JP2003045446A - Cell of solid electrolyte fuel cell, method for manufacturing it, and fuel cell - Google Patents

Cell of solid electrolyte fuel cell, method for manufacturing it, and fuel cell

Info

Publication number
JP2003045446A
JP2003045446A JP2001229695A JP2001229695A JP2003045446A JP 2003045446 A JP2003045446 A JP 2003045446A JP 2001229695 A JP2001229695 A JP 2001229695A JP 2001229695 A JP2001229695 A JP 2001229695A JP 2003045446 A JP2003045446 A JP 2003045446A
Authority
JP
Japan
Prior art keywords
fuel electrode
solid electrolyte
fuel
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001229695A
Other languages
Japanese (ja)
Other versions
JP4845296B2 (en
Inventor
Shoji Yamashita
祥二 山下
Masahito Nishihara
雅人 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001229695A priority Critical patent/JP4845296B2/en
Publication of JP2003045446A publication Critical patent/JP2003045446A/en
Application granted granted Critical
Publication of JP4845296B2 publication Critical patent/JP4845296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell of a solid electrolyte fuel cell capable of solidifying the junction boundary between a first fuel electrode and a second fuel electrode, effectively preventing the first fuel electrode from being peeled off from a solid electrolyte, and maintaining high power generating capability for a long time, and a method for manufacturing it as well as the fuel cell. SOLUTION: This cell is equipped with a first fuel electrode 33a formed by a fuel electrode 33 simultaneously baked on the surface of the solid electrolyte 31 and the second fuel electrode 33b formed by baking it on the surface of the first fuel electrode 33a. Ceramic particles 41, 43 exist in the first fuel electrode 33a and the second fuel electrode 33b, and filmy and/or fine ceramic particles 47, 48 are deposited on the surface of iron group metallic particles 45, 46 forming the first fuel electrode 33a and the second fuel electrode 33b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池セル及びその製法並びに燃料電池に関し、特に、空
気極の表面に、固体電解質、燃料極を順次積層してな
り、空気極、固体電解質、第1燃料極が同時に焼結され
た固体電解質型燃料電池セル及びその製法並びに燃料電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, a method for producing the same, and a fuel cell, and in particular, a solid electrolyte and a fuel electrode are sequentially laminated on the surface of an air electrode. The present invention relates to a solid oxide fuel cell in which a first fuel electrode is simultaneously sintered, a manufacturing method thereof, and a fuel cell.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池はその作
動温度が900〜1050℃と高温であるため発電効率
が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, a solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as 900 to 1050 ° C., and is expected as a third generation power generation system.

【0003】一般に固体電解質型燃料電池セルには、円
筒型と平板型が知られている。平板型燃料電池セルは、
発電の単位体積当たり出力密度は高いという特徴を有す
るが、実用化に関してはガスシール不完全性やセル内の
温度分布の不均一性などの問題がある。それに対して、
円筒型燃料電池セルでは、出力密度は低いものの、セル
の機械的強度が高く、またセル内の温度の均一性が保て
るという特徴がある。両形状の固体電解質型燃料電池セ
ルとも、それぞれの特徴を生かして積極的に研究開発が
進められている。
Cylindrical type and flat plate type are generally known as solid oxide fuel cell units. The flat type fuel cell is
Although it has a characteristic that the power density per unit volume of power generation is high, there are problems such as imperfect gas sealing and non-uniform temperature distribution in the cell when it is put to practical use. On the other hand,
Although the cylindrical fuel cell has a low power density, it has the characteristics that the mechanical strength of the cell is high and the temperature uniformity in the cell can be maintained. Both types of solid oxide fuel cells are being actively researched and developed by taking advantage of their respective characteristics.

【0004】円筒型燃料電池セルは、図5に示すように
開気孔率30〜40%程度のLaMnO3系材料からな
る多孔性の空気極支持管2を形成し、その表面にY23
安定化ZrO2からなる固体電解質3を形成し、さらに
この表面に多孔性のNi−ジルコニアの燃料極4を形成
して構成されている。
As shown in FIG. 5, a cylindrical fuel cell has a porous air electrode support tube 2 made of LaMnO 3 system material having an open porosity of about 30 to 40%, and Y 2 O 3 is formed on the surface thereof.
A solid electrolyte 3 made of stabilized ZrO 2 is formed, and a porous Ni-zirconia fuel electrode 4 is further formed on this surface.

【0005】燃料電池のモジュールにおいては、各単セ
ルはLaCrO3系の集電体(インターコネクタ)5を
介して接続される。発電は、空気極支持管2内部に空気
(酸素)6を、外部に燃料(水素)7を流し、1000
〜1050℃の温度で行われる。
In the fuel cell module, each unit cell is connected via a LaCrO 3 -based current collector (interconnector) 5. To generate electricity, air (oxygen) 6 is flown inside the cathode support tube 2 and fuel (hydrogen) 7 is flown outside, and 1000
It is carried out at a temperature of 1050 ° C.

【0006】上記のような燃料電池セルを製造する方法
としては、近年ではセルの製造工程を簡略化し且つ製造
コストを低減するために、各構成材料のうち少なくとも
2つを同時焼成する、いわゆる共焼結法が提案されてい
る。この共焼結法は、例えば、円筒状の空気極成形体に
固体電解質成形体及び集電体成形体をロール状に巻き付
けて同時焼成を行い、その後固体電解質表面に燃料極を
形成する方法である。またプロセス簡略化のために、固
体電解質成形体の表面にさらに燃料極成形体を積層し
て、同時焼成する共焼結法も提案されている。
As a method of manufacturing the fuel cell as described above, in recent years, in order to simplify the manufacturing process of the cell and reduce the manufacturing cost, at least two of the constituent materials are simultaneously fired, that is, a so-called co-fired method. A sintering method has been proposed. This co-sintering method is, for example, a method in which a solid electrolyte molded body and a current collector molded body are wound around a cylindrical air electrode molded body in a roll shape and simultaneously fired, and then a fuel electrode is formed on the solid electrolyte surface. is there. In order to simplify the process, a co-sintering method has also been proposed in which a fuel electrode compact is further laminated on the surface of a solid electrolyte compact, and co-firing is performed.

【0007】この共焼結法は非常に簡単なプロセスで製
造工程数も少なく、セルの製造時の歩留まり向上、コス
ト低減に有利である。
This co-sintering method is a very simple process and has a small number of manufacturing steps, and is advantageous for improving the yield in manufacturing cells and reducing costs.

【0008】[0008]

【発明が解決しようとする課題】燃料極は金属粒子を主
成分とし、他のセラミックスからなる空気極、固体電解
質、集電体とは熱膨張係数が大きく異なるため、空気極
成形体に、固体電解質成形体、集電体成形体および燃料
極成形体を積層して、同時焼成する場合には、燃料極成
形体の厚みを薄くしなければ剥離やクラックが発生する
ため、その厚みは20μm以下とされていたが、このよ
うな20μm以下の厚さの燃料極では電気抵抗が高く、
発生した電流を効率良く集電することができず、結果と
して発電効率が低下するという問題があった。
Since the fuel electrode contains metal particles as a main component and has a coefficient of thermal expansion greatly different from that of an air electrode, a solid electrolyte, and a current collector made of other ceramics, the fuel electrode molded body is solid. When the electrolyte molded body, the current collector molded body, and the fuel electrode molded body are laminated and co-fired, peeling and cracks occur unless the thickness of the fuel electrode molded body is reduced, so the thickness is 20 μm or less. However, the electric resistance is high in such a fuel electrode with a thickness of 20 μm or less,
There has been a problem that the generated current cannot be efficiently collected, resulting in a decrease in power generation efficiency.

【0009】このような問題を解決するため、本出願人
は、先に、空気極の表面に、固体電解質、第1燃料極、
第2燃料極を順次積層してなり、空気極、固体電解質、
第1燃料極を同時焼成し、第2燃料極を第1燃料極の表
面に焼き付けて形成した固体電解質型燃料電池セルを提
案した。
In order to solve such a problem, the present applicant first found that the solid electrolyte, the first fuel electrode,
A second fuel electrode is sequentially laminated, and an air electrode, a solid electrolyte,
A solid oxide fuel cell was proposed in which the first fuel electrode was co-fired and the second fuel electrode was baked on the surface of the first fuel electrode.

【0010】ここでは、第1燃料極は、金属粉末(ある
いは金属酸化物粉末)とセラミック粉末を含むシート状
の第1燃料極成形体を固体電解質成形体に積層し、空気
極、固体電解質、集電体との同時焼成によって形成し、
この第1燃料極の表面に、金属粉末(あるいは金属酸化
物粉末)とセラミック粉末、さらにセラミックを構成す
る元素を含む有機金属塩からなるペーストを塗布し、焼
き付けることによって第2燃料極を形成していた。
In the first fuel electrode, a sheet-shaped first fuel electrode compact containing a metal powder (or a metal oxide powder) and a ceramic powder is laminated on a solid electrolyte compact to form an air electrode, a solid electrolyte, Formed by co-firing with a current collector,
The surface of the first fuel electrode is coated with a paste composed of a metal powder (or a metal oxide powder), a ceramic powder, and an organic metal salt containing an element constituting the ceramic, and baked to form a second fuel electrode. Was there.

【0011】このような固体電解質型燃料電池セルで
は、固体電解質を構成するZrO2膜と高温焼結により
強固に結合されている第1燃料極内部のZrO2粒子の
表面に、より微粒でサブミクロンレベルのZrO2微粒
子を付着堆積させ焼結(焼き付け)され、第2燃料極の
下層部に存在するZrO2微粒子が第1燃料極のZrO2
粒子と結合一体化し、強固な界面を形成できる。
In such a solid oxide fuel cell, finer sub-particles are formed on the surface of the ZrO 2 particles inside the first fuel electrode, which are firmly bonded to the ZrO 2 film constituting the solid electrolyte by high temperature sintering. micron level ZrO 2 fine particles are deposited deposited was sintered (baked), ZrO 2 fine particles present in the lower portion of the second fuel electrode ZrO first fuel electrode 2
It can be bonded and integrated with particles to form a strong interface.

【0012】しかしながら、同時焼成して形成された第
1燃料極と、固体電解質との接合強度が未だ低いという
問題があった。これにより、長期間連続して発電する
と、固体電解質から第1燃料極の剥離が発生し易いとい
う問題があった。特に、近年、直径が10mm以下の小
径の円筒状セルが用いられるようになっているが、この
ような小径のセルでは曲率が大きいために、第1、第2
燃料極に過大な応力が発生し易く、長期間の発電により
第1、第2燃料極が剥離し易くなるという問題があっ
た。
However, there is a problem that the bonding strength between the first fuel electrode formed by co-firing and the solid electrolyte is still low. As a result, when power is continuously generated for a long period of time, there is a problem in that the first fuel electrode is likely to be separated from the solid electrolyte. In particular, in recent years, a small-diameter cylindrical cell having a diameter of 10 mm or less has been used. However, since such a small-diameter cell has a large curvature, the first and second
There is a problem that excessive stress is likely to be generated in the fuel electrode, and the first and second fuel electrodes are likely to peel off due to long-term power generation.

【0013】本発明は、第1燃料極と第2燃料極間の接
合界面を強固にできるとともに、第1燃料極の固体電解
質からの剥離を有効に防止でき、高い発電能力を長期間
維持できる固体電解質型燃料電池セル及びその製法並び
に燃料電池を提供することを目的とする。
According to the present invention, the joint interface between the first fuel electrode and the second fuel electrode can be strengthened, and the first fuel electrode can be effectively prevented from peeling off from the solid electrolyte, so that high power generation capability can be maintained for a long period of time. An object of the present invention is to provide a solid oxide fuel cell, a method for producing the same, and a fuel cell.

【0014】[0014]

【課題を解決するための手段】本発明の固体電解質型燃
料電池セルは、固体電解質の片面に燃料極、他方の面に
空気極を形成してなる固体電解質型燃料電池セルであっ
て、前記燃料極が前記固体電解質表面に同時焼成して形
成された第1燃料極と、該第1燃料極の表面に焼き付け
て形成された第2燃料極とを具備するとともに、前記第
1燃料極及び前記第2燃料極にはセラミック粒子が存在
し、かつ、前記第1燃料極及び前記第2燃料極を構成す
る鉄族金属粒子又は鉄族金属酸化物粒子の表面に、膜状
及び/又は微粒子状の微粒セラミック粒子が析出してい
ることを特徴とする。
A solid oxide fuel cell according to the present invention is a solid oxide fuel cell in which a fuel electrode is formed on one surface of a solid electrolyte and an air electrode is formed on the other surface of the solid electrolyte. The fuel electrode includes a first fuel electrode formed by simultaneous firing on the surface of the solid electrolyte, and a second fuel electrode formed by baking on the surface of the first fuel electrode. Ceramic particles are present in the second fuel electrode, and a film and / or fine particles are formed on the surface of the iron group metal particles or iron group metal oxide particles forming the first fuel electrode and the second fuel electrode. It is characterized in that fine ceramic particles in the form of particles are deposited.

【0015】このような固体電解質型燃料電池では、第
1燃料極の微粒セラミック粒子は、主として固体電解質
側に存在し、第2燃料極の微粒セラミック粒子は、主と
して第1燃料極側に存在するが、例えば、第2燃料極を
構成する鉄族金属粒子又は鉄族金属酸化物粒子の表面に
存在する、膜状及び/又は微粒子状のZrO2粒子(微
粒セラミック粒子)が、第1燃料極内部のZrO2粒子
(セラミック粒子)の表面に結合一体化し、強固な界面
を形成でき、第2燃料極の第1燃料極への接合強度を向
上できるとともに、例えば、第1燃料極を構成する鉄族
金属粒子又は鉄族金属酸化物粒子の表面に存在する、膜
状及び/又は微粒子状のZrO2粒子(微粒セラミック
粒子)が、固体電解質内部のZrO2粒子の表面に結合
一体化し、強固な界面を形成でき、第1燃料極の固体電
解質への接合強度を向上でき、高い発電能力を長期間維
持できる。
In such a solid oxide fuel cell, the fine ceramic particles of the first fuel electrode are mainly present on the solid electrolyte side, and the fine ceramic particles of the second fuel electrode are mainly present on the first fuel electrode side. However, for example, the film-shaped and / or fine-particle-shaped ZrO 2 particles (fine ceramic particles) existing on the surface of the iron group metal particles or the iron group metal oxide particles forming the second fuel electrode are the first fuel electrode. The ZrO 2 particles (ceramic particles) inside can be bonded and integrated with the surface to form a strong interface, and the bonding strength of the second fuel electrode to the first fuel electrode can be improved, and for example, the first fuel electrode can be formed. The film-like and / or fine-particle ZrO 2 particles (fine ceramic particles) present on the surface of the iron-group metal particles or iron-group metal oxide particles are bonded and integrated to the surface of the ZrO 2 particles inside the solid electrolyte, and thus solidified. World The possible formation, the bonding strength of the solid electrolyte of the first fuel electrode can be improved, can maintain a high power generation capacity long time.

【0016】また、本発明では、第2燃料極を構成する
鉄族金属粒子又は鉄族金属酸化物粒子の平均粒径は、第
1燃料極を構成する鉄族金属粒子又は鉄族金属酸化物粒
子の平均粒径よりも大きいことが望ましい。このような
構成によれば、第1燃料極を構成する鉄族金属粒子又は
鉄族金属酸化物粒子は微粒子なため3重点を形成する反
応場を十分確保でき、一方、第2燃料極を構成する鉄族
金属粒子又は鉄族金属酸化物粒子は粗粒子なため、多孔
質構造を確保でき、集電作用に加え、電極反応に必要な
還元及び生成する水蒸気ガスの通気性をも十分確保する
ことができる。
In the present invention, the average particle size of the iron group metal particles or iron group metal oxide particles forming the second fuel electrode is the iron group metal particles or iron group metal oxide forming the first fuel electrode. It is desirable that the particle size is larger than the average particle size. According to this structure, since the iron group metal particles or iron group metal oxide particles forming the first fuel electrode are fine particles, a reaction field for forming the triple point can be sufficiently secured, while the second fuel electrode is formed. Since the iron group metal particles or iron group metal oxide particles are coarse particles, a porous structure can be secured, and in addition to the current collecting function, the reduction necessary for the electrode reaction and the gas permeability of the generated steam gas are sufficiently secured. be able to.

【0017】さらに、本発明の固体電解質型燃料電池セ
ルは、外径が10mm以下の円筒状であることが望まし
い。このような小径のセルでは、曲率が大きいために、
第1燃料極、第2燃料極に過大な応力が発生し易く、製
造時における製造歩留まりが低下したり、長期間の発電
により第1燃料極、第2燃料極が剥離し易くなる傾向が
あるため、本発明の固体電解質型燃料電池セルを用いる
意義が大きい。
Furthermore, it is desirable that the solid oxide fuel cell of the present invention has a cylindrical shape with an outer diameter of 10 mm or less. In such a small-diameter cell, since the curvature is large,
Excessive stress is likely to be generated in the first fuel electrode and the second fuel electrode, the manufacturing yield at the time of manufacturing may be reduced, and the first fuel electrode and the second fuel electrode may be easily separated due to long-term power generation. Therefore, the use of the solid oxide fuel cell of the present invention has great significance.

【0018】また、本発明の固体電解質型燃料電池セル
の製法は、固体電解質成形体(仮焼体も含む)の片面に
第1燃料極成形体、他方の面に空気極成形体(仮焼体も
含む)が形成された積層体を焼成する工程と、第1燃料
極の表面に第2燃料極成形体を形成して焼き付ける工程
とを具備する固体電解質型燃料電池セルの製法であっ
て、前記第1燃料極成形体及び前記第2燃料極成形体
が、鉄族金属粉末又は鉄族金属酸化物粉末と、セラミッ
ク粉末と、有機金属塩を含有する方法である。
Further, the method for producing a solid oxide fuel cell of the present invention comprises a solid electrolyte molded body (including a calcined body) having a first fuel electrode molded body on one surface and an air electrode molded body (calculated body) on the other surface. A solid electrolyte fuel cell, the method comprising the steps of: firing a laminated body on which a fuel cell is formed); and a step of forming and baking a second fuel electrode compact on the surface of the first fuel electrode. In the method, the first fuel electrode compact and the second fuel electrode compact contain an iron group metal powder or iron group metal oxide powder, a ceramic powder, and an organic metal salt.

【0019】例えば、ZrとYの有機金属塩を用いるこ
とにより、この有機金属塩が第1燃料極成形体を形成す
る段階で固体電解質側に沈降し、ここで鉄族金属粒子又
は鉄族金属酸化物粒子の表面に、膜状及び/又は微粒子
状のYSZ(微粒セラミック粒子)が析出し、このYS
Zが固体電解質のYSZと結合一体化する。同様に、有
機金属塩が第2燃料極成形体を形成する段階で第1燃料
極側に沈降し、ここで鉄族金属粒子又は鉄族金属酸化物
粒子の表面に、膜状及び/又は微粒子状のYSZ(微粒
セラミック粒子)が析出し、このYSZが第1燃料極の
YSZ(セラミック粒子)と結合一体化し、本発明の固
体電解質型燃料電池セルを得ることができる。
For example, by using an organic metal salt of Zr and Y, this organic metal salt precipitates on the solid electrolyte side at the stage of forming the first fuel electrode compact, and the iron group metal particles or the iron group metal are present here. YSZ (fine ceramic particles) in the form of film and / or fine particles is deposited on the surface of the oxide particles,
Z is integrated with YSZ of the solid electrolyte. Similarly, the organometallic salt precipitates on the first fuel electrode side at the stage of forming the second fuel electrode compact, and here, on the surface of the iron group metal particles or iron group metal oxide particles, a film-like and / or fine particles are formed. YSZs (fine ceramic particles) are deposited, and the YSZs are combined and integrated with the YSZs (ceramic particles) of the first fuel electrode to obtain the solid oxide fuel cell of the present invention.

【0020】本発明の燃料電池は、反応容器内に、上記
した固体電解質型燃料電池セルを複数収容してなるもの
である。
The fuel cell of the present invention comprises a plurality of the above-described solid oxide fuel cell units housed in a reaction vessel.

【0021】[0021]

【発明の実施の形態】本発明の固体電解質型燃料電池セ
ルは、図1に示すように固体電解質31の内面に円筒状
の空気極32、外面に燃料極33を形成してセル本体3
4が形成されており、空気極32には集電体(インター
コネクタ)35が電気的に接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, a solid oxide fuel cell of the present invention comprises a cell body 3 having a solid electrolyte 31 having a cylindrical air electrode 32 on the inner surface and a fuel electrode 33 on the outer surface.
4 is formed, and a collector (interconnector) 35 is electrically connected to the air electrode 32.

【0022】即ち、固体電解質31の一部に切欠部36
が形成され、固体電解質31の内面に形成されている空
気極32の一部が露出しており、この露出面37及び切
欠部36近傍の固体電解質31の表面が集電体35によ
り被覆され、集電体35が、固体電解質31の両端部表
面及び固体電解質31の切欠部36から露出した空気極
32の表面に接合されている。
That is, the notch 36 is formed in a part of the solid electrolyte 31.
Is formed, a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the exposed surface 37 and the surface of the solid electrolyte 31 near the notch 36 are covered with the current collector 35. The current collector 35 is joined to the surfaces of both end portions of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notches 36 of the solid electrolyte 31.

【0023】空気極32と電気的に接続する集電体35
は、セル本体34の外面に形成され、連続する円弧面状
に形成された固体電解質31の両端部表面と露出面37
を覆うように形成されており、燃料極33とは電気的に
接続されていない。
A current collector 35 electrically connected to the air electrode 32.
Is formed on the outer surface of the cell body 34, and both end surfaces and the exposed surface 37 of the solid electrolyte 31 formed in a continuous arc surface shape.
And is not electrically connected to the fuel electrode 33.

【0024】そして、本発明の固体電解質型燃料電池セ
ルでは、図2に示すように、燃料極33が、固体電解質
31、空気極32、集電体35と同時焼成により形成さ
れた第1燃料極33aと、この第1燃料極33aの表面
に焼き付けて形成された第2燃料極33bとから構成さ
れている。これらの第1燃料極33aと第2燃料極33
b中には、図3に示すように、セラミック粒子41、4
3と、鉄族金属粒子45、46表面に膜状及び/又は微
粒子状の微粒セラミック粒子47、48が析出してい
る。
In the solid oxide fuel cell of the present invention, as shown in FIG. 2, the fuel electrode 33 is the first fuel formed by co-firing with the solid electrolyte 31, the air electrode 32, and the current collector 35. It is composed of a pole 33a and a second fuel pole 33b formed by baking on the surface of the first fuel pole 33a. These first fuel electrode 33a and second fuel electrode 33
As shown in FIG. 3, ceramic particles 41, 4 and
3 and the iron-group metal particles 45 and 46 have film-shaped and / or fine-particle-shaped fine ceramic particles 47 and 48 deposited thereon.

【0025】この膜状及び/又は微粒子状の微粒セラミ
ック粒子47、48としては、固体電解質31を形成す
るZrO2系材料との接合から考えて、Y23を含有す
るZrO2(YSZ)が望ましい。また、固体電解質3
1との接合強度向上等の点から添加されるセラミック粒
子41、43は、Y23を含有するZrO2(YSZ)
が望ましい。鉄族金属粒子45、46としては、Fe、
Co、Ni等があるが、このうちNiが望ましい。
The film-shaped and / or fine-particle-shaped fine ceramic particles 47 and 48 are ZrO 2 (YSZ) containing Y 2 O 3 in view of bonding with the ZrO 2 type material forming the solid electrolyte 31. Is desirable. In addition, the solid electrolyte 3
The ceramic particles 41 and 43 added from the standpoint of improving the bonding strength with 1 are ZrO 2 (YSZ) containing Y 2 O 3.
Is desirable. As the iron group metal particles 45 and 46, Fe,
There are Co, Ni, etc., but Ni is preferable.

【0026】尚、鉄族金属粒子45、46の代わりに鉄
族金属酸化物粒子を用いても良い。この場合には、第2
燃料極33bの焼き付け後における還元処理、或いは発
電する際に還元雰囲気に晒されることにより、金属粒子
となる。
Instead of the iron group metal particles 45 and 46, iron group metal oxide particles may be used. In this case, the second
The reduction process after baking the fuel electrode 33b, or exposure to the reducing atmosphere during power generation, turns into metal particles.

【0027】第2燃料極33bの鉄族金属粒子46の平
均粒径は第1燃料極33aの鉄族金属粒子45の平均粒
径よりも大きくされている。これにより、第1燃料極3
3aでは金属粒子45の反応サイト数という観点から金
属粒子45の反応サイト数を十分に形成することができ
る。一方、第2燃料極33bの金属粒子46の平均粒径
が第1燃料極33aよりも大きいため、集電能を良好に
できるとともに、反応に預かるガスのみだけでなく、反
応によって生成したガスの透過性を良好に保つことがで
きる。
The average particle size of the iron group metal particles 46 of the second fuel electrode 33b is made larger than the average particle size of the iron group metal particles 45 of the first fuel electrode 33a. As a result, the first fuel electrode 3
In 3a, the number of reaction sites of the metal particles 45 can be sufficiently formed from the viewpoint of the number of reaction sites of the metal particles 45. On the other hand, since the average particle size of the metal particles 46 of the second fuel electrode 33b is larger than that of the first fuel electrode 33a, the current collecting ability can be improved, and not only the gas deposited in the reaction but also the gas generated by the reaction can permeate. It is possible to maintain good sex.

【0028】第1燃料極33aの微粒セラミック粒子4
7は、主として固体電解質31表面側に存在し、第2燃
料極33bの微粒セラミック粒子48は、主として第1
燃料極33a表面側に存在している。
Fine ceramic particles 4 of the first fuel electrode 33a
7 is mainly present on the surface side of the solid electrolyte 31, and the fine ceramic particles 48 of the second fuel electrode 33b are mainly the first ceramic particles.
It exists on the surface side of the fuel electrode 33a.

【0029】第1燃料極33aの鉄族金属粒子45の表
面に存在する微粒セラミック粒子47は、固体電解質3
1を構成するYSZ粒子49表面に接合し、第2燃料極
33bの鉄族金属粒子46の表面に存在する微粒セラミ
ック粒子48は、第1燃料極33a中のセラミック粒子
41に接合している。本発明では、セラミック粒子4
1、43は粒径が1μm以上として、微粒セラミック粒
子47、48は粒径が0.5μmとして存在する。
The fine ceramic particles 47 existing on the surface of the iron group metal particles 45 of the first fuel electrode 33a are solid electrolyte 3
The fine ceramic particles 48 bonded to the surface of the YSZ particles 49 constituting No. 1 and existing on the surface of the iron group metal particles 46 of the second fuel electrode 33b are bonded to the ceramic particles 41 in the first fuel electrode 33a. In the present invention, the ceramic particles 4
1 and 43 have a particle size of 1 μm or more, and the fine ceramic particles 47 and 48 have a particle size of 0.5 μm.

【0030】本発明の固体電解質型燃料電池セルは、外
径が10mm以下の円筒状とされている。このような小
径のセルでは曲率が大きいため、成形時や焼成時に内部
応力が発生し易く、第1燃料極33a、第2燃料極33
bが剥離し易い傾向があるため、本発明を用いる意義が
大きい。外径が5mm以下の場合が最も効果的である。
尚、本発明でいうセルの外径とは、セルの最大外径であ
る。
The solid oxide fuel cell of the present invention has a cylindrical shape with an outer diameter of 10 mm or less. Since such a small-diameter cell has a large curvature, internal stress is likely to occur during molding and firing, and the first fuel electrode 33a and the second fuel electrode 33
Since b tends to be easily peeled off, the use of the present invention is significant. It is most effective when the outer diameter is 5 mm or less.
The outer diameter of the cell in the present invention is the maximum outer diameter of the cell.

【0031】固体電解質31は、例えば3〜15モル%
のY23含有した部分安定化あるいは安定化ZrO2
用いられる。また、空気極32としては、例えば、La
をCa又はSrで10〜30原子%、Yで5〜20原子
%置換したLaMnO3が用いられ、集電体35として
は、例えば、CrをMgで10〜30原子%置換したL
aCrO3が用いられる。
The solid electrolyte 31 contains, for example, 3 to 15 mol%.
Partially stabilized or stabilized ZrO 2 containing Y 2 O 3 is used. Further, as the air electrode 32, for example, La
LaMnO 3 in which 10 to 30 atomic% of Ca or Sr is substituted with 5 to 20 atomic% of Y is used, and as the current collector 35, for example, L in which Cr is substituted with 10 to 30 atomic% of L is used.
aCrO 3 is used.

【0032】第1燃料極33a及び第2燃料極33bと
しては、50〜80重量%Niを含むZrO2(Y23
含有)サーメットが好適に用いられる。
As the first fuel electrode 33a and the second fuel electrode 33b, ZrO 2 (Y 2 O 3 containing 50 to 80% by weight of Ni is used.
Included) cermet is preferably used.

【0033】固体電解質31、空気極32、集電体3
5、第1燃料極33a及び第2燃料極33bとしては、
上記例に限定されるものではなく、公知材料を用いても
良い。
Solid electrolyte 31, air electrode 32, current collector 3
5, the first fuel electrode 33a and the second fuel electrode 33b,
The material is not limited to the above example, and a known material may be used.

【0034】以上のように構成された固体電解質型燃料
電池セルの製法は、まず、円筒状の空気極成形体を形成
する。この円筒状の空気極成形体は、例えば所定の調合
組成に従いLa23、Y23、CaCO3及びMn23
の素原料を秤量、混合する。
In the method of manufacturing the solid oxide fuel cell having the above structure, first, a cylindrical air electrode molded body is formed. This cylindrical air electrode formed body has, for example, La 2 O 3 , Y 2 O 3 , CaCO 3 and Mn 2 O 3 according to a predetermined composition.
Weigh and mix the raw materials.

【0035】この後、例えば、1500℃程度の温度で
2〜10時間仮焼し、その後4〜8μmの粒度に粉砕調
製する。調製した粉体に、バインダーを混合、混練し押
出成形法により円筒状の空気極成形体を作製し、さらに
脱バインダー処理し、1200〜1250℃で仮焼を行
うことで円筒状の空気極仮焼体を作製する。
After that, for example, calcination is performed at a temperature of about 1500 ° C. for 2 to 10 hours, and then pulverized to a particle size of 4 to 8 μm. The prepared powder is mixed with a binder and kneaded to prepare a cylindrical air electrode formed body by an extrusion molding method, and further subjected to binder removal treatment and calcination at 1200 to 1250 ° C. to form a cylindrical air electrode temporary body. Create a fired body.

【0036】次に、固体電解質成形体を貼り付けるため
のペーストの作製について説明する。Mn拡散防止層と
しての機能を有するペーストは、Y23、CaOの少な
くとも一種を含有するZrO2粉末と、YDC粉末(Y2
3を30重量%ドープしたCeO2)とを混合仮焼し、
その後粒度調製した上記混合粉末に溶媒としてトルエン
を添加し作製する。このペーストを円筒状の空気極仮焼
体の表面に塗布してMn拡散防止層の塗布膜を形成し
た。
Next, the production of a paste for attaching the solid electrolyte compact will be described. The paste having a function as a Mn diffusion preventing layer includes a ZrO 2 powder containing at least one of Y 2 O 3 and CaO and a YDC powder (Y 2 O 3
CeO 2 ) doped with 30 wt% of O 3 is mixed and calcined,
After that, toluene is added as a solvent to the above-mentioned mixed powder whose particle size has been adjusted, to prepare. This paste was applied to the surface of a cylindrical air electrode calcined body to form a coating film of the Mn diffusion preventing layer.

【0037】シート状の第1固体電解質成形体として、
23を含有するZrO2粉末にトルエン、バインダ
ー、市販の分散剤を加えてスラリー化したものをドクタ
ーブレード等の方法により、例えば、100〜120μ
mの厚さに成形したものを用い、円筒状の空気極仮焼体
の表面に形成されたMn拡散防止層の塗布膜の表面に、
第1固体電解質成形体を貼り付けて仮焼し、空気極仮焼
体の表面に第1固体電解質仮焼体を形成する。尚、第1
固体電解質成形体を仮焼したが、仮焼しなくても良い。
As the sheet-shaped first solid electrolyte molded body,
A slurry obtained by adding toluene, a binder, and a commercially available dispersant to ZrO 2 powder containing Y 2 O 3 is prepared by a method such as a doctor blade, for example, 100 to 120 μm.
Using a molded product having a thickness of m, on the surface of the coating film of the Mn diffusion preventing layer formed on the surface of the cylindrical air electrode calcined body,
The first solid electrolyte molded body is attached and calcined to form a first solid electrolyte calcined body on the surface of the air electrode calcined body. The first
Although the solid electrolyte molded body was calcined, it does not have to be calcined.

【0038】次に、シート状の第1燃料極成形体を作製
する。まず、例えば、所定比率に調製したNi粉体、Y
23を含有するZrO2(YSZ)粉末に、トルエン、
Zr、Yを含む有機金属塩溶液を加えてスラリー化した
ものを準備する。
Next, a sheet-shaped first fuel electrode compact is prepared. First, for example, Ni powder prepared in a predetermined ratio, Y
To ZrO 2 (YSZ) powder containing 2 O 3 , toluene,
An organometallic salt solution containing Zr and Y is added to prepare a slurry.

【0039】前記第1固体電解質成形体の作製と同様、
成形し、例えば、厚さ15μmのシート状の第2固体電
解質成形体を成形、乾燥する。この第2固体電解質成形
体上に上記スラリーを印刷、乾燥した後、第1固体電解
質仮焼体上に、第1燃料極成形体が形成された第2固体
電解質成形体を、第1固体電解質仮焼体に第2固体電解
質成形体が当接するように巻き付け、積層する。第1燃
料極のスラリー塗布により、有機金属塩が第2固体電解
質成形体側に沈降する。
In the same manner as in the production of the first solid electrolyte molded body,
For example, a sheet-shaped second solid electrolyte molded body having a thickness of 15 μm is molded and dried. After printing and drying the slurry on the second solid electrolyte compact, the second solid electrolyte compact having the first fuel electrode compact formed on the first solid electrolyte calcined compact is treated with the first solid electrolyte. The second solid electrolyte molded body is wound around the calcined body so as to come into contact with the calcined body and laminated. By applying the slurry to the first fuel electrode, the organic metal salt settles toward the second solid electrolyte compact.

【0040】次に、固体電解質成形体の調製同様、10
0〜120μmの厚さに成形した集電体成形体を所定箇
所に貼り付ける。
Next, as in the preparation of the solid electrolyte molded body, 10
A current collector molded body having a thickness of 0 to 120 μm is attached to a predetermined place.

【0041】この後、円筒状空気極仮焼体、Mn拡散防
止層の塗布膜、第1固体電解質仮焼体、第2固体電解質
成形体、第1燃料極成形体及び集電体成形体の積層体
は、例えば、大気中1400〜1550℃の温度で、4
層同時に共焼成される。
Thereafter, the cylindrical air electrode calcined body, the coating film of the Mn diffusion preventing layer, the first solid electrolyte calcined body, the second solid electrolyte compact, the first fuel electrode compact and the collector compact were formed. The laminated body is, for example, at a temperature of 1400 to 1550 ° C. in the atmosphere and 4
The layers are co-fired at the same time.

【0042】次に、第2燃料極ペーストを作製する。所
定比率に調製したNi粉体、Y23を含有するZrO2
(YSZ)粉体、Zr及びYの有機金属塩に、トルエン
を加えてスラリー化したものを準備する。
Next, a second fuel electrode paste is prepared. Ni powder prepared in a predetermined ratio, ZrO 2 containing Y 2 O 3
(YSZ) powder, organometallic salts of Zr and Y, and toluene are added to prepare a slurry.

【0043】第2燃料極は、空気極、固体電解質、第1
燃料極及び集電体を共焼結させた後に、第1燃料極の表
面に第2燃料極のスラリーを塗布印刷し、乾燥して第2
燃料極成形体を作製し、大気雰囲気下において1400
℃以下で熱処理(焼き付け)することにより行う。第2
燃料極のスラリー塗布印刷により、有機金属塩が第1燃
料極側に沈降する。
The second fuel electrode is the air electrode, the solid electrolyte, the first
After co-sintering the fuel electrode and the current collector, the slurry of the second fuel electrode is applied and printed on the surface of the first fuel electrode and dried to form the second electrode.
A fuel electrode molded body was prepared and subjected to 1400 in the atmosphere.
It is carried out by heat treatment (baking) at a temperature of not more than ℃. Second
The organometallic salt settles to the first fuel electrode side by the slurry application printing of the fuel electrode.

【0044】このように作製した第2燃料極は、膜の表
面状態が優れ、また下地の第1燃料極との界面の接合状
態も良好である。集電機能と併せ、部材間との構造的な
安定性を図れるように第2燃料極を構成するYSZの混
在、混在比率の制御を行っているので、界面剥離、膜内
部のクラック生成に伴う分極、実抵抗の増大を阻止で
き、単セルで得た初期の高い出力密度を良好に集電で
き、長時間にわたって維持できる。
The second fuel electrode produced in this manner has an excellent film surface condition and a good bonding condition at the interface with the underlying first fuel electrode. In addition to the current collection function, the YSZ forming the second fuel electrode is mixed and the mixing ratio is controlled so as to achieve structural stability between the members. It is possible to prevent an increase in polarization and actual resistance, collect the high initial power density obtained in a single cell, and maintain it for a long time.

【0045】尚、上記例では円筒状の固体電解質型燃料
電池セルにおいて説明したが、平板型燃料電池セルであ
っても良い。
In the above example, a cylindrical solid oxide fuel cell is described, but a flat plate fuel cell may be used.

【0046】さらに、上記例では、空気極仮焼体、第1
固体電解質仮焼体を形成した例について説明したが、こ
れらが、空気極成形体、第1固体電解質成形体であって
も良い。
Further, in the above example, the air electrode calcined body, the first
Although the example of forming the solid electrolyte calcined body has been described, these may be the air electrode molded body or the first solid electrolyte molded body.

【0047】本発明の燃料電池は、例えば、図4に示す
ように、反応容器51内に、酸素含有ガス室仕切板5
3、燃焼室仕切板55、燃料ガス室仕切板57を用いて
酸素含有ガス室A、燃焼室B、反応室C、燃料ガス室D
が形成されている。反応容器51内には、上記した複数
の有底筒状の固体電解質型燃料電池セル59が収容され
ており、これらの固体電解質型燃料電池セル59は、燃
焼室仕切板55に形成されたセル挿入孔60に挿入固定
されており、その開口部61は燃焼室仕切板55から燃
焼室B内に突出しており、その内部には酸素含有ガス室
仕切板53に固定された酸素含有ガス導入管63の一端
が挿入されている。燃焼室仕切板55には、余剰の未反
応燃料ガスを反応室Cから燃焼室Bに排出するために、
複数の排気孔64が形成されており、燃料ガス室仕切板
57には、燃料ガス室Dから反応室C内に供給するため
の供給孔が形成されている。
In the fuel cell of the present invention, for example, as shown in FIG. 4, an oxygen-containing gas chamber partition plate 5 is provided in a reaction vessel 51.
3, the combustion chamber partition plate 55 and the fuel gas chamber partition plate 57 are used to form the oxygen-containing gas chamber A, the combustion chamber B, the reaction chamber C, and the fuel gas chamber D.
Are formed. The plurality of bottomed cylindrical solid oxide fuel cell units 59 are housed in the reaction vessel 51, and these solid oxide fuel cell units 59 are formed on the combustion chamber partition plate 55. The opening 61 is inserted and fixed in the insertion hole 60, and the opening 61 projects from the combustion chamber partition plate 55 into the combustion chamber B, and the oxygen-containing gas introduction pipe fixed to the oxygen-containing gas chamber partition plate 53 is provided therein. One end of 63 is inserted. In the combustion chamber partition plate 55, in order to discharge excess unreacted fuel gas from the reaction chamber C to the combustion chamber B,
A plurality of exhaust holes 64 are formed, and the fuel gas chamber partition plate 57 is provided with a supply hole for supplying the fuel gas chamber D into the reaction chamber C.

【0048】また、反応容器51には、例えば水素から
なる燃料ガスを導入する燃料ガス導入口65、例えば、
空気を導入する酸素含有ガス導入口67、燃焼室B内で
燃焼したガスを排出するための排気口69が形成されて
いる。
Further, in the reaction vessel 51, a fuel gas inlet port 65 for introducing a fuel gas composed of hydrogen, for example,
An oxygen-containing gas introduction port 67 for introducing air and an exhaust port 69 for discharging the gas burned in the combustion chamber B are formed.

【0049】このような固体電解質型燃料電池は、酸素
含有ガス室Aからの酸素含有ガス、例えば空気を、酸素
含有ガス導入管63を介して固体電解質型燃料電池セル
59内にそれぞれ供給し、かつ、燃料ガス室Dからの燃
料ガスを複数の固体電解質型燃料電池セル59間に供給
し、反応室Cにて反応させ発電し、余剰の空気と未反応
燃料ガスを燃焼室Bにて燃させ、燃焼したガスが排気口
69から外部に排出される。
In such a solid oxide fuel cell, the oxygen containing gas from the oxygen containing gas chamber A, for example, air is supplied into the solid oxide fuel cell 59 through the oxygen containing gas introducing pipe 63, respectively. Further, the fuel gas from the fuel gas chamber D is supplied between the plurality of solid oxide fuel cell units 59 to react in the reaction chamber C to generate electric power, and surplus air and unreacted fuel gas are burned in the combustion chamber B. Then, the burned gas is discharged to the outside through the exhaust port 69.

【0050】尚、本発明の燃料電池は、上記した図4の
燃料電池に限定されるものではなく、反応容器内に、上
記した燃料電池セルを複数収容していれば良い。
The fuel cell of the present invention is not limited to the fuel cell of FIG. 4 described above, and it is sufficient that a plurality of the above-mentioned fuel cells are accommodated in the reaction container.

【0051】[0051]

【実施例】円筒状の固体電解質型燃料電池セルを共焼結
法により作製するため、まず円筒状の空気極仮焼体を以
下の手順で作製した。市販の純度99.9%以上のLa
23、Y23、CaCO3、Mn23を出発原料とし
て、1500℃で仮焼し、(La0.560.14Ca0.3
0.97MnO3を作製し、その後、4μmの粒度に粉砕調
整し、これを用いて、外径の異なる円筒形状の支持管を
押出成形後、1250℃の条件で脱バイ、仮焼し、空気
極仮焼体を作製した。
Example In order to manufacture a cylindrical solid oxide fuel cell unit by the co-sintering method, first, a cylindrical air electrode calcined body was manufactured by the following procedure. La with a purity of 99.9% or more on the market
2 O 3 , Y 2 O 3 , CaCO 3 , and Mn 2 O 3 were used as starting materials and calcined at 1500 ° C. (La 0.56 Y 0.14 Ca 0.3 ).
0.97 MnO 3 was prepared, and then pulverized to a particle size of 4 μm. Using this, cylindrical support tubes with different outer diameters were extruded and then de-heated and calcined at 1250 ° C. A calcined body was prepared.

【0052】次に、Y23を8モル%の割合で含有する
平均粒径が1〜2μmのZrO2粉末を用いてスラリー
を調製し、ドクターブレード法により厚さ100μmと
厚さ15μmの第1及び2固体電解質成形体としてのシ
ートを作製した。
Next, a slurry was prepared by using ZrO 2 powder containing Y 2 O 3 in an amount of 8 mol% and having an average particle size of 1 to 2 μm, and a slurry having a thickness of 100 μm and a thickness of 15 μm was prepared by a doctor blade method. A sheet as a first and second solid electrolyte molded body was produced.

【0053】次に、第1燃料極成形体の作製について説
明する。平均粒径が0.5〜1.5μmのNi粉末に対
し、Y23を8モル%の割合で含有する平均粒径が0.
6μmのZrO2(YSZ)粉末と、Zr、Yのそれぞ
れの有機金属塩を準備し、Ni/YSZ比率(重量分
率)が65/35になるようにYSZの粉末とZr、Y
のそれぞれの有機金属塩を調合し、スラリーを作製し
た。
Next, the production of the first fuel electrode compact will be described. The Ni powder having an average particle diameter of 0.5 to 1.5 μm contained Y 2 O 3 in an amount of 8 mol% and had an average particle diameter of 0.1.
6 μm ZrO 2 (YSZ) powder and Zr and Y organometallic salts were prepared, and the YSZ powder and Zr and Y were adjusted so that the Ni / YSZ ratio (weight fraction) was 65/35.
Each of the organometallic salts of was prepared and a slurry was prepared.

【0054】その後、調製したスラリーを第2固体電解
質成形体上に、30μmの厚さになるように全面に印刷
し、その後乾燥し、第1燃料極成形体を第2固体電解質
成形体上に形成した。
Thereafter, the prepared slurry is printed on the entire surface of the second solid electrolyte compact so as to have a thickness of 30 μm, and then dried, and the first fuel electrode compact is placed on the second solid electrolyte compact. Formed.

【0055】一方、第2燃料極成形体用のスラリーは、
平均粒径が5〜10μmのNi粉末に対し、Y23を8
モル%の割合で含有する平均粒径が0.6μmのZrO
2(YSZ)粉末、及びZr、Yのそれぞれの有機金属
塩を準備し、Ni/YSZ比率(重量分率)が72/2
8になるように調合・混合し、スラリーを作製した。
On the other hand, the slurry for the second fuel electrode compact is
Y 2 O 3 is added to Ni powder having an average particle diameter of 5 to 10 μm
ZrO having an average particle size of 0.6 μm contained at a ratio of mol%
2 (YSZ) powder and respective organometallic salts of Zr and Y were prepared, and the Ni / YSZ ratio (weight fraction) was 72/2.
8 was mixed and mixed to prepare a slurry.

【0056】次に、市販の純度99.9%以上のLa2
3、Cr23、MgOを出発原料として、これをLa
(Mg0.3Cr0.70.973の組成になるように秤量混
合した後1500℃で3時間仮焼粉砕し、この固溶体粉
末を用いてスラリーを調製し、ドクターブレード法によ
り厚さ100μmの集電体成形体を作製した。
Next, commercially available La 2 having a purity of 99.9% or more is used.
O 3 , Cr 2 O 3 , and MgO are used as starting materials, and La
(Mg 0.3 Cr 0.7 ) 0.97 O 3 Weighed and mixed to obtain a composition, calcinated and pulverized at 1500 ° C. for 3 hours, and a slurry is prepared using this solid solution powder. A molded body was produced.

【0057】Mn拡散防止層のペーストは、Y23を8
mol%含有するZrO2粉末(8YSZ)と組成式
(CeO2)0.7(Y23)0.3で表わされるYD
C粉末とを8YSZ:YDC=1:9(重量分率)にな
るように混合し、この混合粉末に溶媒としてトルエンを
添加し作製した。
As the paste for the Mn diffusion preventing layer, 8% Y 2 O 3 was used.
ZrO 2 powder (8YSZ) containing mol% and YD represented by the composition formula (CeO 2 ) 0.7 (Y 2 O 3 ) 0.3
C powder was mixed so that 8YSZ: YDC = 1: 9 (weight fraction), and toluene was added to this mixed powder as a solvent to prepare.

【0058】まず、前記空気極仮焼体に、Mn拡散防止
層のペーストを塗布し、この塗布膜に、前記第1固体電
解質成形体を、その両端部が開口するようにロール状に
巻き付け1150℃で5時間の条件で仮焼した。仮焼
後、第1固体電解質仮焼体の両端部間を空気極仮焼体を
露出させるように円弧面状に研磨した。
First, the Mn diffusion preventive layer paste is applied to the air electrode calcined body, and the first solid electrolyte molded body is wound around the coated film in a roll shape so that both ends thereof are open 1150. It was calcined under the condition of 5 ° C for 5 hours. After the calcination, the first solid electrolyte calcined body was ground in a circular arc shape so as to expose the air electrode calcined body between both ends.

【0059】次に、第1固体電解質仮焼体表面に、第2
燃料極成形体が形成された第2固体電解質成形体を、第
1固体電解質仮焼体と第2固体電解質成形体が当接する
ように積層し、乾燥した後、上記研磨面に集電体成形体
を貼り付け、この後、大気中1550℃で3時間の条件
で焼成を行い、共焼結体を50本作製した。
Then, the second solid electrolyte calcined body surface is subjected to a second
The second solid electrolyte molded body on which the fuel electrode molded body is formed is laminated so that the first solid electrolyte calcined body and the second solid electrolyte molded body are in contact with each other, and after drying, current collector molding is performed on the polished surface. The body was attached, and thereafter, firing was performed in the atmosphere at 1550 ° C. for 3 hours to prepare 50 co-sintered bodies.

【0060】この共焼結体の第1燃料極の表面に、第2
燃料極をメッシュ製版を用いて印刷し、その後大気雰囲
気下1400℃、1時間の条件で熱処理して焼付けを行
い、最大外径が4〜15mmのセルを作製した。
A second electrode was formed on the surface of the first fuel electrode of this co-sintered body.
The fuel electrode was printed using a mesh plate, and then heat-treated and baked under the conditions of 1400 ° C. for 1 hour in the air atmosphere to prepare a cell having a maximum outer diameter of 4 to 15 mm.

【0061】作製されたセルの第1、第2燃料極中のN
iO粒子の平均粒径を求めた。作製した第2燃料極の評
価は、走査型電子顕微鏡(SEM)を用いて、端部の剥
離有無の状況からセル50本中の良品本数を算出し、製
造歩留まりとして表1に記載した。
N in the first and second fuel electrodes of the produced cell
The average particle size of the iO particles was determined. For the evaluation of the manufactured second fuel electrode, the number of non-defective products in 50 cells was calculated using a scanning electron microscope (SEM) based on the presence or absence of peeling of the end portion, and the production yield is shown in Table 1.

【0062】また、良好に作製されたセル10本を用い
て1000℃でセルの内側に空気を、外側に水素を流
し、出力値が安定した際の初期値と、100時間保持後
でそれぞれの性能を測定評価し、100時間経過後に初
期値の2/3以下に低下したセル本数を算出し、良品数
を記載した。尚、表中の出力密度はセル10本の平均値
である。これらの測定結果を表1に示す。尚、有機金属
塩を用いて作製された第1、第2燃料極を走査型電子顕
微鏡(SEM)で観察したところ、NiO粒子の表面に
微粒子状の微粒セラミック粒子が存在していた。これら
の微粒セラミック粒子は、第1、第2燃料極の下層に主
に存在していた。一方、有機金属塩を用いないで作製さ
れた第1、第2燃料極中には、NiO粒子の表面には微
粒セラミック粒子は存在していなかった。
Also, using 10 well-produced cells, air was flown inside the cell and hydrogen was flown outside at 1000 ° C., the initial value when the output value became stable, and after 100 hours of holding, The performance was measured and evaluated, and after 100 hours, the number of cells decreased to 2/3 or less of the initial value was calculated, and the number of non-defective products was described. The output density in the table is the average value of 10 cells. The results of these measurements are shown in Table 1. When the first and second fuel electrodes produced by using the organic metal salt were observed with a scanning electron microscope (SEM), fine-grained fine ceramic particles were present on the surface of the NiO particles. These fine ceramic particles were mainly present in the lower layers of the first and second fuel electrodes. On the other hand, fine ceramic particles were not present on the surface of NiO particles in the first and second fuel electrodes produced without using the organometallic salt.

【0063】[0063]

【表1】 [Table 1]

【0064】表1より、本発明の試料では、外径が10
mmよりも小さくなり、曲率が大きくなった場合におい
ても、第1及び第2燃料極それぞれに有機金属塩を添加
することによって、第1燃料極と第2燃料極の界面が強
固に接合するとともに、第1燃料極と固体電解質との接
合強度を向上でき、セルの製造時における歩留まりを向
上できるとともに、出力密度の初期値が高く、しかも1
00時間経過後においても殆ど出力密度は低下せず、出
力密度が初期値の2/3以下に低下したセルはなく、高
い出力密度を長期間維持できることが判る。
From Table 1, the sample of the present invention has an outer diameter of 10
Even when the diameter becomes smaller than mm and the curvature becomes large, by adding the organic metal salt to each of the first and second fuel electrodes, the interface between the first fuel electrode and the second fuel electrode is firmly bonded and , The bonding strength between the first fuel electrode and the solid electrolyte can be improved, the yield at the time of manufacturing cells can be improved, and the initial value of the power density is high.
Even after the lapse of 00 hours, the output density hardly decreased, and there was no cell in which the output density decreased to ⅔ or less of the initial value, and it can be seen that the high output density can be maintained for a long period of time.

【0065】これに対して、第1燃料極のスラリー中に
有機金属塩を添加しなかった試料No.1、5、9で
は、製造歩留まりは良好であるものの、初期における出
力密度が低く、100時間経過後において、出力密度が
2/3以下に低下したセル本数が多かった。特にセル外
径が小さくなる程、不良が多くなることが判る。この出
力密度が減少したセルをSEMで観察したところ、第1
燃料極が固体電解質から一部剥離している箇所が見られ
た。
On the other hand, sample No. 1 containing no organometallic salt in the slurry of the first fuel electrode was used. In Nos. 1, 5, and 9, the production yield was good, but the output density was low in the initial stage, and after 100 hours, the output density decreased to 2/3 or less in many cells. In particular, it can be seen that the smaller the cell outer diameter, the more defects. When the cell with the reduced power density was observed by SEM,
A part of the fuel electrode was peeled off from the solid electrolyte.

【0066】また、第2燃料極のスラリー中に有機金属
塩を添加しなかった試料No.10では、製造歩留まり
が悪く、100時間経過後の出力密度の低下率も大きか
った。
Further, sample No. 1 containing no organometallic salt in the slurry of the second fuel electrode was used. In No. 10, the production yield was poor, and the rate of decrease in output density after 100 hours was large.

【0067】[0067]

【発明の効果】以上詳述したように、本発明の固体電解
質型燃料電池セルでは、第2燃料極を形成している鉄族
金属粒子又は鉄族金属酸化物粒子の表面に存在する、膜
状及び/又は微粒子状の微粒セラミック粒子が、第1燃
料極内部のセラミック粒子の表面に結合一体化し、強固
な界面を形成でき、第2燃料極の第1燃料極への接合強
度を向上できるとともに、第1燃料極を形成している鉄
族金属粒子又は鉄族金属酸化物粒子の表面に存在する、
膜状及び/又は微粒子状の微粒セラミック粒子が、固体
電解質内部のZrO2粒子の表面に結合一体化し、強固
な界面を形成でき、第1燃料極の固体電解質への接合強
度を向上でき、長期間高い発電能力を有する固体電解質
型燃料電池セルを得ることができる。
As described in detail above, in the solid oxide fuel cell of the present invention, the film existing on the surface of the iron group metal particles or iron group metal oxide particles forming the second fuel electrode. -Shaped and / or fine-grained fine ceramic particles can be bonded and integrated with the surface of the ceramic particles inside the first fuel electrode to form a strong interface, and the bonding strength of the second fuel electrode to the first fuel electrode can be improved. Is present on the surface of the iron group metal particles or iron group metal oxide particles forming the first fuel electrode.
Membrane-shaped and / or fine-grained fine ceramic particles can be bonded and integrated with the surface of the ZrO 2 particles inside the solid electrolyte to form a strong interface, and the bonding strength of the first fuel electrode to the solid electrolyte can be improved. It is possible to obtain a solid oxide fuel cell having a high power generation capacity for a period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の円筒状の固体電解質型燃料電池セルを
示す断面図である。
FIG. 1 is a cross-sectional view showing a cylindrical solid oxide fuel cell unit of the present invention.

【図2】図1の燃料極及びその近傍を拡大して示す断面
図である。
FIG. 2 is an enlarged cross-sectional view showing the fuel electrode of FIG. 1 and its vicinity.

【図3】図1の燃料極の一部を拡大して示す説明図であ
る。
FIG. 3 is an explanatory view showing a part of the fuel electrode of FIG. 1 in an enlarged manner.

【図4】本発明の燃料電池を示す説明図である。FIG. 4 is an explanatory diagram showing a fuel cell of the present invention.

【図5】従来の円筒状の固体電解質型燃料電池セルを示
す斜視図である。
FIG. 5 is a perspective view showing a conventional cylindrical solid oxide fuel cell unit.

【符号の説明】[Explanation of symbols]

31・・・固体電解質 32・・・空気極 33・・・燃料極 33a...第1燃料極 33b...第2燃料極 35・・・集電体 41・・・第1燃料極のセラミック粒子 43...第2燃料極のセラミック粒子 45・・・第1燃料極の鉄族金属粒子 46・・・第2燃料極の鉄族金属粒子 47・・・第1燃料極の微粒セラミック粒子 48...第2燃料極の微粒セラミック粒子 31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel pole 33a. . . First fuel pole 33b. . . Second fuel pole 35 ... Current collector 41 ... Ceramic particles of the first fuel electrode 43. . . Second fuel electrode ceramic particles 45 ... Iron group metal particles of the first fuel electrode 46 ... Iron group metal particles of the second fuel electrode 47 ... Fine ceramic particles for the first fuel electrode 48. . . Fine grain ceramic particles of the second fuel electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS02 AS03 BB01 BB06 BB08 BB12 CC03 CC06 DD08 EE02 EE11 EE12 EE16 HH01 5H026 AA06 BB01 CV02 CX04 CX10 EE02 EE11 EE12 EE17 HH01   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H018 AA06 AS02 AS03 BB01 BB06                       BB08 BB12 CC03 CC06 DD08                       EE02 EE11 EE12 EE16 HH01                 5H026 AA06 BB01 CV02 CX04 CX10                       EE02 EE11 EE12 EE17 HH01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】固体電解質の片面に燃料極、他方の面に空
気極を形成してなる固体電解質型燃料電池セルであっ
て、前記燃料極が前記固体電解質表面に同時焼成して形
成された第1燃料極と、該第1燃料極の表面に焼き付け
て形成された第2燃料極とを具備するとともに、前記第
1燃料極及び前記第2燃料極にセラミック粒子が存在
し、かつ、前記第1燃料極及び前記第2燃料極を構成す
る鉄族金属粒子又は鉄族金属酸化物粒子の表面に、膜状
及び/又は微粒子状の微粒セラミック粒子が析出してい
ることを特徴とする固体電解質型燃料電池セル。
1. A solid electrolyte fuel cell in which a fuel electrode is formed on one surface of a solid electrolyte and an air electrode is formed on the other surface, wherein the fuel electrode is formed by cofiring the surface of the solid electrolyte. A first fuel electrode and a second fuel electrode formed by baking on the surface of the first fuel electrode, wherein ceramic particles are present in the first fuel electrode and the second fuel electrode, and A solid characterized in that film-shaped and / or fine-particle-shaped fine ceramic particles are deposited on the surface of iron group metal particles or iron group metal oxide particles constituting the first fuel electrode and the second fuel electrode. Electrolyte fuel cell.
【請求項2】第2燃料極を構成する鉄族金属粒子又は鉄
族金属酸化物粒子の平均粒径が、第1燃料極における鉄
族金属粒子又は鉄族金属酸化物粒子の平均粒径よりも大
きいことを特徴とする請求項1記載の固体電解質型燃料
電池セル。
2. The average particle size of the iron group metal particles or iron group metal oxide particles constituting the second fuel electrode is more than the average particle size of the iron group metal particles or iron group metal oxide particles in the first fuel electrode. The solid electrolyte fuel cell according to claim 1, wherein the solid electrolyte fuel cell is also large.
【請求項3】第1燃料極の微粒セラミック粒子は、主と
して固体電解質側に存在し、第2燃料極の微粒セラミッ
ク粒子は、主として前記第1燃料極側に存在することを
特徴とする請求項1又は2記載の固体電解質型燃料電池
セル。
3. The fine ceramic particles of the first fuel electrode are mainly present on the solid electrolyte side, and the fine ceramic particles of the second fuel electrode are mainly present on the first fuel electrode side. The solid oxide fuel cell according to 1 or 2.
【請求項4】第1燃料極の微粒セラミック粒子が固体電
解質表面に接合し、第2燃料極の微粒セラミック粒子
が、前記第1燃料極中のセラミック粒子に接合している
ことを特徴とする請求項1乃至3のうちいずれかに記載
の固体電解質型燃料電池セル。
4. The fine ceramic particles of the first fuel electrode are bonded to the surface of the solid electrolyte, and the fine ceramic particles of the second fuel electrode are bonded to the ceramic particles in the first fuel electrode. The solid oxide fuel cell according to any one of claims 1 to 3.
【請求項5】外径が10mm以下の円筒状であることを
特徴とする請求項1乃至4のうちいずれかに記載の固体
電解質型燃料電池セル。
5. The solid oxide fuel cell according to any one of claims 1 to 4, which has a cylindrical shape with an outer diameter of 10 mm or less.
【請求項6】固体電解質成形体の片面に第1燃料極成形
体、他方の面に空気極成形体が形成された積層体を焼成
する工程と、第1燃料極の表面に第2燃料極成形体を形
成して焼き付ける工程とを具備する固体電解質型燃料電
池セルの製法であって、前記第1燃料極成形体及び前記
第2燃料極成形体が、鉄族金属粉末又は鉄族金属酸化物
粉末と、セラミック粉末と、有機金属塩を含有すること
を特徴とする固体電解質型燃料電池セルの製法。
6. A step of firing a laminated body in which a first fuel electrode molded body is formed on one surface of a solid electrolyte molded body and an air electrode molded body is formed on the other surface, and a second fuel electrode is formed on the surface of the first fuel electrode. A method for manufacturing a solid oxide fuel cell, comprising the steps of forming a molded body and baking the molded body, wherein the first fuel electrode molded body and the second fuel electrode molded body are iron group metal powder or iron group metal oxide. And a ceramic powder, and an organic metal salt are contained in the solid electrolyte fuel cell.
【請求項7】反応容器内に、請求項1乃至5のうちいず
れかに記載の固体電解質型燃料電池セルを複数収容して
なることを特徴とする燃料電池。
7. A fuel cell, characterized in that a plurality of solid oxide fuel cell units according to any one of claims 1 to 5 are housed in a reaction vessel.
JP2001229695A 2001-07-30 2001-07-30 Solid oxide fuel cell and fuel cell Expired - Fee Related JP4845296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229695A JP4845296B2 (en) 2001-07-30 2001-07-30 Solid oxide fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229695A JP4845296B2 (en) 2001-07-30 2001-07-30 Solid oxide fuel cell and fuel cell

Publications (2)

Publication Number Publication Date
JP2003045446A true JP2003045446A (en) 2003-02-14
JP4845296B2 JP4845296B2 (en) 2011-12-28

Family

ID=19062001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229695A Expired - Fee Related JP4845296B2 (en) 2001-07-30 2001-07-30 Solid oxide fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP4845296B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281400A (en) * 2003-03-14 2004-10-07 General Electric Co <Ge> Fuel cell and manufacturing method of the same
WO2005045962A1 (en) * 2003-11-10 2005-05-19 Mitsubishi Materials Corporation Generation cell for solid electrolyte fuel cell
JP2005135713A (en) * 2003-10-29 2005-05-26 Kyocera Corp Support for fuel cell, cell for fuel cell and its manufacturing method, and fuel cell
JP2005166640A (en) * 2003-11-10 2005-06-23 Mitsubishi Materials Corp Power generation cell of solid electrolyte fuel cell
JP2006024545A (en) * 2003-11-10 2006-01-26 Mitsubishi Materials Corp Power generation cell for solid electrolyte fuel battery
JP2006351405A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Sofc fuel electrode, and its manufacturing method
WO2012128201A1 (en) * 2011-03-18 2012-09-27 日本碍子株式会社 Solid oxide fuel cell
JP5091346B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell
JP5090575B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell
JP2015088471A (en) * 2013-09-25 2015-05-07 株式会社デンソー Anode for fuel battery and fuel battery single cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185160A (en) * 1999-12-24 2001-07-06 Kyocera Corp Solid electrolyte fuel cell
JP2001518688A (en) * 1997-10-01 2001-10-16 アキュメントリクス・コーポレーション Integrated solid oxygen fuel cell and improved machine
JP2002260677A (en) * 2001-02-28 2002-09-13 Kyocera Corp Cell of solid electrolyte fuel cell and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518688A (en) * 1997-10-01 2001-10-16 アキュメントリクス・コーポレーション Integrated solid oxygen fuel cell and improved machine
JP2001185160A (en) * 1999-12-24 2001-07-06 Kyocera Corp Solid electrolyte fuel cell
JP2002260677A (en) * 2001-02-28 2002-09-13 Kyocera Corp Cell of solid electrolyte fuel cell and fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281400A (en) * 2003-03-14 2004-10-07 General Electric Co <Ge> Fuel cell and manufacturing method of the same
JP2005135713A (en) * 2003-10-29 2005-05-26 Kyocera Corp Support for fuel cell, cell for fuel cell and its manufacturing method, and fuel cell
JP4683830B2 (en) * 2003-10-29 2011-05-18 京セラ株式会社 Support for fuel cell, fuel cell and fuel cell
WO2005045962A1 (en) * 2003-11-10 2005-05-19 Mitsubishi Materials Corporation Generation cell for solid electrolyte fuel cell
JP2005166640A (en) * 2003-11-10 2005-06-23 Mitsubishi Materials Corp Power generation cell of solid electrolyte fuel cell
JP2006024545A (en) * 2003-11-10 2006-01-26 Mitsubishi Materials Corp Power generation cell for solid electrolyte fuel battery
JP2006351405A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Sofc fuel electrode, and its manufacturing method
WO2012128201A1 (en) * 2011-03-18 2012-09-27 日本碍子株式会社 Solid oxide fuel cell
JP5091346B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell
JP5090575B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell
US8945789B2 (en) 2011-03-18 2015-02-03 Ngk Insulators, Ltd. Solid oxide fuel cell
JP2015088471A (en) * 2013-09-25 2015-05-07 株式会社デンソー Anode for fuel battery and fuel battery single cell

Also Published As

Publication number Publication date
JP4845296B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
EP1698002B1 (en) Anode-supported solid oxide fuel cells using a cermet electrolyte
EP0478185B1 (en) Fuel electrodes for solid oxide fuel cells and production thereof
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JP4462727B2 (en) Solid electrolyte fuel cell
JP3347561B2 (en) Solid oxide fuel cell
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3342610B2 (en) Solid oxide fuel cell
JP3339998B2 (en) Cylindrical fuel cell
JP3342621B2 (en) Solid oxide fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP4812176B2 (en) Solid oxide fuel cell and fuel cell
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP2002134133A (en) Cell of solid electrolyte fuel cell
JPH11224673A (en) Solid electrolyte fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JPH08130029A (en) Solid electrolyte fuel cell and its manufacture
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same
JP3740342B2 (en) Solid oxide fuel cell
JP3725994B2 (en) Solid oxide fuel cell
JP2001126745A (en) Solid electrolytic fuel cell
JP3595215B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees