JP3359413B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JP3359413B2
JP3359413B2 JP04082694A JP4082694A JP3359413B2 JP 3359413 B2 JP3359413 B2 JP 3359413B2 JP 04082694 A JP04082694 A JP 04082694A JP 4082694 A JP4082694 A JP 4082694A JP 3359413 B2 JP3359413 B2 JP 3359413B2
Authority
JP
Japan
Prior art keywords
air electrode
fuel cell
cell
element selected
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04082694A
Other languages
Japanese (ja)
Other versions
JPH07249414A (en
Inventor
雅英 秋山
祥二 山下
雅人 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP04082694A priority Critical patent/JP3359413B2/en
Publication of JPH07249414A publication Critical patent/JPH07249414A/en
Application granted granted Critical
Publication of JP3359413B2 publication Critical patent/JP3359413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
セルに用いられる導電性セラミックスからなる空気極の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an air electrode made of conductive ceramics used for a solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質型燃料電池としては、これま
で円筒型と平板型の2種類のタイプについて研究開発が
行われている。平板型燃料電池セルは、発電の単位体積
当り出力密度が高いという特長を有するが、実用化に関
してはガスシ−ル不完全性やセル内の温度分布の不均一
性などの問題がある。それに対して、円筒型燃料電池セ
ルでは、出力密度は低いものの、セルの機械的強度が高
く、またセル内の温度の均一性が保てるという特長があ
る。両形状の固体電解質燃料電池セルとも、それぞれの
特長を生かして積極的に研究開発が進められている。
2. Description of the Related Art Research and development have been made on two types of solid oxide fuel cells, a cylindrical type and a flat type. The flat fuel cell has the feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas seal and non-uniformity of the temperature distribution in the cell in practical use. On the other hand, the cylindrical fuel cell has the features that the output density is low, but the mechanical strength of the cell is high and the temperature uniformity in the cell can be maintained. Both types of solid electrolyte fuel cells are being actively researched and developed utilizing their respective features.

【0003】円筒型燃料電池の単セルは、図1に示すよ
うに開気孔率40%程度のCaO安定化ZrO2 を支持
管1とし、その上にスラリ−ディップ法により多孔性の
空気極としてLaMnO3 系材料2を塗布し、その表面
に気相合成法(EVD)や、あるいは溶射法により電解
質3であるY2 3 安定化ZrO2 膜を被覆し、さらに
この表面に多孔性のNi−ジルコニアの燃料極4が形成
されている。燃料電池のモジュールにおいては、各単セ
ルはLaCrO3 系のインターコネクタ5を介して接続
される。発電は、支持管1内部に空気(酸素)を、セル
の外側に燃料(水素)を流し、1000〜1050℃の
高温下で行われる。
As shown in FIG. 1, a single cell of a cylindrical fuel cell has a support tube 1 made of CaO-stabilized ZrO 2 having an open porosity of about 40%, on which a porous air electrode is formed by a slurry-dip method. A LaMnO 3 -based material 2 is applied, and the surface thereof is coated with a Y 2 O 3 -stabilized ZrO 2 film serving as an electrolyte 3 by a vapor phase synthesis method (EVD) or a thermal spraying method. A zirconia anode 4 is formed; In the fuel cell module, each single cell is connected via a LaCrO 3 -based interconnector 5. Power generation is performed at a high temperature of 1000 to 1050 ° C. by flowing air (oxygen) inside the support tube 1 and fuel (hydrogen) outside the cell.

【0004】近年、このセル作製の工程においてプロセ
スを単純化するため、空気極材料であるLaMnO3
材料を直接多孔性の支持管として使用する試みがなされ
ている。空気極としての機能を合せ持つ支持管材料とし
ては、Laを10〜20原子%のCaあるいはSrで置
換したLaMnO3 固溶体材料が一般に用いられてい
る。
In recent years, attempts have been made to use a LaMnO 3 -based material, which is an air electrode material, directly as a porous support tube in order to simplify the process in the cell fabrication process. As a support tube material having the function as an air electrode, a LaMnO 3 solid solution material in which La is substituted with 10 to 20 atomic% of Ca or Sr is generally used.

【0005】一方、平板型燃料電池の単セルは、円筒型
と同じ材料系を用いて、図2に示すように電解質6の一
方に多孔性の空気極7を、他方に多孔性の燃料極8が設
けられ、単セル間の接続には、セパレータ9と呼ばれる
緻密質のMgOやCaOを添加した緻密質のLaCrO
3 固溶体材料が用いられる。発電はセルの空気極側に空
気(酸素)、燃料極側に燃料(水素)を供給して100
0〜1050℃の高温下で行われる。
On the other hand, a single cell of a flat type fuel cell uses the same material system as that of a cylindrical type, and as shown in FIG. 8 are provided, and a connection between the single cells is provided by a dense LaCrO called a separator 9 to which a dense MgO or CaO is added.
3 Solid solution material is used. For power generation, air (oxygen) is supplied to the air electrode side of the cell, and fuel (hydrogen) is supplied to the fuel electrode side.
It is performed at a high temperature of 0 to 1050 ° C.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、前記
のCaO安定化ZrO2 を支持管とし、これにCa、S
rを固溶したLaMnO3 材料を空気極として設けた構
造のセル、および空気極を直接支持管として使用する構
造の円筒型燃料電池セルおよび平板型燃料電池セルにお
いて、長時間の発電を行うとセルが変形し出力が序々に
低下するという問題があった。
However, the above-mentioned CaO-stabilized ZrO 2 is used as a support tube, and Ca, S
When long-term power generation is performed in a cell having a structure in which a LaMnO 3 material in which r is dissolved is provided as an air electrode, and a cylindrical fuel cell and a flat fuel cell having a structure in which the air electrode is directly used as a support tube, There is a problem that the cell is deformed and the output gradually decreases.

【0007】本発明は、円筒型および平板型燃料電池に
おいて、燃料電池システムの長時間運転においてセルの
変形が小さく発電出力の安定した長寿命の燃料電池セル
を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a long-life fuel cell that has a small cell deformation and a stable power generation output in a long-term operation of a fuel cell system in a cylindrical or flat fuel cell.

【0008】[0008]

【問題点を解決するための手段】本発明者らは上記の問
題に対して検討を重ねた結果、固体電解質の片面に空気
極を、他方の面に燃料極を形成してなる固体電解質型燃
料電池セルにおいて、前記空気極が下記化1、
Means for Solving the Problems The present inventors have repeatedly studied the above problems, and as a result, have found that a solid electrolyte type in which an air electrode is formed on one surface of a solid electrolyte and a fuel electrode is formed on the other surface. In the fuel cell, the air electrode is represented by the following formula 1,

【0009】[0009]

【化1】 Embedded image

【0010】で表され、化1中のAはY、Yb、Sc、
Er、Nd、Gd、Dy、Sm、PrおよびCeの希土
類元素の群から選ばれた少なくとも1種の元素、Bは、
Ca、BaおよびSrのアルカリ土類元素の群から選ば
れた少なくとも1種の元素、CはNi、Co、Fe、C
r、CeおよびZrの群から選ばれた少なくとも1種の
元素であり、化1中のm、nおよびzが、 0.02≦ m ≦0.98 0≦ n ≦0.50 0.80≦ z ≦1.10 を満足する結晶相からなる導電性セラミックスを空気極
として用いることにより上記目的が達成されることを見
出した。
Wherein A in Chemical Formula 1 is Y, Yb, Sc,
At least one element selected from the group consisting of rare earth elements of Er, Nd, Gd, Dy, Sm, Pr, and Ce, B is
At least one element selected from the group consisting of alkaline earth elements of Ca, Ba and Sr, C is Ni, Co, Fe, C
at least one element selected from the group consisting of r, Ce and Zr, wherein m, n and z in Chemical formula 1 are: 0.02 ≦ m ≦ 0.98 0 ≦ n ≦ 0.50 0.80 ≦ It has been found that the above object is achieved by using a conductive ceramic having a crystal phase satisfying z ≦ 1.10.

【0011】また、本発明によれば、前記空気極におけ
る主結晶相が下記化1
According to the present invention, the main crystal phase in the air electrode is

【0012】[0012]

【化1】 Embedded image

【0013】で表され、式中のAはY、Yb、Sc、E
r、Nd、Gd、Dy、Sm、PrおよびCeの希土類
元素の群から選ばれた少なくとも1種の元素、BはC
a、Ba、Srのアルカリ土類元素から選ばれた少なく
とも1種の元素、CはNi、Co、Fe、Cr、Ceお
よびZrの群から選ばれた少なくとも1種の元素であ
り、化1中のm、nおよびzが、 0.02≦ m ≦0.98 0≦ n ≦0.50 0.80≦ z ≦1.10 を満足する複合酸化物からなり、第2結晶相としてY、
Yb、Sc、Er、Nd、Gd、Dy、Sm、Prおよ
びCeの希土類元素の群から選ばれた少なくとも1種の
元素の酸化物を全体量に対して0.01〜10重量%の
割合で分散含有することを特徴とするものである。
Where A is Y, Yb, Sc, E
at least one element selected from the group consisting of rare earth elements of r, Nd, Gd, Dy, Sm, Pr and Ce;
a, Ba, Sr, at least one element selected from alkaline earth elements, and C is at least one element selected from the group consisting of Ni, Co, Fe, Cr, Ce, and Zr. M, n and z of the composite oxide satisfying 0.02 ≦ m ≦ 0.980 0 ≦ n ≦ 0.50 0.80 ≦ z ≦ 1.10.
Oxides of at least one element selected from the group consisting of rare earth elements of Yb, Sc, Er, Nd, Gd, Dy, Sm, Pr and Ce are contained in a proportion of 0.01 to 10% by weight based on the total amount. It is characterized by being dispersedly contained.

【0014】本発明の燃料電池セルにおける空気極は、
前述の化1で示されるような組成からなるもので、いわ
ゆるABO3 型のペロブスカイト型結晶構造を主体とす
るものである。本発明において、化1中のm、n、zを
上記の範囲に限定した理由は、Yおよび各種希土類元素
に対するアルカリ土類元素であるCa、Sr、Baの置
換比率mが0.02より小さいと電気伝導度が小さく空
気極としての機能を成さず、mが0.98より大きいと
焼結性が高くなり、1000℃での長時間発電において
空気極の焼結が進み空気極が変形し発電性能が悪くな
る。また、ペロブスカイト型結晶構造中のAサイトとB
サイトの原子比zが0.80までの不定比系においても
同様な結果が得られるが、これはその格子欠陥構造が定
比系に類似しているためである。このzが0.8より小
さくなるとMn2 3 等の第2成分の析出が起こり焼結
が促進されて空気極の変形が生じ、また、Mnに対して
Ni、Co、Fe、Cr、Ce、Zrなどの元素を置換
しても同様な特性が得られるが、この置換比率nが0.
50を越えると焼結性が悪くなり1650℃以上の温度
でないと焼結が困難なため、不経済である。
The air electrode in the fuel cell unit of the present invention is
It has a composition as shown in the above chemical formula 1, and mainly has a so-called ABO 3 type perovskite crystal structure. In the present invention, the reason why m, n, and z in Chemical Formula 1 are limited to the above ranges is that the substitution ratio m of the alkaline earth elements Ca, Sr, and Ba with respect to Y and various rare earth elements is smaller than 0.02. When the value of m is greater than 0.98, the sinterability increases, and the sintering of the air electrode progresses during long-term power generation at 1000 ° C, causing the air electrode to be deformed. And the power generation performance becomes worse. In addition, A site and B in the perovskite type crystal structure
A similar result is obtained in a nonstoichiometric system in which the atomic ratio z of the site is up to 0.80, because the lattice defect structure is similar to the stoichiometric system. When z is smaller than 0.8, precipitation of the second component such as Mn 2 O 3 is promoted, sintering is promoted, and deformation of the air electrode is caused. Further, Ni, Co, Fe, Cr, Ce with respect to Mn are produced. Similar characteristics can be obtained by substituting elements such as Zr and Zr.
If it exceeds 50, sinterability deteriorates, and sintering is difficult unless the temperature is 1650 ° C. or more, which is uneconomical.

【0015】本発明における化1中のm、n、zの好ま
しい範囲は、0.10≦m≦0.40、0≦n≦0.2
0、0.95≦z≦1.0である。
In the present invention, the preferred ranges of m, n and z in Chemical Formula 1 are 0.10 ≦ m ≦ 0.40 and 0 ≦ n ≦ 0.2
0, 0.95 ≦ z ≦ 1.0.

【0016】また、燃料電池セルにおいては、空気極
は、セルの作動温度である1000℃あるいはそれを越
えるような温度に保持されるが、発電出力を高めるため
には空気極を小さな結晶粒子からなるセラミックスで構
成することが行われるが、このような場合には空気極が
緻密化しガスの透過係数が小さくなったり電極が変形し
電極性能が低下し、その結果、発電出力が低下してしま
う。このような問題に対して、本発明によれば、前記化
1で表される組成物を主結晶相とし、さらに第2結晶相
を含むことを特徴とするものである。この第2結晶相の
析出効果はその第2結晶相の粒径が小さいほど、また第
2結晶相の量が多いほど緻密化抑制の効果が大きくなる
傾向にある。
In a fuel cell, the air electrode is maintained at a temperature higher than or equal to 1000 ° C., which is the operating temperature of the cell. However, in such a case, the air electrode is densified, the gas transmission coefficient is reduced, the electrode is deformed, and the electrode performance is reduced. As a result, the power generation output is reduced. . In order to solve such a problem, the present invention is characterized in that the composition represented by Chemical Formula 1 is used as a main crystal phase and further contains a second crystal phase. The effect of the precipitation of the second crystal phase tends to increase as the grain size of the second crystal phase is smaller and the amount of the second crystal phase is larger.

【0017】本発明者らは、これらの知見に基づき第2
結晶相の種類と量について検討したところ、第2結晶相
としてY、Yb、Sc、Er、Nd、Gd、Dy、S
m、PrおよびCeの希土類元素の群から選ばれた少な
くとも1種の元素の酸化物を全体量に対して0.01〜
10重量%の割合で分散含有させることが最もよいこと
を知見したものである。即ち、上記第2結晶相の量が
0.01重量%より少ないと緻密化抑制効果が顕著でな
く、10重量%を越えると空気極の導電性が低下するた
めである。第2結晶相の量は1〜5重量%が望ましい。
Based on these findings, the present inventors have proposed a second
When the type and amount of the crystal phase were examined, Y, Yb, Sc, Er, Nd, Gd, Dy, S
oxides of at least one element selected from the group consisting of rare earth elements of m, Pr and Ce are contained in an amount of 0.01 to
It has been found that it is best to disperse and contain 10% by weight. That is, if the amount of the second crystal phase is less than 0.01% by weight, the effect of suppressing densification is not significant, and if it exceeds 10% by weight, the conductivity of the air electrode is reduced. The amount of the second crystal phase is desirably 1 to 5% by weight.

【0018】また、第2結晶相は2粒子界面に数10〜
500nmの大きさで、また3重点のネックと呼ばれる
部分に平均粒子径が0.1〜5μmの大きさで存在する
と効果的である。特に0.1〜3μmの大きさが好まし
い。第2結晶相は、その量が増加すると3重点のネック
に析出しやすくなる。第2結晶相は主結晶相の成分を若
干固溶する場合があるが、結晶構造が変化しなければ特
に問題はない。また、第2結晶相の一部がYMnO3
YbMnO3 等の複合酸化物として析出する場合がある
が、主結晶相および第2結晶相が上述の範囲を満足すれ
ばこれも特に問題はない。
The second crystal phase is located at the interface between the two grains by several tens to ten.
It is effective to have a size of 500 nm and an average particle size of 0.1 to 5 μm in a portion called a triple junction neck. In particular, a size of 0.1 to 3 μm is preferable. As the amount of the second crystal phase increases, the second crystal phase tends to precipitate at the neck of the triple point. Although the second crystal phase may slightly dissolve the components of the main crystal phase, there is no particular problem as long as the crystal structure does not change. A part of the second crystal phase is YMnO 3 ,
It may be precipitated as a composite oxide such as YbMnO 3, but there is no particular problem as long as the main crystal phase and the second crystal phase satisfy the above ranges.

【0019】本発明における空気極は、図1に示される
ような円筒型燃料電池セルにおいては、例えば10〜1
5モル%CaOあるいは8〜20モル%Y2 3 、Yb
2 3 を添加したZrO2 からなる多孔質で非電子伝導
性の支持管の表面に形成される空気極として、あるいは
空気極としての機能を付与した空気極支持管としても使
用される。また、平板型燃料電池セルにおいても空気極
およびガスディフューザとしても利用できる。
In the present invention, the air electrode is, for example, 10 to 1 in a cylindrical fuel cell as shown in FIG.
5 mol% CaO or 8 to 20 mol% Y 2 O 3, Yb
It is also used as an air electrode formed on the surface of a porous, non-electron conductive support tube made of ZrO 2 to which 2 O 3 is added, or as an air electrode support tube provided with a function as an air electrode. It can also be used as an air electrode and a gas diffuser in a flat fuel cell.

【0020】また、空気極はそれ自体多孔質でガス透過
性を有することが必要である。ガス透過性を高めるため
には開気孔率が大きいことが良いが、開気孔率が大きい
と空気極自体の強度が低下する。特に、空気極を直接支
持管として用いる場合において、強度が低いと表面に電
解質を形成する際支持管の破損やその他の製造工程にお
ける取扱いにより破損するなどの問題が生じる。発明の
構成によれば、開気孔率と強度およびガス透過性の関係
から、開気孔率は20〜45%、特に30〜40%の範
囲であることが望ましい。また、ガス透過量と支持管強
度は空気極中の細孔径にも依存する。この細孔の大きさ
としては、平均細孔径が1.0〜5.0μmの範囲がガ
ス透過性と強度に優れる。特に平均細孔径が1.0μm
より小さいと、強度は優れるもののガス透過性が充分で
なく、平均細孔径が5.0μmより大きいと強度が小さ
くなり、製造工程における取扱いにより破損するなどの
問題が生じる。平均細孔径の特に好ましい範囲は1.5
〜3.0μmである。
The air electrode itself must be porous and have gas permeability. To increase gas permeability, it is preferable that the open porosity is large, but if the open porosity is large, the strength of the air electrode itself decreases. In particular, when the air electrode is directly used as a support tube, if the strength is low, problems such as breakage of the support tube when forming an electrolyte on the surface and breakage due to handling in other manufacturing processes occur. According to the configuration of the present invention, the open porosity is desirably in the range of 20 to 45%, particularly 30 to 40%, in view of the relationship between the open porosity, strength, and gas permeability. Further, the gas permeation amount and the strength of the support tube also depend on the pore diameter in the air electrode. As the size of the pores, an average pore diameter in the range of 1.0 to 5.0 μm is excellent in gas permeability and strength. In particular, the average pore diameter is 1.0 μm
If it is smaller, the strength is excellent but the gas permeability is not sufficient. If the average pore diameter is more than 5.0 μm, the strength becomes small, and problems such as breakage due to handling in the production process occur. A particularly preferred range of the average pore size is 1.5
〜3.0 μm.

【0021】本発明における空気極材料は、前記化1で
示された構成金属元素の酸化物、炭酸塩、硝酸塩等を用
い、周知の混合法で混合し、1300〜1500℃の温
度で2〜5時間仮焼し固溶体粉末を生成する。また、希
土類元素酸化物を第2結晶相として析出させる場合には
予めこれを過剰分として添加してもよいし、あるいは上
述の固溶体粉末に添加しても良い。
The air electrode material in the present invention is prepared by mixing oxides, carbonates, nitrates and the like of the constituent metal elements shown in the above formula 1 by a well-known mixing method. Calcination for 5 hours to produce a solid solution powder. When the rare earth element oxide is precipitated as the second crystal phase, it may be added in advance as an excess or may be added to the above-mentioned solid solution powder.

【0022】空気極としての機能を併用したいわゆる自
己支持管の作製は、上述の固溶体粉末を所定の結晶粒子
径に粉砕し、押出成形法や冷間静水圧成形(CIP)法
で所定の形状に成形し、1400〜1550℃の温度で
大気中あるいはAr等の不活性雰囲気中で2〜7時間焼
成して作製することができる。
In order to produce a so-called self-supporting tube having a function as an air electrode, the above-mentioned solid solution powder is pulverized to a predetermined crystal particle diameter, and is extruded into a predetermined shape by extrusion molding or cold isostatic pressing (CIP). And fired at a temperature of 1400 to 1550 ° C. in the air or in an inert atmosphere such as Ar for 2 to 7 hours.

【0023】円筒型セルは、本発明の空気極を多孔質の
自己支持管CaO安定化ZrO2 の表面にスラリーディ
ップ法、溶射法で塗布しこの表面に気相合成法や溶射法
で電解質のY2 3 あるいはYb2 3 安定化ZrO2
薄膜を被覆し、さらにNi−ジルコニア(Y2 3
有)の燃料極を設けることにより作製する。また、Ca
O安定化ZrO2 を用いず、本発明の空気極材料よりな
る自己支持管に上記と同様な方法により電解質および燃
料極を形成することによりセルを作製することもでき
る。
In the cylindrical cell, the air electrode of the present invention is applied to the surface of a porous self-supporting tube CaO-stabilized ZrO 2 by a slurry dipping method or a spraying method, and an electrolyte is formed on the surface by a vapor phase synthesis method or a spraying method. Y 2 O 3 or Yb 2 O 3 stabilized ZrO 2
It is manufactured by coating a thin film and further providing a fuel electrode of Ni-zirconia (containing Y 2 O 3 ). In addition, Ca
Instead of using O-stabilized ZrO 2 , a cell can also be produced by forming an electrolyte and a fuel electrode in a self-supporting tube made of the air electrode material of the present invention by the same method as described above.

【0024】一方、平板型セルは、押出成形や、プレス
成形、ドクターブレード法等により、Y2 3 あるいは
Yb2 3 安定化ZrO2 で電解質を作製し、一方の面
に本発明の空気極材料を、また他方の面に燃料極をスク
リーン印刷等で塗布し乾燥した後に焼き付けることによ
り得られる。
On the other hand, a flat plate cell is prepared by preparing an electrolyte with Y 2 O 3 or Yb 2 O 3 stabilized ZrO 2 by extrusion molding, press molding, doctor blade method or the like, and forming the air of the present invention on one surface. The electrode material is obtained by applying a fuel electrode to the other surface by screen printing or the like, drying the fuel electrode, and then baking.

【0025】[0025]

【作用】従来用いられているLaを10〜20原子%S
rあるいはCaで置換したLaMnO3 の格子欠陥構造
に着目して研究を進めた結果、固溶体中では大気中、高
温においては下記化2に示すように酸素を格子中に取り
込み、系の電気的中性を保持するためLaとMnイオン
の空孔がそれぞれ生成することが分かった。
The conventionally used La is 10 to 20 atomic% S.
As a result of research focusing on the lattice defect structure of LaMnO 3 substituted with r or Ca, oxygen was taken into the lattice in the air in a solid solution and at high temperature as shown in the following chemical formula, and the electrical It was found that vacancies of La and Mn ions were generated to maintain the properties.

【0026】[0026]

【化2】 Embedded image

【0027】この格子欠陥構造から従来の空気極材料の
焼結は、LaMnO3 固溶体中ではLa、Mnイオン空
孔濃度が高いため、陽イオンの拡散速度が速くなり、そ
の結果焼結が促進されるためと考えられる。燃料電池セ
ルにおいては、燃料同士の反応は一部は電力に、またそ
の他は熱として放出される。問題となっているセルの変
形は、燃料電池セルの温度分布の不均一性に起因して、
空気極の焼結促進が均一に起こるためと判断される。
Due to this lattice defect structure, the conventional sintering of an air electrode material has a high La and Mn ion vacancy concentration in a LaMnO 3 solid solution, so that the diffusion rate of cations is increased, and as a result, sintering is promoted. It is thought to be. In a fuel cell unit, a reaction between fuels is partially released to electric power, and the others are released as heat. The deformation of the cell in question is due to the non-uniform temperature distribution of the fuel cell,
It is determined that the promotion of sintering of the air electrode occurs uniformly.

【0028】これらの推論から本発明者らは結晶内の格
子欠陥構造を変化させ、La、Mnイオン空孔の生成を
抑制すれば空気極の緻密化とそれに付随するセルの変形
は抑制できると考えた。本発明ではこの格子欠陥構造に
着目し、ペロブスカイト型酸化物系材料について欠陥構
造をさらに詳細に検討した結果、Ca、Sr、Ba等を
固溶したYMnO3 、YbMnO3 、GdMnO3 等が
焼結に対する促進効果が小さく安定した発電性能を示す
ことを見出だした。
Based on these inferences, the inventors of the present invention believe that if the lattice defect structure in the crystal is changed to suppress the generation of La and Mn ion vacancies, the air electrode can be densified and the accompanying cell deformation can be suppressed. Thought. The present invention pays attention to this lattice defect structure, and as a result of examining the defect structure of the perovskite oxide-based material in more detail, it was found that YMnO 3 , YbMnO 3 , GdMnO 3, etc. in which Ca, Sr, Ba, etc. were dissolved in solid form were sintered. It has been found that the effect of promoting power is small and stable power generation performance is exhibited.

【0029】例えば、Caを固溶したYMnO3 は大気
中、高温において、主として下記化3で示される格子欠
陥が生成する。
For example, YMnO 3 containing Ca as a solid solution mainly generates lattice defects represented by the following formula 3 at high temperatures in the air.

【0030】[0030]

【化3】 Embedded image

【0031】この格子欠陥を有する材料においては、C
aはYと置換固溶し、系の電気的中性を保持するためホ
−ルが生成し、生成したホ−ルは電気伝導に寄与する。
また、この系ではLa、Mnイオン空孔濃度も小さいた
め、成分イオンの拡散速度が抑制され、その結果セルの
変形が防止される。本発明は、上記の(Y、Ca)Mn
3 の他、Yb、Sc、Er、Nd、Gd、Dy、S
m、Pr、Ceの希土類元素とCa、Sr、Baのアル
カリ土類元素およびMnからなる複合ペロブスカイト酸
化物、(Y、Ba)MnO3 、(Yb、Ca)Mn
3 ,(Y、Sr)MnO3 、(Gd、Sr)MnO3
等も上記と同様な格子欠陥構造を有し、空気極として使
用した場合セル変形が防止される。また、本発明品に関
して構造中のAサイトの原子が不足した不定比系におい
ても、その格子欠陥構造が定比系に類似しているため定
比系と同様な効果が得られる。また、Mnの一部をC
o、Ni、Fe、Cr、Ce、Zrで置換した材料も同
様な格子欠陥を有しておりセル変形が極めて小さな空気
極として使用できる。
In the material having this lattice defect, C
a is substituted with Y to form a solid solution, a hole is formed to maintain the electrical neutrality of the system, and the formed hole contributes to electric conduction.
In this system, since the La and Mn ion vacancy concentrations are also small, the diffusion speed of the component ions is suppressed, and as a result, cell deformation is prevented. The present invention relates to the above (Y, Ca) Mn
In addition to O 3 , Yb, Sc, Er, Nd, Gd, Dy, S
composite perovskite oxides composed of rare earth elements of m, Pr, Ce, alkaline earth elements of Ca, Sr, Ba and Mn, (Y, Ba) MnO 3 , (Yb, Ca) Mn
O 3 , (Y, Sr) MnO 3 , (Gd, Sr) MnO 3
Etc. also have a lattice defect structure similar to the above, and when used as an air electrode, cell deformation is prevented. Further, in the non-stoichiometric system in which the A site atoms in the structure of the present invention are deficient, the same effect as in the stoichiometric system can be obtained because the lattice defect structure is similar to the stoichiometric system. Also, a part of Mn is converted to C
Materials substituted with o, Ni, Fe, Cr, Ce, and Zr also have similar lattice defects and can be used as an air electrode with extremely small cell deformation.

【0032】本発明においては、空気極材料を小さい結
晶粒子で構成し、燃料電池セルの性能を上げる形式のセ
ルにおいては、空気極材料が緻密化し電極性能が劣化す
るため、(Y,Ba)MnO3 、(Yb,Ca)MnO
3 、(Y,Sr)MnO3 、(Gd,Sr)MnO3
どの複合ペロブスカイト型酸化物材料中にさらに第2結
晶相を析出させることにより、この緻密化を抑制でき
る。粒界に析出物が存在する場合、経験的の移動に成長
できる粒子の限界の大きさ、Dは下記数1
In the present invention, in a cell in which the air electrode material is composed of small crystal particles and the performance of the fuel cell is improved, the air electrode material becomes denser and the electrode performance deteriorates, so that (Y, Ba) MnO 3 , (Yb, Ca) MnO
3. The densification can be suppressed by further depositing the second crystal phase in a composite perovskite-type oxide material such as (Y, Sr) MnO 3 or (Gd, Sr) MnO 3 . When precipitates are present at the grain boundaries, the limit size of particles that can grow into empirical movement, D is given by

【0033】[0033]

【数1】 (Equation 1)

【0034】で表される。これより、析出物の効果は析
出物が小さいほど、また析出物の量が多いほど大きいこ
とが分かる。本発明では、上記の経験式に基づき析出物
の種類とその量について検討した結果、Y、Yb、S
c、Er、Nd、Gd、Dy、Smの希土類酸化物を第
2結晶相として含む(Y,Ca)MnO3 、(Yb,S
r)MnO3 等の酸化物固溶体が緻密化抑制効果が大き
いことを見いだしたものである。
Is represented by This shows that the effect of the precipitate is larger as the precipitate is smaller and as the amount of the precipitate is larger. In the present invention, as a result of examining the types and amounts of precipitates based on the above empirical formula, Y, Yb, S
(Y, Ca) MnO 3 , (Yb, S) containing rare earth oxides of c, Er, Nd, Gd, Dy, and Sm as the second crystal phase
r) It has been found that an oxide solid solution such as MnO 3 has a large effect of suppressing densification.

【0035】本発明の燃料電池セルは、空気極を前述し
たような特定のマンガナイト系導電性セラミックスによ
り構成することにより、空気極の焼結に伴う空気極やセ
ルの変形等によるセル間の接続不良を防ぎ、長期安定性
に優れたセルを提供できる。また、平板型燃料電池セル
においても、運転における電解質の剥離を防ぎ、長期的
に出力が安定性したセルを提供できる。なお、平板型燃
料電池では、空気極をガスディフュ−ザとして使用する
場合もありうるが、この場合もガスディフュ−ザの変形
が小さいために電解質との接続に優れ、その結果接続不
良による発電時の出力低下等も抑制することができる。
In the fuel cell of the present invention, the air electrode is made of the above-mentioned specific manganite-based conductive ceramics so that the air electrode and the cell are deformed due to the sintering of the air electrode. A cell with excellent long-term stability can be provided by preventing poor connection. Further, even in a flat-plate type fuel cell, it is possible to provide a cell whose output is stable for a long time by preventing separation of the electrolyte during operation. In the flat fuel cell, the air electrode may be used as a gas diffuser.In this case, however, the gas diffuser has a small deformation, so that the connection with the electrolyte is excellent. Output reduction and the like can also be suppressed.

【0036】[0036]

【実施例】次に、本発明を実施例に基づき説明する。 実施例1 市販の純度99.9%以上の表1および表2に示す各種
の金属元素の酸化物粉末、アルカリ土類元素の炭酸塩を
出発原料として、これを表1および表2の組成になるよ
うに調合し、ジルコニアボ−ルを用いて10時間混合し
た後、1400℃で10時間固相反応させて固溶体粉末
を得た。この粉末をジルコニアボ−ルを用いて、さらに
10時間粉砕した。この粉末を用いて円筒状に成形し
て、大気中で1470〜1550℃にて焼成し、外径1
6mm、内径12mm、長さ100mmの円筒状焼結体
を得た。
Next, the present invention will be described based on embodiments. Example 1 Starting from a commercially available oxide powder of various metal elements and a carbonate of an alkaline earth element having a purity of 99.9% or more as shown in Tables 1 and 2, the composition was prepared as shown in Tables 1 and 2. The resulting mixture was mixed with a zirconia ball for 10 hours, and then subjected to a solid phase reaction at 1400 ° C. for 10 hours to obtain a solid solution powder. This powder was further ground for 10 hours using a zirconia ball. The powder is formed into a cylindrical shape, fired at 1470 to 1550 ° C. in the air, and
A cylindrical sintered body having a diameter of 6 mm, an inner diameter of 12 mm, and a length of 100 mm was obtained.

【0037】得られた焼結体に対して、アルキメデス法
により開気孔率を測定した結果、開気孔率は30〜35
%であった。また走査電子顕微鏡写真(SEM)により
求めた平均結晶粒径は8〜12μmであった。その後、
この円筒状焼結体を電気炉を用いて、大気中、室温から
200℃/hの速度で1000℃まで昇温し、1000
℃で2000時間保持した後、室温まで200℃/hの
速度で冷却した。そしてこの熱処理を行った後の円筒状
焼結体の外径の寸法測定を行い、熱処理前のそれと比較
して下記数2
The open porosity of the obtained sintered body was measured by the Archimedes method. As a result, the open porosity was 30 to 35.
%Met. The average crystal grain size determined by a scanning electron micrograph (SEM) was 8 to 12 μm. afterwards,
The temperature of the cylindrical sintered body was increased from room temperature to 1000 ° C. at a rate of 200 ° C./h in the air using an electric furnace.
After it was kept at 2000C for 2000 hours, it was cooled to room temperature at a rate of 200C / h. Then, the outer diameter of the cylindrical sintered body after the heat treatment was measured, and compared with that before the heat treatment,

【0038】[0038]

【数2】 (Equation 2)

【0039】の式に従い変形率を算出した。The deformation rate was calculated according to the following equation.

【0040】また、上記の円筒状焼結体を長さ50mm
に切断し電圧端子間を40mmとなるようにPtの電極
を取り付け、大気中1000℃で抵抗を測定し、下記数
In addition, the above-mentioned cylindrical sintered body is 50 mm long.
And a Pt electrode was attached so that the distance between the voltage terminals was 40 mm, and the resistance was measured at 1000 ° C. in the atmosphere.

【0041】[0041]

【数3】 (Equation 3)

【0042】によりシート抵抗Rsを測定した。測定の
結果は表1および表2に示した。
Thus, the sheet resistance Rs was measured. The measurement results are shown in Tables 1 and 2.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】表1および表2によれば、周期律表第3a
族元素に対するCaの置換量mが0.98より大きい試
料No.13,28,39では変形が大きく、シート抵抗
も大きかった。またmが0.02より小さい試料No.
2,41でもシート抵抗が大きくなった。AサイトとB
サイトの比率zが0.8より小さい試料No.14ではM
2 3 が析出し変形が生じた。またzが1.1より大
きい試料No.19ではLa2 3 が析出し焼結体が短時
間で風化した。さらにMnへの置換量nが0.5より大
きい試料No.24,53では、焼結性が低下し所定の気
孔率の焼結体を得ることができなかった。
According to Tables 1 and 2, the periodic table 3a
In Samples Nos. 13, 28 and 39 in which the substitution amount m of Ca for the group element was larger than 0.98, the deformation was large and the sheet resistance was large. Sample No. where m is smaller than 0.02.
The sheet resistances of the samples Nos. 2 and 41 also increased. A site and B
In the sample No. 14 where the site ratio z is smaller than 0.8, M
n 2 O 3 was precipitated and deformed. In sample No. 19 where z was larger than 1.1, La 2 O 3 was precipitated and the sintered body was weathered in a short time. Further, in Samples Nos. 24 and 53 in which the amount n of substitution with Mn was larger than 0.5, the sinterability was reduced, and a sintered body having a predetermined porosity could not be obtained.

【0046】実施例2 実施例1で作成した固溶体粉末に純度99.9%以上で
平均粒子径が約1μmのY2 3 、Yb2 3 、Sc2
3 、Er2 3 、Nd2 3 、Gd2 3 、Dy2
3 、Sm2 3 の各粉末を表3に示す割合で過剰に添加
し、ジルコニアボ−ルで20時間混合粉砕を行った。こ
の粉末を円筒形状に成形して、1400〜1500℃で
3〜5時間焼成して外径16mm、内径12mm、長さ
100mmで開気孔率が30〜34%の円筒状焼結体を
作製した。またSEMにより求めた平均結晶粒径は3〜
5μmであった。さらに、実施例1と同様な方法で変形
率を測定した。また、試料の一部は実施例1に従い10
00℃でのシ−ト抵抗を測定した。その結果を表3に示
した。
Example 2 Y 2 O 3 , Yb 2 O 3 , Sc 2 having a purity of 99.9% or more and an average particle diameter of about 1 μm were added to the solid solution powder prepared in Example 1.
O 3 , Er 2 O 3 , Nd 2 O 3 , Gd 2 O 3 , Dy 2 O
3 and powders of Sm 2 O 3 were excessively added at the ratios shown in Table 3 and mixed and pulverized with a zirconia ball for 20 hours. This powder was formed into a cylindrical shape and fired at 1400 to 1500 ° C. for 3 to 5 hours to produce a cylindrical sintered body having an outer diameter of 16 mm, an inner diameter of 12 mm, a length of 100 mm and an open porosity of 30 to 34%. . The average crystal grain size determined by SEM is 3 to
It was 5 μm. Further, the deformation ratio was measured in the same manner as in Example 1. In addition, a part of the sample was prepared according to Example 1.
The sheet resistance at 00 ° C was measured. Table 3 shows the results.

【0047】[0047]

【表3】 [Table 3]

【0048】表3の結果より第2結晶相(析出物)の量
が0.01重量%以上で変形の発生をさらに抑制できる
が、この量が10重量%を越える試料No.62,74で
はシ−ト抵抗が大きくなり空気極として機能しない。ま
た、SEM観察によると、本発明品における空気極の2
つの結晶間および三重点のネック部における第2結晶相
の大きさはいずれも0.1〜5μmであった。また、透
過型電子顕微鏡(TEM)によると2つの結晶粒子の粒
界には数10〜500nmの析出物が認められた。
From the results shown in Table 3, the deformation can be further suppressed when the amount of the second crystal phase (precipitate) is 0.01% by weight or more, but in Samples Nos. 62 and 74 where this amount exceeds 10% by weight. The sheet resistance increases and does not function as an air electrode. Also, according to the SEM observation, it was found that the air electrode 2
The size of the second crystal phase between the two crystals and at the triple junction neck was 0.1 to 5 μm. According to a transmission electron microscope (TEM), a precipitate of several tens to 500 nm was recognized at the grain boundary between the two crystal grains.

【0049】実施例3 実施例1中の試料No.1,2,7,20,57の組成に
ついて、開気孔率が30〜34%、平均細孔径が2.0
3〜2.35μmで、長さ200mm、外形16mm、
内径12mmの一端が封じた円筒状焼結体を作製し、空
気極として機能するセルの支持管とした。
Example 3 With respect to the composition of Sample Nos. 1, 2, 7, 20, and 57 in Example 1, the open porosity was 30 to 34%, and the average pore diameter was 2.0.
3 to 2.35 μm, length 200 mm, outer shape 16 mm,
A cylindrical sintered body having an inner diameter of 12 mm and sealed at one end was prepared, and used as a support tube for a cell functioning as an air electrode.

【0050】この後、気相合成法により1150℃で円
筒状焼結体の表面に厚さ約50μmの固体電解質(10
mol%Y2 3 −90mol%ZrO2 )を被覆し、
さらにこの上にスラリーディップ法により30μmの厚
みに70重量%のNiを含有するZrO2 (8mol%
2 3 含有)の燃料極を被覆し単セルとした。
Thereafter, a solid electrolyte (10 μm thick) having a thickness of about 50 μm was formed on the surface of the cylindrical sintered body at 1150 ° C. by a gas phase synthesis method.
mol% Y 2 O 3 -90 mol% ZrO 2 )
Further, a ZrO 2 (8 mol%) containing 70% by weight of Ni in a thickness of 30 μm was formed thereon by a slurry dipping method.
(Y 2 O 3 included ) to form a single cell.

【0051】このセルを電気炉中に保持しセルの内側に
酸度ガスを、外側に水素ガスを流し、1000℃で発電
を行った。そして、発電時間と出力密度の変化を図3に
示した。
The cell was held in an electric furnace, and an acidity gas was supplied inside the cell and a hydrogen gas was supplied outside the cell, and power was generated at 1000 ° C. FIG. 3 shows changes in the power generation time and the output density.

【0052】図3から明らかなように、本発明の試料N
o.7,20,57については、出力密度はほとんど変化
せず、出力密度も高い。それに対して従来品であるNo.
1,2は時間とともに出力が低下した。これにより、本
発明品が長期安定性に優れることが理解される。
As is apparent from FIG. 3, the sample N of the present invention
With respect to o, 7, 20, and 57, the power density hardly changes and the power density is high. In contrast, the conventional product No.
Outputs 1 and 2 decreased with time. This indicates that the product of the present invention has excellent long-term stability.

【0053】[0053]

【発明の効果】以上の説明から明らかなように、本発明
の燃料電池セルは、空気極の焼結に伴う空気極およびセ
ルの変形等によるセル間の接続不良を防ぎ、長期にわた
り出力が安定した信頼性の高い燃料電池セルを提供する
ことができる。
As is clear from the above description, the fuel cell of the present invention prevents connection failure between cells due to deformation of the air electrode and the cell due to sintering of the air electrode, and the output is stable for a long time. It is possible to provide a highly reliable fuel cell unit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】円筒型燃料電池セルの構造を説明するための図
である。
FIG. 1 is a view for explaining the structure of a cylindrical fuel cell.

【図2】平板型燃料電池セルの構造を説明するための図
である。
FIG. 2 is a diagram illustrating the structure of a flat fuel cell.

【図3】実施例3における発電時間に対する出力密度の
変化を示す図である。
FIG. 3 is a diagram showing a change in output density with respect to a power generation time in Example 3.

【符号の説明】[Explanation of symbols]

1 支持管 2 空気極 3 固体電解質 4 燃料極 5 インターコネクタ DESCRIPTION OF SYMBOLS 1 Support pipe 2 Air electrode 3 Solid electrolyte 4 Fuel electrode 5 Interconnector

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 C04B 35/495 H01M 8/02 H01M 8/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/86 C04B 35/495 H01M 8/02 H01M 8/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体電解質の片面に空気極を、他方の面に
燃料極を形成してなる固体電解質型燃料電池セルにおい
て、前記空気極が下記化1 【化1】 (A1-mmz(Mn1-nn)O3±δ で表され、化1中のAはY、Yb、Sc、Er、Nd、
Gd、Dy、Sm、PrおよびCeの希土類元素の群か
ら選ばれた少なくとも1種の元素、Bは、Ca、Baお
よびSrのアルカリ土類元素の群から選ばれた少なくと
も1種の元素、CはNi、Co、Fe、Cr、Ceおよ
びZrの群から選ばれた少なくとも1種の元素であり、
化1中のm、nおよびzが、 0.02≦ m ≦0.98 0≦ n ≦0.50 0.80≦ z ≦1.10 を満足する結晶相からなる導電性セラミックスであるこ
とを特徴とする固体電解質型燃料電池セル。
1. A solid electrolyte fuel cell comprising an air electrode formed on one surface of a solid electrolyte and a fuel electrode formed on the other surface, wherein the air electrode is represented by the following formula (A 1 -MB) m ) z (Mn 1-n C n ) O 3 ± δ , wherein A in Chemical Formula 1 is Y, Yb, Sc, Er, Nd,
B is at least one element selected from the group of rare earth elements of Gd, Dy, Sm, Pr and Ce; B is at least one element selected from the group of alkaline earth elements of Ca, Ba and Sr; Is at least one element selected from the group consisting of Ni, Co, Fe, Cr, Ce and Zr;
M, n and z in Chemical formula 1 are conductive ceramics having a crystal phase satisfying 0.02 ≦ m ≦ 0.980 0 ≦ n ≦ 0.50 0.80 ≦ z ≦ 1.10. A solid oxide fuel cell unit characterized by the following features.
【請求項2】固体電解質の片面に空気極を、他方の面に
燃料極を形成してなる固体電解質型燃料電池セルにおい
て、前記空気極における主結晶相が下記化1 【化1】 (A1-mmz(Mn1-nn)O3±δ で表され、化1中のAはY、Yb、Sc、Er、Nd、
Gd、Dy、Sm、PrおよびCeの希土類元素の群か
ら選ばれた少なくとも1種の元素、Bは、Ca、Baお
よびSrのアルカリ土類元素の群から選ばれた少なくと
も1種の元素、CはNi、Co、Fe、Cr、Ceおよ
びZrの群から選ばれた少なくとも1種の元素であり、
化1中のm、nおよびzが、 0.02≦ m ≦0.98 0≦ n ≦0.50 0.80≦ z ≦1.10 を満足する複合酸化物からなり、第2結晶相としてY、
Yb、Sc、Er、Nd、Gd、Dy、Sm、Prおよ
びCeの希土類元素の群から選ばれた少なくとも1種の
元素の酸化物を全体量に対して0.01〜10重量%の
割合で分散含有することを特徴とする固体電解質型燃料
電池セル。
2. A solid electrolyte fuel cell comprising an air electrode formed on one surface of a solid electrolyte and a fuel electrode formed on the other surface, wherein the main crystal phase in the air electrode is represented by the following chemical formula (A). 1-m B m ) z (Mn 1-n C n ) O 3 ± δ , wherein A in Chemical Formula 1 is Y, Yb, Sc, Er, Nd,
B is at least one element selected from the group of rare earth elements of Gd, Dy, Sm, Pr and Ce; B is at least one element selected from the group of alkaline earth elements of Ca, Ba and Sr; Is at least one element selected from the group consisting of Ni, Co, Fe, Cr, Ce and Zr;
M, n and z in Chemical formula 1 are composed of a composite oxide satisfying 0.02 ≦ m ≦ 0.980 0 ≦ n ≦ 0.50 0.80 ≦ z ≦ 1.10. Y,
Oxides of at least one element selected from the group consisting of rare earth elements of Yb, Sc, Er, Nd, Gd, Dy, Sm, Pr and Ce are contained in a proportion of 0.01 to 10% by weight based on the total amount. A solid oxide fuel cell cell characterized by being dispersedly contained.
JP04082694A 1994-03-11 1994-03-11 Solid oxide fuel cell Expired - Lifetime JP3359413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04082694A JP3359413B2 (en) 1994-03-11 1994-03-11 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04082694A JP3359413B2 (en) 1994-03-11 1994-03-11 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH07249414A JPH07249414A (en) 1995-09-26
JP3359413B2 true JP3359413B2 (en) 2002-12-24

Family

ID=12591473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04082694A Expired - Lifetime JP3359413B2 (en) 1994-03-11 1994-03-11 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3359413B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19702619C1 (en) * 1997-01-27 1998-04-30 Forschungszentrum Juelich Gmbh High temperature fuel cell cathode
JP2003007309A (en) * 2001-06-26 2003-01-10 Nissan Motor Co Ltd Electrode material, solid electrolyte fuel cell and gas sensor
US9130228B2 (en) 2011-04-19 2015-09-08 Honda Motor Co., Ltd. Lithium ion oxygen battery
WO2012153774A1 (en) * 2011-05-10 2012-11-15 本田技研工業株式会社 Oxygen cell
JP6298416B2 (en) * 2015-03-11 2018-03-20 日本電信電話株式会社 Lithium air secondary battery
CN109786772A (en) * 2019-03-13 2019-05-21 深圳道童新能源有限公司 A kind of preparation method of the catalyst suitable for fuel cell
CN116375469A (en) * 2023-03-31 2023-07-04 中国矿业大学 Method for solid phase synthesis of proton conductor electrolyte ceramic powder

Also Published As

Publication number Publication date
JPH07249414A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
US5453330A (en) Air electrode bodies for solid oxide fuel cells, a process for the production thereof, and a production of solid oxide fuel cells
JP4383092B2 (en) Electrochemical element
JP3359413B2 (en) Solid oxide fuel cell
JPH08119732A (en) Production of solid electrolyte
JPH1021931A (en) Solid electrolyte type fuel cell
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH09180731A (en) Solid electrolyte fuel cell
JP3121993B2 (en) Method for producing conductive ceramics
JP3342541B2 (en) Solid oxide fuel cell
JP3342571B2 (en) Solid oxide fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP3359412B2 (en) Solid oxide fuel cell
JP4038628B2 (en) Oxide ion conductor, method for producing the same, and solid oxide fuel cell
JP3350137B2 (en) Solid oxide fuel cell material
JP3091064B2 (en) Method for producing conductive ceramics and method for producing solid oxide fuel cell
JP3389407B2 (en) Conductive ceramics and fuel cells
JP3346668B2 (en) Solid oxide fuel cell
JP3121991B2 (en) Conductive ceramics
JPH08130029A (en) Solid electrolyte fuel cell and its manufacture
JP3652932B2 (en) Solid oxide fuel cell
JP3091100B2 (en) Method for producing conductive ceramics
JP3339936B2 (en) Method for producing conductive ceramics
JP3359421B2 (en) Solid oxide fuel cell
JP3199546B2 (en) Current collector for solid oxide fuel cell and method for producing conductive ceramics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10