JP4383092B2 - Electrochemical element - Google Patents

Electrochemical element Download PDF

Info

Publication number
JP4383092B2
JP4383092B2 JP2003151452A JP2003151452A JP4383092B2 JP 4383092 B2 JP4383092 B2 JP 4383092B2 JP 2003151452 A JP2003151452 A JP 2003151452A JP 2003151452 A JP2003151452 A JP 2003151452A JP 4383092 B2 JP4383092 B2 JP 4383092B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel
side electrode
particle size
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003151452A
Other languages
Japanese (ja)
Other versions
JP2004355928A (en
Inventor
和弘 岡本
祥二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003151452A priority Critical patent/JP4383092B2/en
Publication of JP2004355928A publication Critical patent/JP2004355928A/en
Application granted granted Critical
Publication of JP4383092B2 publication Critical patent/JP4383092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、電気化学素子及びその製法に関し、特に、(La,Sr)(Ga,Mg)O系組成物からなる固体電解質の片側に燃料側電極、他側に酸素側電極を設けてなる固体電解質燃料電池セル、酸素センサ等の電気化学素子に関するものである。
【0002】
【従来技術】
一般に電気化学素子として、固体電解質燃料電池セル、酸素センサが知られており、このうち固体電解質燃料電池セルとしては、円筒型と平板型が知られている。平板型燃料電池セルは、発電の単位体積当たり出力密度は高いという特徴を有するが、実用化に関してはガスシール不完全性やセル内の温度分布の不均一性などの問題がある。一方、円筒型燃料電池セルでは、出力密度は低いものの、セルの機械的強度が高く、またセル内の温度の均一性が保てるという特徴がある。両形状の固体電解質燃料電池セルとも、それぞれの特徴を生かして積極的に研究開発が進められている。
【0003】
例えば円筒型燃料電池の単セルは、開気孔率30〜40%程度のLaSrCoFeO系材料からなる多孔性の空気極支持管を形成し、その表面にY安定化ZrOからなる固体電解質を被覆し、さらにこの表面に多孔性のNi−SDC(Ceの一部がSmで置換されたCeO)からなる燃料極を設けて構成されている。
【0004】
上記のような燃料電池セルを製造する方法として、近年ではセルの製造工程を簡略化し且つ製造コストを低減するために、各構成材料のうち少なくとも2つを同時焼成する、いわゆる共焼結法が提案されている。この共焼結法は、例えば、円筒状の空気極成形体に固体電解質成形体及び集電体成形体をロール状に巻き付けて同時焼成を行い、その後固体電解質層表面に燃料極層を形成する方法である。またプロセス簡略化のために、固体電解質成形体の表面にさらに燃料極成形体を積層して、同時焼成する共焼結法も提案されている。
【0005】
従来、固体電解質燃料電池に用いる固体電解質としては、ジルコニア(ZrO)にイットリア(Y)を加えた部分安定化ジルコニア(YSZ)が知られている。部分安定化ジルコニアは耐熱性に優れている上、酸素雰囲気から水素雰囲気までの全ての雰囲気下で酸化物イオン伝導が支配的であって、酸素分圧が低下しても、イオン輸率(酸化物イオンが電荷を運ぶ割合)が1から低下しないという特長がある。しかし、部分安定化ジルコニア(YSZ)は高いイオン伝導性を得るためには、900〜1050℃と作動温度を高くする必要がある。つまり、この部分安定化ジルコニアは、温度が低くなると酸素イオン伝導性が急激に低下するという問題がある。
【0006】
近年、安定化ジルコニアよりも高い酸素イオン伝導性が得られる物質として、ランタンガリウムペロブスカイト型複合酸化物(La1−xSr)(Ga1−yMg)O(以下、LSGMと略すこともある)が注目されており、多くの研究が行われている。
【0007】
このLSGM焼結体は、低温でも酸素イオン伝導性の低下が少ない物質で、LaやGaの一部が、それより低原子価のSrやMg等に、置換固溶により置き代わったものであり、これにより、焼結体の酸素イオン伝導性が大きくなるという性質を有する。この材料は安定性に優れ、現在では最も優れた酸化物イオン伝導体と考えられている(特許文献1参照)。
【0008】
【特許文献1】
特開平10−114520号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上記LSGMは反応性が高く、上述した共焼結法を用いて燃料電池セルを作製すると、共焼結の際に、電極構成成分と、固体電解質の構成成分、特にLaとが固相内相互拡散し、その結果、電極と固体電解質との界面に絶縁抵抗の高い絶縁層が生成され、分極値およびセル構成成分の実抵抗値が高くなり、燃料電池セルの初期における出力密度が低いという問題があった。
【0010】
即ち、LSGMからなる固体電解質成形体と、例えばNi、ZrOを含有する燃料側電極とを共焼結すると、燃料側電極の構成成分であるNi、Zrと、固体電解質の構成成分であるLaとが固相内相互拡散し、燃料側電極と固体電解質との界面に、絶縁抵抗の高いLaNiO、LaNiO、LaZr等からなる絶縁層が生成され、分極値およびセル構成成分の実抵抗値が高くなるという問題があった。
【0011】
本発明は、LSGM系組成物からなる固体電解質を用い、初期において高い特性を得ることができるとともに、長期に亘って高い特性を維持できる電気化学素子を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の電気化学素子は、(La,Sr)(Ga,Mg)O系組成物からなる固体電解質の片側に燃料側電極、他側に酸素側電極を設けてなる電気化学素子であって、前記固体電解質と前記燃料側電極を同時焼成してなるとともに、前記固体電解質を構成する結晶粒子の粒度分布に、粒径が0.3〜1.5μmの範囲に頻度が2%以上のピークと、粒径が2.5〜6μmの範囲に頻度が2%以上のピークが存在し、かつ前記固体電解質におけるNi及びZr量がそれぞれ0.01原子%以下、前記燃料側極におけるLa量が0.01原子%以下であることを特徴とする。
【0013】
本発明の電気化学素子では、固体電解質を構成する結晶粒子の粒度分布に、粒径が0.3〜1.5μmの範囲に頻度が2%以上のピークと、粒径が2.5〜6μmの範囲に頻度が2%以上のピークが存在するため、固体電解質をより緻密化できるとともに、電気伝導度を高くでき、出力を高くすることができる。
【0014】
また、例えば、固体電解質燃料電池セルについて説明すると、固体電解質におけるNi及びZr量がそれぞれ0.01原子%以下、燃料側電極におけるLa量が0.01原子%以下であるため、固体電解質へのNi及びZr量の拡散量が少なく、燃料側電極へのLa量の拡散量が少なく、固体電解質と燃料側電極との界面における絶縁抵抗の高い絶縁層の形成を防止でき、初期において高い出力密度を得ることができるとともに、長期に亘って高い出力密度を維持できる。
【0015】
また、本発明の電気化学素子は、前記燃料側電極がNi及び/又はNiOを主成分とし、Sm及び/又はYとCeとを含む酸化物を含有するとともに、Zrを含有していないことを特徴とする。
【0016】
このような電気化学素子では、燃料側電極にZrを含有しないため、より低温で拡散し易いZrの拡散を防止でき、LaZrからなる絶縁層の形成を防止でき、分極値およびセル構成成分の実抵抗値をさらに低くできる。
【0023】
【発明の実施の形態】
本発明の電気化学素子の一種である固体電解質燃料電池セルは、例えば図1に示すように、固体電解質1の一方側に酸素側電極2を、他方側に燃料側電極3を形成して構成されている。
【0024】
固体電解質1は(La,Sr)(Ga,Mg)O系組成物からなり、例えばLaをSrで10〜20原子%、GaをMgで10〜20原子%置換したランタンガレートLaGaOが用いられる。これに、伝導度を高めるために、Ga位置にさらにCo、Fe、Ni、Cu等を1〜20原子%置換したもの、または強度を高めるために、Al、MgO、Si、SiC等の微粉末を添加したものを用いることもできる。
【0025】
また、酸素側電極2としては、例えば、LaをSrで10〜40原子%、FeをCoで5〜60原子%置換したLaFeOが用いられる。
【0026】
燃料側電極3としては、例えば、50〜80重量%Ni及び/又はNiOを含むCeO(Sm含有)サーメットが用いられる。尚、燃料側電極3としては、例えば、50〜80重量%Ni及び/又はNiOを含むCeO(Y含有)サーメットを用いることもできる。
【0027】
酸素側電極2、燃料側電極3としては、上記例に限定されるものではなく、例えば酸素側電極2として少なくともLaおよびMnを含有するペロブスカイト型複合酸化物からなる公知材料を用いても良い。
【0028】
そして、本発明の固体電解質燃料電池セルの固体電解質では、電子顕微鏡によって観察される組織面を画像解析したときに、図2に示すように、固体電解質を構成する結晶粒子の粒度分布に、粒径が0.3〜1.5μmの範囲に頻度が2%以上のピークと、粒径が2.5〜6μmの範囲に頻度が2%以上のピークが存在するものである。また、図2から、0.3〜1.5μmの範囲の粒径に対する頻度は全体の25〜50%であり、2.5〜6μmの範囲の粒径に対する頻度は全体の50〜75%であることが望ましい。即ち、微粒子によるピークと、粗粒子によるピークが存在することになり、これにより、固体電解質の焼結性が向上し、低温で焼成しても緻密な焼結体を得ることができる。
【0029】
固体電解質3を構成する結晶粒子のうち、微粒子による頻度2%以上のピークが粒径0.3μmより小さい位置に存在する場合、粒径1.5μmより大きい位置に存在する場合、粗粒子との間にボイドが存在するため、緻密にはならない。
【0030】
また、粗粒子による頻度2%以上のピークが粒径2.5μmより小さい位置に存在する場合、粒径6μmよりも大きい位置に存在する場合、微粒子との間にボイドが存在するため、緻密にはならない。
【0031】
本発明の固体電解質では、特に、固体電解質の焼結性が向上し、低温で焼成しても緻密な焼結体を得ることができるという点から、微粒子による頻度2%以上のピークが粒径0.3〜1.0μmの位置に存在し、粗粒子による頻度2%以上のピークが粒径2.5〜5.0μmの位置に存在することが望ましい。
【0032】
また、本発明では、固体電解質におけるNi及びZr量がそれぞれ0.01原子%以下、燃料側電極におけるLa量が0.01原子%以下とされている。これにより、固体電解質と燃料側電極との間における絶縁層の形成を防止できる。特に、上記Ni、Zr量、La量は0(検出限界以下)であることが望ましい。
【0033】
以上のように構成された固体電解質燃料電池セルの製法は、まず、平板状の燃料側電極成形体を作製する。この平板状の燃料側電極成形体は、例えば所定の調合組成に従いNiO、及び(CeO1−x(Sm)x又は(CeO1−x(Y素原料を秤量、混合する。この後、混合した粉体に、バインダーを混合し一軸加圧成形法により平板状に成形し、さらに脱バインダー処理し、900〜1000℃で仮焼を行うことで平板状の燃料側電極仮焼体(燃料側電極成形体)を作製する。尚、燃料側電極成形体は、所定の強度を有するならば、仮焼しない場合であっても良い。
【0034】
さらに、(La1−xSr)(Ga1−yMg)O(x、yが所定値)のランタンガレート粉末に、トルエン、バインダー、市販の分散剤を加えてスラリー化したものをドクターブレード等の方法により、例えば、10〜50μmの厚さに成形してシート状の固体電解質成形体を作製する。
【0035】
この時、ランタンガレート粉末として、平均粒径が0.1〜0.7μmの微粉末5〜40質量%と平均粒径が1〜2.5μmの粗粉末60〜95質量%の混合粉末を用いることが必要である。
【0036】
これによって、焼結時にネック成長がしやすく、相対密度が高くなるためにイオン伝導性の高い焼結体が得られるためである。固体電解質の原料微粉末の平均粒径が0.1μmよりも小さい場合、粒界三重点に粗粉末が生成するため、相対密度は変化しないのでイオン伝導度は高くならない。固体電解質の原料微粉末の平均粒径が0.7μmよりも大きい場合、粒界三重点に小さなボイドが残存するため、相対密度は高くならずイオン伝導度は高くならない。固体電解質の原料粗粉末の平均粒径が1μmよりも小さい場合、微粒子だけの組織となるため、相対密度は変化しないのでイオン伝導度は高くならない。固体電解質の原料粗粉末の平均粒径が2.5μmよりも大きい場合、粒界三重点に小さなボイドが残存するため、相対密度は高くならずイオン伝導度は高くならない。
【0037】
特に、固体電解質成形体と燃料側電極仮焼体の焼成収縮率の差が3%以下であることが望ましい。これにより、焼成時の積層体の反りや、剥離、割れが減少し、歩留まりが向上するからである。収縮率の差を小さくするには、例えば固体電解質成形体の密度を高く、燃料側電極成形体の密度を低くすることで、所望の焼成温度での収縮挙動が近似的になるように調整することが望ましい。
【0038】
この後、燃料側電極仮焼体の表面に、固体電解質成形体を貼り付けて仮焼し、燃料側電極仮焼体の表面に固体電解質仮焼体(固体電解質成形体)を形成する。尚、固体電解質成形体を仮焼したが、仮焼しなくても良い。
【0039】
次に、シート状の酸素側電極成形体を作製する。まず、例えば、所定比率に調製されたLaSrCoFeO粉体に、トルエン、バインダーを加えてスラリー化したものを準備する。次に、固体電解質成形体の調製と同様、10〜20μmの厚さに成形した酸素側電極成形体を、燃料側電極成形体と反対側の固体電解質成形体表面に積層する。
【0040】
この後、平板状燃料側電極成形体、固体電解質成形体、酸素側電極成形体の積層成形体を、例えば、大気中1200〜1450℃の温度で、1〜4時間焼成し、3層同時に共焼成される。特に、1300〜1400℃の温度で焼成されることにより、固体電解質を相対密度98%以上の緻密体にすることができる。尚、平板状燃料側電極成形体と固体電解質成形体を同時焼成した後、酸素側電極成形体を積層し、焼き付けて形成しても良い。
【0041】
Ni及び/又はZr、Laの拡散は、焼成温度、保持時間にも影響するため、焼成温度を1300〜1350℃とできるだけ低下させ、焼成時間を1〜3時間とできるだけ短くすることにより、さらに拡散量を減少できる。
【0042】
また、平板状の固体電解質燃料電池セルにおいても、固体電解質の片面に酸素側電極、他面に燃料側電極が形成されていればよく、その構造は図1に限定されるものではない。例えば、従来公知の円筒型燃料電池セルや平板型燃料電池セルに用いても良く、内部にガス通過孔が形成された中空平板型燃料電池セルに用いても良い。
【0043】
さらに、上記例では、燃料側電極仮焼体、固体電解質仮焼体を形成した例について説明したが、これらが、仮焼しない燃料側電極成形体、固体電解質成形体であってもよい。
【0044】
また、上記例では、固体電解質を(La1−xSr)(Ga1−yMg)Oランタンガレート単一で作製した例について説明したが、固体電解質の強度を高めるため、ランタンガレート粉末とアルミナ微粉末等の混合粉末で作製しても良い。
【0045】
【実施例】
平板状の固体電解質燃料電池セルを共焼結法により作製するため、まず平板状の燃料側電極仮焼体を以下の手順で作製した。市販の純度99.9%以上で平均粒径が0.4μmのNiOを出発原料として、NiO粉末に対し、平均粒径が0.6μmのSmを15モル%の割合で含有するCeO粉末を準備し、NiO/SDC比率(重量分率)が50/50になるように調合し、粉砕混合処理を行い、混合粉末100質量部に対して3質量部のバインダーを添加した。これを用いて、一軸加圧プレス成形後、300℃の条件で脱脂、1000℃仮焼し、燃料側電極仮焼体を作製した。また、上記SDCの代わりにYを15モル%の割合で含有するCeO粉末を用いて燃料側電極仮焼体を作製した。
【0046】
また、イソプロピルアルコール(IPA)を溶剤、直径3mmのZrOボールをメディアとして、市販の純度99.9%以上のLSGM粉末((La0.9Sr0.1)(Ga0.8Mg0.2)O)を、24時間振動ミルを用いて湿式粉砕し、平均粒径が表1に示す微粉末と粗粉末を作製し、表1に示す量で混合した。
【0047】
得られた粉末に、トルエン、有機バインダー、分散剤を添加してスラリーを調製し、ドクターブレード法により、焼成後に表1に示す厚さとなるようにシート状の固体電解質成形体を作製した。
【0048】
次に、市販の純度99.9%以上のLa、SrCO、CoO、Feを出発原料として、これをLa0.6Sr0.4Co0.2Fe0.8の組成になるように秤量混合した後、1000℃で3時間仮焼粉砕し、酸素側電極材料を作製した。得られた粉末にトルエン、有機バインダー、分散剤を加えてスラリーを調製し、ドクターブレード法により厚さ15μmのシート状の酸素側電極成形体を作製した。
【0049】
まず、前記燃料側電極仮焼体上にシート状の固体電解質成形体を積層し、冷間静水圧プレス(CIP)して積層成形体を作製し、大気中において表1に示す温度で2時間焼成し、共焼結体を作製した。
【0050】
【表1】

Figure 0004383092
【0051】
この共焼結体を用いて、燃料側電極内部へのLa拡散量(固体電解質材料中で最も拡散速度が早い元素)、固体電解質内部へのNi及びZr拡散量を評価した。評価は、まず、長さ10mm程度に切り出した任意の10個の試料の断面の燃料側電極内部において、X線マイクロアナライザ(EPMA)を用い全構成成分の定量を行った。次に、La成分の燃料側電極全成分に対する含有濃度(原子%)を平均値として算出した。同様にして、Ni及びZr成分の電解質全成分に対する含有濃度(原子%)を平均値として算出した。その結果を、表1の拡散種含有濃度の欄に燃料側電極中のLa量、固体電解質中のNi及びZr量として記載した。
【0052】
比較試料として、Yを8モル%含有するZrO粉末を50質量%、NiO粉末を50質量%混合して作製した燃料側電極仮焼体使用し、上記と同様にして共焼結体を作製した(試料No.8)。
【0053】
次に、固体電解質焼結体表面に、有効電極面積が0.785cmとなるようにシート状の酸素側電極成形体を積層し、乾燥した後、1150℃で2時間の条件で焼成した。
【0054】
各々のセルをそれぞれ50個作製し、界面剥離を生じたセルの個数を調査し、剥離率として表1に示した。界面剥離は目視にて観察した。
【0055】
発電は、850℃でセルの酸素側電極側に空気を、燃料側電極側に水素を流し、出力値が安定した際の初期値と、1000時間保持後の値でそれぞれの性能を任意の10個のセルについて求め、その平均値を記載した。上記La、Ni及びZr量、剥離率の結果と併せて、これらの測定結果を表1に示した。
【0056】
表1より、本発明の固体電解質燃料電池セルの試料では、界面剥離に伴う歩留り低下が殆ど無く、また燃料側電極中のLa量、固体電解質中のNi及びZr量がいずれも0.01原子%以下となっているため、初期から0.95W/cmを上回り、特に固体電解質の厚みが50μm以下である場合には高い出力密度が得られ、1000時間経過後も出力密度がほぼ安定していることが判る。
【0057】
図2に、試料No.6の固体電解質断面を電子顕微鏡で観察し、画像解析により、粒度分布を求めて記載した。この図2から粒径0.9μmと、粒径3.0μmに頻度4.5%以上のピークが存在していることが判る。本発明の他の試料についても、粒径0.3〜1.5μmの範囲と粒径2.5〜6μmの範囲に粒度分布のピークが存在していることを確認した。
【0058】
一方、試料No.7では焼成温度が1500℃と高いため、燃料側電極中のLa量が多く、初期における出力密度が低いことが判る。また、試料No.8では燃料側電極中のZr量が多く、初期における出力密度が低いことが判る。さらに、試料No.2では、粗粉末を用いて固体電解質を作製したので、緻密化不足のために1000時間後の出力密度が0.4W/cmまで低下した。
【0059】
【発明の効果】
以上詳述したように、本発明の電気化学素子では、焼成温度を低下できるため、燃料側電極から固体電解質に拡散しようとするNi及び/又はZr、固体電解質から燃料側電極に拡散しようとするLaを防止または抑制でき、燃料側電極サイトの分極値およびセル構成成分の実抵抗値を低くでき、出力密度を高くできるとともに、高い出力密度を長期間に亘って維持できる。
【図面の簡単な説明】
【図1】本発明の燃料電池セルを示す概略図である。
【図2】試料No.6の固体電解質断面を画像解析して求めた粒度分布である。
【符号の説明】
1・・・固体電解質
2・・・酸素側電極(第2電極)
3・・・燃料側電極(第1電極)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrochemical device and a method for producing the same, and in particular, a fuel- side electrode is provided on one side of a solid electrolyte made of a (La, Sr) (Ga, Mg) O 3 composition, and an oxygen-side electrode is provided on the other side. solid electrolyte fuel cells, it relates to an electrochemical element such as an oxygen sensor.
[0002]
[Prior art]
In general as an electrochemical device, the solid electrolyte fuel cell, and the oxygen sensor are known, Among these, as the solid electrolyte fuel cell, cylindrical and plate type are known. The flat fuel cell has a feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas seal and non-uniform temperature distribution in the cell for practical use. On the other hand, the cylindrical fuel cell has the characteristics that the mechanical strength of the cell is high and the temperature inside the cell can be kept uniform although the output density is low. Both solid electrolyte fuel cells of the two shapes, has been advanced research and development is actively taking advantage of their characteristics.
[0003]
For example, a single cell of a cylindrical fuel cell forms a porous air electrode support tube made of a LaSrCoFeO 3 based material having an open porosity of about 30 to 40%, and a solid surface made of Y 2 O 3 stabilized ZrO 2 on the surface thereof. An electrolyte is covered, and a fuel electrode made of porous Ni-SDC (CeO 2 in which part of Ce is replaced with Sm) is provided on the surface.
[0004]
As a method of manufacturing the fuel cell as described above, in recent years, in order to simplify the manufacturing process of the cell and reduce the manufacturing cost, there is a so-called co-sintering method in which at least two of the constituent materials are simultaneously fired. Proposed. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound around a cylindrical air electrode molded body in a roll shape and co-fired, and then a fuel electrode layer is formed on the surface of the solid electrolyte layer. Is the method. In order to simplify the process, a co-sintering method in which a fuel electrode molded body is further laminated on the surface of the solid electrolyte molded body and co-fired has been proposed.
[0005]
Conventionally, as a solid electrolyte for use in solid electrolyte fuel cell, the zirconia portion was added yttria (Y 2 O 3) to (ZrO 2) stabilized zirconia (YSZ) has been known. Partially on stabilized zirconia is superior in heat resistance, an oxide ion conducting under all atmosphere oxygen atmosphere until hydrogen atmosphere is dominant, even if the oxygen partial pressure is reduced, the ion transportation rate ( There is a feature that the ratio of oxide ions carrying charge does not decrease from 1. However, partially stabilized zirconia (YSZ) needs to have an operating temperature as high as 900 to 1050 ° C. in order to obtain high ion conductivity. That is, this partially stabilized zirconia has a problem that the oxygen ion conductivity rapidly decreases as the temperature decreases.
[0006]
Recently, as a substance having a high oxygen ion conductivity than stabilized zirconia is obtained, lanthanum gallium perovskite complex oxide (La 1-x Sr x) (Ga 1-y Mg y) O 3 ( hereinafter be abbreviated as LSGM There is also a lot of attention.
[0007]
This LSGM sintered body is a substance with little decrease in oxygen ion conductivity even at a low temperature, and a part of La or Ga is replaced by Sr or Mg having a lower valence by substitution solid solution. As a result, the oxygen ion conductivity of the sintered body is increased. This material is excellent in stability and is currently considered to be the most excellent oxide ion conductor (see Patent Document 1).
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-114520
[Problems to be solved by the invention]
However, the LSGM is highly reactive, and when a fuel battery cell is produced using the above-described co-sintering method, the electrode constituent component and the solid electrolyte constituent component, particularly La, are solid-phased during the co-sintering. As a result, an insulating layer having a high insulation resistance is generated at the interface between the electrode and the solid electrolyte, the polarization value and the actual resistance value of the cell constituent components are increased, and the initial output density of the fuel cell is low. There was a problem.
[0010]
That is, when a solid electrolyte molded body made of LSGM and a fuel side electrode containing, for example, Ni and ZrO 2 are co-sintered, Ni and Zr that are constituent components of the fuel side electrode and La that is a constituent component of the solid electrolyte Inter-diffusion in the solid phase, and an insulating layer made of LaNiO 3 , La 2 NiO 4 , La 2 Zr 2 O 7 or the like having high insulation resistance is generated at the interface between the fuel side electrode and the solid electrolyte. There was a problem that the actual resistance value of the cell constituent component was increased.
[0011]
The present invention uses a solid electrolyte consisting of LSGM-based composition, it is possible to obtain high characteristics in the initial, and an object thereof is to provide an electrochemical element that can maintain high characteristics over a long term.
[0012]
[Means for Solving the Problems]
The electrochemical device of the present invention is an electrochemical device comprising a fuel-side electrode on one side and an oxygen-side electrode on the other side of a solid electrolyte made of a (La, Sr) (Ga, Mg) O 3 -based composition. , the solid electrolyte and a said fuel-side electrode with formed by co-firing, the particle size distribution of the crystal particles constituting the solid electrolyte, a particle size range of the frequency is not less than 2% 0.3~1.5μm and peak particle size are present and a peak range frequently is more than 2% 2.5~6Myuemu, and the solid Ni and Zr amount in the electrolyte is 0.01 atomic% each of the following, to the fuel side electrodes The amount of La is 0.01 atomic% or less.
[0013]
In the electrochemical device of the present invention, the particle size distribution of the crystal particles constituting the solid electrolyte has a peak with a frequency of 2% or more in the range of 0.3 to 1.5 μm and a particle size of 2.5 to 6 μm. Since there is a peak with a frequency of 2% or more in the range, the solid electrolyte can be further densified, the electrical conductivity can be increased, and the output can be increased.
[0014]
Further, for example, to describe a solid electrolyte fuel cell, 0.01 atomic% Ni and Zr weight, respectively, in the solid electrolyte or less, La amount definitive the fuel side electrodes is less than 0.01 atomic%, solids small amount of diffusion of Ni and Zr amount to the electrolyte, small amount of diffusion of an amount of La to the fuel side electrodes, prevents the formation of high insulation resistance insulating layer at the interface between the solid electrolyte and the fuel side electrodes, A high power density can be obtained in the initial stage, and a high power density can be maintained over a long period of time.
[0015]
Further, the electrochemical device of the present invention is such that the fuel side electrode contains Ni and / or NiO as a main component, contains an oxide containing Sm and / or Y and Ce, and does not contain Zr. Features.
[0016]
In such electrochemical devices, because they do not contain Zr in fuel side electrodes, more can prevent the diffusion of the diffusion easily Zr at a low temperature, it can prevent the formation of an insulating layer made of La 2 Zr 2 O 7, the polarization The value and the actual resistance value of the cell component can be further reduced.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Which is one type solid electrolyte fuel cell of the electrochemical device of the present invention, for example, as shown in FIG. 1, the oxygen-side electrode 2 on one side of the solid electrolyte 1, to form a fuel-side electrode 3 on the other side It is configured.
[0024]
The solid electrolyte 1 is made of a (La, Sr) (Ga, Mg) O 3 composition, for example, lanthanum gallate LaGaO 3 in which La is substituted by 10 to 20 atomic% with Sr and Ga is substituted with 10 to 20 atomic% with Mg. It is done. In order to increase the conductivity, 1 to 20 atomic% of Co, Fe, Ni, Cu or the like is further substituted at the Ga position, or Al 2 O 3 , MgO, Si 3 N 4 to increase the strength. Further, a powder to which fine powder such as SiC is added can also be used.
[0025]
As the oxygen side electrode 2, for example, LaFeO 3 in which La is replaced with 10 to 40 atomic% with Sr and Fe is replaced with 5 to 60 atomic% with Co is used.
[0026]
As the fuel side electrode 3, for example, CeO 2 (containing Sm 2 O 3 ) cermet containing 50 to 80 wt% Ni and / or NiO is used. As the fuel-side electrode 3, for example, it can also be used CeO 2 (Y 2 O 3 content) cermet containing 50-80 wt% Ni and / or NiO.
[0027]
The oxygen side electrode 2 and the fuel side electrode 3 are not limited to the above examples. For example, the oxygen side electrode 2 may be a known material made of a perovskite complex oxide containing at least La and Mn.
[0028]
Then, the solid electrolyte of the solid electrolyte fuel cell of the present invention, the tissue surface is observed by an electron microscope when image analysis, as shown in FIG. 2, the particle size distribution of the crystal particles constituting the solid electrolyte, A peak with a frequency of 2% or more exists in the range of the particle size of 0.3 to 1.5 μm, and a peak with a frequency of 2% or more exists in the range of the particle size of 2.5 to 6 μm. Further, from FIG. 2, the frequency for the particle size in the range of 0.3 to 1.5 μm is 25 to 50% of the whole, and the frequency for the particle size in the range of 2.5 to 6 μm is 50 to 75% of the whole. It is desirable to be. That is, there are peaks due to fine particles and peaks due to coarse particles. This improves the sinterability of the solid electrolyte, and a dense sintered body can be obtained even when fired at a low temperature.
[0029]
Of the crystal particles constituting the solid electrolyte 3, when a peak with a frequency of 2% or more due to the fine particles is present at a position smaller than a particle diameter of 0.3 μm, when present at a position larger than a particle diameter of 1.5 μm, Because there are voids in between, it will not become dense.
[0030]
In addition, when a peak having a frequency of 2% or more due to coarse particles is present at a position smaller than a particle size of 2.5 μm, and when present at a position larger than a particle size of 6 μm, voids exist between the fine particles, so Must not.
[0031]
In the solid electrolyte of the present invention, in particular, the sinterability of the solid electrolyte is improved, and a dense sintered body can be obtained even when fired at a low temperature. It is desirable that the peak is present at a position of 0.3 to 1.0 μm, and a peak having a frequency of 2% or more due to coarse particles is present at a position of a particle diameter of 2.5 to 5.0 μm.
[0032]
In the present invention, Ni and Zr amount in the solid electrolyte is 0.01 atomic%, respectively less, La amount of fuel side electrode is the% 0.01 atoms or less. This prevents the formation of the insulating layer between the solid electrolyte and the fuel-side electrode. In particular, the Ni, Zr, and La amounts are preferably 0 (below the detection limit).
[0033]
Preparation of the constructed solid electrolyte fuel cell as described above, First, a flat plate-like fuel-side electrode formed body. This flat fuel-side electrode molded body is made of, for example, NiO and (CeO 2 ) 1-x (Sm 2 O 3 ) x or (CeO 2 ) 1-x (Y 2 O 3 ) x in accordance with a predetermined composition. Weigh and mix the ingredients. Thereafter, the mixed powder is mixed with a binder, formed into a flat plate by a uniaxial pressure forming method, further debindered, and calcined at 900 to 1000 ° C. to calcine the flat fuel side electrode. A body (fuel-side electrode molded body) is produced. The fuel-side electrode molded body may be not calcined as long as it has a predetermined strength.
[0034]
Further, (La 1-x Sr x ) (Ga 1-y Mg y) O 3 lanthanum gallate powder (x, y is a predetermined value), toluene, a binder, a material obtained by slurry by adding a commercially available dispersing agent By using a method such as a doctor blade, for example, the sheet is formed to a thickness of 10 to 50 μm to produce a sheet-like solid electrolyte formed body.
[0035]
At this time, as the lanthanum gallate powder, a mixed powder of 5 to 40% by mass of fine powder having an average particle size of 0.1 to 0.7 μm and 60 to 95% by mass of coarse powder having an average particle size of 1 to 2.5 μm is used. It is necessary.
[0036]
This is because neck growth easily occurs at the time of sintering and a relative density increases, so that a sintered body having high ion conductivity can be obtained. When the average particle size of the solid electrolyte raw material powder is smaller than 0.1 μm, coarse powder is generated at the grain boundary triple point, and the relative density does not change, so that the ionic conductivity does not increase. When the average particle diameter of the solid electrolyte raw material powder is larger than 0.7 μm, small voids remain at the triple boundary of the grain boundary, so the relative density does not increase and the ionic conductivity does not increase. When the average particle diameter of the raw material raw powder of the solid electrolyte is smaller than 1 μm, the structure is composed of only fine particles, and therefore the relative density does not change, so that the ionic conductivity does not increase. When the average particle diameter of the raw material raw powder of the solid electrolyte is larger than 2.5 μm, small voids remain at the grain boundary triple points, so the relative density does not increase and the ionic conductivity does not increase.
[0037]
In particular, the difference in firing shrinkage between the solid electrolyte molded body and the fuel-side electrode calcined body is desirably 3% or less. This is because warpage, peeling, and cracking of the laminate during firing are reduced, and the yield is improved. In order to reduce the difference in shrinkage rate, for example, the density of the solid electrolyte molded body is increased and the density of the fuel-side electrode molded body is decreased so that the contraction behavior at a desired firing temperature is approximated. It is desirable.
[0038]
Thereafter, the solid electrolyte molded body is attached to the surface of the fuel-side electrode calcined body and calcined to form a solid electrolyte calcined body (solid electrolyte molded body) on the surface of the fuel-side electrode calcined body. In addition, although the solid electrolyte compact was calcined, it does not have to be calcined.
[0039]
Next, a sheet-like oxygen-side electrode molded body is produced. First, for example, a slurry obtained by adding toluene and a binder to LaSrCoFeO 3 powder prepared at a predetermined ratio is prepared. Next, similarly to the preparation of the solid electrolyte molded body, the oxygen-side electrode molded body molded to a thickness of 10 to 20 μm is laminated on the surface of the solid electrolyte molded body opposite to the fuel-side electrode molded body.
[0040]
Thereafter, the flat molded fuel-side electrode molded body, the solid electrolyte molded body, and the laminated molded body of the oxygen-side electrode molded body are, for example, fired at a temperature of 1200 to 1450 ° C. in the atmosphere for 1 to 4 hours, and the three layers are simultaneously formed. Baked. In particular, by firing at a temperature of 1300 to 1400 ° C., the solid electrolyte can be made into a dense body having a relative density of 98% or more. Alternatively, the planar fuel-side electrode molded body and the solid electrolyte molded body may be fired simultaneously, and then the oxygen-side electrode molded body may be laminated and baked.
[0041]
Since the diffusion of Ni and / or Zr, La also affects the firing temperature and holding time, further diffusion is achieved by reducing the firing temperature as low as 1300 to 1350 ° C. and shortening the firing time as short as 1 to 3 hours. The amount can be reduced.
[0042]
Also in tabular solid electrolyte fuel cells, the oxygen-side electrode on one surface of the solid electrolyte, it is sufficient that the fuel-side electrode is formed on the other surface, the structure is not limited to FIG. For example, it may be used for conventionally known cylindrical fuel cells and flat plate fuel cells, and may be used for hollow flat plate fuel cells having gas passage holes formed therein.
[0043]
Furthermore, although the example which formed the fuel side electrode calcined body and the solid electrolyte calcined body was demonstrated in the said example, these may be the fuel side electrode molded object and solid electrolyte molded object which are not calcined.
[0044]
In the above example, an example was described in which the solid electrolyte was made of (La 1-x Sr x ) (Ga 1-y Mg y ) O 3 lanthanum gallate alone, but in order to increase the strength of the solid electrolyte, lanthanum gallate was used. You may produce with mixed powder, such as powder and an alumina fine powder.
[0045]
【Example】
To produce a plate-like solid electrolyte fuel cell by co-sintering method, a first plate-shaped fuel side electrode calcined body was produced by the following procedure. Starting from commercially available NiO having a purity of 99.9% or more and an average particle size of 0.4 μm, CeO containing 15 mol% of Sm 2 O 3 having an average particle size of 0.6 μm with respect to the NiO powder Two powders were prepared, mixed so that the NiO / SDC ratio (weight fraction) was 50/50, pulverized and mixed, and 3 parts by mass of binder was added to 100 parts by mass of the mixed powder. Using this, after uniaxial pressure press molding, degreasing was performed at 300 ° C. and calcined at 1000 ° C. to prepare a fuel-side electrode calcined body. Further, to produce a fuel-side electrode calcined body with CeO 2 powder in a proportion of Y 2 O 3 15 mol%, instead of the SDC.
[0046]
Further, commercially available LSGM powder having a purity of 99.9% or more ((La 0.9 Sr 0.1 ) (Ga 0.8 Mg 0 .0) using isopropyl alcohol (IPA) as a solvent and ZrO 2 balls having a diameter of 3 mm as a medium . 2 ) O 3 ) was wet pulverized using a vibration mill for 24 hours to prepare fine powders and coarse powders having an average particle size shown in Table 1 and mixed in the amounts shown in Table 1.
[0047]
Toluene, an organic binder, and a dispersant were added to the obtained powder to prepare a slurry, and a sheet-like solid electrolyte molded body was prepared by a doctor blade method so as to have the thickness shown in Table 1 after firing.
[0048]
Next, La 2 O 3 , SrCO 3 , CoO, and Fe 2 O 3 with a purity of 99.9% or more as a starting material are used as starting materials, and this is used as La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O. After weighing and mixing so as to have the composition of 3, the mixture was calcined and pulverized at 1000 ° C. for 3 hours to prepare an oxygen-side electrode material. Toluene, an organic binder, and a dispersant were added to the obtained powder to prepare a slurry, and a sheet-like oxygen-side electrode molded body having a thickness of 15 μm was prepared by a doctor blade method.
[0049]
First, a sheet-like solid electrolyte molded body is laminated on the fuel-side electrode calcined body, and a cold-formed isostatic pressing (CIP) is performed to produce a laminated molded body. The temperature is shown in Table 1 for 2 hours in the atmosphere. Firing was performed to produce a co-sintered body.
[0050]
[Table 1]
Figure 0004383092
[0051]
Using this co-sintered body, the amount of La diffusion into the fuel side electrode (the element having the fastest diffusion rate in the solid electrolyte material) and the amount of Ni and Zr diffusion into the solid electrolyte were evaluated. In the evaluation, first, all components were quantified using an X-ray microanalyzer (EPMA) inside the fuel-side electrode of the cross section of any 10 samples cut out to a length of about 10 mm. Next, the content concentration ( atomic %) of the La component with respect to all the fuel-side electrode components was calculated as an average value. Similarly, the content concentration ( atomic %) of the Ni and Zr components with respect to all the electrolyte components was calculated as an average value. The results were listed in the diffusing species concentration of the Table 1 La amount of fuel side conductive Kyokuchu as Ni and Zr content in the solid electrolyte.
[0052]
As a comparative sample, a fuel-side electrode calcined body prepared by mixing 50% by mass of ZrO 2 powder containing 8 mol% of Y 2 O 3 and 50% by mass of NiO powder was used, and co-sintered in the same manner as described above. A body was prepared (Sample No. 8).
[0053]
Next, the sheet-like oxygen-side electrode molded body was laminated on the surface of the solid electrolyte sintered body so that the effective electrode area was 0.785 cm 2 , dried, and then fired at 1150 ° C. for 2 hours.
[0054]
50 cells were prepared for each cell, the number of cells with interfacial peeling was investigated, and the peeling rate is shown in Table 1. Interfacial peeling was observed visually.
[0055]
For power generation, air is supplied to the oxygen side electrode side of the cell at 850 ° C., and hydrogen is supplied to the fuel side electrode side. It calculated | required about the cell and described the average value. These measurement results are shown in Table 1 together with the results of the La, Ni and Zr amounts and the peeling rate.
[0056]
From Table 1, the samples of solid electrolyte fuel cells of the present invention, the yield decreases due to interfacial peeling hardly, also La content in the fuel-side electrode, both the Ni and Zr content in the solid electrolyte 0.01 Since it is less than atomic %, it exceeds 0.95 W / cm 2 from the beginning, and when the thickness of the solid electrolyte is 50 μm or less, a high output density is obtained, and the output density is almost stable even after 1000 hours. You can see that
[0057]
In FIG. The solid electrolyte cross section of No. 6 was observed with an electron microscope, and the particle size distribution was determined and described by image analysis. From FIG. 2, it can be seen that there are peaks with a particle size of 0.9 μm and a frequency of 4.5 μm or more at a particle size of 3.0 μm. For other samples of the present invention, it was confirmed that there was a particle size distribution peak in the particle size range of 0.3 to 1.5 μm and the particle size range of 2.5 to 6 μm.
[0058]
On the other hand, sample No. Since the firing temperature in 7 high and 1500 ° C., often La amount of fuel side conductive Kyokuchu, it can be seen that the power density in the initial low. Sample No. Zr content of the fuel-side conductive Kyokuchu in 8 number, it can be seen that the power density in the initial low. Furthermore, sample no. In No. 2, since the solid electrolyte was produced using the coarse powder, the power density after 1000 hours decreased to 0.4 W / cm 2 due to insufficient densification.
[0059]
【The invention's effect】
As described above in detail, in the electrochemical element of the present invention, the firing temperature can be lowered, so Ni and / or Zr that is to diffuse from the fuel side electrode to the solid electrolyte, or the solid side electrolyte to be diffused to the fuel side electrode. La can be prevented or suppressed, the polarization value of the fuel side electrode site and the actual resistance value of the cell component can be lowered, the output density can be increased, and the high output density can be maintained over a long period of time.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a fuel cell of the present invention.
FIG. 6 is a particle size distribution obtained by image analysis of the solid electrolyte cross section of No. 6.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte 2 ... Oxygen side electrode (2nd electrode)
3. Fuel side electrode (first electrode)

Claims (2)

(La,Sr)(Ga,Mg)O系組成物からなる固体電解質の片側に燃料側電極、他側に酸素側電極を設けてなる電気化学素子であって、前記固体電解質と前記燃料側電極を同時焼成してなるとともに、前記固体電解質を構成する結晶粒子の粒度分布に、粒径が0.3〜1.5μmの範囲に頻度が2%以上のピークと、粒径が2.5〜6μmの範囲に頻度が2%以上のピークが存在し、かつ前記固体電解質におけるNi及びZr量がそれぞれ0.01原子%以下、前記燃料側極におけるLa量が0.01原子%以下であることを特徴とする電気化学素子。An electrochemical device comprising a fuel-side electrode on one side of a solid electrolyte comprising a (La, Sr) (Ga, Mg) O 3 -based composition and an oxygen-side electrode on the other side, wherein the solid electrolyte and the fuel side with an electrode formed by co-firing, the particle size distribution of the crystal particles constituting the solid electrolyte, and peak range frequently is more than 2% of the particle size of 0.3 to 1.5 .mu.m, particle size 2. frequency exist and 2% or more peaks in the range of 5 to 6 .mu.m, and the solid Ni and Zr amount in the electrolyte is 0.01 atomic%, respectively less, La quantity definitive to the fuel side electrodes is 0.01 atom % Electrochemical element characterized by being less than or equal to%. 前記燃料側電極がNi及び/又はNiOを主成分とし、Sm及び/又はYとCeとを含む酸化物を含有するとともに、Zrを含有していないことを特徴とする請求項1記載の電気化学素子。 2. The electrochemical according to claim 1, wherein the fuel-side electrode contains Ni and / or NiO as a main component, contains an oxide containing Sm and / or Y and Ce, and does not contain Zr. element.
JP2003151452A 2003-05-28 2003-05-28 Electrochemical element Expired - Fee Related JP4383092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151452A JP4383092B2 (en) 2003-05-28 2003-05-28 Electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151452A JP4383092B2 (en) 2003-05-28 2003-05-28 Electrochemical element

Publications (2)

Publication Number Publication Date
JP2004355928A JP2004355928A (en) 2004-12-16
JP4383092B2 true JP4383092B2 (en) 2009-12-16

Family

ID=34046972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151452A Expired - Fee Related JP4383092B2 (en) 2003-05-28 2003-05-28 Electrochemical element

Country Status (1)

Country Link
JP (1) JP4383092B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055877A (en) * 2005-07-28 2007-03-08 National Institute Of Advanced Industrial & Technology Perovskite type oxide dense sintered compact and method of manufacturing the same
JP2007095673A (en) * 2005-08-31 2007-04-12 Mitsubishi Materials Corp Power generation cell for solid electrolyte fuel cells
JP2012042222A (en) * 2010-08-12 2012-03-01 Tokyo Gas Co Ltd Solid electrolyte-based co sensor
KR101679910B1 (en) 2013-08-01 2016-11-28 주식회사 엘지화학 Inorganic oxide powder and electrolyte comprising sintered body of the same
JP2015201428A (en) * 2014-03-31 2015-11-12 Toto株式会社 Solid oxide type fuel battery cell
JP6434723B2 (en) * 2014-07-01 2018-12-05 住友電気工業株式会社 Membrane electrode assembly, method for manufacturing membrane electrode assembly, fuel cell, and method for manufacturing fuel cell
JP6317710B2 (en) * 2015-07-09 2018-04-25 日本特殊陶業株式会社 Solid oxide electrochemical cell, method for producing solid oxide electrochemical cell, solid oxide fuel cell, and high-temperature steam electrolysis apparatus
JP6317711B2 (en) * 2015-08-04 2018-04-25 日本特殊陶業株式会社 Solid oxide electrochemical cell, solid oxide fuel cell, and high temperature steam electrolyzer
JP2018010740A (en) * 2016-07-12 2018-01-18 日本特殊陶業株式会社 Electrochemical cell, electrochemical stack, and method for manufacturing electrochemical cell
JP6795359B2 (en) * 2016-09-08 2020-12-02 株式会社日本触媒 Electrolyte layer for electrochemical cell, and electrochemical cell containing it
JP6804995B2 (en) * 2017-01-12 2020-12-23 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP6717331B2 (en) * 2018-03-16 2020-07-01 株式会社豊田中央研究所 Solid oxide fuel cell
JP7102322B2 (en) * 2018-11-16 2022-07-19 株式会社Soken Gas sensor
CN110994009B (en) * 2019-12-20 2023-03-21 云南大学 Sintering device and sintering method for preparing solid electrolyte material

Also Published As

Publication number Publication date
JP2004355928A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
EP2306568B1 (en) Interconnector material, intercellular separation structure, and solid electrolyte fuel cell
KR101953959B1 (en) Solid oxide fuel cell, manufacturing method therefor, fuel-cell stack, and solid oxide fuel-cell device
EP2495791B1 (en) Fuel cell, cell stack, fuel cell module, and fuel cell device
Bae et al. Low-temperature fabrication of protonic ceramic fuel cells with BaZr0. 8Y0. 2O3− δ electrolytes coated by aerosol deposition method
JP4383092B2 (en) Electrochemical element
JP4018378B2 (en) Solid oxide fuel cell and manufacturing method thereof
Bae et al. Novel modification of anode microstructure for proton-conducting solid oxide fuel cells with BaZr0. 8Y0. 2O3− δ electrolytes
JP4928642B1 (en) Solid oxide fuel cell
Wang et al. High-performance anode-supported solid oxide fuel cells with co-fired Sm0. 2Ce0. 8O2-δ/La0. 8Sr0. 2Ga0. 8Mg0. 2O3− δ/Sm0. 2Ce0. 8O2-δ sandwiched electrolyte
JP4332639B2 (en) Fuel cell and method for producing the same
JP4018377B2 (en) Solid oxide fuel cell and manufacturing method thereof
JP2007200664A (en) Method of manufacturing solid oxide fuel cell
JP4462727B2 (en) Solid electrolyte fuel cell
JP2022009365A (en) Cell, cell stack device, module, and module housing device
JP2011142042A (en) Power generation cell for solid oxide fuel battery and its manufacturing method
Xin et al. Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP4988072B1 (en) Solid oxide fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
Nagamori et al. Densification and Cell Performance of Gadolinium‐Doped Ceria (GDC) Electrolyte/NiO–GDC anode Laminates
JP3121993B2 (en) Method for producing conductive ceramics
JP2006059611A (en) Ceria based solid electrolyte fuel cell and its manufacturing method
WO2008050437A1 (en) Solid oxide fuel cell
JP2006059610A (en) Solid electrolyte fuel cell and its manufacturing method
JPH09129245A (en) Cell for solid electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees