属粒子の粒成長抑制のための骨格を形
成し易く、金属粒子の粒成長抑制効果が大きい。一方、
ZrO2 粒子の平均粒径が大きいほど、燃料極の焼成収
縮が小さくなり、固体電解質に近づくためである。
That is, the metal particles constituting the fuel electrode, ZrO
Regarding the average particle diameter of the two particles, as the average particle diameter of the ZrO 2 particles is smaller, a skeleton for suppressing the particle growth of the metal particles is more easily formed, and the effect of suppressing the particle growth of the metal particles is larger. on the other hand,
This is because the larger the average particle size of the ZrO 2 particles, the smaller the firing shrinkage of the fuel electrode and the closer to the solid electrolyte.

【0022】特に、第1燃料極層のZrO2 粒子の平均
粒径が0.8μm以下であり、第2燃料極層のZrO2
粒子の平均粒径が1μm以上であることが望ましい。
[0022] In particular, the average particle diameter of the ZrO 2 grains of the first fuel electrode layer is not more 0.8μm or less, ZrO 2 of the second fuel electrode layer
It is desirable that the average particle size of the particles is 1 μm or more.

【0023】[0023]

【発明の実施の形態】本発明における固体電解質型燃料
電池セルは、例えば、図1に示すように円筒状の固体電
解質31の内面に空気極32、外面に燃料極33を形成
してセル本体34を形成し、空気極32には集電体35
(インターコネクタ)が電気的に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A solid oxide fuel cell according to the present invention is, for example, formed by forming an air electrode 32 on the inner surface and a fuel electrode 33 on the outer surface of a cylindrical solid electrolyte 31 as shown in FIG. 34, and a current collector 35 is
(Interconnector) is electrically connected.

【0024】即ち、固体電解質31の一部に切欠部36
が形成され、固体電解質31の内面に形成されている空
気極32の一部が露出しており、この露出面37及び切
欠部36近傍の固体電解質31の表面が集電体35によ
り被覆され、集電体35が、固体電解質31の両端部表
面及び固体電解質31の切欠部36から露出した空気極
32の表面に接合されている。空気極32と電気的に接
続する集電体35は、セル本体34の外面に形成され、
ほぼ段差のない連続同一面39を覆うように形成されて
おり、 燃料極33とは電気的に接続されていない。 この
集電体35は、セル同士間を接続する際に他のセルの燃
料極にNiフェルトを介して電気的に接続され、これに
より燃料電池モジュールが構成される。 連続同一面39
は、固体電解質の両端部と空気極の一部とが連続したほ
ぼ同一面となるまで、固体電解質の両端部間を研磨する
ことにより形成される。固体電解質31は、例えば3〜
15モル%のY2 3 を含有した部分安定化あるいは安
定化ZrO2 が用いられる。また、空気極32として
は、例えば、主としてLaをCa又はSrで10〜20
原子%置換したLaMnO3 が用いられ、集電体35と
しては、例えば、主としてCrをMgで10〜30原子
%置換したLaCrO3 が用いられる。 燃料極33とし
ては、50〜80重量%のNiを含むZrO2 (Y2
3 含有)サーメットが用いられる。 固体電解質31、 空
気極32、集電体35、 燃料極33としては、上記例に
限定されるものではなく、公知材料を用いても良い。そ
して、本発明の固体電解質型燃料電池セルは、固体電解
質31は、空気極32表面に形成された第1固体電解質
31aと、この第1固体電解質31aの表面に形成され
た第2固体電解質31bとから構成され、この第2固体
電解質31bの表面に燃料極33が形成されており、燃
料極33の厚みが5〜20μmとされている。
That is, the notch 36 is formed in a part of the solid electrolyte 31.
Is formed, a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the surface of the solid electrolyte 31 near the exposed surface 37 and the notch 36 is covered with the current collector 35, Current collectors 35 are joined to the surfaces of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31. A current collector 35 electrically connected to the air electrode 32 is formed on an outer surface of the cell body 34,
It is formed so as to cover the continuous same surface 39 having almost no level difference, and is not electrically connected to the fuel electrode 33. This current collector 35 is electrically connected to the fuel electrode of another cell via Ni felt when connecting the cells, thereby forming a fuel cell module. Continuous same surface 39
Is formed by polishing between both ends of the solid electrolyte until both ends of the solid electrolyte and a part of the air electrode are continuous and substantially flush with each other. The solid electrolyte 31 is, for example, 3 to
Partially stabilized or stabilized ZrO 2 containing 15 mol% of Y 2 O 3 is used. Further, as the air electrode 32, for example, La is mainly composed of Ca or Sr of 10 to 20.
LaMnO 3 with atomic% substitution is used. As the current collector 35, for example, LaCrO 3 with Cr mainly substituted with 10 to 30 atomic% of Mg is used. The fuel electrode 33 is made of ZrO 2 (Y 2 O) containing 50 to 80% by weight of Ni.
3 ) Cermet is used. The solid electrolyte 31, the air electrode 32, the current collector 35, and the fuel electrode 33 are not limited to the above examples, and may be made of known materials. In the solid oxide fuel cell of the present invention, the solid electrolyte 31 includes a first solid electrolyte 31a formed on the surface of the air electrode 32, and a second solid electrolyte 31b formed on the surface of the first solid electrolyte 31a. The fuel electrode 33 is formed on the surface of the second solid electrolyte 31b, and the thickness of the fuel electrode 33 is 5 to 20 μm.

【0025】燃料極33の厚みを5〜20μmと設定し
たのは、燃料極33の厚みが5μmより小さいと、Ni
粒子の粒成長に伴い焼成時の収縮量が増大し、一方、2
0μmより大きいと、共焼結を行った後に、燃料極33
と固体電解質31間での熱膨張率の不具合を緩和できず
に、燃料極33自体が剥離するからである。燃料極33
の収縮量を小さくし、かつ燃料極33の剥離を防止する
という点から、燃料極33の厚みは10〜20μmが望
ましい。
The reason why the thickness of the anode 33 is set to 5 to 20 μm is that if the thickness of the anode 33 is smaller than 5 μm,
As the particles grow, the amount of shrinkage during firing increases.
If it is larger than 0 μm, after co-sintering, the fuel electrode 33
This is because the problem of the thermal expansion coefficient between the fuel electrode 33 and the solid electrolyte 31 cannot be alleviated, and the fuel electrode 33 itself peels off. Fuel electrode 33
The thickness of the fuel electrode 33 is desirably 10 to 20 μm from the viewpoint of reducing the contraction amount of the fuel electrode 33 and preventing the separation of the fuel electrode 33.

【0026】燃料極33は、ZrO2 粒子の平均粒径は
0.4〜0.8μmとされ、Ni粒子の平均粒径は0.
2〜0.6μmとされている。ZrO2 粒子の平均粒径
が0.4μmよりも小さい場合には、固体電解質との焼
成収縮差が顕著に発生する傾向があり、また、Ni粒子
の平均粒径が0.6μmよりも大きい場合には、Niお
よびZrO2 粒子間の接触点の増大を図れなくなる傾向
があるからである。また、Ni粒子の平均粒径が0.2
μmよりも小さい場合には、ZrO2 粒子との均一混合
が困難で、逆に凝集を伴う傾向があり、ZrO2 粒子の
平均粒径が0.8μmよりも大きい場合には、Ni粒子
の周りの均一な支持が図れない傾向があるからである。
In the fuel electrode 33, the ZrO 2 particles have an average particle size of 0.4 to 0.8 μm, and the Ni particles have an average particle size of 0.1 to 0.8 μm.
It is 2 to 0.6 μm. When the average particle size of the ZrO 2 particles is smaller than 0.4 μm, the difference in firing shrinkage from the solid electrolyte tends to be significant, and when the average particle size of the Ni particles is larger than 0.6 μm. This is because there is a tendency that the number of contact points between Ni and ZrO 2 particles cannot be increased. The average particle size of the Ni particles is 0.2
When the average particle size of the ZrO 2 particles is smaller than 0.8 μm, it is difficult to uniformly mix the ZrO 2 particles with the ZrO 2 particles. This is because there is a tendency that uniform support cannot be achieved.

【0027】図2は、本発明の固体電解質型燃料電池セ
ルの斜視図であり、図3は、燃料極33と固体電解質3
1の境界近傍を拡大して示す正面図である。この図3に
示すように、本発明の固体電解質型燃料電池セルでは、
セル長さ方向の燃料極33の端面Aと、その下面に形成
された固体電解質31のセル長さ方向の端面Bとの間隔
xが0.15mm以下とされている。端面Aと端面Bと
の間隔xが0.15mmよりも大きい場合には、燃料極
33と固体電解質31(第1固体電解質31a)の焼成
収縮差が大きく、固体電解質31にクラックが生成する
傾向があるからである。端面Aと端面Bとの間隔xは、
固体電解質31におけるクラック生成防止という点か
ら、0.10mm以下であることが望ましい。
FIG. 2 is a perspective view of a solid oxide fuel cell according to the present invention, and FIG.
FIG. 2 is an enlarged front view showing the vicinity of a boundary 1; As shown in FIG. 3, in the solid oxide fuel cell of the present invention,
The distance x between the end face A of the fuel electrode 33 in the cell length direction and the end face B in the cell length direction of the solid electrolyte 31 formed on the lower surface thereof is set to 0.15 mm or less. If the distance x between the end face A and the end face B is larger than 0.15 mm, the firing contraction difference between the fuel electrode 33 and the solid electrolyte 31 (first solid electrolyte 31a) is large, and cracks tend to be generated in the solid electrolyte 31. Because there is. The distance x between the end face A and the end face B is
From the viewpoint of preventing crack formation in the solid electrolyte 31, the thickness is desirably 0.10 mm or less.

【0028】本発明の固体電解質型燃料電池セルは、ま
ず、円筒状の空気極成形体を形成する。この円筒状の空
気極成形体は、例えば所定の調合組成に従いLa
2 3 、Y2 3 、CaO、MnO2 の素原料を秤量、
混合した後、1500℃程度の温度で2〜10時間仮焼
し、その後4〜8μmの粒度に粉砕調製する。
In the solid oxide fuel cell of the present invention, first, a cylindrical air electrode molded body is formed. This cylindrical air electrode molded product is, for example, La
Raw materials of 2 O 3 , Y 2 O 3 , CaO, MnO 2 are weighed,
After mixing, the mixture is calcined at a temperature of about 1500 ° C. for 2 to 10 hours, and then pulverized to a particle size of 4 to 8 μm.

【0029】調製した粉体に、バインダーを混合、混練
し押出成形法により円筒状の空気極成形体を作製し、さ
らに脱バインダー処理し、1200〜1250℃で仮焼
を行うことで円筒状の空気極仮焼体を作製する。
A binder is mixed and kneaded with the prepared powder to produce a cylindrical air electrode molded body by an extrusion molding method, which is further subjected to a binder removal treatment and calcined at 1200 to 1250 ° C. A cathode calcined body is manufactured.

【0030】シート状の第1固体電解質成形体として、
所定粉末にトルエン、バインダー、市販の分散剤を加え
てスラリー化したものをドクターブレード等の方法によ
り、例えば、100〜120μmの厚さに成形したもの
を用い、円筒状の空気極仮焼体の表面に第1固体電解質
成形体を貼り付けて仮焼する。
As a sheet-like first solid electrolyte molded body,
Toluene, a binder, a slurry obtained by adding a commercially available dispersant to a predetermined powder, by a method such as a doctor blade, for example, using a molded thing to a thickness of 100 ~ 120μm, the cylindrical air electrode calcined body The first solid electrolyte molded body is attached to the surface and calcined.

【0031】次に、シート状の燃料極成形体を作製す
る。まず、例えば、所定比率に調製したNiO/YSZ
混合粉体にトルエン、バインダーを加えてスラリー化し
たものを準備する。前記第1固体電解質成形体の作製と
同様、成形、乾燥し、例えば、15μmの厚さのシート
状の第2固体電解質成形体を形成する。
Next, a sheet-shaped fuel electrode molded body is manufactured. First, for example, NiO / YSZ prepared at a predetermined ratio
A slurry prepared by adding toluene and a binder to the mixed powder is prepared. Similarly to the production of the first solid electrolyte molded body, the molded body is dried and formed into a sheet-shaped second solid electrolyte molded body having a thickness of, for example, 15 μm.

【0032】この第2固体電解質成形体上に燃料極層成
形体を印刷、乾燥した後、図4に示すように、第1固体
電解質仮焼体53上に、燃料極層成形体54が形成され
た第2固体電解質成形体55を、第1固体電解質仮焼体
53に第2固体電解質成形体55が当接するように巻き
付け、積層する。尚、符号51は空気極仮焼体である。
After printing and drying the fuel electrode layer compact on the second solid electrolyte compact, a fuel electrode layer compact 54 is formed on the first solid electrolyte calcined body 53 as shown in FIG. The formed second solid electrolyte molded body 55 is wound and laminated so that the second solid electrolyte molded body 55 comes into contact with the first solid electrolyte calcined body 53. Reference numeral 51 denotes an air electrode calcined body.

【0033】燃料極層成形体の厚みは9〜60μmの厚
みとされている。燃料極層成形体の厚みが9μmよりも
薄くなると、Ni粒成長に伴い焼成収縮差が助長され、
一方60μmよりも厚くなると、固体電解質間との熱膨
張率の不整合を伴って燃料極が剥離し易くなる。このよ
うな点から、燃料極成形体の厚みは特に25〜40μm
が望ましい。
The thickness of the fuel electrode layer compact is 9 to 60 μm. When the thickness of the fuel electrode layer molded body is less than 9 μm, the difference in firing shrinkage is promoted with the growth of Ni grains,
On the other hand, when the thickness is more than 60 μm, the fuel electrode is easily peeled off due to a mismatch in the coefficient of thermal expansion between the solid electrolytes. From such a point, the thickness of the fuel electrode compact is particularly 25 to 40 μm.
Is desirable.

【0034】燃料極層成形体を構成するNi/YSZ混
合粉体は、Ni粉末の平均粒径が0.2〜0.6μm、
YSZ粉末の平均粒径が0.4〜0.8μmの原料粉体
を用い、所定比率に調合した後分散性を高めるためにZ
rO2 ボールを用いて湿式粉砕混合を行う。燃料極を構
成するYSZ粉末の粒子径が0.8μmよりも大きくな
ると、焼成収縮差という点では問題無いが、Ni粒子の
支持がミクロレベルで十分でないために局所的にNi粒
成長を伴う。
The Ni / YSZ mixed powder constituting the fuel electrode layer compact has an average particle diameter of the Ni powder of 0.2 to 0.6 μm,
The raw material powder having an average particle size of YSZ powder of 0.4 to 0.8 μm is used.
Wet pulverization and mixing are performed using rO 2 balls. If the particle diameter of the YSZ powder constituting the fuel electrode is larger than 0.8 μm, there is no problem in terms of the difference in firing shrinkage, but Ni particles are locally supported because Ni particles are not sufficiently supported on a micro level.

【0035】さらに、燃料極を構成するNi粉末とYS
Z粉末との各粒径の組合わせにおいても、焼成収縮差の
低減は可能である。YSZ粉末が0.8μm以上の粒径
になると焼成時の収縮差という観点では問題無いが、N
i粒子の粒成長を抑制できずに、その結果反応サイト数
の減少に因る燃料極サイトの分極増大を伴って出力性能
が低下する。
Further, Ni powder constituting the fuel electrode and YS
Even in the combination of each particle size with Z powder, the difference in firing shrinkage can be reduced. When the YSZ powder has a particle size of 0.8 μm or more, there is no problem from the viewpoint of the difference in shrinkage during firing, but N
The growth of i-particles cannot be suppressed, and as a result, the output performance decreases with an increase in the polarization of the fuel electrode site due to a decrease in the number of reaction sites.

【0036】その結果、反応サイト数という観点におい
てNi/YSZ間の接点数が減少し、そのために燃料極
サイトの分極値が極めて増大し出力性能が低下する。ま
た、Ni含有比率が80%より高くなると、固体電解質
膜との熱膨張率の不整合を生じ易く剥離が生じ易い。
As a result, the number of contacts between Ni and YSZ is reduced in terms of the number of reaction sites, and as a result, the polarization value of the fuel electrode site is extremely increased, and the output performance is reduced. On the other hand, if the Ni content ratio is higher than 80%, the thermal expansion coefficient of the solid electrolyte membrane tends to be inconsistent, and the separation tends to occur.

【0037】次に、固体電解質成形体の調製同様、10
0〜120μmの厚さに成形した集電体成形体を所定箇
所に貼り付ける。
Next, as in the preparation of the solid electrolyte molded article, 10
A current collector molded body having a thickness of 0 to 120 μm is attached to a predetermined location.

【0038】この後、円筒状空気極成形体51、固体電
解質成形体53、55、燃料極成形体54および集電体
成形体の積層体は、大気中1400〜1550℃の温度
で、4層同時に共焼成される。
Thereafter, a laminate of the cylindrical air electrode molded body 51, the solid electrolyte molded bodies 53 and 55, the fuel electrode molded body 54 and the current collector molded body is formed into four layers at a temperature of 1400 to 1550 ° C. in the atmosphere. Co-firing is performed at the same time.

【0039】以上のように構成された固体電解質型燃料
電池セルでは、空気極成形体、固体電解質成形体、燃料
極成形体を順次積層し、同時焼成したとしても、部材間
に発生する焼成収縮量、熱膨張差に伴う反応を緩和でき
るため、固体電解質からの燃料極の剥離を防止できると
ともに、燃料極と固体電解質との焼成収縮差を小さくで
き、これにより、固体電解質内部に生成するクラックを
阻止することができ、その結果、燃料極と固体電解質間
の分極値の増大、また固体電解質成分の実抵抗値の増大
を防止でき、初期の高い出力密度を長期的に亘って維持
できる。
In the solid electrolyte fuel cell having the above-described structure, even if the air electrode molded body, the solid electrolyte molded body, and the fuel electrode molded body are sequentially laminated and fired simultaneously, firing shrinkage generated between members does not occur. Since the reaction caused by the difference in the amount and thermal expansion can be mitigated, the separation of the fuel electrode from the solid electrolyte can be prevented, and the difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced, whereby cracks generated inside the solid electrolyte can be reduced. As a result, an increase in the polarization value between the fuel electrode and the solid electrolyte and an increase in the actual resistance value of the solid electrolyte component can be prevented, and the initial high power density can be maintained for a long period of time.

【0040】また、固体電解質成形体の表面に燃料極成
形体を巻き付けて積層するのではなく、第2固体電解質
成形体と燃料極成形体とのシート状の積層成形体を作製
した後、この積層成形体を、第1固体電解質成形体に第
2固体電解質成形体が当接するように積層したので、燃
料極と固体電解質とを強固に接合でき、燃料極の固体電
解質からの剥離を防止できる。
Instead of winding and laminating the fuel electrode molded body around the surface of the solid electrolyte molded body, a sheet-shaped laminated molded body of the second solid electrolyte molded body and the fuel electrode molded body is prepared. Since the laminated molded body is laminated so that the second solid electrolyte molded body abuts on the first solid electrolyte molded body, the fuel electrode and the solid electrolyte can be firmly joined, and the fuel electrode can be prevented from being separated from the solid electrolyte. .

【0041】また、図5は、本発明の他の固体電解質型
燃料電池セルを示すもので、この例では、燃料極33
を、固体電解質側の第1燃料極層33aと、外面側の第
2燃料極層33bとから構成し、第1燃料極層33aの
ZrO2 粒子の平均粒径を、第2燃料極層33bのZr
2 粒子の平均粒径よりも小さくされている。ここで
は、第1燃料極層33aのZrO2 粒子の平均粒径が
0.8μm以下とされ、第2燃料極層33bのZrO2
粒子の平均粒径が1μm以上とされ、他の構成は上記例
と同一である。
FIG. 5 shows another solid oxide fuel cell unit according to the present invention.
Is composed of a first fuel electrode layer 33a on the solid electrolyte side and a second fuel electrode layer 33b on the outer surface, and the average particle size of the ZrO 2 particles of the first fuel electrode layer 33a is determined by the second fuel electrode layer 33b. Zr
It is smaller than the average particle size of the O 2 particles. Here, the average particle size of the ZrO 2 particles of the first fuel electrode layer 33a is set to 0.8 μm or less, and the ZrO 2 of the second fuel electrode layer 33b is
The average particle size of the particles is 1 μm or more, and the other configurations are the same as those in the above example.

【0042】ここで、第1燃料極層33aのZrO2
子を平均粒径が0.8μm以下にしたのは、第1燃料極
層の微粒なZrO2 粒子により、金属粒子(Ni)の回
りを十分に支持して、燃料極の金属粒子の粒成長を抑制
し、燃料極33の金属粒子と固体電解質31との接触点
を多くすることができるからである。
Here, the reason why the average particle size of the ZrO 2 particles of the first fuel electrode layer 33a is 0.8 μm or less is that the ZrO 2 particles of the first fuel electrode layer are formed around the metal particles (Ni) by the fine ZrO 2 particles. Is sufficiently supported, the grain growth of the metal particles of the fuel electrode 33 is suppressed, and the number of contact points between the metal particles of the fuel electrode 33 and the solid electrolyte 31 can be increased.

【0043】また、第2燃料極層33bのZrO2 粒子
の平均粒径が1μm以上としたのは、第2燃料極層33
bの平均粒径が大きいZrO2 粒子により、燃料極33
の焼成収縮を小さくすることができ、燃料極33と固体
電解質31との焼成収縮差を小さくできるからである。
尚、燃料極の金属粒子は、焼成温度で粒成長するもの
の、ZrO2 粒子は殆ど粒成長しない。
The reason why the average particle size of the ZrO 2 particles in the second fuel electrode layer 33b is 1 μm or more is that the second fuel electrode layer 33b
b, ZrO 2 particles having a large average particle diameter make the fuel electrode 33
This is because the firing shrinkage of the fuel electrode 33 and the solid electrolyte 31 can be reduced.
Although the metal particles of the fuel electrode grow at the firing temperature, the ZrO 2 particles hardly grow.

【0044】このような固体電解質型燃料電池セルは、
第2固体電解質成形体の表面に第1燃料極層成形体を印
刷、乾燥した後、第1燃料極層成形体上に第2燃料極層
成形体を印刷、乾燥し、この積層成形体を第1固体電解
質仮焼体の表面に積層する以外は、上記と同様に製造す
ることができる。
Such a solid oxide fuel cell has the following features:
After printing and drying the first fuel electrode layer molded body on the surface of the second solid electrolyte molded body, the second fuel electrode layer molded body is printed and dried on the first fuel electrode layer molded body. It can be manufactured in the same manner as described above except that it is laminated on the surface of the first solid electrolyte calcined body.

【0045】尚、上記例では、円筒型の固体電解質型燃
料電池セルについて説明したが、平板型燃料電池セルで
あっても良い。
In the above example, a cylindrical solid electrolyte fuel cell has been described, but a flat fuel cell may be used.

【0046】また、上記例では、空気極成形体および第
1固体電解質成形体を一旦仮焼し、これに第2固体電解
質成形体、燃料極成形体を形成したが、仮焼することな
く、空気極成形体に第1固体電解質成形体、第2固体電
解質成形体、燃料極成形体を形成しても良い。
Further, in the above example, the air electrode molded body and the first solid electrolyte molded body were temporarily calcined, and then the second solid electrolyte molded body and the fuel electrode molded body were formed. A first solid electrolyte molded body, a second solid electrolyte molded body, and a fuel electrode molded body may be formed on the air electrode molded body.

【0047】[0047]

【実施例】実施例1 円筒状固体電解質型燃料電池セルを共焼結法により作製
するため、まず円筒状の空気極成形体を以下の手順で作
製した。
Example 1 In order to produce a cylindrical solid oxide fuel cell by a co-sintering method, a cylindrical air electrode molded body was first produced by the following procedure.

【0048】市販の純度99.9%以上のLa2 3
2 3 、CaCO3 、Mn2 3を出発原料として、
La0.560.14Ca0.3 MnO3 の組成になるように秤
量し、これに有機バインダーを添加し、押出成形し、脱
バイ・仮焼により空気極仮焼体を形成した。
Commercially available La 2 O 3 having a purity of 99.9% or more;
Starting from Y 2 O 3 , CaCO 3 and Mn 2 O 3
The mixture was weighed so as to have a composition of La 0.56 Y 0.14 Ca 0.3 MnO 3 , an organic binder was added thereto, and the mixture was extruded, and a calcined cathode was formed by debuiling and calcining.

【0049】次に、Y2 3 を8モル%の割合で含有す
る平均粒径が1〜2μmのZrO粉末を用いてスラリ
ーを調製し、ドクターブレード法により厚さ100μm
と厚さ15μmの第1及び2固体電解質成形体としての
シートを作製した。
Next, a slurry was prepared using ZrO 2 powder containing Y 2 O 3 at a ratio of 8 mol% and having an average particle size of 1 to 2 μm, and was then 100 μm thick by a doctor blade method.
Then, sheets as first and second solid electrolyte molded bodies having a thickness of 15 μm were prepared.

【0050】次に、燃料極成形体の作製について説明す
る。平均粒径が0.4μmのNi粉末に対し、平均粒径
が0.4〜0.8μmの範囲の各粒径を有するY2 3
を8モル%の割合で含有するZrO2 粉末を数種類準備
し、Ni/YSZ比率(重量分率)が55/45から7
5/25の範囲になるように数種類調合し、粉砕混合処
理を行い、スラリー化した。
Next, the production of the fuel electrode compact will be described. For a Ni powder having an average particle size of 0.4 μm, Y 2 O 3 having an average particle size in the range of 0.4 to 0.8 μm is used.
The several kinds prepared ZrO 2 powder containing a proportion of 8 mole%, Ni / YSZ ratio (weight fraction) of from 55/45 7
Several kinds were blended so as to be in the range of 5/25, pulverized and mixed, and slurried.

【0051】その後、調製したスラリーを第2固体電解
質成形体上に9〜65μmの範囲の厚さで、全面に印刷
して燃料極成形体を作製した。従って、第2固体電解質
成形体と燃料極成形体の端面は同一面となっている。燃
料極を構成するNi/YSZ混合粉体の各含有比率、各
粉体の粒径、また燃料極のシート厚と焼成後の膜厚を表
1に示す。
Thereafter, the prepared slurry was printed on the entire surface of the second solid electrolyte molded body to a thickness of 9 to 65 μm to prepare a fuel electrode molded body. Therefore, the end surfaces of the second solid electrolyte molded body and the fuel electrode molded body are flush with each other. Table 1 shows the content ratio of the Ni / YSZ mixed powder constituting the fuel electrode, the particle size of each powder, the sheet thickness of the fuel electrode, and the film thickness after firing.

【0052】次に、市販の純度99.9%以上のLa2
3 、Cr2 3 、MgOを出発原料として、これをL
a(Mg0.3 Cr0.7 0.973 の組成になるように秤
量混合した後、1500℃で3時間仮焼粉砕して、平均
粒子径が1〜2μmの固溶体粉末を得た。この固溶体粉
末を用いてスラリーを調製し、ドクターブレード法によ
り厚さ100μmの集電体成形体を作製した。
Next, commercially available La 2 having a purity of 99.9% or more is used.
Starting from O 3 , Cr 2 O 3 and MgO, this is
a (Mg 0.3 Cr 0.7 ) 0.97 O 3 The mixture was weighed and mixed so as to obtain a composition, and then calcined and pulverized at 1500 ° C. for 3 hours to obtain a solid solution powder having an average particle diameter of 1 to 2 μm. A slurry was prepared using the solid solution powder, and a 100 μm-thick formed current collector was formed by a doctor blade method.

【0053】まず、前記空気極仮焼体に前記第1固体電
解質仮焼体を、その両端部が開口するようにロール状に
巻き付け1150℃で5時間の条件で仮焼した。仮焼
後、第1固体電解質仮焼体の両端部間を空気極仮焼体を
露出させるように平坦に研磨し、連続した同一面を形成
するように加工した。
First, the first solid electrolyte calcined body was wound around the air electrode calcined body in a roll shape so that both ends thereof were opened, and calcined at 1150 ° C. for 5 hours. After calcining, the first solid electrolyte calcined body was polished flat so as to expose the air electrode calcined body, and worked so as to form the same continuous surface.

【0054】次に、第1固体電解質仮焼体表面に、燃料
極成形体が形成された第2固体電解質成形体を、第1固
体電解質成形体と第2固体電解質成形体が当接するよう
に積層し、乾燥した後、上記連続同一面に集電体成形体
を貼り付け、この後、大気中1500℃で6時間の条件
で共焼結を行い、共焼結体を作製した。
Next, the second solid electrolyte molded body having the fuel electrode molded body formed thereon is placed on the first solid electrolyte calcined body so that the first solid electrolyte molded body and the second solid electrolyte molded body are in contact with each other. After laminating and drying, the formed current collector was adhered to the same continuous surface, and then co-sintered at 1500 ° C. for 6 hours in the atmosphere to produce a co-sintered body.

【0055】作製した共焼結体の燃料極の評価を行うた
め、共焼結後の第2固体電解質と燃料極との界面の収縮
差、また燃料極の膜剥離の有無を確認した。第2固体電
解質と燃料極との界面の収縮差は、セルの長さ方向の固
体電解質の端面Bと燃料極の端面Aとの間隔xを測定す
ることにより求め、燃料極の膜剥離については目視によ
り観察した。その結果を、表1に示す。
In order to evaluate the fuel electrode of the produced co-sintered body, the difference in shrinkage at the interface between the second solid electrolyte and the fuel electrode after co-sintering and the presence or absence of film peeling of the fuel electrode were confirmed. The contraction difference at the interface between the second solid electrolyte and the fuel electrode is obtained by measuring the distance x between the end face B of the solid electrolyte and the end face A of the fuel electrode in the longitudinal direction of the cell. Observed visually. Table 1 shows the results.

【0056】[0056]

【表1】 [Table 1]

【0057】表1より、本発明範囲外の試料No.1
は、焼成後の収縮差が0.28mmで他の試料に比べ極
めて大きく、界面観察より固体電解質内部へのクラック
の進行が認められた。試料No.6は共焼結を行った直
後に燃料極全体が固体電解質との界面から剥離した。一
方、本発明品である試料においては、いずれも燃料極の
剥離も見られず、焼成後の収縮差が0.13mm以下
で、界面観察においてもクラックの発生は見当たらず良
好な界面を形成していた。
From Table 1, it can be seen that Sample Nos. 1
The difference in shrinkage after firing was 0.28 mm, which was much larger than that of other samples, and the progress of cracks into the solid electrolyte was observed from the interface observation. Sample No. In No. 6, the whole fuel electrode was peeled off from the interface with the solid electrolyte immediately after the co-sintering was performed. On the other hand, in the sample of the present invention, no separation of the fuel electrode was observed, the difference in shrinkage after firing was 0.13 mm or less, and no cracks were observed in the interface observation, and a good interface was formed. I was

【0058】実施例2 実施例1で用いた試料No.1、2、3、8、12の固
体電解質型燃料電池セルを作製し、セルの出力密度、実
抵抗値、また燃料極サイトの分極値を測定した。その結
果を表2に示す。
Example 2 Sample No. 1 used in Example 1 1, 2, 3, 8, and 12 solid oxide fuel cells were prepared, and the output density, actual resistance, and polarization of the fuel electrode site were measured. Table 2 shows the results.

【0059】まず、円筒型セルを作製するため、前記共
焼結体片端部に封止部材の接合を行った。封止部材の接
合は、以下のような手順で行った。Y2 3 を8モル%
の割合で含有する平均粒子径が1μmのZrO2 粉末に
水を溶媒として加えてスラリーを調製し、このスラリー
に前記共焼結体の片端部を浸漬し、厚さ100μmにな
るように片端部外周面に塗布し120℃の温度で1時間
乾燥した。封止部材としてのキャップ形状を有する成形
体は、前記スラリー組成と同組成の粉末を用いて静水圧
成形(ラバープレス)を行い切削加工した。その後、前
記スラリーを被覆した前記共焼結体片端部を封止部材用
成形体に挿入し、大気中1300℃の温度で1時間焼成
を行った。
First, in order to manufacture a cylindrical cell, a sealing member was joined to one end of the co-sintered body. The joining of the sealing member was performed in the following procedure. 8 mol% of Y 2 O 3
A slurry was prepared by adding water as a solvent to ZrO 2 powder having an average particle size of 1 μm and containing one end of the co-sintered body, and one end of the co-sintered body was immersed in the slurry to have a thickness of 100 μm. It was applied to the outer peripheral surface and dried at a temperature of 120 ° C. for 1 hour. A molded body having a cap shape as a sealing member was subjected to isostatic pressing (rubber pressing) using a powder having the same composition as the slurry composition, and was cut. Thereafter, one end of the co-sintered body coated with the slurry was inserted into a molding for a sealing member, and baked at a temperature of 1300 ° C. for 1 hour in the atmosphere.

【0060】発電は、1000℃でセルの内側に空気
を、外側に水素を流し、出力値が安定した際の初期値と
1000時間保持後の値でそれぞれの性能を測定評価し
た。
For power generation, air was flowed inside the cell and hydrogen was flown outside at 1000 ° C., and the performance was measured and evaluated based on the initial value when the output value was stabilized and the value after holding for 1000 hours.

【0061】[0061]

【表2】 [Table 2]

【0062】燃料極と固体電解質間の界面で焼成収縮差
が極めて大きく発生した本発明範囲外の試料No.1
は、初期の段階から他の試料に比べ出力密度が低く、実
抵抗値と燃料極分極値が高くなっていることが判る。1
000時間経過後においても、更に実抵抗値と燃料極分
極値は高くなり、このことから固体電解質内部へのクラ
ックの進展とそれに伴う界面での反応サイトの減少が劣
化につながることを確認できた。
A sample No. having an extremely large difference in firing shrinkage at the interface between the fuel electrode and the solid electrolyte was out of the scope of the present invention. 1
From the initial stage, it can be seen that the output density is lower than the other samples, and the actual resistance value and the fuel electrode polarization value are higher than those of the other samples. 1
Even after the lapse of 000 hours, the actual resistance value and fuel electrode polarization value were further increased, and it was confirmed that the propagation of cracks into the solid electrolyte and the accompanying decrease in the number of reaction sites at the interface led to deterioration. .

【0063】焼成収縮差が0.13mm以下の本発明の
試料においては、いずれも出力密度が初期の段階で0.
34W/cm2 を上回り、1000時間経過後も出力密
度がほぼ安定しているか若しくは高くなっていく傾向が
みられた。また、実抵抗値と燃料極分極値においても、
1000時間経過後も特に大きな変化はみられず安定し
た値を示した。
In any of the samples of the present invention having a difference in firing shrinkage of 0.13 mm or less, the output density of each of the samples at the initial stage was 0.1 mm.
The output density exceeded 34 W / cm 2 , and even after 1000 hours, the output density was almost stable or tended to increase. Also, in the actual resistance value and the anode polarization value,
Even after the lapse of 1000 hours, no significant change was observed and a stable value was shown.

【0064】実施例3 第1燃料極成形体として、Ni/YSZの重量比率が7
0/30、Ni粒径が0.4μm、YSZ粒子径が0.
6μm、シート厚を11μmとし、この第1燃料極成形
体の上面に、表3に示すような組成を有するスラリー
を、塗布し、乾燥して第2燃料極成形体を形成する以外
は、上記実施例1と同様して固体電解質型燃料電池セル
を作製した。
Example 3 As the first fuel electrode molded body, the weight ratio of Ni / YSZ was 7
0/30, Ni particle size 0.4 μm, YSZ particle size 0.3.
6 μm and a sheet thickness of 11 μm. A slurry having a composition as shown in Table 3 was applied to the upper surface of the first fuel electrode molded body, and dried to form a second fuel electrode molded body. A solid oxide fuel cell was produced in the same manner as in Example 1.

【0065】共焼結後の固体電解質と燃料極との界面の
収縮差、また膜剥離の有無を確認した。その結果を、表
3に示す。
The difference in shrinkage at the interface between the solid electrolyte and the fuel electrode after co-sintering and the presence or absence of film peeling were confirmed. Table 3 shows the results.

【0066】[0066]

【表3】 [Table 3]

【0067】この表3から、単に、第1燃料極成形体よ
りも第2燃料極成形体のYSZ粒子の平均粒径が大きい
試料No.14〜17では、第1燃料極成形体のみ形成し
た試料No.2よりも焼成収縮差が小さくなることが判
る。そして、第1燃料極成形体のYSZ粒子の平均粒径
が0.8μm以下で、第2燃料極成形体のYSZ粒子の
平均粒径が1μm以上の場合には、さらに焼成収縮差が
小さくなっていることが判る。
From Table 3, it can be seen that in the samples Nos. 14 to 17 in which the average particle diameter of the YSZ particles of the second fuel electrode compact was larger than that of the first fuel electrode compact, only the first anode compact was formed. It can be seen that the difference in firing shrinkage is smaller than that of sample No. 2. When the average particle size of the YSZ particles of the first fuel electrode compact is 0.8 μm or less and the average particle size of the YSZ particles of the second fuel electrode compact is 1 μm or more, the difference in firing shrinkage further decreases. You can see that

【0068】[0068]

【発明の効果】本発明の固体電解質型燃料電池セルで
は、空気極成形体、固体電解質成形体、燃料極成形体を
順次積層し、同時焼成したとしても、部材間における焼
成収縮差、熱膨張差に伴う応力を緩和できるため、固体
電解質からの燃料極の剥離を防止できるとともに、燃料
極と固体電解質との焼成収縮差を小さくできる。
According to the solid oxide fuel cell of the present invention, even when the air electrode molded body, the solid electrolyte molded body, and the fuel electrode molded body are sequentially laminated and fired simultaneously, the difference in firing shrinkage between members and thermal expansion. Since the stress caused by the difference can be reduced, separation of the fuel electrode from the solid electrolyte can be prevented, and the difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced.

【0069】このように、燃料極と固体電解質との焼成
収縮差を小さくできるため、固体電解質と燃料極の界面
から固体電解質内部に生成するクラック(亀裂)を阻止
することができ、燃料極と固体電解質間の分極値の増
大、また固体電解質成分の実抵抗値の増大を防止でき、
これに伴い初期の高い出力密度を長期的に亘って維持で
きる。
As described above, since the difference in firing shrinkage between the fuel electrode and the solid electrolyte can be reduced, a crack (crack) generated inside the solid electrolyte from the interface between the solid electrolyte and the fuel electrode can be prevented, and the fuel electrode and the solid electrolyte can be prevented. An increase in the polarization value between the solid electrolytes and an increase in the actual resistance value of the solid electrolyte components can be prevented,
Accordingly, the initial high power density can be maintained for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒状固体電解質型燃料電池セルを示
す断面図である。
FIG. 1 is a sectional view showing a cylindrical solid oxide fuel cell according to the present invention.

【図2】本発明の円筒状固体電解質型燃料電池セルを示
す斜視図である。
FIG. 2 is a perspective view showing a cylindrical solid oxide fuel cell according to the present invention.

【図3】燃料極と固体電解質の境界近傍を拡大して示す
正面図である。
FIG. 3 is an enlarged front view showing the vicinity of a boundary between a fuel electrode and a solid electrolyte.

【図4】燃料極成形体が積層された第2固体電解質成形
体を、第1固体電解質成形体の表面に巻き付けて積層す
る状態を示す説明図である。
FIG. 4 is an explanatory view showing a state in which a second solid electrolyte molded body on which a fuel electrode molded body is laminated is wound around a surface of a first solid electrolyte molded body and laminated.

【図5】燃料極を2層構造とした本発明の円筒状固体電
解質型燃料電池セルを示す断面図である。
FIG. 5 is a cross-sectional view showing a cylindrical solid oxide fuel cell of the present invention in which the fuel electrode has a two-layer structure.

【図6】従来の円筒状の固体電解質型燃料電池セルを示
す斜視図である。
FIG. 6 is a perspective view showing a conventional cylindrical solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

31・・・固体電解質 32・・・空気極 33・・・燃料極 33a・・・第1燃料極層 33b・・・第2燃料極層 51・・・空気極成形体 53・・・第1固体電解質成形体 54・・・燃料極成形体 55・・・第2固体電解質成形体 DESCRIPTION OF SYMBOLS 31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel electrode 33a ... 1st fuel electrode layer 33b ... 2nd fuel electrode layer 51 ... Air electrode molded object 53 ... 1st Solid electrolyte molded body 54: Fuel electrode molded body 55: Second solid electrolyte molded body

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】空気極成形体、固体電解質成形体、燃料極
成形体を順次積層し、同時焼成してなる固体電解質型燃
料電池セルにおいて、燃料極の厚みを5〜20μmとし
たことを特徴とする固体電解質型燃料電池セル。
1. A solid electrolyte fuel cell obtained by sequentially laminating an air electrode molded body, a solid electrolyte molded body, and a fuel electrode molded body and firing them simultaneously, wherein the fuel electrode has a thickness of 5 to 20 μm. Solid electrolyte fuel cell.
【請求項2】空気極成形体上に第1固体電解質成形体を
積層し、該第1固体電解質成形体上に、燃料極成形体が
積層された第2固体電解質成形体を、前記第1固体電解
質成形体と前記第2固体電解質成形体が当接するように
積層し、これを焼成してなることを特徴とする請求項1
記載の固体電解質型燃料電池セル。
2. A first solid electrolyte molded body is laminated on an air electrode molded body, and a second solid electrolyte molded body on which a fuel electrode molded body is laminated is formed on the first solid electrolyte molded body. The solid electrolyte molded body and the second solid electrolyte molded body are laminated so as to be in contact with each other, and are fired.
The solid oxide fuel cell according to any one of the preceding claims.
【請求項3】固体電解質の端面と燃料極の端面との間隔
が0.15mm以下であることを特徴とする請求項1ま
たは2記載の固体電解質型燃料電池セル。
3. The solid oxide fuel cell according to claim 1, wherein the distance between the end face of the solid electrolyte and the end face of the fuel electrode is 0.15 mm or less.
【請求項4】燃料極が金属粒子とZrO2 粒子を含有す
るとともに、前記燃料極が、固体電解質側の第1燃料極
層と、該第1燃料極層の表面に形成された第2燃料極層
とからなり、前記第1燃料極層のZrO2 粒子の平均粒
径が、前記第2燃料極層のZrO2 粒子の平均粒径より
も小さいことを特徴とする請求項1乃至3のうちいずれ
かに記載の固体電解質型燃料電池セル。
4. The fuel electrode contains metal particles and ZrO 2 particles, and the fuel electrode has a first fuel electrode layer on the solid electrolyte side and a second fuel electrode formed on the surface of the first fuel electrode layer. An electrode layer, wherein the average particle diameter of ZrO 2 particles in the first fuel electrode layer is smaller than the average particle diameter of ZrO 2 particles in the second fuel electrode layer. The solid oxide fuel cell according to any one of the above.
【請求項5】第1燃料極層のZrO2 粒子の平均粒径が
0.8μm以下であり、第2燃料極層のZrO2 粒子の
平均粒径が1μm以上であることを特徴とする請求項4
記載の固体電解質型燃料電池セル。
5. The ZrO 2 particle of the first fuel electrode layer has an average particle size of 0.8 μm or less, and the ZrO 2 particle of the second fuel electrode layer has an average particle size of 1 μm or more. Item 4
The solid oxide fuel cell according to any one of the preceding claims.
JP36793599A 1999-12-24 1999-12-24 Solid oxide fuel cell Expired - Fee Related JP3638489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36793599A JP3638489B2 (en) 1999-12-24 1999-12-24 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36793599A JP3638489B2 (en) 1999-12-24 1999-12-24 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2001185160A true JP2001185160A (en) 2001-07-06
JP3638489B2 JP3638489B2 (en) 2005-04-13

Family

ID=18490571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36793599A Expired - Fee Related JP3638489B2 (en) 1999-12-24 1999-12-24 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3638489B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045446A (en) * 2001-07-30 2003-02-14 Kyocera Corp Cell of solid electrolyte fuel cell, method for manufacturing it, and fuel cell
JP2006351224A (en) * 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd Nickel powder for electrode of solid oxide fuel cell and its manufacturing method
US8288053B2 (en) 2005-08-18 2012-10-16 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide fuel cell, production process thereof, raw material composition for use in the same, and anode material using the nickel oxide powder material
JP2014175154A (en) * 2013-03-08 2014-09-22 Ngk Spark Plug Co Ltd Electrode for solid electrolyte fuel battery cell and solid electrolyte fuel battery cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045446A (en) * 2001-07-30 2003-02-14 Kyocera Corp Cell of solid electrolyte fuel cell, method for manufacturing it, and fuel cell
JP2006351224A (en) * 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd Nickel powder for electrode of solid oxide fuel cell and its manufacturing method
JP4517949B2 (en) * 2005-06-13 2010-08-04 住友金属鉱山株式会社 Nickel oxide powder for electrode of solid oxide fuel cell and method for producing the same
US8288053B2 (en) 2005-08-18 2012-10-16 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide fuel cell, production process thereof, raw material composition for use in the same, and anode material using the nickel oxide powder material
JP2014175154A (en) * 2013-03-08 2014-09-22 Ngk Spark Plug Co Ltd Electrode for solid electrolyte fuel battery cell and solid electrolyte fuel battery cell

Also Published As

Publication number Publication date
JP3638489B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
JP4462727B2 (en) Solid electrolyte fuel cell
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JPH0992302A (en) Unit cell of cylindrical fuel cell and its manufacture
JP3638489B2 (en) Solid oxide fuel cell
JP4743949B2 (en) Solid electrolyte fuel cell
JP4994287B2 (en) Method for producing solid oxide fuel cell and firing jig used for the production
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP5030747B2 (en) Method for producing solid oxide fuel cell and firing jig used in the method
JP4812176B2 (en) Solid oxide fuel cell and fuel cell
JP3595223B2 (en) Solid oxide fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JPH0997621A (en) Cell of cylindrical fuel cell
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JP3238086B2 (en) Solid oxide fuel cell
JP3217695B2 (en) Cylindrical fuel cell
JP3725994B2 (en) Solid oxide fuel cell
JP3740342B2 (en) Solid oxide fuel cell
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same
JP3686788B2 (en) Method for manufacturing cylindrical solid oxide fuel cell
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell
JP3595215B2 (en) Solid oxide fuel cell
JPH11111308A (en) Cylindrical fuel cell
JPH11283634A (en) Cylindrical solid electrolyte fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees