JP2006351405A - Sofc fuel electrode, and its manufacturing method - Google Patents

Sofc fuel electrode, and its manufacturing method Download PDF

Info

Publication number
JP2006351405A
JP2006351405A JP2005177581A JP2005177581A JP2006351405A JP 2006351405 A JP2006351405 A JP 2006351405A JP 2005177581 A JP2005177581 A JP 2005177581A JP 2005177581 A JP2005177581 A JP 2005177581A JP 2006351405 A JP2006351405 A JP 2006351405A
Authority
JP
Japan
Prior art keywords
fuel electrode
oxide
oxide catalyst
covered
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005177581A
Other languages
Japanese (ja)
Inventor
Reiichi Chiba
玲一 千葉
Yoshitaka Tabata
嘉隆 田畑
Masayasu Arakawa
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005177581A priority Critical patent/JP2006351405A/en
Publication of JP2006351405A publication Critical patent/JP2006351405A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To improve carbon precipitation resistance of a fuel electrode for SOFC employing a fuel in which manufacturing is simple and easy and which has a small humidification amount. <P>SOLUTION: This is a fuel electrode 1 which is constituted of Ni particles covered with a thin catalyst layer of which the surface is covered by Mn oxide or Ti oxide or Fe oxide or CeO<SB>2</SB>based oxide, or ZrO<SB>2</SB>based oxide or CeO<SB>2</SB>-ZrO<SB>2</SB>based oxide, and of zirconia based electrolyte materials or cerium based electrolyte materials or lanthanum gallate based electrolyte materials which are oxygen ion conductor, and a manufacturing method which comprises a process in which organic metal solution or inorganic metal solution containing metal corresponding to the composition of the oxide catalyst is impregnated into NiO powders and this is dried and calcined after arbitrarily drying, and a process in which formed oxide catalyst covered NiO powders are mixed with the oxygen ion conductor powders and calcined. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、SOFC(Solide Oxide Fuel Cellすなわち固体酸化物燃料電池)用燃料極およびその製造方法に関するものである。   The present invention relates to a fuel electrode for SOFC (Solid Oxide Fuel Cell), and a method for manufacturing the same.

近年、酸素イオン伝導体を用いたSOFCに関心が高まりつつある。特にエネルギーの有効利用という観点から、固体燃料電池はカルノー効率の制約を受けないため本質的に高いエネルギー変換効率を有し、さらに良好な環境保全が期待されるなどの優れた特長を持っている。このSOFCには炭化水素燃料を直接セルに導入し使用することが可能であるため、改質機などを省略することが可能である、なぜなら、炭化水素に水蒸気を混合して、燃料極に導入すると、セルの燃料極上で改質反応が起きるためセルの駆動に必要な水素を生成することができるからである。   In recent years, interest in SOFCs using oxygen ion conductors is increasing. In particular, from the viewpoint of effective use of energy, solid fuel cells are not subject to the restrictions of Carnot efficiency, so they have inherently high energy conversion efficiency and have excellent features such as better environmental conservation. . In this SOFC, it is possible to introduce hydrocarbon fuel directly into the cell and use it, so it is possible to omit the reformer etc., because steam is mixed with hydrocarbon and introduced into the fuel electrode This is because the reforming reaction occurs on the fuel electrode of the cell, so that hydrogen necessary for driving the cell can be generated.

ここで、水蒸気の添加量は、一般に炭化水素の炭素原子との比で図られる、水蒸気分子とカーボン原子との数の比、いわゆるスチーム−カーボン比(Steam carbon ratio or S/C)が重要なパラメータとなる。この値により、平衡論的に炭素析出反応が起きるか否かがほぼ決定される。800℃付近の場合、平衡論的にはS/Cが1.1以下で炭素が生成されるとされているが、場合によっては、S/Cが2程度でも炭素が生成されることがある。   Here, the amount of water vapor added is generally the ratio of the number of water vapor molecules to carbon atoms, the so-called steam carbon ratio or S / C, which is measured by the ratio of carbon atoms to hydrocarbons. It becomes a parameter. This value almost determines whether or not the carbon deposition reaction occurs in equilibrium. In the case of around 800 ° C., carbon is generated with an S / C of 1.1 or less in equilibrium, but depending on the case, carbon may be generated even when the S / C is about 2. .

炭素の生成が起きると、セルの破壊や、ガス流路の閉塞が起きるなど、深刻な事態に陥るため、S/Cは3〜4程度と充分に加湿を行うことが想定されている。しかし、加湿量を増やすと、セル出力電圧の低下を招く。なぜなら、起電力が水素と水蒸気との分圧比の対数に比例しているからである。この様にセル出力電圧の観点からは、水蒸気添加量をS/Cにして好ましくはS/C=2.0以下に、さらに好ましくはS/C=1.0以下程度まで低減することが望まれる。   When carbon generation occurs, serious situations such as cell destruction and gas flow path blockage occur, so it is assumed that the S / C is sufficiently humidified at about 3-4. However, when the humidification amount is increased, the cell output voltage is lowered. This is because the electromotive force is proportional to the logarithm of the partial pressure ratio between hydrogen and water vapor. Thus, from the viewpoint of cell output voltage, it is desirable that the amount of water vapor added is S / C, preferably S / C = 2.0 or less, and more preferably S / C = 1.0 or less. It is.

水蒸気添加量を低減し、炭素生成反応を抑制するためには、炭素の生成の元となる燃料極上のNi粒子の表面を酸化活性の高い酸化物触媒で覆うことが有効と考えられる。ここで、Ni表面を覆うのに適した酸化物触媒は、燃料極の雰囲気(Po=10−14〜10−19atm)においても酸化物であること、酸素空孔などの欠陥を有すること、NiOと密着性が高いことなどの性質を有することが望ましい。
「固体酸化物燃料電池と地球環境」(株式会社アグネ承風社、1998年、P243〜246) Extended Abstracts of 14th International conference on solid state ionics;Bettina Rosch,et al.,Electrochemical characterization of Ni−Ce0.9Gd0.1O2−d for SOFC anodes,(2003)p.40.
In order to reduce the amount of water vapor added and suppress the carbon generation reaction, it is considered effective to cover the surface of Ni particles on the fuel electrode, which is the source of carbon generation, with an oxide catalyst having high oxidation activity. Here, the oxide catalyst suitable for covering the Ni surface is an oxide even in the atmosphere of the fuel electrode (Po 2 = 10 −14 to 10 −19 atm), and has defects such as oxygen vacancies. It is desirable to have properties such as high adhesion to NiO.
"Solid Oxide Fuel Cell and Global Environment" (Agne Jofu Co., Ltd., 1998, P243-246) Extended Abstracts of 14th International conference on solid state ionics; Bettina Rosch, et al. Electrochemical charactarization of Ni-Ce0.9Gd0.1O2-d for SOFC anodes, (2003) p. 40.

本発明は、製造が簡便で且つ、加湿量の少ない燃料を使用するSOFC用の燃料極の耐炭素析出性を向上させることを目的とする。   An object of the present invention is to improve the carbon deposition resistance of a fuel electrode for SOFC that uses a fuel that is simple to manufacture and has a small amount of humidification.

上記課題を解決するため、本発明によるSOFC燃料極は、表面がMn酸化物またはTi酸化物またはFe酸化物またはCeO系酸化物、またはZrO系酸化物またはCeO−ZrO系酸化物の薄い触媒層で覆われたNi粒子と、酸素イオン伝導体であるジルコニア系電解質材料またはセリア系電解質材料またはランタンガレート系電解質材料とで構成されていることを特徴とする。 In order to solve the above problems, the SOFC fuel electrode according to the present invention has a Mn oxide, Ti oxide, Fe oxide, CeO 2 oxide, ZrO 2 oxide, or CeO 2 —ZrO 2 oxide on the surface. It is characterized by comprising Ni particles covered with a thin catalyst layer and a zirconia-based electrolyte material, a ceria-based electrolyte material or a lanthanum gallate-based electrolyte material which is an oxygen ion conductor.

本発明によるSOFC燃料極では、特に酸化物触媒層で覆われていないNi粒子を持つ燃料極層が固体電解質に隣接して設けられ、さらに、この層に隣接して酸化物触媒層で覆われたNi粒子を持つ燃料極層が設けられていることを特徴とする。   In the SOFC fuel electrode according to the present invention, a fuel electrode layer having Ni particles not covered with an oxide catalyst layer is provided adjacent to the solid electrolyte, and is further covered with an oxide catalyst layer adjacent to this layer. A fuel electrode layer having Ni particles is provided.

さらに本発明によるSOFC燃料極の好ましい態様においては、燃料電池セルの電解質がランタンガレート系電解質である場合、酸化物触媒層で覆われていないNi粒子を持つ燃料極層と酸化物触媒層で覆われたNi粒子を持つ燃料極層間にセリア層を設けることを特徴とする。   Furthermore, in a preferred embodiment of the SOFC fuel electrode according to the present invention, when the electrolyte of the fuel cell is a lanthanum gallate electrolyte, the fuel electrode layer having Ni particles not covered with the oxide catalyst layer and the oxide catalyst layer are covered. A ceria layer is provided between fuel electrode layers having broken Ni particles.

また本発明によるSOFC燃料極の製造方法は、NiO粉末に請求項1記載の酸化物触媒の組成に対応する金属を含有する有機金属溶液または無機金属溶液を含浸させ、乾燥し、任意に焼成する工程、形成された酸化物触媒被覆NiO粉末を請求項1記載の酸素イオン伝導体粉末と混合し、焼成する工程を含むことを特徴とする。   Further, the SOFC fuel electrode production method according to the present invention comprises impregnating NiO powder with an organic metal solution or an inorganic metal solution containing a metal corresponding to the composition of the oxide catalyst according to claim 1, drying, and optionally firing. And a step of mixing and baking the formed oxide catalyst-coated NiO powder with the oxygen ion conductor powder according to claim 1.

さらに本発明によるSOFC燃料極の製造方法の、好ましい態様としては、前記無機金属溶液はMnまたはTiまたはFeまたはCeまたはZrを溶解した水溶液であり、有機金属溶液はMn、またはTi、またはFe、またはCe、またはCeおよびZrを含む溶液であり、酸素イオン伝導体はジルコニア系電解質材料またはセリア系電解質材料であることを特徴とする。   Further, in a preferred embodiment of the method for producing an SOFC fuel electrode according to the present invention, the inorganic metal solution is an aqueous solution in which Mn, Ti, Fe, Ce or Zr is dissolved, and the organic metal solution is Mn, Ti, or Fe, Or a solution containing Ce or Ce and Zr, wherein the oxygen ion conductor is a zirconia-based electrolyte material or a ceria-based electrolyte material.

本発明は、燃料極の作製に使用するNiO粒子の表面を予め酸化活性な酸化物触媒の薄い層で覆っておくことで、低加湿炭化水素燃料を用いたSOFC燃料極中のNi粒子表面において生じるとされる炭素生成反応が効果的に抑制される。また、これ以降のセル作製プロセスは、通常と同じ方法をとることができるので、プロセスを複雑化させないで済む。   In the present invention, the surface of the NiO particles in the SOFC fuel electrode using the low-humidified hydrocarbon fuel is obtained by covering the surface of the NiO particles used for the production of the fuel electrode with a thin layer of an oxidation active oxide catalyst in advance. The carbon production reaction that is supposed to occur is effectively suppressed. Further, since the subsequent cell manufacturing process can be performed in the same manner as usual, it is not necessary to complicate the process.

一般的な燃料極の作製では、NiO粉末とジルコニア粉末と混合した後に有機溶剤等に展開してスラリとし、これを電解質に塗布後焼成して燃料極としている。そしてセルの状態で燃料極を還元すると上記のNiO粉末がNiに還元される。   In the production of a general fuel electrode, NiO powder and zirconia powder are mixed and then developed into an organic solvent or the like to form a slurry, which is applied to an electrolyte and fired to form a fuel electrode. When the fuel electrode is reduced in the cell state, the NiO powder is reduced to Ni.

そこで、NiO粒子表面を予め酸化活性な酸化物触媒の薄い層で覆っておくことで、これ以降のセル作製プロセスは、通常と同じ方法をとることができるので、プロセスを複雑化させないで済む。   Therefore, by covering the surface of the NiO particles with a thin layer of an oxidation active oxide catalyst in advance, the subsequent cell manufacturing process can be performed in the same manner as usual, so that the process is not complicated.

燃料極に使用するNiO粉末の粒子は、1μm前後と非常に微細であることからこれらの粒子の表面を覆うためにはさらに微細な粒子を必要とする。これには、NiO粉末を酸化物触媒の組成に対応する金属を含有する有機金属溶液または無機金属溶液に展開するなどしておいて、全体を乾燥させることで非常に微細な酸化物触媒材料で燃料極粉末の表面を覆うことができる。この方法では、燃料極に使用されるNi粉末表面上に、触媒の原料となる金属酸化物原料を直接被覆させ、焼成時に、これらが表面上で反応し触媒がその場で合成されるため、燃料極粉末と触媒との密着性や、燃料極粉末への触媒の被覆性が非常に優れている。   The particles of NiO powder used for the fuel electrode are very fine, around 1 μm, so that finer particles are required to cover the surface of these particles. For this purpose, NiO powder is developed into an organic metal solution or an inorganic metal solution containing a metal corresponding to the composition of the oxide catalyst, and the whole is dried to obtain a very fine oxide catalyst material. The surface of the fuel electrode powder can be covered. In this method, the surface of the Ni powder used for the fuel electrode is directly coated with a metal oxide raw material as a raw material of the catalyst, and during firing, these react on the surface and the catalyst is synthesized in situ. The adhesion between the fuel electrode powder and the catalyst and the coating property of the catalyst on the fuel electrode powder are very excellent.

また、炭素析出の原因となるNi粒子の表面だけをだけを覆えるため、無駄なく触媒で被覆でき、また触媒の層が極めて薄いため、少ない添加量でも被覆率が高い。そして、触媒の層の厚さが薄いことにより、その後のジルコニア粒子同士が関係する燃料極の焼結過程への影響を最小限とする事ができる。ここで、還元後にNi粒子同士が互いに接触し電子伝導のパスを形成する必要があるが、本発明の酸化物触媒はある程度電子伝導性を有しており、かつ、酸化物触媒層が薄いためNi粒子同士が付き合って伝導パスを形成することをほとんど妨げない利点がある。   In addition, since only the surface of the Ni particles that cause carbon deposition can be covered, it can be covered with a catalyst without waste, and since the catalyst layer is extremely thin, the coverage is high even with a small addition amount. And since the thickness of the layer of a catalyst is thin, the influence on the sintering process of the fuel electrode in which subsequent zirconia particles are related can be minimized. Here, the Ni particles need to contact each other after reduction to form an electron conduction path, but the oxide catalyst of the present invention has a certain degree of electron conductivity and the oxide catalyst layer is thin. There is an advantage that the Ni particles are hardly interfered with each other to form a conduction path.

本発明においてNi粒子を覆う酸化物触媒層としては、Mn酸化物またはTi酸化物またはFe酸化物またはCeO系酸化物、またはZrO系酸化物またはCeO−ZrO系酸化物を挙げることができる。 Examples of the oxide catalyst layer covering Ni particles in the present invention include Mn oxide, Ti oxide, Fe oxide, CeO 2 oxide, ZrO 2 oxide, or CeO 2 —ZrO 2 oxide. Can do.

ここで、TiO系の酸化物触媒では、電子伝導性を向上させるために、Nbを5〜20at%程度添加することが好ましい。また、CeO−ZrO系酸化物触媒では、電子伝導性を確保するために、Ce/Zr比を1/4以上とし、電子伝導性を向上させるために、Nbを1〜10at%添加することが好ましい。また、CeO−ZrO系酸化物触媒またはCeO系酸化物触媒では、炭素の酸化を促進するために、Y、Sm、およびGdからなる群より選択された1種以上を10〜30at%添加することが好ましい。 Here, in the TiO 2 -based oxide catalyst, it is preferable to add about 5 to 20 at% of Nb in order to improve the electron conductivity. In addition, in the CeO 2 —ZrO 2 -based oxide catalyst, in order to ensure the electron conductivity, the Ce / Zr ratio is set to 1/4 or more, and Nb is added in an amount of 1 to 10 at% in order to improve the electron conductivity. It is preferable. Further, in the CeO 2 —ZrO 2 -based oxide catalyst or CeO 2 -based oxide catalyst, 10 to 30 at% of at least one selected from the group consisting of Y, Sm, and Gd is used to promote carbon oxidation. It is preferable to add.

このような酸化物触媒層で覆われたNi粒子とともに使用する酸素イオン伝導体としては、ジルコニア系電解質材料またはセリア系電解質材料またはランタンガレート系電解質材料を使用することができる。   As the oxygen ion conductor used together with the Ni particles covered with such an oxide catalyst layer, a zirconia-based electrolyte material, a ceria-based electrolyte material, or a lanthanum gallate-based electrolyte material can be used.

燃料極内の電解質と接する部分では、酸化反応が起きており、水蒸気が生成されている。この水蒸気は燃料極表面に拡散し、改質反応などに寄与した後、セル外に排出される。このため、燃料極内でも、電解質に近い部分は水蒸気濃度が高く炭素が生成されにくく、電解質から遠い燃料極表面では水蒸気濃度が低く炭素が生成され易い。   An oxidation reaction occurs in the portion of the fuel electrode that contacts the electrolyte, and water vapor is generated. This water vapor diffuses on the surface of the fuel electrode and contributes to the reforming reaction, etc., and is then discharged outside the cell. For this reason, even in the fuel electrode, the portion near the electrolyte has a high water vapor concentration and carbon is hardly generated, and the water vapor concentration is low on the surface of the fuel electrode far from the electrolyte, and carbon is easily generated.

また、請求項1による燃料極では酸化物触媒が電解質に一部触れて焼成が行われる。電解質全体に触媒を構成する元素が拡散した場合、電解質自体に電子伝導性が発現し起電力の低下を招く恐れがある。そこで、電解質に隣接する部分は従来の組成の燃料極層とし、この層の後に酸化物触媒を用いた層を設けることで、耐炭素特性に優れかつ、焼成条件によらず電解質の特性を維持することができる。この場合、酸化物触媒を含まない層の厚さは、1μm以上であることが好ましい。   Further, in the fuel electrode according to the first aspect, the oxide catalyst is partially baked by touching the electrolyte. When an element constituting the catalyst diffuses throughout the electrolyte, the electrolyte itself may exhibit electronic conductivity and may cause a reduction in electromotive force. Therefore, the portion adjacent to the electrolyte is a fuel electrode layer having a conventional composition, and this layer is followed by a layer using an oxide catalyst, which provides excellent carbon resistance and maintains the electrolyte characteristics regardless of the firing conditions. can do. In this case, the thickness of the layer not containing the oxide catalyst is preferably 1 μm or more.

また、ランタンガレートを電解質とする場合は、酸化物触媒で覆われていないNi粒子を含む燃料極層と酸化物触媒層で覆われたNi粒子を含む燃料極層との間にセリア層を設けることでも、触媒を構成している元素の電解質への拡散を抑制することが可能である。   When lanthanum gallate is used as the electrolyte, a ceria layer is provided between the fuel electrode layer containing Ni particles not covered with the oxide catalyst and the fuel electrode layer containing Ni particles covered with the oxide catalyst layer. Even in this case, it is possible to suppress diffusion of elements constituting the catalyst into the electrolyte.

本発明によるSOFC燃料極の製造方法は、NiO粉末に前述の酸化物触媒の組成に対応する金属を含有する有機金属溶液または無機金属溶液を含浸させ、乾燥し、任意に乾燥後焼成する。   In the method for producing an SOFC fuel electrode according to the present invention, NiO powder is impregnated with an organic metal solution or an inorganic metal solution containing a metal corresponding to the composition of the oxide catalyst described above, dried, and optionally dried and fired.

このような有機金属溶液としては、たとえばMn、またはTi、またはFe、またはCe、またはCeおよびZrを含む溶液を挙げることができ、無機金属溶液としては、MnまたはTiまたはFeまたはCeまたはZrを溶解した水溶液を挙げることができる。   Examples of such an organic metal solution include Mn, or Ti, or Fe, or Ce, or a solution containing Ce and Zr, and examples of the inorganic metal solution include Mn, Ti, Fe, Ce, or Zr. A dissolved aqueous solution can be mentioned.

前述のようなNiO粉末への酸化物触媒の含浸および乾燥は、複数回行うことができ、有機溶媒などを飛散させるために焼結を行うこともできる。   The impregnation and drying of the oxide catalyst into the NiO powder as described above can be performed a plurality of times, and sintering can be performed in order to disperse the organic solvent and the like.

形成された酸化物触媒被覆NiO粉末を前述の酸素イオン伝導体粉末と混合し、焼成する工程を含む。   A step of mixing the formed oxide catalyst-coated NiO powder with the above-described oxygen ion conductor powder and baking it is included.

このような酸素イオン伝導体としては、前述のジルコニア系電解質材料またはセリア系電解質材料が、特に好ましい。   As such an oxygen ion conductor, the above-described zirconia-based electrolyte material or ceria-based electrolyte material is particularly preferable.

以下に本発明の作用を説明する。上記燃料極であるNiO粉末の表面を酸化物触媒薄膜で予め覆い、この粉末を用いて燃料極を作製する。運転時においては、燃料極中のNiO粒子は還元されてNi粒子となる。このNi粒子表面は酸化物触媒薄膜で覆われているのでNi上での炭素の酸化が促進され、その結果燃料極の耐炭素特性が向上する。また、酸化物触媒層が薄いので、Ni同士の接触をほとんど妨げないため伝導パスの形成に影響を及ぼさない。   The operation of the present invention will be described below. The surface of the NiO powder that is the fuel electrode is previously covered with an oxide catalyst thin film, and a fuel electrode is produced using this powder. During operation, the NiO particles in the fuel electrode are reduced to Ni particles. Since the Ni particle surface is covered with the oxide catalyst thin film, the oxidation of carbon on Ni is promoted, and as a result, the carbon resistance of the fuel electrode is improved. In addition, since the oxide catalyst layer is thin, it hardly interferes with the contact between Ni and does not affect the formation of the conduction path.

ここで、上記の方法は、予め燃料極に使用するNiO粒子の表面を修飾するだけなので、以後のセル作製プロセスを複雑化させることはない。   Here, since the above method only modifies the surface of the NiO particles used for the fuel electrode in advance, the subsequent cell manufacturing process is not complicated.

以下に本発明の実施例を説明する。なお、当然のことであるが本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be described below. Of course, the present invention is not limited to the following examples.

まず平均粒径が約0.8μmのNiO粉末を用意し、これと平均粒径が約0.2μmの8YSZ(0.92ZrO−0.08Y)粉末を混合(NiO粉末が60wt%)し、これにPVA水溶液を加えて、燃料極用スラリを調整した。このスラリをドクターブレード法で焼成した0.2mm厚でSc、Al添加ジルコニアSASZ(0.89ZrO−0.10Sc−0.01Al)固体電解質基板の片面にスクリーンプリント法で塗布した後1300℃、2時間空気中で焼成し、厚さ60μmの燃料極を設けた。次にその裏面に白金ペーストを塗布し白金メッシュ集電体を乗せて、1000℃、2時間の条件で焼成し厚さ60μmの空気極とした。また電解質の端に白金ペーストを塗布して空気極と同時に焼成し参照極とした。最後に、燃料極側にAgのメッシュをAgペーストで焼き付け集電とした。燃料極、空気極ともに10mm径とした。この比較例であるところの燃料電池セルをセル#1−0とする。このセルの模式図を図1に示す。図中、1は燃料極、2は電解質、3は参照極であり、空気極は燃料極1の形成されている電解質2の裏側に同じ形状として設けられているため、図示されていない。 First, NiO powder having an average particle diameter of about 0.8 μm is prepared, and this is mixed with 8YSZ (0.92ZrO 2 −0.08Y 2 O 3 ) powder having an average particle diameter of about 0.2 μm (NiO powder is 60 wt%). Then, a PVA aqueous solution was added thereto to prepare a slurry for the fuel electrode. This slurry was baked by the doctor blade method with a 0.2 mm thickness of Sc 2 O 3 and Al 2 O 3 added zirconia SASZ (0.89ZrO 2 -0.10 Sc 2 O 3 -0.01 Al 2 O 3 ) solid electrolyte substrate After coating on one side by a screen printing method, it was fired in air at 1300 ° C. for 2 hours to provide a fuel electrode having a thickness of 60 μm. Next, a platinum paste was applied to the back surface, and a platinum mesh current collector was placed thereon, followed by firing at 1000 ° C. for 2 hours to form an air electrode having a thickness of 60 μm. Also, a platinum paste was applied to the end of the electrolyte and fired simultaneously with the air electrode to obtain a reference electrode. Finally, an Ag mesh was baked with Ag paste on the fuel electrode side for current collection. Both the fuel electrode and the air electrode have a diameter of 10 mm. The fuel cell that is the comparative example is designated as cell # 1-0. A schematic diagram of this cell is shown in FIG. In the figure, 1 is a fuel electrode, 2 is an electrolyte, 3 is a reference electrode, and the air electrode is not shown because it is provided in the same shape on the back side of the electrolyte 2 on which the fuel electrode 1 is formed.

セル#1−0における燃料極用スラリにおいてNiO表面をTi系酸化物触媒で覆った粉末をNiOに代えて用いた。すなわち、NiO粉末に粉末がちょうど沈むまでTi0.85Nb0.1の組成の酢酸塩水溶液を浸し、200℃で加熱乾燥を行った。200℃で乾燥した後では、触媒はアモルファス状態に近く、粒径としては5nm程度である。乾燥後さらに溶液を同様に含浸させた。この含浸と乾燥を2回行った後400℃で焼成することで有機物を完全に取り除き、NiOの表面にTi0.85Nb0.151で覆った。粉末全重量に対しTi0.85Nb0.15は、約3wt%となった。このTi系酸化物触媒を添加した粉末を用いたセルをセル#1−1とする。 In the slurry for the fuel electrode in the cell # 1-0, the powder in which the NiO surface was covered with a Ti-based oxide catalyst was used instead of NiO. That is, an aqueous acetate solution having a composition of Ti 0.85 Nb 0.1 was immersed in the NiO powder until the powder just submerged, followed by heat drying at 200 ° C. After drying at 200 ° C., the catalyst is close to an amorphous state and has a particle size of about 5 nm. After drying, the solution was further impregnated in the same manner. After performing this impregnation and drying twice, the organic matter was completely removed by baking at 400 ° C., and the surface of NiO was covered with Ti 0.85 Nb 0.151 O 2 . Ti 0.85 Nb 0.15 O 2 was about 3 wt% with respect to the total weight of the powder. A cell using the powder to which the Ti-based oxide catalyst is added is referred to as cell # 1-1.

次に、上記有機金属溶液において、FeO、Mn、CeO、Ce0.80.2、Ce0.6Zr0.20.2に対応するカチオンを含む酢酸塩水溶液を含浸させ同様に含浸と加熱乾燥、焼成を行ってNiO粉末表面上に全重量に対し上記酸化物を約3wt%の酸化物触媒を添加した。これらのNiO粉末を用いて、同様に燃料極SASZ電解質基板上に焼き付けた。また空気極、および参照極は上記と同様にPt電極を用いている。これらのセルをセル#1−2〜セル#1−6とした。 Next, the organometallic solution contains cations corresponding to FeO, Mn 3 O 4 , CeO 2 , Ce 0.8 Y 0.2 O 2 , and Ce 0.6 Zr 0.2 Y 0.2 O 2. Impregnated with an aqueous acetate solution, impregnation, heat drying, and calcination were performed in the same manner, and about 3 wt% of the oxide catalyst with respect to the total weight was added onto the NiO powder surface. These NiO powders were similarly baked on the fuel electrode SASZ electrolyte substrate. The air electrode and the reference electrode use Pt electrodes as described above. These cells were designated as cell # 1-2 to cell # 1-6.

ここで、燃料極には加湿CHガス(HOとCHガスの流速比が0.25/1.0にマスフローメータ、加熱式水蒸気発生器を用いて調整した)を用い、空気極には酸素を用いた。開放起電力としては、800℃で1.35Vの値が得られた。 Here, humidified CH 4 gas (the flow rate ratio of H 2 O and CH 4 gas was adjusted to 0.25 / 1.0 using a mass flow meter and a heating steam generator) was used for the fuel electrode, and the air electrode Oxygen was used. As the open electromotive force, a value of 1.35 V at 800 ° C. was obtained.

ここでは、参照極を図1に示すように取ることができるため、燃料極の電圧値を分離して測定することができた。参照極の雰囲気は空気極と同じ酸素ガスとした。   Here, since the reference electrode can be taken as shown in FIG. 1, the voltage value of the fuel electrode can be measured separately. The atmosphere of the reference electrode was the same oxygen gas as the air electrode.

電流を200mA/cm一定とし、初期値と200時間後の電圧値を比較し、耐炭素特性を評価した。その結果を表1の#1−0〜#1−6に示す。比較例であるセル#1−0は200時間の運転により、電圧の低下が見られた。これは燃料極の一部に炭素が生成されたため燃料極の特性が低下したためと考えられる。一方、セル#1−1〜#1−6は比較例であるセル#1−0に比べて初期の電極特性が若干優れており、また200時間の運転により大きな劣化は見られなかった。これは酸化物触媒の添加によりNi粒子上での炭素の生成が抑制されたために、耐炭素特性が向上したものと考えられる。このように、低加湿の炭化水素燃料を用いた場合でも、安定な運転が可能となった。 The current was fixed at 200 mA / cm 2 , and the initial value was compared with the voltage value after 200 hours to evaluate the carbon resistance characteristics. The results are shown as # 1-0 to # 1-6 in Table 1. Cell # 1-0, which is a comparative example, showed a voltage drop after 200 hours of operation. This is thought to be because the characteristics of the fuel electrode deteriorated because carbon was generated in a part of the fuel electrode. On the other hand, the cells # 1-1 to # 1-6 have slightly better initial electrode characteristics than the cell # 1-0 as a comparative example, and no significant deterioration was observed after 200 hours of operation. This is presumably because the carbon resistance was improved because the formation of carbon on the Ni particles was suppressed by the addition of the oxide catalyst. As described above, even when a low-humidified hydrocarbon fuel is used, stable operation is possible.

Figure 2006351405
Figure 2006351405

ドクターブレード法で作製したSc、Al添加ジルコニアSASZ(0.89ZrO−0.10Sc−0.01Al)固体電解質シートとNi−SASZ燃料極基板用のシートを張り合わせ、脱脂処理をした後、1300℃、2時間の条件で焼成を行い、燃料極支持型セル(ハーフセル)を作製した。最終的な電解質の厚さは20μm、燃料極基板の厚さは1.5mmである。空気極は電解質膜上に白金電極を塗布し、Ptメッシュを乗せて集電とした。最後に、燃料極にAgペーストを用いて、Agメッシュを張り付け燃料極側の集電とした。これを比較例セル#2−0とした。 For Sc 2 O 3 , Al 2 O 3 -added zirconia SASZ (0.89ZrO 2 -0.10 Sc 2 O 3 -0.01Al 2 O 3 ) solid electrolyte sheet and Ni-SASZ fuel electrode substrate prepared by the doctor blade method After the sheets were bonded together and degreased, firing was performed at 1300 ° C. for 2 hours to produce a fuel electrode-supported cell (half cell). The final thickness of the electrolyte is 20 μm, and the thickness of the fuel electrode substrate is 1.5 mm. For the air electrode, a platinum electrode was applied on the electrolyte membrane, and a Pt mesh was placed thereon to collect current. Finally, an Ag paste was attached to the fuel electrode, and an Ag mesh was attached to make the current collection on the fuel electrode side. This was designated as Comparative Example Cell # 2-0.

このような支持膜型燃料電池セルの構造を図2に示す。燃料極基板4に薄膜固体電解質5が積層され、その薄膜固体電解質5に空気極6が積層された構造になっている。図中、7は電流線、8は電圧線である。   The structure of such a support membrane fuel cell is shown in FIG. A thin film solid electrolyte 5 is laminated on the fuel electrode substrate 4, and an air electrode 6 is laminated on the thin film solid electrolyte 5. In the figure, 7 is a current line and 8 is a voltage line.

ここで、燃料極基板に用いたNiO粉末において、実施例1と同様の方法で、NiO粒子表面を酸化物触媒で覆い、Ni−SASZスラリを作製し、実施例1と同様の方法で、燃料極基板を作製し、セルを作製した。酸化物触媒の溶液として、Ti、Nb、Mn、Fe、Ce、そしてYの硝酸水溶液を用いた。これらのセルをセル#2−1〜#2−6とし、実施例1と同様の試験を750℃、S/C=0.25の条件で行った。酸化物触媒の組成と初期特性、200時間後の特性を表2に示す。これらの支持膜型セルには参照極が無いので、セル電圧のみにより比較を行った。   Here, in the NiO powder used for the fuel electrode substrate, the surface of NiO particles was covered with an oxide catalyst in the same manner as in Example 1 to produce a Ni-SASZ slurry, and the fuel in the same manner as in Example 1 was used. A polar substrate was produced to produce a cell. Nitric acid aqueous solution of Ti, Nb, Mn, Fe, Ce, and Y was used as the oxide catalyst solution. These cells were designated as cells # 2-1 to # 2-6, and the same test as in Example 1 was performed under the conditions of 750 ° C. and S / C = 0.25. Table 2 shows the composition and initial characteristics of the oxide catalyst, and the characteristics after 200 hours. Since these support membrane type cells do not have a reference electrode, the comparison was made only by the cell voltage.

比較例であるセル#2−0は200時間の運転により、電圧の低下が見られた。これは燃料極の一部に炭素が生成されたため燃料極の特性が低下したためと考えられる。一方、セル#2−1〜#2−6は比較例であるセル#2−0に比べて初期の電極特性が若干優れており、また200時間の運転により大きな劣化は見られなかった。これは酸化物触媒の添加によりNi粒子上での炭素の生成が抑制されたために、耐炭素特性が向上したものと考えられる。   Cell # 2-0, which is a comparative example, showed a decrease in voltage after 200 hours of operation. This is thought to be because the characteristics of the fuel electrode deteriorated because carbon was generated in a part of the fuel electrode. On the other hand, cells # 2-1 to # 2-6 were slightly superior in initial electrode characteristics as compared with cell # 2-0 as a comparative example, and no major deterioration was observed after 200 hours of operation. This is presumably because the carbon resistance was improved because the formation of carbon on the Ni particles was suppressed by the addition of the oxide catalyst.

このように、低加湿の炭化水素燃料を用いた場合でも、安定な運転が可能となった。   As described above, even when a low-humidified hydrocarbon fuel is used, stable operation is possible.

Figure 2006351405
Figure 2006351405

実施例2において、燃料極基板のシートをNiO粉末のみのシート(セル#2−0用)と酸化物触媒で覆われたNiO粉末(#2−1〜#2−6用)を持つシートを張り合わせてハーフセルを作製した。ここで、電解質用シート、NiO粉末のみを持つシート、酸化物触媒で覆われたNiO粉末を持つシートの順で張り合わせた。   In Example 2, the sheet of the fuel electrode substrate is a sheet having only NiO powder (for cell # 2-0) and NiO powder (for # 2-1 to # 2-6) covered with an oxide catalyst. A half cell was prepared by pasting. Here, the sheet for electrolyte, the sheet having only NiO powder, and the sheet having NiO powder covered with an oxide catalyst were laminated in this order.

最終的な電解質の厚さは20μm、燃料極基板の厚さは1.5mmであるが、NiO粉末のみのシートの厚さは、50μmとした。空気極は電解質膜上に白金電極を塗布し、Ptメッシュを乗せて集電とした。最後に、燃料極にAgペーストを用いて、Agメッシュを張り付け燃料極側の集電とした。これらのセルをセル#3−1〜#3−6とし、実施例2と同様の試験を750℃、S/C=0.25の条件で行った。酸化物触媒の組成と初期特性、200時間後の特性を表3に示す。   The final electrolyte thickness was 20 μm and the fuel electrode substrate thickness was 1.5 mm, but the thickness of the NiO powder-only sheet was 50 μm. For the air electrode, a platinum electrode was applied on the electrolyte membrane, and a Pt mesh was placed thereon to collect current. Finally, an Ag paste was attached to the fuel electrode, and an Ag mesh was attached to make the current collection on the fuel electrode side. These cells were designated as cells # 3-1 to # 3-6, and the same test as in Example 2 was performed under the conditions of 750 ° C. and S / C = 0.25. Table 3 shows the composition and initial characteristics of the oxide catalyst and the characteristics after 200 hours.

セル#3−1〜#3−6は比較例であるセル#2−0と異なり200時間の運転により大きな劣化は見られなかった。これは酸化物触媒の添加によりNi粒子上での炭素の生成が抑制されたために、耐炭素特性が向上したものと考えられる。このように、低加湿の炭化水素燃料を用いた場合でも、安定な運転が可能となった。   The cells # 3-1 to # 3-6 were not significantly deteriorated by operation for 200 hours, unlike the cell # 2-0 as the comparative example. This is presumably because the carbon resistance was improved because the formation of carbon on the Ni particles was suppressed by the addition of the oxide catalyst. As described above, even when a low-humidified hydrocarbon fuel is used, stable operation is possible.

Figure 2006351405
Figure 2006351405

まずドクターブレード法で焼成した0.5mm厚でランタンガレート電解質シートLSGM(La0.85Sr0.15Ga0.85Mg0.15)固体電解質基板の片面にSDC(Ce0.8Sm0.2)組成に対応する酢酸塩水溶液をスピンコートし、焼成することで、約0.1μmのSDC膜を作製した。次にNiO−SDC(Ce0.8Sm0.2)のスラリ(平均粒径が約0.5μmのSDC粉末、平均粒径が約0.8μmのNiO粉末で、NiOが60wt%)を塗布し、1200℃で焼成し燃料極とした。この裏面にPt空気極、およびPt参照極を実施例2と同様の方法で設けた。このセルを実施例3の比較例であるセル#4−0とする。上記比較例において、NiO粉末に実施例1と同様にTi0.85Nb0.15、FeO、Mn、CeO、Ce0.80.2、Ce0.6Zr0.20.2に対応するカチオンを含む酢酸塩水溶液を含浸させてNiO粒子表面を上記の酸化物触媒で覆った。 First, a 0.5 mm thick lanthanum gallate electrolyte sheet LSGM (La 0.85 Sr 0.15 Ga 0.85 Mg 0.15 O 3 ) solid electrolyte substrate fired by the doctor blade method is placed on one side of the SDC (Ce 0.8 Sm). An SDC film having a thickness of about 0.1 μm was produced by spin-coating and baking an aqueous acetate solution corresponding to a composition of 0.2 O 2 . Next, a slurry of NiO-SDC (Ce 0.8 Sm 0.2 O 2 ) (SDC powder with an average particle size of about 0.5 μm, NiO powder with an average particle size of about 0.8 μm, NiO 60 wt%) Was applied and fired at 1200 ° C. to obtain a fuel electrode. A Pt air electrode and a Pt reference electrode were provided on the back surface in the same manner as in Example 2. This cell is referred to as a cell # 4-0 which is a comparative example of the third embodiment. In the comparative example, it carried out NiO powder Example 1 in the same manner as Ti 0.85 Nb 0.15 O 2, FeO , Mn 3 O 4, CeO 2, Ce 0.8 Y 0.2 O 2, Ce 0.6 The surface of the NiO particles was covered with the above-described oxide catalyst by impregnating an aqueous acetate solution containing a cation corresponding to Zr 0.2 Y 0.2 O 2 .

このNiO粉末を用いてスラリを作製し、同様の方法で燃料極をLSGM電解質シート上に設けた。これらのセルをセル#4−1〜#4−6とする。これらのセルを用いて、実施例1と同様の試験を700℃、S/C=0.25の条件で行った。表4に示す様に、比較例であるセル#4−0に比べ、酸化物触媒で被覆したNiO粉末を燃料極に持つセルは耐炭素特性が向上していた。   A slurry was prepared using this NiO powder, and a fuel electrode was provided on the LSGM electrolyte sheet by the same method. These cells are referred to as cells # 4-1 to # 4-6. Using these cells, the same test as in Example 1 was performed under the conditions of 700 ° C. and S / C = 0.25. As shown in Table 4, compared with the cell # 4-0 which is a comparative example, the cell having NiO powder coated with an oxide catalyst in the fuel electrode has improved carbon resistance.

Figure 2006351405
Figure 2006351405

本発明は、加湿量の少ない燃料を使用した場合にも耐炭素析出性の高い燃料極に関するものである。炭素析出はS/C比が1.1以下の水蒸気量が少ないほど生じ易いとされているが、実際には2程度でも炭素が生成される。一方、水蒸気量が多いほどセル出力電圧が低下する。本発明は、予め酸化物触媒材料で表面を被覆したNi粒子を燃料極としている点を特徴としており、この燃料極では酸化物触媒薄膜で覆われているためNi上で炭素の酸化が促進され、炭素生成が抑制できる。   The present invention relates to a fuel electrode having high carbon deposition resistance even when a fuel with a small amount of humidification is used. Carbon precipitation is said to be more likely to occur as the amount of water vapor with an S / C ratio of 1.1 or less is reduced. On the other hand, the cell output voltage decreases as the amount of water vapor increases. The present invention is characterized in that Ni particles whose surface is coated with an oxide catalyst material in advance are used as a fuel electrode. Since this fuel electrode is covered with an oxide catalyst thin film, the oxidation of carbon is promoted on Ni. Carbon production can be suppressed.

実施例1、4に使用した自立膜型燃料電池セルの模式図。FIG. 3 is a schematic view of a self-supporting membrane fuel cell used in Examples 1 and 4. 実施例2、3に使用した支持膜型燃料電池セルの模式図。The schematic diagram of the support membrane type fuel cell used in Examples 2 and 3. FIG.

符号の説明Explanation of symbols

1 燃料極
2 電解質
3 参照極
4 燃料極基板
5 薄膜固体電解質
6 空気極
7 電流線
8 電圧線
DESCRIPTION OF SYMBOLS 1 Fuel electrode 2 Electrolyte 3 Reference electrode 4 Fuel electrode board | substrate 5 Thin film solid electrolyte 6 Air electrode 7 Current line 8 Voltage line

Claims (5)

表面がMn酸化物またはTi酸化物またはFe酸化物またはCeO系酸化物、またはZrO系酸化物またはCeO−ZrO系酸化物の薄い酸化物触媒層で覆われたNi粒子と、酸素イオン伝導体であるジルコニア系電解質材料またはセリア系電解質材料またはランタンガレート系電解質材料とで構成されていることを特徴とするSOFC燃料極。 Ni particles having a surface covered with a thin oxide catalyst layer of Mn oxide, Ti oxide, Fe oxide, CeO 2 oxide, ZrO 2 oxide or CeO 2 —ZrO 2 oxide, and oxygen An SOFC fuel electrode comprising an ionic conductor zirconia-based electrolyte material, ceria-based electrolyte material, or lanthanum gallate-based electrolyte material. 酸化物触媒層で覆われていないNi粒子を持つ燃料極層が固体電解質に隣接して設けられ、さらに、この層に隣接して酸化物触媒層で覆われたNi粒子を持つ燃料極層が設けられていることを特徴とする請求項1記載のSOFC燃料極。 A fuel electrode layer having Ni particles not covered with the oxide catalyst layer is provided adjacent to the solid electrolyte, and a fuel electrode layer having Ni particles covered with the oxide catalyst layer is provided adjacent to the layer. The SOFC fuel electrode according to claim 1, wherein the SOFC fuel electrode is provided. 燃料電池セルの電解質がランタンガレート系電解質である場合、酸化物触媒層で覆われていないNi粒子を持つ燃料極層と酸化物触媒層で覆われたNi粒子を持つ燃料極層間にセリア層を設けることを特徴とする請求項2記載のSOFC燃料極。 When the electrolyte of the fuel cell is a lanthanum gallate electrolyte, a ceria layer is provided between the fuel electrode layer having Ni particles not covered with the oxide catalyst layer and the fuel electrode layer having Ni particles covered with the oxide catalyst layer. The SOFC fuel electrode according to claim 2, wherein the SOFC fuel electrode is provided. NiO粉末に請求項1記載の酸化物触媒の組成に対応する金属を含有する有機金属溶液または無機金属溶液を含浸させ、乾燥し、任意に乾燥後焼成する工程、形成された酸化物触媒被覆NiO粉末を請求項1記載の酸素イオン伝導体粉末と混合し、焼成する工程を含むことを特徴とするSOFC燃料極の製造方法。 A step of impregnating a NiO powder with an organic metal solution or an inorganic metal solution containing a metal corresponding to the composition of the oxide catalyst according to claim 1 and drying, optionally drying and then firing, formed oxide catalyst-coated NiO A method for producing an SOFC fuel electrode, comprising the steps of mixing the powder with the oxygen ion conductor powder according to claim 1 and firing the powder. 前記無機金属溶液はMnまたはTiまたはFeまたはCeまたはZrを溶解した水溶液であり、有機金属溶液はMn、またはTi、またはFe、またはCe、またはCeおよびZrを含む溶液であり、酸素イオン伝導体はジルコニア系電解質材料またはセリア系電解質材料であることを特徴とする請求項4記載のSOFC燃料極の製造方法。 The inorganic metal solution is an aqueous solution in which Mn, Ti, Fe, Ce or Zr is dissolved, and the organic metal solution is a solution containing Mn, Ti, Fe, Ce, or Ce and Zr, and an oxygen ion conductor 5. The method for producing an SOFC fuel electrode according to claim 4, wherein is a zirconia-based electrolyte material or a ceria-based electrolyte material.
JP2005177581A 2005-06-17 2005-06-17 Sofc fuel electrode, and its manufacturing method Pending JP2006351405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177581A JP2006351405A (en) 2005-06-17 2005-06-17 Sofc fuel electrode, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177581A JP2006351405A (en) 2005-06-17 2005-06-17 Sofc fuel electrode, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006351405A true JP2006351405A (en) 2006-12-28

Family

ID=37647028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177581A Pending JP2006351405A (en) 2005-06-17 2005-06-17 Sofc fuel electrode, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006351405A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098156A (en) * 2006-09-12 2008-04-24 Toto Ltd Cell for solid oxide fuel cell
JP2009064779A (en) * 2007-08-31 2009-03-26 Technical Univ Of Denmark Composite electrode
WO2009063598A1 (en) * 2007-11-12 2009-05-22 Kyusyu University, National University Corporation Electrode material for fuel cell, process for producing the electrode material, and electrode for fuel cell and fuel cell, comprising the electrode material for fuel cell
JP2009148706A (en) * 2007-12-20 2009-07-09 Showa Denko Kk Electrode catalyst and its application, and manufacturing method of this electrode catalyst
JP2011040362A (en) * 2009-07-14 2011-02-24 Kansai Electric Power Co Inc:The Fuel electrode for solid oxide fuel cell, solid oxide fuel cell, and operation method of solid oxide fuel cell
JP2011157248A (en) * 2010-02-03 2011-08-18 Mitsubishi Materials Corp Nickel-based alloy powder and production process therefor
JP2011210420A (en) * 2010-03-29 2011-10-20 Toshiba Corp Electrochemical cell
JP2013046913A (en) * 2012-11-22 2013-03-07 Showa Denko Kk Electrode catalyst and use thereof, and method for manufacturing the electrode catalyst
JP2013540050A (en) * 2010-09-28 2013-10-31 トヨタ自動車株式会社 Fuel cell electrode catalyst
JP2014183032A (en) * 2013-03-21 2014-09-29 Toyota Central R&D Labs Inc Electrode for energy-conversion device use, energy-conversion device arranged by use thereof, and energy conversion method
JP2015122225A (en) * 2013-12-24 2015-07-02 日本特殊陶業株式会社 Solid oxide fuel cell, and manufacturing method of the same
JP7324168B2 (en) 2020-03-31 2023-08-09 株式会社豊田中央研究所 electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106821A (en) * 1995-10-12 1997-04-22 Fujikura Ltd Solid electrolyte fuel cell and manufacture thereof
JPH103930A (en) * 1996-04-19 1998-01-06 Tokyo Gas Co Ltd Manufacture of fuel electrode for solid electrolyte fuel cell
JPH1021931A (en) * 1996-06-27 1998-01-23 Kyocera Corp Solid electrolyte type fuel cell
JP2002352809A (en) * 2001-05-30 2002-12-06 Nippon Telegr & Teleph Corp <Ntt> Guiding method of electrode active oxide into fuel pole for solid electrolyte fuel cell
JP2003017073A (en) * 2002-05-27 2003-01-17 Kyocera Corp Cell for solid electrolyte fuel cell and its manufacturing method
JP2003045446A (en) * 2001-07-30 2003-02-14 Kyocera Corp Cell of solid electrolyte fuel cell, method for manufacturing it, and fuel cell
JP2004259594A (en) * 2003-02-26 2004-09-16 Tokyo Electric Power Co Inc:The Electrode, its manufacturing method, and fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106821A (en) * 1995-10-12 1997-04-22 Fujikura Ltd Solid electrolyte fuel cell and manufacture thereof
JPH103930A (en) * 1996-04-19 1998-01-06 Tokyo Gas Co Ltd Manufacture of fuel electrode for solid electrolyte fuel cell
JPH1021931A (en) * 1996-06-27 1998-01-23 Kyocera Corp Solid electrolyte type fuel cell
JP2002352809A (en) * 2001-05-30 2002-12-06 Nippon Telegr & Teleph Corp <Ntt> Guiding method of electrode active oxide into fuel pole for solid electrolyte fuel cell
JP2003045446A (en) * 2001-07-30 2003-02-14 Kyocera Corp Cell of solid electrolyte fuel cell, method for manufacturing it, and fuel cell
JP2003017073A (en) * 2002-05-27 2003-01-17 Kyocera Corp Cell for solid electrolyte fuel cell and its manufacturing method
JP2004259594A (en) * 2003-02-26 2004-09-16 Tokyo Electric Power Co Inc:The Electrode, its manufacturing method, and fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098156A (en) * 2006-09-12 2008-04-24 Toto Ltd Cell for solid oxide fuel cell
JP2009064779A (en) * 2007-08-31 2009-03-26 Technical Univ Of Denmark Composite electrode
WO2009063598A1 (en) * 2007-11-12 2009-05-22 Kyusyu University, National University Corporation Electrode material for fuel cell, process for producing the electrode material, and electrode for fuel cell and fuel cell, comprising the electrode material for fuel cell
JP2009148706A (en) * 2007-12-20 2009-07-09 Showa Denko Kk Electrode catalyst and its application, and manufacturing method of this electrode catalyst
JP2011040362A (en) * 2009-07-14 2011-02-24 Kansai Electric Power Co Inc:The Fuel electrode for solid oxide fuel cell, solid oxide fuel cell, and operation method of solid oxide fuel cell
JP2011157248A (en) * 2010-02-03 2011-08-18 Mitsubishi Materials Corp Nickel-based alloy powder and production process therefor
JP2011210420A (en) * 2010-03-29 2011-10-20 Toshiba Corp Electrochemical cell
JP2013540050A (en) * 2010-09-28 2013-10-31 トヨタ自動車株式会社 Fuel cell electrode catalyst
JP2013046913A (en) * 2012-11-22 2013-03-07 Showa Denko Kk Electrode catalyst and use thereof, and method for manufacturing the electrode catalyst
JP2014183032A (en) * 2013-03-21 2014-09-29 Toyota Central R&D Labs Inc Electrode for energy-conversion device use, energy-conversion device arranged by use thereof, and energy conversion method
JP2015122225A (en) * 2013-12-24 2015-07-02 日本特殊陶業株式会社 Solid oxide fuel cell, and manufacturing method of the same
JP7324168B2 (en) 2020-03-31 2023-08-09 株式会社豊田中央研究所 electrode

Similar Documents

Publication Publication Date Title
JP2006351405A (en) Sofc fuel electrode, and its manufacturing method
JP5608674B2 (en) Current collector for solid oxide fuel cell stack
JP5581216B2 (en) High performance multilayer electrode for use in reducing gases
CN105940540B (en) Electrochemical energy conversion device, battery, and positive electrode material for same
JP5591526B2 (en) Solid oxide cell and solid oxide cell stack
US8518605B2 (en) Ceramic material combination for an anode of a high-temperature fuel cell
JP2011507161A (en) High performance multilayer electrode for use in oxygen-containing gases
JP5465240B2 (en) Sol-gel derived high performance catalytic thin films for sensors, oxygen separators, and solid oxide fuel cells
JP2015501515A (en) High performance fuel electrodes for solid oxide electrochemical cells.
JPWO2004102704A1 (en) Solid oxide fuel cell and manufacturing method thereof
JP5127126B2 (en) Electrode for fuel cell and solid oxide fuel cell using the same
US11283084B2 (en) Fabrication processes for solid state electrochemical devices
JP2012033418A (en) Solid oxide fuel cell and method for manufacturing the same
JP2006351406A (en) Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode
JP5290870B2 (en) Solid oxide fuel cell
JP6889900B2 (en) Anode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel cell
JP7395171B2 (en) Anode for solid oxide fuel cells and solid oxide fuel cells
JP5112711B2 (en) Method for producing electrode for solid oxide fuel cell and solid oxide fuel cell
JP2021158026A (en) Metal support for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and solid oxide electrolytic cell
KR101691699B1 (en) Method for manufacturing powder for anode functional layer of solid oxide fuel cell
JP7114555B2 (en) Electrodes for water vapor electrolysis
US20230420691A1 (en) Method of manufacturing nanolayered cathodes for solid oxide fuel cell using ultrasonic spray infiltration and solid oxide fuel cell manufactured using same
JP2008198422A (en) Solid oxide fuel cell and manufacturing method of electrode for same
JP2007311198A (en) Method of manufacturing electrode for solid oxide fuel cell and solid oxide fuel cell
JP2005166564A (en) Fuel electrode for sofc tolerant to carbon deposit, and its fabricating method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315