JPH09129245A - Cell for solid electrolyte fuel cell - Google Patents

Cell for solid electrolyte fuel cell

Info

Publication number
JPH09129245A
JPH09129245A JP7283830A JP28383095A JPH09129245A JP H09129245 A JPH09129245 A JP H09129245A JP 7283830 A JP7283830 A JP 7283830A JP 28383095 A JP28383095 A JP 28383095A JP H09129245 A JPH09129245 A JP H09129245A
Authority
JP
Japan
Prior art keywords
electrode layer
solid electrolyte
fuel electrode
crystal grain
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7283830A
Other languages
Japanese (ja)
Inventor
Masahito Nishihara
雅人 西原
Masahide Akiyama
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP7283830A priority Critical patent/JPH09129245A/en
Publication of JPH09129245A publication Critical patent/JPH09129245A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To restrain metal in a fuel electrode layer from being sintered by controlling the mean crystal grain size of ZrO2 and CeO2 particles in the fuel electrode layer so as to become larger on the surface thereof than in a part in contact with a solid electrolyte. SOLUTION: A fuel electrode layer 33 is formed out of at least one type of metal selected from Ni, Co, Ti and W, and ZrO2 and/or CeO2 , and the mean crystal grain size of ZrO2 and/or CeO2 on the surface of the fuel electrode layer 33 is made larger than a part in contact with a solid electrolyte. In this case, the mean crystal grain size of ZrO2 and/or CeO2 in the fuel electrode layer 33 is preferably made large gradually from the part in contact with the solid electrolyte toward the surface layer. In addition, 40wt.% to 90wt.% of one type of metal selected from Ni, Co and Ti and W is preferably made present in the fuel electrode layer 33.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池セルに関するもので、詳細には燃料極を改善した固
体電解質型燃料電池セルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell having an improved fuel electrode.

【0002】[0002]

【従来技術】従来より固体電解質型燃料電池セルはその
作動温度が1000℃前後と高温であるため発電効率が
高く、第3世代の燃料電池として期待されている。一般
に、固体電解質型燃料電池セルとしては円筒型と平板型
の2種類が知られている。
2. Description of the Related Art Conventionally, a solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as about 1000 ° C. and is expected as a third generation fuel cell. Generally, two types of solid oxide fuel cells, known as a cylindrical type and a flat type, are known.

【0003】平板型燃料電池セルは、発電の単位体積当
り出力密度が高いという特長を有するが、実用化に際し
てはガスシ−ル不完全性やセル内の温度分布の不均一性
などの問題がある。それに対して、円筒型燃料電池セル
では、出力密度は低いものの、セルの機械的強度が高
く、またセル内の温度の均一性が保てるという特長があ
る。両形状の固体電解質燃料電池セルとも、それぞれの
特長を生かして現在積極的に研究開発が進められてい
る。
The flat plate type fuel cell has a feature that the power density per unit volume of power generation is high, but in practical use, there are problems such as gas seal imperfections and nonuniform temperature distribution in the cells. . On the other hand, the cylindrical fuel cell has the features that the output density is low, but the mechanical strength of the cell is high and the temperature uniformity in the cell can be maintained. Both types of solid electrolyte fuel cells are currently being actively researched and developed by taking advantage of their respective characteristics.

【0004】円筒型燃料電池の単セルは、図3に示すよ
うにLaMnO3 系材料からなる多孔性の円筒状空気極
層1の表面に、例えば、Y2 3 含有の安定化ZrO2
固体電解質2が形成され、さらに固体電解質2の表面に
多孔性のNi−ジルコニアなどからなる燃料極3が略同
心円状に形成されている。また、セル同士を接続するた
めのLaCrO3 系材料などからなる集電体4(インタ
ーコネクタ)が空気極層1と接続し、固体電解質2を貫
通し、燃料極3とは非接触の状態でセルの表面に露出し
ている。
As shown in FIG. 3, a unit cell of a cylindrical fuel cell is a stabilized ZrO 2 containing Y 2 O 3 on the surface of a porous cylindrical air electrode layer 1 made of LaMnO 3 system material.
A solid electrolyte 2 is formed, and a fuel electrode 3 made of porous Ni-zirconia or the like is formed on the surface of the solid electrolyte 2 in a substantially concentric shape. In addition, a current collector 4 (interconnector) made of a LaCrO 3 system material for connecting cells is connected to the air electrode layer 1, penetrates the solid electrolyte 2, and is in non-contact with the fuel electrode 3. It is exposed on the surface of the cell.

【0005】そして、上記構成からなる複数の単セル
は、一方の単セルの集電体4が、他方の単セルの燃料極
3にNiフェルトを介して当接し、複数の単セルが直列
に接続されていた。
In the plurality of unit cells having the above structure, the current collector 4 of one unit cell contacts the fuel electrode 3 of the other unit cell via the Ni felt, and the plurality of unit cells are connected in series. It was connected.

【0006】このような固体電解質型燃料電池セルの発
電は、図3示したように、空気極層1の内部に空気(酸
素)6を、外部に燃料(水素)7を流し、1000℃前
後の温度で行われる。
Power generation of such a solid oxide fuel cell unit is performed at around 1000 ° C. by flowing air (oxygen) 6 inside the air electrode layer 1 and fuel (hydrogen) 7 outside as shown in FIG. Performed at the temperature of.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
燃料極3は発電中に1000℃前後の高温に晒されるた
めNi等の金属の焼結が進み、燃料極3中に微細なクラ
ックが発生して電気伝導度が低下し、その結果発電の出
力密度が除々に低下するという問題があった。
However, since the fuel electrode 3 is exposed to a high temperature of about 1000 ° C. during power generation, sintering of metal such as Ni progresses, and fine cracks are generated in the fuel electrode 3. As a result, there is a problem that the electric conductivity is lowered, and as a result, the power density of power generation is gradually lowered.

【0008】[0008]

【課題を解決するための手段】本発明者等は上記課題に
対して検討を重ねた結果、燃料極層中のZrO2 ,Ce
2 粒子の平均結晶粒径を固体電解質と接する部分より
も燃料極層の表層部分が大きくなるように制御すること
により、燃料極層中の金属の焼結を抑制することができ
ることを見出し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have made extensive studies on the above problems, and as a result, have found that ZrO 2 , Ce in the fuel electrode layer
It was found that the sintering of the metal in the fuel electrode layer can be suppressed by controlling the average crystal grain size of the O 2 particles so that the surface layer portion of the fuel electrode layer is larger than the portion in contact with the solid electrolyte, The present invention has been completed.

【0009】即ち、本発明の固体電解質型燃料電池セル
は、固体電解質の片面に空気極層が、他面に燃料極層が
形成された燃料電池セル本体の外面に、前記空気極層ま
たは前記燃料極層と電気的に接続する集電体を設けてな
る固体電解質型燃料電池セルにおいて、前記燃料極層
が、Ni,Co, Ti, Wから選ばれた少なくとも一種
の金属と、ZrO2 および/またはCeO2 とからな
り、かつ前記燃料極層の表層部分のZrO2 および/ま
たはCeO2 の平均結晶粒径を、前記固体電解質に当接
する部分よりも大きくしたものである。ここで、燃料極
層中のZrO2 および/またはCeO2 の平均結晶粒径
は、前記固体電解質に当接する部分から表層部分に向け
て次第に大きくなることが望ましい。また、燃料極層中
に、Ni,Co, Ti, Wから選ばれた少なくとも一種
の金属が40〜90重量%存在することが望ましい。
That is, in the solid oxide fuel cell of the present invention, the air electrode layer or the aforesaid air electrode layer is formed on the outer surface of the fuel cell body having the air electrode layer formed on one surface and the fuel electrode layer formed on the other surface of the solid electrolyte. In a solid oxide fuel cell having a current collector electrically connected to the fuel electrode layer, the fuel electrode layer comprises at least one metal selected from Ni, Co, Ti and W, ZrO 2 and And / or CeO 2 , and the average crystal grain size of ZrO 2 and / or CeO 2 in the surface layer portion of the fuel electrode layer is made larger than that in the portion in contact with the solid electrolyte. Here, it is desirable that the average crystal grain size of ZrO 2 and / or CeO 2 in the fuel electrode layer gradually increases from the portion in contact with the solid electrolyte toward the surface layer portion. Further, it is desirable that at least one metal selected from Ni, Co, Ti, and W be present in the fuel electrode layer in an amount of 40 to 90% by weight.

【0010】[0010]

【作用】固体電解質型燃料電池セルにおいては、燃料極
層はNi等の金属とZrO2 等のセラミックから構成さ
れており、ZrO2 等のセラミックが、高温での発電に
おける金属の焼結を防止するために添加されているが、
充分な効果を発揮しているとは言いがたい。実際、Ni
等の金属は発電中高温に晒されるため焼結が進行し、燃
料極層中に微細なクラックが発生して電気伝導度が低下
し、その結果出力密度が除々に低下していた。
[Action] In the solid electrolyte type fuel cell, the fuel electrode layer is composed of a ceramic metal and ZrO 2 such as Ni, ceramics such as ZrO 2 is, preventing sintering of the metal in the generator at a high temperature Has been added to
It is hard to say that it is fully effective. In fact, Ni
Since metals such as the above are exposed to high temperature during power generation, sintering progresses, fine cracks are generated in the fuel electrode layer, and electric conductivity is lowered, and as a result, power density is gradually lowered.

【0011】本発明においては、燃料極層中におけるZ
rO2 等のセラミックの平均結晶粒径を、固体電解質と
当接する部分よりも表層部分が大きくなるように制御す
ることにより、例えば、固体電解質に当接する部分から
反対側の表層部分に向けて次第に大きくすることによ
り、燃料極層中におけるNi等の金属の焼結を抑制する
ことができる。
In the present invention, Z in the fuel electrode layer
By controlling the average crystal grain size of ceramics such as rO 2 so that the surface layer portion is larger than the portion in contact with the solid electrolyte, for example, gradually increasing from the portion in contact with the solid electrolyte to the surface layer portion on the opposite side. By increasing the size, sintering of metal such as Ni in the fuel electrode layer can be suppressed.

【0012】即ち、燃料極層中における固体電解質と当
接する部分は、粒径の小さいセラミック粒子が存在する
ため、固体電解質と燃料極層の金属との接触面積が大き
くなり、発電性能を向上することができるとともに、加
えて固体電解質と反対側の燃料極層の表層部分には、粒
径の大きなセラミック粒子が存在するため、金属の焼結
を抑制して粒成長を抑制することができ、クラックの発
生を防止して電気伝導度が向上し、その結果、上記二つ
の効果により発電性能をさらに向上させることができ
る。
That is, since ceramic particles having a small particle size are present in the portion of the fuel electrode layer that is in contact with the solid electrolyte, the contact area between the solid electrolyte and the metal of the fuel electrode layer is large, and power generation performance is improved. Along with being able to, in addition, in the surface layer portion of the fuel electrode layer on the side opposite to the solid electrolyte, since ceramic particles having a large particle size are present, it is possible to suppress the metal sintering and suppress the particle growth, The generation of cracks is prevented and the electric conductivity is improved. As a result, the power generation performance can be further improved by the above two effects.

【0013】また、燃料極層に、Ni,Co, Ti, W
から選ばれた少なくとも一種の金属を40〜90重量%
存在させることにより、さらに金属の焼結を抑制するこ
とができる。
Further, Ni, Co, Ti, W is formed on the fuel electrode layer.
40-90% by weight of at least one metal selected from
By making it exist, the sintering of the metal can be further suppressed.

【0014】本発明における燃料極層は、特に高度な技
術を必要とせず、従来燃料極層形成に用いられているス
ラリ−ディップ法、ドクタ−ブレ−ド法等により容易に
かつ安価に形成することができるため、経済的な観点か
ら極めて好ましい。
The fuel electrode layer in the present invention does not require a particularly high technique and can be formed easily and inexpensively by the slurry dip method, the doctor blade method or the like which has been conventionally used for forming the fuel electrode layer. Therefore, it is extremely preferable from the economical point of view.

【0015】[0015]

【発明の実施の形態】本発明の円筒型の固体電解質型燃
料電池セルは、図1に示すように、円筒状の固体電解質
31の内面に空気極層32、外面に燃料極層33を形成
して燃料電池セル本体34が構成されており、この燃料
電池セル本体34の外面に、空気極層32と電気的に接
続する集電体35を設けてなるものである。即ち、固体
電解質31の一部に切欠部36が形成され、固体電解質
31の内面に形成されている空気極層32の一部が露出
しており、この露出面37及び切欠部36近傍の固体電
解質31の表面が集電体35により被覆されている。
尚、本発明の円筒型燃料電池セルは、電気抵抗の大きな
材料からなる多孔質支持管を形成し、この多孔質支持管
の外面に空気極層32,固体電解質31,燃料極層33
を順次積層して構成しても良い。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, a cylindrical solid electrolyte fuel cell of the present invention has a cylindrical solid electrolyte 31 having an air electrode layer 32 formed on the inner surface and a fuel electrode layer 33 formed on the outer surface. Thus, the fuel cell main body 34 is configured, and the current collector 35 electrically connected to the air electrode layer 32 is provided on the outer surface of the fuel cell main body 34. That is, the notch 36 is formed in a part of the solid electrolyte 31, and a part of the air electrode layer 32 formed on the inner surface of the solid electrolyte 31 is exposed. The exposed surface 37 and the solid in the vicinity of the notch 36 are exposed. The surface of the electrolyte 31 is covered with a current collector 35.
In the cylindrical fuel cell of the present invention, a porous support tube made of a material having a large electric resistance is formed, and the air electrode layer 32, the solid electrolyte 31, and the fuel electrode layer 33 are formed on the outer surface of the porous support tube.
May be sequentially laminated.

【0016】空気極層32と電気的に接続する集電体3
5は、燃料電池セル本体34の外面に形成されほぼ段差
のない連続同一面39を覆うように形成されており、燃
料極層33とは電気的に接続されていない。この集電体
35は、セル同士を接続する際に、他のセルの燃料極層
にNiフェルトを介して電気的に接続され、これにより
燃料電池モジュールが構成されるのである。
A current collector 3 electrically connected to the air electrode layer 32.
No. 5 is formed on the outer surface of the fuel cell main body 34 so as to cover the substantially same continuous surface 39 having no step, and is not electrically connected to the fuel electrode layer 33. The current collector 35 is electrically connected to the fuel electrode layer of another cell via the Ni felt when the cells are connected to each other, thereby forming a fuel cell module.

【0017】連続同一面39は、固体電解質31の内面
に形成されている空気極層32の一部を露出させるとと
もに、固体電解質31の端面と空気極層32の露出面3
7とを連続したほぼ同一面(固体電解質31の端面と空
気極層32の露出面37とが段差のないほぼ平面状態)
となして構成されている。この連続同一面39は固体電
解質成形体の一部と空気極層成形体の一部とが連続した
ほぼ同一面となるまでセル本体の外周面を研摩すること
により形成されている。
The continuous flush surface 39 exposes a part of the air electrode layer 32 formed on the inner surface of the solid electrolyte 31, and the end face of the solid electrolyte 31 and the exposed surface 3 of the air electrode layer 32.
7 and the same continuous surface (the end surface of the solid electrolyte 31 and the exposed surface 37 of the air electrode layer 32 are substantially flat with no step)
And is configured. This continuous same surface 39 is formed by polishing the outer peripheral surface of the cell body until a part of the solid electrolyte molded body and a part of the air electrode layer molded body are continuous and substantially flush with each other.

【0018】そして、本発明の固体電解質型燃料電池セ
ルでは、燃料極層33は、Ni,Co, Ti, Wから選
ばれた少なくとも一種の金属と、ZrO2 および/また
はCeO2 とから構成されており、燃料極層33中のZ
rO2 および/またはCeO2 の平均結晶粒径は、固体
電解質31に当接する部分よりも表層部分が大きくなる
ように形成されている。即ち、図2に示すように、固体
電解質31に当接する部分Aよりも表層部分Bが大きく
なっている。
In the solid oxide fuel cell of the present invention, the fuel electrode layer 33 is composed of at least one metal selected from Ni, Co, Ti and W and ZrO 2 and / or CeO 2. Z in the fuel electrode layer 33
The average crystal grain size of rO 2 and / or CeO 2 is formed so that the surface layer portion is larger than the portion in contact with the solid electrolyte 31. That is, as shown in FIG. 2, the surface layer portion B is larger than the portion A in contact with the solid electrolyte 31.

【0019】燃料極層33中のZrO2 および/または
CeO2 の平均結晶粒径は、固体電解質31に当接する
部分Aから反対側の表層部分Bに向けて次第に大きくな
ることが望ましい。即ち、ZrO2 ,CeO2 粒子に関
しては固体電解質31に当接する部分Aの平均結晶粒径
が0.5〜3μmの粒子で、固体電解質31と反対側の
燃料極層33の表層部分Bが5〜30μmの粒子で構成
して、その間は固体電解質31近傍より表層に向けて平
均結晶粒径がほぼ連続して大きくなるように構成するこ
とが望ましい。
It is desirable that the average crystal grain size of ZrO 2 and / or CeO 2 in the fuel electrode layer 33 gradually increases from the portion A in contact with the solid electrolyte 31 toward the surface layer portion B on the opposite side. That is, regarding ZrO 2 and CeO 2 particles, the average crystal grain size of the portion A contacting the solid electrolyte 31 is 0.5 to 3 μm, and the surface layer portion B of the fuel electrode layer 33 on the side opposite to the solid electrolyte 31 is 5 It is preferable that the average crystal grain size is increased continuously from the vicinity of the solid electrolyte 31 toward the surface layer between the particles having a particle size of up to 30 μm.

【0020】このような燃料極層は、異なる平均結晶粒
径を有するセラミック粒子と金属粒子との混合粉末を水
溶液中に分散した複数の種類のスラリ−を作製し、この
後、固体電解質が形成された円筒状焼結体をセラミック
粒子の細かいスラリ−から順次浸漬して形成され、これ
によりほぼ固体電解質近傍より表層に向けて連続的にセ
ラミックの平均結晶粒径を大きくすることができる。例
えば、100μm程度の厚みの燃料極層を作製する場
合、セラミックの平均結晶粒径の異なるスラリ−として
は3〜5種類が適当である。また、100μmを越える
燃料極層を作製する場合は、異なる平均結晶粒径を有す
るセラミック粒子と金属粒子の混合粉末を用いて、ドク
タ−ブレ−ド法により30〜50μmの複数種類のグリ
−ンシ−トを作製した後、これをセラミック粒子の平均
結晶粒径が連続的に大きくなるように順次固体電解質表
面に積層することにより作製できる。
Such a fuel electrode layer is prepared by preparing a plurality of types of slurries in which mixed powders of ceramic particles and metal particles having different average crystal grain sizes are dispersed in an aqueous solution, and thereafter a solid electrolyte is formed. The formed cylindrical sintered body is formed by successively dipping it from a fine slurry of ceramic particles, whereby the average crystal grain size of the ceramic can be continuously increased from the vicinity of the solid electrolyte toward the surface layer. For example, when preparing a fuel electrode layer having a thickness of about 100 μm, 3 to 5 kinds of slurries having different average crystal grain sizes of ceramics are suitable. Further, in the case of producing a fuel electrode layer having a thickness of more than 100 μm, a mixed powder of ceramic particles and metal particles having different average crystal grain sizes is used, and a plurality of types of green shavings of 30 to 50 μm are prepared by a doctor blade method. It is possible to prepare by preparing a sheet-like layer and then sequentially laminating it on the surface of the solid electrolyte so that the average crystal grain size of the ceramic particles is continuously increased.

【0021】燃料極層中のZrO2 あるいはCeO2
子としては、結晶の安定性から1〜30モル%のY2
3 およびYb2 3 ,Sc2 3 ,Dy2 3 ,Nd2
3等の希土類元素からなる酸化物を含有するZrO2
あるいはCeO2 粒子が好ましい。
As ZrO 2 or CeO 2 particles in the fuel electrode layer, 1 to 30 mol% of Y 2 O is used because of crystal stability.
3 and Yb 2 O 3 , Sc 2 O 3 , Dy 2 O 3 , Nd 2
ZrO 2 containing oxides of rare earth elements such as O 3
Alternatively, CeO 2 particles are preferable.

【0022】また、Ni,Co等の金属の平均結晶粒径
としては、金属の焼結性と分極性能の観点から1〜20
μm、特に5〜10μmが好ましい。燃料極層を構成す
る金属成分としては、Ni,Coの他にW,Tiも本発
明に含まれ、特にNiが望ましい。
The average crystal grain size of metals such as Ni and Co is 1 to 20 from the viewpoint of metal sinterability and polarization performance.
μm, particularly 5 to 10 μm is preferable. As the metal component forming the fuel electrode layer, W and Ti are included in the present invention in addition to Ni and Co, and Ni is particularly preferable.

【0023】また、燃料極層には、Ni,Co, Ti,
Wから選ばれた少なくとも一種の金属が40〜90重量
%存在することが望ましい。これは金属の含有量が40
重量%よりも少ない場合には燃料極層の電気伝導度が小
さくなり、90重量%よりも多くなるとZrO2 あるい
はCeO2 粒子によるNi、Co等の金属の焼結抑制効
果が小さくなるからである。金属の含有量は、導電性と
焼結性の観点から、60〜80重量%が好ましい。
Further, Ni, Co, Ti,
It is desirable that at least one metal selected from W is present in an amount of 40 to 90% by weight. This has a metal content of 40
When the amount is less than 10% by weight, the electric conductivity of the fuel electrode layer becomes small, and when the amount is more than 90% by weight, the effect of suppressing the sintering of the metal such as Ni and Co by the ZrO 2 or CeO 2 particles becomes small. . The metal content is preferably 60 to 80% by weight from the viewpoint of conductivity and sinterability.

【0024】本発明の円筒型の固体電解質型燃料電池セ
ルは、例えば、先ず、空気極層を形成する粉末を用いて
円筒状成形体を作製する。この円筒状成形体は、例え
ば、空気極層形成粉末を押出成形したり、静水圧成形
(ラバープレス)したりして形成される。さらに他の方
法としては、ドクターブレード法などにより空気極層形
成粉末をシート状に成形した後、そのシート状成形体を
所定の円柱状支持体の表面に巻き付けて端部を合わせ接
合することによっても円筒状成形体を作製することがで
きる。円筒状成形体の肉厚は1〜3mmが適当である。
In the cylindrical solid oxide fuel cell unit of the present invention, for example, first, a cylindrical molded body is produced using the powder forming the air electrode layer. This cylindrical molded body is formed, for example, by subjecting the air electrode layer forming powder to extrusion molding or hydrostatic molding (rubber pressing). As still another method, after forming the air electrode layer forming powder into a sheet by a doctor blade method or the like, by winding the sheet-shaped formed body around the surface of a predetermined columnar support and joining the ends by joining. It is also possible to produce a cylindrical molded body. The wall thickness of the cylindrical molded body is suitably 1 to 3 mm.

【0025】空気極層を形成する粉末としては、LaM
nO3 系組成物からなり、具体的には、Laの15〜2
0原子%をCa,Sr,Baなどのアルカリ土類元素に
より置換したLaMnO3 系組成物が挙げられ、これら
は金属酸化物を所定の割合で混合したものを仮焼してな
るLaMnO3 系化合物粉末であることが望ましい。
The powder forming the air electrode layer is LaM.
It is composed of an nO 3 -based composition, and specifically, has a La content of 15 to 2
LaMnO 3 -based compositions in which 0 atomic% is replaced with alkaline earth elements such as Ca, Sr, and Ba are mentioned. These are LaMnO 3 -based compounds obtained by calcining a mixture of metal oxides at a predetermined ratio. A powder is desirable.

【0026】空気極層形成粉末からなるシ−ト状成形体
の厚みは100〜3000μmが適当である。
A suitable thickness of the sheet-like molded product made of the air electrode layer forming powder is 100 to 3000 μm.

【0027】次に固体電解質および集電体を形成する粉
末により固体電解質および集電体のシート状成形体をそ
れぞれ作製する。このシート状成形体は、ドクターブレ
ード法や押出成形法により周知の方法で作製される。
Next, a sheet-shaped molded body of the solid electrolyte and the current collector is prepared from the powder for forming the solid electrolyte and the current collector. This sheet-shaped molded body is manufactured by a known method by a doctor blade method or an extrusion molding method.

【0028】固体電解質粉末としては、ZrO2 に対し
てY2 3 ,Yb2 3 などの安定化材を3〜15モル
%の割合で固溶させた部分安定化ZrO2 あるいは安定
化ZrO2 粉末、Y2 3 ,Yb2 3 ,Gd2 3
を10〜30モル%含有するCeO2 粉末が用いられ
る。また、集電体を形成する粉末としては、Ca,M
g,Srを固溶したLaCrO3 が用いられる。
[0028] Examples of the solid electrolyte powder, Y 2 O 3, Yb 2 O 3 stabilized material was dissolved in a proportion of 3 to 15 mol% partially stabilized ZrO 2 or stabilized ZrO such relative ZrO 2 CeO 2 powder containing 10 to 30 mol% of 2 powder, Y 2 O 3 , Yb 2 O 3 , Gd 2 O 3 and the like is used. Further, as the powder forming the current collector, Ca, M
LaCrO 3 in which g and Sr are dissolved is used.

【0029】次に、上記のようにして得られた空気極層
の円筒状成形体の表面に固体電解質のシート状成形体を
巻き付けた後、固体電解質のシート状成形体の端部部分
を研摩して平坦状となした後、集電体のシート状成形体
を積層圧着する。また場合によっては、固体電解質のシ
ート状成形体の表面に燃料極層のシート状成形体を巻き
付けてもよい。各シ−ト状成形体の間にはアクリル樹脂
や有機溶媒などの接着材を介在させると接着が良くな
る。
Next, after winding a solid electrolyte sheet-shaped molded body around the surface of the air-electrode layer cylindrical molded body obtained as described above, the end portion of the solid electrolyte sheet-shaped molded body is polished. Then, the sheet-shaped molded body of the current collector is laminated and pressure-bonded. In some cases, the sheet-shaped molded body of the fuel electrode layer may be wound around the surface of the solid-electrolyte sheet-shaped molded body. Adhesion is improved by interposing an adhesive such as an acrylic resin or an organic solvent between each sheet-shaped molded body.

【0030】上記のようにして得られた積層成形体を酸
化性雰囲気中で円筒状形成体と積層されたシート状成形
体を同時に焼成する。具体的には大気中で1300〜1
700℃で3〜15時間程度焼成することにより、少な
くとも固体電解質が相対密度96%以上の緻密質になる
ように焼成する。なお、空気極層は相対密度が60〜7
5%程度であれば充分である。
The laminated molded body obtained as described above is fired in an oxidizing atmosphere at the same time as the sheet-shaped molded body laminated with the cylindrical molded body. Specifically, 1300 to 1 in the atmosphere
By firing at 700 ° C. for about 3 to 15 hours, firing is performed so that at least the solid electrolyte becomes dense with a relative density of 96% or more. The air electrode layer has a relative density of 60 to 7
About 5% is sufficient.

【0031】燃料極層は、先ず、Ni,Co, Ti, W
から選ばれた少なくとも一種の金属とZrO2 あるいは
CeO2 のセラミック粒子を含むスラリーで、セラミッ
ク粒子の平均結晶粒径が異なる複数種類のスラリーを作
製する。これらのスラリーを、得られた空気極層と固体
電解質、集電体からなる円筒型の一体焼結体の固体電解
質の表面に、セラミック粒子の平均結晶粒径が小さいス
ラリーから順次浸漬することにより、固体電解質側から
表層部分に向けてほぼ連続的にセラミック粒子の平均結
晶粒径が大きくなった燃料極層を形成する。また、平均
結晶粒径が異なるセラミック粒子と金属からなる混合粉
末を用いて、ドクタ−ブレ−ド法により30〜50μm
の複数種類のグリ−ンシ−トを作製した後、これをセラ
ミック粒子の平均結晶粒径が連続的に大きくなるように
順次固定電解質表面に積層しても良い。
First, the fuel electrode layer is formed of Ni, Co, Ti and W.
A slurry containing at least one metal selected from the above and ceramic particles of ZrO 2 or CeO 2 is prepared, and a plurality of types of slurries having different average crystal grain sizes of ceramic particles are prepared. These slurries were obtained by sequentially immersing the obtained air electrode layer, the solid electrolyte, and the surface of the solid electrolyte of a cylindrical integral sintered body composed of a current collector in order from a slurry having a small average crystal grain size of ceramic particles. The fuel electrode layer in which the average crystal grain size of the ceramic particles increases is formed almost continuously from the solid electrolyte side toward the surface layer portion. Further, by using a mixed powder composed of ceramic particles having different average crystal grain sizes and a metal, a doctor blade method is used to obtain a thickness of 30 to 50 μm.
After preparing a plurality of types of green sheets, the green sheets may be sequentially laminated on the surface of the fixed electrolyte so that the average crystal grain size of the ceramic particles continuously increases.

【0032】燃料極層には、Ni,Co, Ti, Wから
選ばれた少なくとも一種の金属は、それらの酸化物を用
いても良い。これらの酸化物は発電中に還元され、N
i,Co, Ti, Wの金属となるからである。
In the fuel electrode layer, an oxide of at least one metal selected from Ni, Co, Ti and W may be used. These oxides are reduced during power generation and N
This is because it becomes a metal of i, Co, Ti, and W.

【0033】本発明においては、図1に示したように、
燃料電池セル本体34の表面に連続同一面39を形成
し、この連続同一面39に集電体35を形成することに
より、集電体35が歪むことなく積層され、集電体内に
無理な応力が発生せず、集電体35上部に連続したクラ
ックや集電体35端部の一部に剥がれが発生せず、集電
体35に欠陥が発生しないが、固体電解質31表面を研
摩しない状態で集電体35を積層し、固体電解質31の
表面に燃料極層を形成しても良い。また、従来の図3に
示す固体電解質型燃料電池セルに本発明を適用しても良
い。
In the present invention, as shown in FIG.
By forming the continuous coplanar surface 39 on the surface of the fuel cell main body 34 and forming the current collector 35 on the continuous coplanar surface 39, the current collector 35 is laminated without distortion, and unreasonable stress is applied to the current collector. State, no continuous cracks on the top of the current collector 35 or peeling off at a part of the end of the current collector 35, no defects occur on the current collector 35, but the surface of the solid electrolyte 31 is not polished Alternatively, the current collector 35 may be laminated to form a fuel electrode layer on the surface of the solid electrolyte 31. Further, the present invention may be applied to the conventional solid oxide fuel cell unit shown in FIG.

【0034】また、本発明を円筒型燃料電池セルに適用
した例について説明したが、平板型燃料電池セルの燃料
極層に適用しても良い。
Further, although the example in which the present invention is applied to the cylindrical fuel cell is explained, it may be applied to the fuel electrode layer of the flat plate fuel cell.

【0035】[0035]

【実施例】【Example】

実施例1 空気極層を形成する粉末として平均結晶粒径が6μmの
La0.85Ca0.15MnO3 粉末、固体電解質を形成する
粉末として平均結晶粒径0.5μmのY2 3を10モ
ル%の割合で含有する共沈法ZrO2 粉末、また集電体
を形成する粉末として平均結晶粒径1μmのLa0.8
0.21CrO3 粉末を準備した。
Example 1 La 0.85 Ca 0.15 MnO 3 powder having an average crystal grain size of 6 μm was used as a powder for forming an air electrode layer, and Y 2 O 3 having an average crystal grain size of 0.5 μm was used as a powder for forming a solid electrolyte in an amount of 10 mol%. Coprecipitation method ZrO 2 powder contained at a ratio, and La 0.8 C having an average crystal grain size of 1 μm as powder for forming a current collector.
a 0.21 CrO 3 powder was prepared.

【0036】さらに、燃料極層を形成する粉末として平
均結晶粒径が2μmのNi,Co,W,Ti粉末と平均
結晶粒径が0.5〜20μmの平均結晶粒径の異なるZ
rO2 (10モル%Y2 3 含有)粉末およびCeO2
(5モル%Y2 3 含有)粉末を水を溶媒として、Zr
2 およびCeO2 のセラミック粒子の平均結晶粒径が
異なる数種類のスラリーを作製した。
Further, as powders for forming the fuel electrode layer, Ni, Co, W, and Ti powders having an average crystal grain size of 2 μm and Z having an average crystal grain size of 0.5 to 20 μm and having different average crystal grain sizes.
rO 2 (containing 10 mol% Y 2 O 3 ) powder and CeO 2
The powder (containing 5 mol% Y 2 O 3 ) was used as a solvent, and Zr
Several types of slurries having different average crystal grain sizes of O 2 and CeO 2 ceramic particles were prepared.

【0037】上記のLa0.85Ca0.15MnO3 粉末を水
を溶媒としてスラリーを作製し、このスラリーを用いて
押出成形装置により内径13mm、外径16mmの円筒
状の成形体を得た。一方、上記Y2 3 安定化ZrO2
粉末およびLa0.8 Ca0.21CrO3 粉末を水を溶媒と
してスラリーを作製し、これをドクターブレード法によ
り厚み150μmのシート状成形体をそれぞれ作製し
た。そして、上記の円筒状成形体の表面にアクリル樹脂
からなる接着材を介して、上記固体電解質シートを巻き
付け、その端面間を研摩して連続同一面を形成し、この
面に前記接着材を介して集電体のシート状成形体を積層
して圧着し、大気中において1500℃で5時間焼成し
た。
A slurry was prepared by using the above La 0.85 Ca 0.15 MnO 3 powder with water as a solvent, and using this slurry, a cylindrical molded body having an inner diameter of 13 mm and an outer diameter of 16 mm was obtained by an extrusion molding apparatus. On the other hand, the above Y 2 O 3 stabilized ZrO 2
A slurry was prepared using the powder and La 0.8 Ca 0.21 CrO 3 powder with water as a solvent, and a sheet-like compact having a thickness of 150 μm was prepared by the doctor blade method. Then, through the adhesive made of acrylic resin on the surface of the cylindrical molded body, the solid electrolyte sheet is wound, the end faces are polished to form a continuous same surface, and the adhesive is provided on this surface. Then, sheet-like molded bodies of current collectors were laminated, pressure-bonded, and baked in the air at 1500 ° C. for 5 hours.

【0038】燃料極層は上述の複数種類のスラリ−中に
上記の円筒状焼結体を表1に示す厚みになるようにそれ
ぞれ順次ディップを行い、乾燥して燃料極層を形成し、
図1に示すような固体電解質型燃料電池セルを作製し
た。
As the fuel electrode layer, the cylindrical sintered body was sequentially dipped into each of the above-mentioned plural kinds of slurries so as to have the thickness shown in Table 1, and dried to form the fuel electrode layer.
A solid oxide fuel cell as shown in FIG. 1 was produced.

【0039】発電は円筒状セルの内側に酸素を、外側に
水素を流して1000℃で行い、1000時間後の出力
密度を測定した。また、燃料極層の金属含有量はICP
発光分光分析により、各ディップ層の厚みは走査型電子
顕微鏡により測定した。結果を表1に示す。
Power generation was carried out at 1000 ° C. by flowing oxygen inside the cylindrical cell and flowing hydrogen outside, and the power density after 1000 hours was measured. The metal content of the fuel electrode layer is ICP.
The thickness of each dip layer was measured by an emission spectroscopic analysis with a scanning electron microscope. Table 1 shows the results.

【0040】[0040]

【表1】 [Table 1]

【0041】この表1より、従来の方法により作製した
試料No.1に比較して、セラミック粒子の平均結晶粒
径が固体電解質に当接する部分から表層部分に向けて次
第に大きくなっている本発明の試料は全て大きな出力密
度を示した。また、金属含有量が40重量%より小さな
試料No.2および90重量%より大きな試料No.8
では、試料No.1よりも出力密度は大きいものの、大幅
な出力密度の向上は見られなかった。
From Table 1, the sample No. prepared by the conventional method is shown. Compared with No. 1, all the samples of the present invention in which the average crystal grain size of the ceramic particles gradually increased from the portion in contact with the solid electrolyte toward the surface layer portion showed a large power density. In addition, Sample No. having a metal content of less than 40% by weight. 2 and sample Nos. 8
Then, although the output density was larger than that of the sample No. 1, no significant improvement in the output density was observed.

【0042】実施例2 実施例1の燃料極層形成粉末を用いて、水を溶媒として
スラリーを作製し、これを用いて、セラミック粒子の平
均結晶粒径が異なる厚み50μmの複数種類のシート状
成形体をドクターブレード法により作製した。これらの
シート状成形体を実施例1で作製した円筒状焼結体表面
に積層した後、実施例1と同様な方法により発電を行っ
た。この結果を表2に示す。
Example 2 Using the powder for forming the fuel electrode layer of Example 1, a slurry was prepared using water as a solvent, and using this, a plurality of types of sheets having a thickness of 50 μm and ceramic particles having different average crystal grain sizes were prepared. A molded body was produced by the doctor blade method. After stacking these sheet-shaped compacts on the surface of the cylindrical sintered body produced in Example 1, power generation was performed by the same method as in Example 1. Table 2 shows the results.

【0043】[0043]

【表2】 [Table 2]

【0044】この表2より、セラミック粒子の平均結晶
粒径が全域に亘って同じである試料No.16,23では
出力密度が小さいが、本発明の試料では優れた出力密度
を示すことが判る。
From Table 2, it can be seen that the samples No. 16 and 23 in which the average crystal grain size of the ceramic particles are the same over the entire region have small output densities, but the samples of the present invention show excellent output densities. .

【0045】[0045]

【発明の効果】本発明においては、燃料極層中における
ZrO2 等のセラミック粒子の平均結晶粒径を、固体電
解質と当接する部分よりも表層部分が大きくなるように
制御することにより、例えば、固体電解質に当接する部
分から反対側の表層部分に向けて次第に大きくすること
により、燃料極層中におけるNi等の金属の焼結を抑制
することができ、燃料極層におけるクラックの発生を抑
制でき、高出力で長期安定性のあるセルを提供できる。
In the present invention, by controlling the average crystal grain size of ceramic particles such as ZrO 2 in the fuel electrode layer so that the surface layer portion is larger than the portion in contact with the solid electrolyte, for example, By gradually increasing the size from the portion in contact with the solid electrolyte toward the surface layer portion on the opposite side, it is possible to suppress the sintering of metals such as Ni in the fuel electrode layer and suppress the occurrence of cracks in the fuel electrode layer. It is possible to provide a cell with high output and long-term stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒型燃料電池セルを示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a cylindrical fuel cell of the present invention.

【図2】図1の燃料極およびその近傍を拡大して示す断
面図である。
FIG. 2 is an enlarged cross-sectional view showing the fuel electrode of FIG. 1 and its vicinity.

【図3】従来の円筒型燃料電池セルを示す斜視図であ
る。
FIG. 3 is a perspective view showing a conventional cylindrical fuel cell unit.

【符号の説明】[Explanation of symbols]

31・・・固体電解質 32・・・空気極層 33・・・燃料極層 35・・・集電体 31 ... Solid electrolyte 32 ... Air electrode layer 33 ... Fuel electrode layer 35 ... Current collector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】固体電解質の片面に空気極層が、他面に燃
料極層が形成された燃料電池セル本体の外面に、前記空
気極層または前記燃料極層と電気的に接続する集電体を
設けてなる固体電解質型燃料電池セルにおいて、前記燃
料極層が、Ni,Co, Ti, Wから選ばれた少なくと
も一種の金属と、ZrO2 および/またはCeO2 とか
らなり、かつ前記燃料極層の表層部分のZrO2 および
/またはCeO2 の平均結晶粒径を、前記固体電解質に
当接する部分よりも大きくしたことを特徴とする固体電
解質型燃料電池セル。
1. A current collector electrically connected to the air electrode layer or the fuel electrode layer on the outer surface of the fuel cell main body in which the air electrode layer is formed on one surface of the solid electrolyte and the fuel electrode layer is formed on the other surface. In a solid oxide fuel cell having a body, the fuel electrode layer comprises at least one metal selected from Ni, Co, Ti and W, and ZrO 2 and / or CeO 2 , and the fuel A solid oxide fuel cell, wherein the average crystal grain size of ZrO 2 and / or CeO 2 in the surface layer portion of the electrode layer is made larger than that in the portion in contact with the solid electrolyte.
【請求項2】燃料極層中のZrO2 および/またはCe
2 の平均結晶粒径は、前記固体電解質に当接する部分
から表層部分に向けて次第に大きくなることを特徴とす
る請求項1記載の固体電解質型燃料電池セル。
2. ZrO 2 and / or Ce in the fuel electrode layer
2. The solid oxide fuel cell unit according to claim 1, wherein the average crystal grain size of O 2 gradually increases from the portion in contact with the solid electrolyte toward the surface layer portion.
【請求項3】燃料極層中に、Ni,Co, Ti, Wから
選ばれた少なくとも一種の金属が40〜90重量%存在
することを特徴とする請求項1記載の固体電解質型燃料
電池セル。
3. The solid oxide fuel cell according to claim 1, wherein 40 to 90% by weight of at least one metal selected from Ni, Co, Ti, and W is present in the fuel electrode layer. .
JP7283830A 1995-10-31 1995-10-31 Cell for solid electrolyte fuel cell Pending JPH09129245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7283830A JPH09129245A (en) 1995-10-31 1995-10-31 Cell for solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7283830A JPH09129245A (en) 1995-10-31 1995-10-31 Cell for solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH09129245A true JPH09129245A (en) 1997-05-16

Family

ID=17670716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7283830A Pending JPH09129245A (en) 1995-10-31 1995-10-31 Cell for solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH09129245A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097867B1 (en) * 2011-10-14 2012-12-12 日本碍子株式会社 Fuel cell
JP5159938B1 (en) * 2011-10-14 2013-03-13 日本碍子株式会社 Fuel cell
JP5320497B1 (en) * 2012-09-14 2013-10-23 日本碍子株式会社 Fuel cell
US9017898B2 (en) 2011-10-14 2015-04-28 Ngk Insulators, Ltd. Fuel cell
US20230099013A1 (en) * 2019-12-24 2023-03-30 Sumitomo Electric Industries, Ltd. Porous body and fuel cell including the same
WO2023054494A1 (en) * 2021-09-30 2023-04-06 京セラ株式会社 Electrochemical cell, electrochemical cell device, module, and module storage device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097867B1 (en) * 2011-10-14 2012-12-12 日本碍子株式会社 Fuel cell
JP5159938B1 (en) * 2011-10-14 2013-03-13 日本碍子株式会社 Fuel cell
US9017898B2 (en) 2011-10-14 2015-04-28 Ngk Insulators, Ltd. Fuel cell
US9640825B2 (en) 2011-10-14 2017-05-02 Ngk Insulators, Ltd. Fuel cell
JP5320497B1 (en) * 2012-09-14 2013-10-23 日本碍子株式会社 Fuel cell
US20230099013A1 (en) * 2019-12-24 2023-03-30 Sumitomo Electric Industries, Ltd. Porous body and fuel cell including the same
US11757106B2 (en) * 2019-12-24 2023-09-12 Sumitomo Electric Industries, Ltd. Porous body and fuel cell including the same
WO2023054494A1 (en) * 2021-09-30 2023-04-06 京セラ株式会社 Electrochemical cell, electrochemical cell device, module, and module storage device

Similar Documents

Publication Publication Date Title
RU2342740C2 (en) Solid oxide fuel cells with bearing anode and cermet ionogen
EP2495791B1 (en) Fuel cell, cell stack, fuel cell module, and fuel cell device
JP2008519404A (en) Electrochemical cell structure and its manufacturing method by controlled powder method
JP4383092B2 (en) Electrochemical element
JP4462727B2 (en) Solid electrolyte fuel cell
JP3347561B2 (en) Solid oxide fuel cell
JPH09129245A (en) Cell for solid electrolyte fuel cell
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
CN110088965B (en) Single cell, single cell stack device, module, and module housing device
JPH0992302A (en) Unit cell of cylindrical fuel cell and its manufacture
JP2003045446A (en) Cell of solid electrolyte fuel cell, method for manufacturing it, and fuel cell
JP4130135B2 (en) Surface treatment method for current collecting member
JPH09180731A (en) Solid electrolyte fuel cell
JP3342621B2 (en) Solid oxide fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP3730774B2 (en) Solid oxide fuel cell
JP2006059611A (en) Ceria based solid electrolyte fuel cell and its manufacturing method
JP2006059610A (en) Solid electrolyte fuel cell and its manufacturing method
JP3336171B2 (en) Solid oxide fuel cell
JPH0997621A (en) Cell of cylindrical fuel cell
JP3595223B2 (en) Solid oxide fuel cell
KR100833626B1 (en) Anode-supported solid oxide fuel cells using a cermet electrolyte
JP4683830B2 (en) Support for fuel cell, fuel cell and fuel cell
JPH11283642A (en) Solid-electrolyte fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method