JP3725994B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP3725994B2
JP3725994B2 JP14699999A JP14699999A JP3725994B2 JP 3725994 B2 JP3725994 B2 JP 3725994B2 JP 14699999 A JP14699999 A JP 14699999A JP 14699999 A JP14699999 A JP 14699999A JP 3725994 B2 JP3725994 B2 JP 3725994B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
air electrode
rare earth
fuel cell
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14699999A
Other languages
Japanese (ja)
Other versions
JP2000340239A (en
Inventor
雅人 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14699999A priority Critical patent/JP3725994B2/en
Publication of JP2000340239A publication Critical patent/JP2000340239A/en
Application granted granted Critical
Publication of JP3725994B2 publication Critical patent/JP3725994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状の空気極の外面に、希土類元素を含有する部分安定化または安定化ZrO2 からなる固体電解質、燃料極が順次形成された固体電解質型燃料電池セルに関するものである。
【0002】
【従来技術】
従来より、固体電解質型燃料電池はその作動温度が900〜1050℃と高温であるため発電効率が高く、第3世代の発電システムとして期待されている。
【0003】
一般に固体電解質型燃料電池セルには、円筒型と平板型が知られている。平板型燃料電池セルは、発電の単位体積当たり出力密度は高いという特徴を有するが、実用化に関してはガスシール不完全性やセル内の温度分布の不均一性などの問題がある。それに対して、円筒型燃料電池セルでは、出力密度は低いものの、セルの機械的強度が高く、またセル内の温度の均一性が保てるという特徴がある。
【0004】
両形状の固体電解質型燃料電池セルとも、それぞれの特徴を生かして積極的に研究開発が進められている。
【0005】
円筒型燃料電池セルは、図3に示したように開気孔率30〜40%程度のLaMnO3 系材料からなる多孔性の空気極支持管2を形成し、その表面にY2 3 安定化ZrO2 からなる固体電解質3を被覆し、さらにこの表面に多孔性のNi−ジルコニアの燃料極4が設けられている。
【0006】
燃料電池のモジュールにおいては、各セルはLaCrO3 系の集電体(インターコネクタ)5を介して接続される。発電は、空気極支持管2内部に空気(酸素)6を、外部に燃料(水素)7を流し、1000〜1050℃の温度で行われる。また、空気極としての機能を合わせ持つ空気極支持管2材料としては、LaをCaで20原子%又はSrで10〜15原子%置換した固溶体材料が用いられている。
【0007】
上記のような燃料電池セルを製造する方法としては、例えば絶縁粉末を押出成形法などにより円筒状に成形後、これを焼成して円筒状支持管を作製し、この支持管の外周面に空気極、固体電解質、燃料極、集電体のスラリーを塗布してこれを順次焼成して積層するか、あるいは円筒状支持管の表面に電気化学的蒸着法(EVD法)やプラズマ溶射法などにより空気極、固体電解質、燃料極、集電体を順次形成することも行われている。
【0008】
近年ではセルの製造工程を簡略化し且つ製造コストを低減するために、各構成材料のうち少なくとも2つを同時焼成する、いわゆる共焼結法が提案されている。この共焼結法は、例えば、円筒状の空気極支持管の成形体に固体電解質成形体及び集電体成形体をロール状に巻き付けて同時焼成を行い、その後固体電解質層表面に燃料極層を形成する方法である。
【0009】
この共焼結法は非常に簡単なプロセスで製造工程数も少なく、セルの製造時の歩留まり向上、コスト低減に有利である。このような共焼結法による燃料電池セルでは、Y2 3 安定化または部分安定化ZrO2 からなる固体電解質を用い、この固体電解質に熱膨張係数を合致させる等のため、空気極材料として、LaMnO3 からなるペロブスカイト型複合酸化物のLaの一部をYおよびCaで置換したものが用いられている(特開平10−162847号公報等参照)。
【0010】
【発明が解決しようとする課題】
しかしながら、上述した共焼結法により円筒型燃料電池セルを作製すると、空気極と固体電解質との界面に、空気極と固体電解質を構成するそれぞれの成分元素が界面で相互間に拡散し、中でも固体電解質を構成する成分の希土類元素であるY元素がZr元素に比べると空気極サイトへ向かっての拡散が極めて速いことから、希土類元素であるY元素が空気極と固体電解質との界面に酸化物として高濃度で析出するという問題があった。
【0011】
希土類元素Yの酸化物の熱膨張係数は、セル構成部材、例えば、固体電解質や空気極と異なるために、共焼結時や、それ以降の熱処理工程において、空気極から固体電解質が剥離するという問題があった。
【0012】
また、従来の空気極材料は、La、Caおよび希土類元素からなるAサイトと、MnからなるBサイトとの比(A/B比)が0.995〜1.000の定比に近い組成であるために、共焼結の際Mnの蒸発・拡散に伴って過剰となったAサイト成分が分解し易く、その結果、分解物が固体電解質側へ向かって拡散し、希土類元素であるY元素が空気極と固体電解質との界面に酸化物として高濃度で析出しやすくなるという問題があった。
【0013】
本発明は、空気極と固体電解質との接合強度を向上して、長期的に安定した出力性能を維持できる固体電解質型燃料電池セルを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の固体電解質型燃料電池セルは、少なくともLa、Ca、希土類元素(Laを除く)およびMnを含有し、Aサイトが前記La、Ca、希土類元素、Bサイトが前記MnであるLaMnO 系のペロブスカイト型複合酸化物からなる円筒状の空気極の外面に、希土類元素を含有する部分安定化または安定化ZrOからなる固体電解質、燃料極が順次形成され、前記空気極及び前記固体電解質が共焼結された固体電解質型燃料電池セルにおいて、前記固体電解質中に、希土類元素(Laを除く)量のピークが、前記空気極の外周面に沿って、かつ前記固体電解質の空気極側面及び燃料極側面から所定深さで存在するものである。
【0015】
ここで、空気極および固体電解質に存在する希土類元素はYであることが望ましい。また、希土類元素量のピークは、固体電解質の空気極側面から5μm以内に存在することが望ましい。さらに、空気極は、ABO3 で表されるペロブスカイト型複合酸化物であり、La、Caおよび希土類元素からなるAサイトと、MnからなるBサイトとの比(A/B比)が0.94〜0.97であることが望ましい。
【0016】
【作用】
本発明の固体電解質型燃料電池セルでは、希土類元素量のピークが、固体電解質中に、空気極の外周面に沿って、かつ固体電解質の空気極側面から所定深さで存在するため、空気極と固体電解質との界面には、希土類元素の酸化物が存在するとしても僅かであり、従来のように、希土類元素が空気極と固体電解質との界面に酸化物として高濃度で析出するということがなくなり、熱膨張係数が異なる酸化物層の生成を抑制することができ、空気極からの固体電解質の剥離を防止することができる。
【0017】
希土類元素量のピークは、固体電解質の空気極側面から5μm以内に存在することにより、固体電解質と空気極の熱膨張係数差を小さくでき、さらに空気極からの固体電解質の剥離を防止することができる。
【0018】
また、空気極を、La、Caおよび希土類元素からなるAサイトと、MnからなるBサイトとの比(A/B比)を0.94〜0.97とし、Aサイト欠損型の不定比組成にすることで、Mnの蒸発、拡散に伴うAサイト成分の分解を抑制し、希土類元素の空気極と固体電解質との界面への拡散を防止でき、空気極からの固体電解質の剥離をさらに防止することができる。
【0019】
【発明の実施の形態】
本発明における固体電解質型燃料電池セルは、図1に示すように、円筒状の固体電解質31の内面に空気極32、外面に燃料極33を形成してセル本体34が構成されており、このセル本体34の外面に、空気極32と電気的に接続する集電体35が形成されている。
【0020】
即ち、固体電解質31の一部に切欠部36が形成され、固体電解質31の内面に形成されている空気極32の一部が露出しており、この露出面37および切欠部36近傍の固体電解質31の両端部表面が集電体35により被覆され、集電体35が、固体電解質31の両端部表面、および固体電解質31の切欠部36から露出した空気極32の表面に接合されている。
【0021】
空気極32と電気的に接続する集電体35はセル本体34の外面に形成され、ほぼ段差のない連続同一面39を覆うように形成されており、燃料極33とは電気的に接続されていない。この集電体35は、セル同士を接続する際に、他のセルの燃料極にNiフェルトを介して電気的に接続され、これにより燃料電池モジュールが構成される。連続同一面39は、固体電解質成形体の両端部と空気極成形体の一部とが連続したほぼ同一面となるまで、固体電解質成形体の両端部間を研摩することにより形成される。
【0022】
固体電解質31は、例えば3〜20モル%のY2 3 あるいはYb2 3 を含有した部分安定化あるいは安定化ZrO2 が用いられ、このうちでも3〜20モル%のY2 3 を含有した部分安定化あるいは安定化ZrO2 が望ましい。
【0023】
また、空気極32は、例えば、LaおよびMnを含有するペロブスカイト型複合酸化物を主成分とするもので、Caを酸化物換算で8〜10重量%、希土類元素のうち少なくとも一種を酸化物換算で10〜20重量%含有するものである。
【0024】
希土類元素としては、Y、Nd、Dy、Er、Yb等があり、このうちでもYが望ましい。燃料極33としては、例えば、50〜80重量%Niを含むZrO2 (Y2 3 含有)サーメットが用いられる。
【0025】
集電体35は、金属元素としてLa、CrおよびMgを含有するぺロブスカイト型複合酸化物を主結晶とするものであり、希土類元素やアルカリ土類金属元素を含有するものであっても良い。集電体35には、さらにMgO結晶を含有することが、集電体35の熱膨張係数を高くして、固体電解質31や空気極32のそれと一致させることができるため望ましい。
【0026】
集電体35や燃料極33としては、上記例に限定されるものではなく、公知材料を用いても良い。上記材料からなる固体電解質31の熱膨張係数は、ほぼ10.5×10-6/℃である。
【0027】
そして、本発明の固体電解質型燃料電池セルでは、図1および図2に示すように、固体電解質31中に、希土類元素量のピークAが空気極32の外周面に沿って存在するとともに、希土類元素量のピークAが、固体電解質31の空気極32側面から固体電解質31の厚み方向に所定間隔xを置いて形成されている。尚、希土類元素量のピークAは、図においては破線で示す。
【0028】
また、希土類元素量のピークAは、固体電解質31の空気極32側面からの距離xが5μm以内に存在することが望ましく、特には、1〜5μm、さらには3〜5μmの範囲が望ましい。これは、希土類元素量のピークAは、固体電解質31の空気極32側面から1μm未満以内に存在する場合には、固体電解質31と空気極32との界面における希土類元素量が多くなり易く、一方、5μmよりも厚い場合には、固体電解質31中の希土類元素量が少なくなり、固体電解質31の熱膨張係数が変化し、空気極32、固体電解質31との熱膨張率の不一致を生じ、共焼結後剥離し易くなるからである。
【0029】
さらに、空気極32は、ABO3 で表されるペロブスカイト型複合酸化物であり、La、Caおよび希土類元素からなるAサイトと、MnからなるBサイトとの比(A/B比)が0.94〜0.97であることが望ましい。A/B比が0.94〜0.97の範囲では、固体電解質31を構成する材料との反応性が極めて低く、Y2 3 あるいはYb2 3 の分解物やCaZrO3 の反応生成物の生成を抑制できる。
【0030】
本発明の固体電解質型燃料電池セルは、以下のようにして作製される。先ず、例えば所定の調合組成に従いLa2 3 、Y2 3 、CaO、MnO2 の素原料を秤量・混合した後、1500℃程度の温度で2〜10時間焼成し、その後4〜8μmの粒度に調製する。調製した粉体に、バインダーを混合、混練し押出成形法により円筒状の空気極成形体を作製し、さらに脱バインダー処理し、1200〜1250℃で仮焼を行うことで空気極仮焼体を作製する。
【0031】
固体電解質31用のシートは、例えば3〜20モル%のY2 3 あるいはYb2 3 含有した部分安定化あるいは安定化ZrO2 からなる粉末を0.1〜5μmの大きさに調製し、市販の溶媒、分散剤、バインダーを所定濃度添加しドクターブレード等の方法により50〜100μmの厚さのシートを作製する。
【0032】
集電体35用のシートは、上記固体電解質31同様、LaCrO3 系材料からなる粉末を用いてドクターブレード等の方法により50〜100μmの厚さのシートを作製する。
【0033】
さらに、空気極仮焼体と、固体電解質31のシートとの間に介在させる中間層シートを作製する。この中間層シートは、高純度のZrO2 からなる材料を用い、上記固体電解質31同様、ドクターブレード等の方法により10〜30μmの厚さのシートを作製する。中間層シートの厚さが10μmよりも薄いと、固体電解質内部より拡散移動してきた希土類元素を固溶するのに十分な収容能力が無く、希土類元素が空気極と固体電解質との界面に存在し易くなり、30μmより厚いと、固体電解質内部の希土類元素量が少ないために熱膨張係数が変化し、空気極、固体電解質の熱膨張率の不一致を生じ、共焼結後剥離し易くなるからである。中間層シートの厚みは20〜30μmで存在するのが好ましい。
【0034】
そして、空気極仮焼体の表面に、中間層シートを貼り付け、この中間層シートの上に、固体電解質シート、集電体シートをそれぞれ貼り付け、これを1400〜1550℃の温度で2〜10時間大気中焼成することにより得られる。
【0035】
尚、中間層シートは、固体電解質シートの貼り付けの際に用いる密着液として介在させても良く、あるいはスラリー状に調製しそれを空気極仮焼体の表面に塗布しても形成しても良い。
【0036】
また、燃料極33は、70〜90重量%NiとZrO2 からなる(Y2 3 含有)組成を有し、固体電解質表面にシートとして貼り付けるか、あるいはスラリーを塗布するかにより作製する。焼成は、大気中1400〜1550℃の温度で2〜10時間行うが、この場合、固体電解質、空気極、集電体の共焼結を行う際に同時に焼成しても構わない。
【0037】
このような製法によれば、空気極仮焼体の表面に、Y2 3 を含有していないZrO2 からなる中間層シートを貼り付け、この中間層シートの上に、固体電解質のシートを積層したので、焼成すると、固体電解質のシートからのYが中間層のシートに拡散し、ここでZrO2 中に固溶し、消費され、中間層と空気極との界面へのYの拡散を抑制できる。尚、焼成後には固体電解質のシートと中間層シートは一体となり、中間層は固体電解質の一部として機能することになる。このため、固体電解質中に、空気極の外周面に沿って、希土類元素であるYのピークAが存在することになる。
【0038】
また、空気極材料は、La、Caおよび希土類元素からなるAサイトと、MnからなるBサイトとの比(A/B比)が0.94〜0.97であるため、YやCaの界面への拡散をさらに抑制できる。
【0039】
さらに、共焼結時の焼成温度を1450〜1480℃に低下することによっても、相互拡散に伴う希土類元素の移動速度が抑えられ、高濃度の析出を抑制できる。
【0040】
尚、本発明の燃料電池セルは、固体電解質の片面に空気極、他面に燃料極が形成されていればよく、その構造は図1に限定されるものではない。
【0041】
以上のように構成された固体電解質型燃料電池セルでは、希土類元素量のピークAが、空気極32の外周面に沿って、かつ固体電解質31の空気極32側面から固体電解質31の厚み方向に所定間隔を置いて存在するため、空気極32と固体電解質31との界面には、希土類元素の酸化物が存在するとしても僅かであり、従来のように、希土類元素が空気極32と固体電解質31との界面に酸化物として高濃度で析出するということがなくなり、熱膨張係数が異なる酸化物層の生成を抑制することができ、空気極32からの固体電解質31の剥離を防止することができる。
【0042】
また、希土類元素量のピークAが、固体電解質31の空気極32側面から5μm以内に存在することにより、固体電解質31、空気極32における熱膨張係数の差を抑制でき、さらに空気極32からの固体電解質31の剥離を防止することができる。
【0043】
また、空気極32のLa、Caおよび希土類元素からなるAサイトと、MnからなるBサイトとの比(A/B比)を0.94〜0.97とし、Aサイト欠損型の不定比組成にすることで、Mnの蒸発、拡散に伴うAサイト成分の分解を抑制し、希土類元素の空気極32と固体電解質31との界面への拡散を防止でき、空気極32からの固体電解質31の剥離を防止することができる。
【0044】
これらにより、固体電解質型燃料電池セルから発生する電力を効率よく集電することが可能となるため、発電性能をも高めることができる。
【0045】
【実施例】
市販の純度99.9%以上のLa2 3 ,Y2 3 ,CaCO3 ,MnO2 を出発原料として、表1の組成を有するように調合し複数種の空気極材料を作製し、押出成形により円筒状の空気極成形体を作製し、これを1250℃で仮焼し、空気極仮焼体を作製した。
【0046】
次に、高純度のZrO2 粉体を用いて、表1に示すような厚みの中間層シートを作製した。また、8モル%Y2 3 部分安定化ZrO2 粉末を用いて100μmの固体電解質シートを作製した。さらに、La(Mg0.3 Cr0.7 0.973 +10重量%MgO組成の粉末を用いてドクターブレード法により100μmの厚さの集電体シートを作製した。
【0047】
そして、空気極仮焼体の外周面に中間層シートを貼り付け、この中間層シートの表面に固体電解質シートを貼り付けた。その後、表1に示す温度で6時間焼成した。該焼結体を、80重量%−NiOと20重量%−8モル%Y2 3 含有ZrO2 の混合組成粉末を用いて調製したスラリー中に、浸漬し、50μmの厚さで塗布・焼き付けし、図1に示す固体電解質型燃料電池セルを作製した。
【0048】
一方、中間層シートを張り付けることなく、空気極仮焼体の外周面に固体電解質シートを貼り付け、上記と同様にして作製した比較例の固体電解質型燃料電池セルを作製した(試料No.1)。
【0049】
作製した各試料は、X線マイクロアナライザ(EPMA)を用いて固体電解質の空気極側面から10μmの厚さの領域のY濃度を定量的に測定し、Y濃度のピーク位置を特定し、固体電解質の空気極側面からY濃度のピーク位置までの距離を測定した。さらに、空気極の固体電解質からの剥離の有無について、光学電子顕微鏡にて観察した。
【0050】
さらに、各試料について、セルの内側に空気を、外側に水素を流し、1000℃で1500時間発電を行い、発電初期と、1500時間経過後の出力密度を測定した。その結果を、表1に示す。
【0051】
【表1】

Figure 0003725994
【0052】
この表1より、本発明の試料では、Y含有量ピークの位置が、固体電界質の空気極側面から5μm以下で存在しており、固体電解質の空気極からの剥離もなく、出力密度も初期および1500時間経過後においても0.30W/cm2 以上と高いことが判る。また、試料No.1および試料No.6について、空気極のみを塩酸にて溶解し、固体電解質をX線回折測定により測定したところ、本発明の試料No.6についてはY2 3 のピークは存在しなかったが、比較例の試料No.1の試料では、固体電解質の空気極側面にY2 3 のピークは存在した。
【0053】
また、試料No.3〜11に示す空気極材料のA/B比率を低下させた試料においては、中間層シートが厚くなるにつれてY量ピークの位置が空気極から離れていくことが判る。このことから、A/B比率の低下と中間層シートの介在により、固体電解質と空気極の界面に熱膨張係数の異なる酸化物層の生成を抑制でき、その結果、界面での剥離を防止でき、良好な発電性能を長時間維持できることが判る。
【0054】
【発明の効果】
本発明の固体電解質型燃料電池セルでは、希土類元素量のピークが、空気極の外周面に沿って、かつ固体電解質の空気極側面から所定深さで存在するため、空気極と固体電解質との界面には、希土類元素の酸化物は存在せず、あるいは存在するとしてもごく僅かであり、従来のように、希土類元素が空気極と固体電解質との界面に酸化物として高濃度で析出するということがなくなり、熱膨張係数が異なる酸化物層の生成を抑制することができ、空気極からの固体電解質の剥離を防止することができる。これにより、空気極と固体電解質との接合強度を向上して、長期的に安定した出力性能を維持できる。
【図面の簡単な説明】
【図1】本発明の固体電解質型燃料電池セルを示す断面図である。
【図2】(a)は図1の一部を拡大して示し、(b)は本発明のセルの希土類元素量のピーク位置を示し、(c)は従来のセルの希土類元素量のピーク位置を示す図である。
【図3】従来の固体電解質型燃料電池セルを示す斜視図である。
【符号の説明】
32・・・空気極
31・・・固体電解質
33・・・燃料極
35・・・集電体
A・・・希土類元素量のピーク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid electrolyte fuel cell in which a solid electrolyte composed of partially stabilized or stabilized ZrO 2 containing a rare earth element and a fuel electrode are sequentially formed on the outer surface of a cylindrical air electrode.
[0002]
[Prior art]
Conventionally, a solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as 900 to 1050 ° C., and is expected as a third generation power generation system.
[0003]
Generally, cylindrical and flat plate types are known as solid oxide fuel cells. The flat fuel cell has a feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas seal and non-uniform temperature distribution in the cell for practical use. On the other hand, the cylindrical fuel cell has the characteristics that although the power density is low, the cell has high mechanical strength and the temperature in the cell can be kept uniform.
[0004]
Both types of solid oxide fuel cells have been actively researched and developed taking advantage of their characteristics.
[0005]
As shown in FIG. 3, the cylindrical fuel cell has a porous air electrode support tube 2 made of a LaMnO 3 material having an open porosity of about 30 to 40%, and Y 2 O 3 stabilization is provided on the surface thereof. A solid electrolyte 3 made of ZrO 2 is coated, and a porous Ni-zirconia fuel electrode 4 is provided on this surface.
[0006]
In the fuel cell module, each cell is connected via a LaCrO 3 current collector (interconnector) 5. Power generation is performed at a temperature of 1000 to 1050 ° C. by flowing air (oxygen) 6 inside the air electrode support tube 2 and flowing fuel (hydrogen) 7 outside. In addition, as the air electrode support tube 2 material having the function as an air electrode, a solid solution material in which La is replaced by 20 atomic% with Ca or 10-15 atomic% with Sr is used.
[0007]
As a method for producing the fuel cell as described above, for example, an insulating powder is formed into a cylindrical shape by an extrusion method or the like, and then fired to produce a cylindrical support tube, and air is formed on the outer peripheral surface of the support tube. Apply electrode, solid electrolyte, fuel electrode, and current collector slurry and fire and stack them sequentially, or use an electrochemical deposition (EVD) method or plasma spraying method on the surface of a cylindrical support tube. An air electrode, a solid electrolyte, a fuel electrode, and a current collector are sequentially formed.
[0008]
In recent years, in order to simplify the cell manufacturing process and reduce the manufacturing cost, a so-called co-sintering method in which at least two of the constituent materials are simultaneously fired has been proposed. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound in a roll shape around a cylindrical air electrode support tube molded body, and then co-fired, and then the fuel electrode layer is formed on the surface of the solid electrolyte layer. It is a method of forming.
[0009]
This co-sintering method is a very simple process and has a small number of manufacturing steps, and is advantageous in improving the yield during manufacturing of cells and reducing costs. In such a fuel cell by the co-sintering method, a solid electrolyte composed of Y 2 O 3 stabilized or partially stabilized ZrO 2 is used, and the thermal expansion coefficient is matched with this solid electrolyte. A perovskite complex oxide composed of LaMnO 3 in which part of La is substituted with Y and Ca is used (see JP-A-10-162847, etc.).
[0010]
[Problems to be solved by the invention]
However, when a cylindrical fuel cell is manufactured by the above-described co-sintering method, each component element constituting the air electrode and the solid electrolyte diffuses between the air electrode and the solid electrolyte at the interface. Compared with the Zr element, the Y element, which is a rare earth element constituting the solid electrolyte, diffuses very rapidly toward the air electrode site. Therefore, the rare earth element Y element is oxidized at the interface between the air electrode and the solid electrolyte. There was a problem of precipitation at a high concentration as a product.
[0011]
Since the thermal expansion coefficient of the oxide of rare earth element Y is different from that of a cell component, for example, a solid electrolyte or an air electrode, the solid electrolyte is peeled off from the air electrode during co-sintering or in a subsequent heat treatment step. There was a problem.
[0012]
Further, the conventional air electrode material has a composition in which the ratio (A / B ratio) of the A site made of La, Ca and rare earth elements to the B site made of Mn is close to a constant ratio of 0.995 to 1.000. For this reason, the A-site component that has become excessive as a result of evaporation and diffusion of Mn during co-sintering is easily decomposed. As a result, the decomposition product diffuses toward the solid electrolyte side, and the rare earth element Y element However, there has been a problem that it tends to precipitate at a high concentration as an oxide at the interface between the air electrode and the solid electrolyte.
[0013]
An object of the present invention is to provide a solid oxide fuel cell capable of improving the bonding strength between an air electrode and a solid electrolyte and maintaining stable output performance over a long period of time.
[0014]
[Means for Solving the Problems]
The solid oxide fuel cell of the present invention contains at least La, Ca, rare earth elements (excluding La) and Mn, and LaMnO 3 system in which A site is La, Ca, rare earth element, and B site is Mn. A solid electrolyte and a fuel electrode made of partially stabilized or stabilized ZrO 2 containing a rare earth element are sequentially formed on the outer surface of a cylindrical air electrode made of a perovskite complex oxide, and the air electrode and the solid electrolyte are In the co-sintered solid electrolyte fuel cell, a peak of the amount of rare earth elements (excluding La) is present in the solid electrolyte along the outer peripheral surface of the air electrode, and on the air electrode side surface of the solid electrolyte and It exists at a predetermined depth from the side surface of the fuel electrode.
[0015]
Here, the rare earth element present in the air electrode and the solid electrolyte is preferably Y. Moreover, it is desirable that the peak of the amount of rare earth elements be within 5 μm from the air electrode side surface of the solid electrolyte. Further, the air electrode is a perovskite complex oxide represented by ABO 3 , and the ratio (A / B ratio) of the A site made of La, Ca and rare earth elements to the B site made of Mn is 0.94. It is desirable to be -0.97.
[0016]
[Action]
In the solid electrolyte fuel cell of the present invention, the rare earth element peak is present in the solid electrolyte along the outer peripheral surface of the air electrode and at a predetermined depth from the air electrode side surface of the solid electrolyte. Even if rare earth oxides are present at the interface between the air electrode and the solid electrolyte, the rare earth elements are deposited at a high concentration as an oxide at the interface between the air electrode and the solid electrolyte as in the past. The generation of oxide layers having different thermal expansion coefficients can be suppressed, and the solid electrolyte can be prevented from peeling off from the air electrode.
[0017]
Since the rare earth element peak exists within 5 μm from the air electrode side surface of the solid electrolyte, the difference in thermal expansion coefficient between the solid electrolyte and the air electrode can be reduced, and further, the solid electrolyte can be prevented from peeling from the air electrode. it can.
[0018]
In addition, the ratio of the A site made of La, Ca and rare earth elements to the B site made of Mn (A / B ratio) is 0.94 to 0.97, and the air electrode has an A site deficient non-stoichiometric composition. By suppressing the decomposition of the A site component accompanying evaporation and diffusion of Mn, the diffusion of rare earth elements to the interface between the air electrode and the solid electrolyte can be prevented, and further separation of the solid electrolyte from the air electrode can be further prevented. can do.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the solid oxide fuel cell according to the present invention has an air electrode 32 on the inner surface of a cylindrical solid electrolyte 31 and a fuel electrode 33 on the outer surface to form a cell body 34. A current collector 35 that is electrically connected to the air electrode 32 is formed on the outer surface of the cell body 34.
[0020]
That is, a notch 36 is formed in a part of the solid electrolyte 31, and a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the solid electrolyte in the vicinity of the exposed surface 37 and the notch 36. The surface of both ends of 31 is covered with a current collector 35, and the current collector 35 is joined to the surface of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31.
[0021]
A current collector 35 that is electrically connected to the air electrode 32 is formed on the outer surface of the cell body 34, and is formed so as to cover a continuous identical surface 39 having almost no step, and is electrically connected to the fuel electrode 33. Not. When the current collectors 35 are connected to each other, the current collectors 35 are electrically connected to the fuel electrodes of other cells via Ni felts, thereby forming a fuel cell module. The continuous coplanar surface 39 is formed by polishing between both end portions of the solid electrolyte molded body until both end portions of the solid electrolyte molded body and a part of the air electrode molded body are substantially the same plane.
[0022]
As the solid electrolyte 31, for example, partially stabilized or stabilized ZrO 2 containing 3 to 20 mol% of Y 2 O 3 or Yb 2 O 3 is used, and among these, 3 to 20 mol% of Y 2 O 3 is used. The partially stabilized or stabilized ZrO 2 contained is desirable.
[0023]
The air electrode 32 is mainly composed of a perovskite complex oxide containing La and Mn, for example, Ca is 8 to 10% by weight in terms of oxide, and at least one of the rare earth elements is converted to oxide. 10 to 20% by weight.
[0024]
Examples of rare earth elements include Y, Nd, Dy, Er, Yb, etc. Among these, Y is desirable. As the fuel electrode 33, for example, ZrO 2 (containing Y 2 O 3 ) cermet containing 50 to 80 wt% Ni is used.
[0025]
The current collector 35 has a perovskite complex oxide containing La, Cr, and Mg as metal elements as a main crystal, and may contain a rare earth element or an alkaline earth metal element. It is desirable that the current collector 35 further contains MgO crystals because the coefficient of thermal expansion of the current collector 35 can be increased to match that of the solid electrolyte 31 and the air electrode 32.
[0026]
The current collector 35 and the fuel electrode 33 are not limited to the above examples, and known materials may be used. The solid electrolyte 31 made of the above material has a thermal expansion coefficient of approximately 10.5 × 10 −6 / ° C.
[0027]
In the solid oxide fuel cell of the present invention, as shown in FIGS. 1 and 2, the solid electrolyte 31 has a rare earth element peak A along the outer peripheral surface of the air electrode 32, and the rare earth element. Elemental peaks A are formed at predetermined intervals x in the thickness direction of the solid electrolyte 31 from the side surface of the air electrode 32 of the solid electrolyte 31. The peak A of the rare earth element amount is indicated by a broken line in the figure.
[0028]
Further, the peak A of the rare earth element amount is desirably present within a distance x of 5 μm from the side surface of the air electrode 32 of the solid electrolyte 31, and is particularly preferably in the range of 1 to 5 μm, more preferably 3 to 5 μm. This is because, when the peak A of the amount of rare earth element is present within less than 1 μm from the side surface of the air electrode 32 of the solid electrolyte 31, the amount of rare earth element tends to increase at the interface between the solid electrolyte 31 and the air electrode 32. If it is thicker than 5 μm, the amount of rare earth element in the solid electrolyte 31 is reduced, the coefficient of thermal expansion of the solid electrolyte 31 is changed, and the thermal expansion coefficients of the air electrode 32 and the solid electrolyte 31 are inconsistent. It is because it becomes easy to peel after sintering.
[0029]
Further, the air electrode 32 is a perovskite complex oxide represented by ABO 3 , and the ratio (A / B ratio) of the A site made of La, Ca and rare earth elements to the B site made of Mn is 0. It is desirable that it is 94-0.97. When the A / B ratio is in the range of 0.94 to 0.97, the reactivity with the material constituting the solid electrolyte 31 is extremely low, and the decomposition product of Y 2 O 3 or Yb 2 O 3 or the reaction product of CaZrO 3 Generation can be suppressed.
[0030]
The solid oxide fuel cell of the present invention is produced as follows. First, for example, raw materials of La 2 O 3 , Y 2 O 3 , CaO, and MnO 2 are weighed and mixed in accordance with a predetermined preparation composition, then fired at a temperature of about 1500 ° C. for 2 to 10 hours, and thereafter 4 to 8 μm. Prepare to particle size. The prepared powder is mixed and kneaded, and a cylindrical air electrode molded body is produced by an extrusion molding method. Further, the binder is debindered and calcined at 1200 to 1250 ° C. to obtain the air electrode calcined body. Make it.
[0031]
The sheet for the solid electrolyte 31 is prepared by, for example, preparing a powder made of partially stabilized or stabilized ZrO 2 containing 3 to 20 mol% of Y 2 O 3 or Yb 2 O 3 to a size of 0.1 to 5 μm, A commercially available solvent, a dispersant, and a binder are added at a predetermined concentration, and a sheet having a thickness of 50 to 100 μm is prepared by a method such as a doctor blade.
[0032]
Sheet current collector for 35, like the solid electrolyte 31, to produce a sheet having a thickness of 50~100μm by a method such as a doctor blade with a powder consisting of LaCrO 3 system material.
[0033]
Furthermore, an intermediate layer sheet interposed between the air electrode calcined body and the solid electrolyte 31 sheet is prepared. As the intermediate layer sheet, a material made of high-purity ZrO 2 is used, and a sheet having a thickness of 10 to 30 μm is produced by a method such as a doctor blade as in the case of the solid electrolyte 31. If the thickness of the intermediate layer sheet is less than 10 μm, there is not enough capacity to dissolve the rare earth element that has diffused and moved from the inside of the solid electrolyte, and the rare earth element exists at the interface between the air electrode and the solid electrolyte. If it is thicker than 30 μm, the amount of rare earth elements inside the solid electrolyte is small, so the coefficient of thermal expansion changes, resulting in a mismatch in the thermal expansion coefficient between the air electrode and the solid electrolyte, and it becomes easy to peel off after co-sintering. is there. The intermediate layer sheet preferably has a thickness of 20 to 30 μm.
[0034]
Then, an intermediate layer sheet is attached to the surface of the air electrode calcined body, and a solid electrolyte sheet and a current collector sheet are attached to the intermediate layer sheet, respectively, at a temperature of 1400 to 1550 ° C. It is obtained by firing in the air for 10 hours.
[0035]
In addition, the intermediate layer sheet may be interposed as an adhesion liquid used when the solid electrolyte sheet is attached, or may be formed in a slurry form and applied to the surface of the air electrode calcined body. good.
[0036]
The fuel electrode 33 has a composition (containing Y 2 O 3 ) composed of 70 to 90% by weight of Ni and ZrO 2, and is produced by sticking as a sheet on the surface of the solid electrolyte or applying slurry. Firing is performed in the atmosphere at a temperature of 1400 to 1550 ° C. for 2 to 10 hours. In this case, the co-sintering of the solid electrolyte, the air electrode, and the current collector may be performed at the same time.
[0037]
According to such a manufacturing method, an intermediate layer sheet made of ZrO 2 not containing Y 2 O 3 is pasted on the surface of the air electrode calcined body, and a solid electrolyte sheet is placed on the intermediate layer sheet. Since it was laminated, when baked, Y from the solid electrolyte sheet diffuses into the intermediate sheet, where it dissolves in ZrO 2 and is consumed, diffusing Y to the interface between the intermediate layer and the air electrode. Can be suppressed. After firing, the solid electrolyte sheet and the intermediate layer sheet are integrated, and the intermediate layer functions as a part of the solid electrolyte. For this reason, the peak A of Y, which is a rare earth element, exists in the solid electrolyte along the outer peripheral surface of the air electrode.
[0038]
The air electrode material has an interface between Y and Ca because the ratio (A / B ratio) between the A site made of La, Ca and rare earth elements and the B site made of Mn is 0.94 to 0.97. Can be further suppressed.
[0039]
Furthermore, also by reducing the firing temperature during co-sintering to 1450 to 1480 ° C., the moving speed of the rare earth elements accompanying the interdiffusion can be suppressed, and high concentration precipitation can be suppressed.
[0040]
In the fuel cell of the present invention, an air electrode may be formed on one side of the solid electrolyte, and a fuel electrode may be formed on the other side, and the structure is not limited to FIG.
[0041]
In the solid oxide fuel cell configured as described above, the peak A of the rare earth element amount is along the outer peripheral surface of the air electrode 32 and from the side surface of the air electrode 32 of the solid electrolyte 31 in the thickness direction of the solid electrolyte 31. Since they are present at a predetermined interval, even if rare earth element oxides are present at the interface between the air electrode 32 and the solid electrolyte 31, rare earth elements are present in the air electrode 32 and the solid electrolyte as in the conventional case. It is possible to prevent the oxide layer having a different thermal expansion coefficient from being deposited at a high concentration as an oxide at the interface with the electrode 31, and to suppress the generation of the oxide layer having a different thermal expansion coefficient, and to prevent the solid electrolyte 31 from peeling off from the air electrode 32. it can.
[0042]
Further, since the peak A of the rare earth element exists within 5 μm from the side surface of the air electrode 32 of the solid electrolyte 31, the difference in thermal expansion coefficient between the solid electrolyte 31 and the air electrode 32 can be suppressed. The solid electrolyte 31 can be prevented from peeling off.
[0043]
Further, the ratio (A / B ratio) between the A site made of La, Ca and rare earth elements of the air electrode 32 and the B site made of Mn is 0.94 to 0.97, and the A site deficient non-stoichiometric composition. By suppressing the decomposition of the A site component accompanying the evaporation and diffusion of Mn, the diffusion of rare earth elements to the interface between the air electrode 32 and the solid electrolyte 31 can be prevented, and the solid electrolyte 31 from the air electrode 32 can be prevented. Peeling can be prevented.
[0044]
As a result, it is possible to efficiently collect the electric power generated from the solid oxide fuel cells, so that the power generation performance can be improved.
[0045]
【Example】
Using commercially available La 2 O 3 , Y 2 O 3 , CaCO 3 , and MnO 2 with a purity of 99.9% or more as a starting material, a mixture having the composition shown in Table 1 was prepared to produce a plurality of types of cathode materials. A cylindrical air electrode compact was produced by molding and calcined at 1250 ° C. to produce an air electrode calcined article.
[0046]
Next, an intermediate layer sheet having a thickness as shown in Table 1 was prepared using high-purity ZrO 2 powder. A 100 μm solid electrolyte sheet was prepared using 8 mol% Y 2 O 3 partially stabilized ZrO 2 powder. Furthermore, a current collector sheet having a thickness of 100 μm was produced by a doctor blade method using powder of La (Mg 0.3 Cr 0.7 ) 0.97 O 3 +10 wt% MgO.
[0047]
And the intermediate | middle layer sheet | seat was affixed on the outer peripheral surface of the air electrode calcined body, and the solid electrolyte sheet was affixed on the surface of this intermediate | middle layer sheet | seat. Then, it baked at the temperature shown in Table 1 for 6 hours. The sintered body is dipped in a slurry prepared using a mixed composition powder of 80 wt% -NiO and 20 wt% -8 mol% Y 2 O 3 containing ZrO 2 , and is applied and baked at a thickness of 50 μm. Thus, the solid oxide fuel cell shown in FIG. 1 was produced.
[0048]
On the other hand, a solid electrolyte sheet was attached to the outer peripheral surface of the air electrode calcined body without sticking the intermediate layer sheet, and a solid electrolyte fuel cell of a comparative example manufactured in the same manner as described above was manufactured (Sample No. 1).
[0049]
Each sample prepared was measured quantitatively with a X-ray microanalyzer (EPMA) for the Y concentration in a 10 μm thick region from the air electrode side surface of the solid electrolyte, the peak position of the Y concentration was identified, and the solid electrolyte The distance from the air electrode side surface to the peak position of the Y concentration was measured. Furthermore, the presence or absence of peeling from the solid electrolyte of the air electrode was observed with an optical electron microscope.
[0050]
Further, for each sample, air was flown inside the cell and hydrogen was flowed outside, and power generation was performed at 1000 ° C. for 1500 hours, and the power density was measured at the beginning of power generation and after 1500 hours had elapsed. The results are shown in Table 1.
[0051]
[Table 1]
Figure 0003725994
[0052]
From Table 1, in the sample of the present invention, the position of the Y content peak is present at 5 μm or less from the air electrode side surface of the solid electrolyte, there is no separation of the solid electrolyte from the air electrode, and the output density is also the initial value. It can be seen that even after 1500 hours, it is as high as 0.30 W / cm 2 or more. Further, for sample No. 1 and sample No. 6, only the air electrode was dissolved in hydrochloric acid and the solid electrolyte was measured by X-ray diffraction measurement. As a result, the sample No. 6 of the present invention had a peak of Y 2 O 3 . However, in the sample No. 1 of the comparative example, a Y 2 O 3 peak was present on the air electrode side surface of the solid electrolyte.
[0053]
Sample No. In the samples in which the A / B ratio of the air electrode material shown in 3 to 11 is decreased, it can be seen that the position of the Y amount peak moves away from the air electrode as the intermediate sheet becomes thicker. From this, it is possible to suppress the formation of an oxide layer having a different thermal expansion coefficient at the interface between the solid electrolyte and the air electrode by reducing the A / B ratio and interposing the intermediate layer sheet, and as a result, preventing peeling at the interface. It can be seen that good power generation performance can be maintained for a long time.
[0054]
【The invention's effect】
In the solid oxide fuel cell of the present invention, the rare earth element peak is present along the outer peripheral surface of the air electrode and at a predetermined depth from the air electrode side surface of the solid electrolyte. There is no or rarely any rare earth element oxide at the interface, and the rare earth element precipitates at a high concentration as an oxide at the interface between the air electrode and the solid electrolyte as in the past. The generation of oxide layers having different thermal expansion coefficients can be suppressed, and the solid electrolyte can be prevented from peeling off from the air electrode. As a result, the bonding strength between the air electrode and the solid electrolyte can be improved, and stable output performance can be maintained over the long term.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a solid oxide fuel cell of the present invention.
2A is an enlarged view of a part of FIG. 1, FIG. 2B shows the peak position of the rare earth element amount of the cell of the present invention, and FIG. 2C is the peak of the rare earth element amount of the conventional cell. It is a figure which shows a position.
FIG. 3 is a perspective view showing a conventional solid oxide fuel cell.
[Explanation of symbols]
32 ... Air electrode 31 ... Solid electrolyte 33 ... Fuel electrode 35 ... Current collector A ... Rare earth element peak

Claims (4)

少なくともLa、Ca、希土類元素(Laを除く)およびMnを含有し、Aサイトが前記La、Ca、希土類元素、Bサイトが前記MnであるLaMnO 系のペロブスカイト型複合酸化物からなる円筒状の空気極の外面に、希土類元素を含有する部分安定化または安定化ZrOからなる固体電解質、燃料極が順次形成され、前記空気極及び前記固体電解質が共焼結された固体電解質型燃料電池セルにおいて、前記固体電解質中に、希土類元素(Laを除く)量のピークが、前記空気極の外周面に沿って、かつ前記固体電解質の空気極側面及び燃料極側面から所定深さで存在することを特徴とする固体電解質型燃料電池セル。 A cylindrical shape composed of a LaMnO 3 -based perovskite complex oxide containing at least La, Ca, rare earth elements (excluding La), and Mn, wherein the A site is the La, Ca, rare earth element, and the B site is the Mn . A solid electrolyte fuel cell in which a solid electrolyte and a fuel electrode made of a partially stabilized or stabilized ZrO 2 containing a rare earth element are sequentially formed on the outer surface of the air electrode, and the air electrode and the solid electrolyte are co-sintered In the solid electrolyte, the peak of the amount of rare earth elements (excluding La) is present along the outer peripheral surface of the air electrode and at a predetermined depth from the air electrode side surface and the fuel electrode side surface of the solid electrolyte. A solid oxide fuel cell characterized by the above. 空気極および固体電解質に存在する希土類元素はYであることを特徴とする請求項1記載の固体電解質型燃料電池セル。2. The solid oxide fuel cell according to claim 1, wherein the rare earth element present in the air electrode and the solid electrolyte is Y. 希土類元素量のピークは、固体電解質の空気極側面から5μm以内に存在することを特徴とする請求項1または2記載の固体電解質型燃料電池セル。3. The solid oxide fuel cell according to claim 1, wherein the peak of the amount of rare earth element exists within 5 μm from the air electrode side surface of the solid electrolyte. 空気極は、ABOで表されるペロブスカイト型複合酸化物であり、La、Caおよび希土類元素からなるAサイトと、MnからなるBサイトとの比(A/B比)が0.94〜0.97であることを特徴とする請求項1乃至3のうちいずれかに記載の固体電解質型燃料電池セル。The air electrode is a perovskite complex oxide represented by ABO 3 , and the ratio (A / B ratio) of the A site composed of La, Ca and rare earth elements to the B site composed of Mn is 0.94 to 0. The solid oxide fuel cell according to any one of claims 1 to 3, wherein the solid oxide fuel cell is .97.
JP14699999A 1999-05-26 1999-05-26 Solid oxide fuel cell Expired - Lifetime JP3725994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14699999A JP3725994B2 (en) 1999-05-26 1999-05-26 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14699999A JP3725994B2 (en) 1999-05-26 1999-05-26 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2000340239A JP2000340239A (en) 2000-12-08
JP3725994B2 true JP3725994B2 (en) 2005-12-14

Family

ID=15420305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14699999A Expired - Lifetime JP3725994B2 (en) 1999-05-26 1999-05-26 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3725994B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849774B2 (en) * 2004-01-30 2012-01-11 京セラ株式会社 Solid electrolyte fuel cell and solid electrolyte fuel cell
CN114230342B (en) * 2021-11-25 2022-12-20 哈尔滨工业大学 Rare earth oxide doped modified Ga-LLZO solid electrolyte and preparation method thereof

Also Published As

Publication number Publication date
JP2000340239A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
JP4462727B2 (en) Solid electrolyte fuel cell
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
JP3725994B2 (en) Solid oxide fuel cell
JP4743949B2 (en) Solid electrolyte fuel cell
JP3339998B2 (en) Cylindrical fuel cell
JP3359413B2 (en) Solid oxide fuel cell
JPH0992294A (en) Solid electrolyte type fuel cell and its manufacture
JP3638489B2 (en) Solid oxide fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JP3595223B2 (en) Solid oxide fuel cell
JP4812176B2 (en) Solid oxide fuel cell and fuel cell
JPH11224673A (en) Solid electrolyte fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP3740342B2 (en) Solid oxide fuel cell
JP3652932B2 (en) Solid oxide fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JPH0785875A (en) Solid electrolytic fuel cell
JPH08130029A (en) Solid electrolyte fuel cell and its manufacture
JP3346668B2 (en) Solid oxide fuel cell
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7