JPH09106821A - Solid electrolyte fuel cell and manufacture thereof - Google Patents

Solid electrolyte fuel cell and manufacture thereof

Info

Publication number
JPH09106821A
JPH09106821A JP7264365A JP26436595A JPH09106821A JP H09106821 A JPH09106821 A JP H09106821A JP 7264365 A JP7264365 A JP 7264365A JP 26436595 A JP26436595 A JP 26436595A JP H09106821 A JPH09106821 A JP H09106821A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel electrode
electrode
fuel
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7264365A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwazawa
力 岩澤
Mikiyuki Ono
幹幸 小野
Masakatsu Nagata
雅克 永田
Satoru Yamaoka
悟 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP7264365A priority Critical patent/JPH09106821A/en
Publication of JPH09106821A publication Critical patent/JPH09106821A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To suppress the proceeding of sintering of Ni particles which compose a fuel electrode during operation of a cell and make a solid electrolyte film dense by filling and covering the space between the surface of fuel electrode composing particles and a joining face of a solid electrolyte with a fixing agent by impregnation with the agent. SOLUTION: From the surface side to a solid electrolyte 3 side, a fuel electrode is impregnated with a slurry fixing agent containing a fine power of at least one oxide of Zr, Y, Mg, and C, which is a composing element of an electrolyte. Consequently, the fixing agent is stuck to and cover the gaps between the surface of Ni particles 41 and of yttria-stabilized zirconia(YSZ) particles 42, which are a fuel electrode composing elements, and the joining face of the electrolyte film 3, and at the same time air-through holes 31 of the film 3 are filled with the agent and after that, the resultant body is dried and sintered. By this method, sintering among Ni particles composing the fuel electrode during operation of a cell can be suppressed and the solid electrolyte film becomes dense, so that a fuel cell in which deterioration of the electricity generating function with the lapse of time can be prevented and initial efficiency can last for a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、酸化物イオン導
電体を用いる固体電解質型燃料電池に関するものであっ
て、とくに燃料極の経時変化に起因する発電性能の劣化
を防止する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell using an oxide ion conductor, and more particularly to a method for preventing deterioration of power generation performance due to aging of a fuel electrode. .

【0002】[0002]

【従来の技術】固体電解質型燃料電池の本体部分は、固
体電解質の膜を挾んでその一方の面に空気極、他の一方
の面には燃料極が積層され、空気極側に空気(酸素)
を、燃料極側に水素を含む燃料ガスを供給する構造にな
っている。そして電解質に酸化物イオン導電体を用いる
ものでは、空気極側で電離した酸素イオンが電解質を移
動して燃料極に到達し、水素と反応して電子を放出す
る。かくして空気極を陽極,燃料極を陰極とする電池が
形成されると同時に、副産物として燃料極で水が生成さ
れる。
2. Description of the Related Art The body of a solid oxide fuel cell has a solid electrolyte membrane sandwiched between an air electrode on one side and a fuel electrode on the other side. )
Is configured to supply a fuel gas containing hydrogen to the fuel electrode side. When an oxide ion conductor is used as the electrolyte, oxygen ions ionized on the air electrode side move through the electrolyte to reach the fuel electrode, react with hydrogen, and emit electrons. Thus, at the same time as the formation of a cell having the air electrode as the anode and the fuel electrode as the cathode, water is produced as a by-product at the fuel electrode.

【0003】図3は固体電解質型燃料電池(円筒方式)
の一般的な構造を例示したもので、図において1は燃料
電池素子を支持する多孔質の基体管で、その材質はカル
シア安定化ジルコニア(CSZ)やアルミナなどのセラ
ミックスが用いられている。
FIG. 3 shows a solid oxide fuel cell (cylindrical system).
In the figure, reference numeral 1 is a porous base tube for supporting a fuel cell element, and its material is ceramics such as calcia-stabilized zirconia (CSZ) or alumina.

【0004】2は基体管1の外周に形成される電極(空
気極)で、約1000℃の高温酸化性雰囲気で安定なこ
と,電子伝導度が高いこと,多孔質で空気をよく流通さ
せること,空気極2の上に形成される固体電解質3と熱
伝導率が近く、密着性がよいことなどが求められる。そ
のため、ランタンマンガネートやランタンカルシウムマ
ンガネートなどの複合酸化物が一般に用いられている。
Reference numeral 2 denotes an electrode (air electrode) formed on the outer circumference of the substrate tube 1, which is stable in a high temperature oxidizing atmosphere at about 1000 ° C., has high electron conductivity, and is porous and allows good air circulation. , Thermal conductivity is close to that of the solid electrolyte 3 formed on the air electrode 2, and good adhesion is required. Therefore, composite oxides such as lanthanum manganate and lanthanum calcium manganate are generally used.

【0005】固体電解質3は酸素イオンの透過性に優れ
ていること,高温で化学的に安定なこと,電池の稼動・
休止の反復による熱衝撃に強く、かつ、緻密質で空気や
燃料ガスを通さないことなどが求められる。その理由
は、この膜を通して空気と燃料ガスが混じり合うと電気
化学反応の効率低下,燃料の徒費などの不利を招くため
である。
The solid electrolyte 3 has excellent oxygen ion permeability, is chemically stable at high temperatures, and operates the battery.
It is required to be resistant to thermal shock due to repeated pauses, dense, and impermeable to air and fuel gas. The reason for this is that if air and fuel gas are mixed together through this membrane, the efficiency of the electrochemical reaction will be reduced and the fuel costs will be disadvantageous.

【0006】この諸条件を満たす材料にジルコニアがあ
るが、その高温での容積変化による損傷を防ぐためにア
ルカリ土類金属(Sr,Mg,Caなど)の酸化物や希
土類元素酸化物を固溶させた安定化ジルコニア,とくに
イットリア安定化ジルコニア(YSZ)が多く用いられ
ている。
Zirconia is a material which satisfies these various conditions, but in order to prevent the damage due to the volume change at high temperature, an oxide of an alkaline earth metal (Sr, Mg, Ca, etc.) or a rare earth element oxide is solid-dissolved. Stabilized zirconia, especially yttria-stabilized zirconia (YSZ) is often used.

【0007】4は電極(燃料極)で、高い電子伝導性を
もつと共に、その内側の固体電解質3と熱膨脹率が近
く、密着性が良好なことが必要である。そのため、ニッ
ケルに安定化ジルコニアを加えて熱膨脹率を調整したサ
ーメット,とくにNi−YSZサーメットが多く用いら
れている。また、この燃料電池における前述の電気化学
反応は酸素、水素などの反応ガス,固体電解質および電
極が相接する界面(三相界面)で進行するので、三相界
面をできるだけ多くして発電性能を高めるため、燃料極
は多孔質に形成しなければならない。そこで燃料極は従
来、Ni−YSZサーメット粉末またはNi,YSZそ
れぞれの粉末の粒度、溶射または焼成条件などの調整に
より多孔質に成膜していた。
Numeral 4 is an electrode (fuel electrode), which has a high electron conductivity, a thermal expansion coefficient close to that of the solid electrolyte 3 inside thereof, and good adhesion. Therefore, cermets in which a coefficient of thermal expansion is adjusted by adding stabilized zirconia to nickel, especially Ni-YSZ cermets are often used. Further, since the above-described electrochemical reaction in this fuel cell proceeds at the interface (three-phase interface) where the reaction gas such as oxygen and hydrogen, the solid electrolyte and the electrode are in contact with each other, the number of three-phase interfaces is increased as much as possible to improve the power generation performance. In order to enhance it, the anode must be made porous. Therefore, conventionally, the fuel electrode has been formed into a porous film by adjusting the particle size of the Ni-YSZ cermet powder or the powder of each of Ni and YSZ, the spraying or firing conditions, and the like.

【0008】5は複数箇の単電池を直列に接続するため
の導電体(インターコネクタ)で、空気極2に直結し、
かつ燃料極4から絶縁して設けられる。導電性が高いこ
とはもとより、約1000℃の高温において酸化性・還
元性の両雰囲気中で安定なこと,燃料と空気が混合しな
いよう気密性が高いことなどが要求されるため、現在の
ところランタンクロマイト系酸化物が主に用いられてい
る。
Reference numeral 5 is a conductor (interconnector) for connecting a plurality of cells in series, which is directly connected to the air electrode 2,
Moreover, it is provided so as to be insulated from the fuel electrode 4. In addition to high conductivity, it is required at present to be stable in both oxidizing and reducing atmospheres at a high temperature of about 1000 ° C, and to be highly airtight so that fuel and air do not mix, so that it is currently Lanthanum chromite oxide is mainly used.

【0009】なお図示の円筒方式の他に平板方式があ
り、また円筒方式でも空気極の強度を高めて基体管を省
略したものもあるが、後述する本発明は燃料極(および
必要により固体電解質膜)の改質に関するもので、全体
構造如何に拘らず、何れの方式にも適用し得るものであ
る。
In addition to the illustrated cylindrical system, there is also a flat plate system, and there is also a cylindrical system in which the strength of the air electrode is increased and the substrate tube is omitted. The present invention relates to the modification of a film and can be applied to any method regardless of the overall structure.

【0010】この様な燃料電池における固体電解質3と
その上に成膜された燃料極4の断面を、図1および図2
に模式的に示す。後述する実施例1,2の如くニッケル
粉末とYSZ粉末の混合粉末溶射により燃料極を成膜し
た場合は、図1および図2の各左側に示すようにYSZ
からなる固体電解質膜3の上に、ニッケル粒子41とY
SZ粒子42が積み重なった状態で相互に結合し、多孔
質の燃料極を形成している。
1 and 2 are cross-sectional views of the solid electrolyte 3 and the fuel electrode 4 formed on the solid electrolyte 3 in such a fuel cell.
Is schematically shown in. When the fuel electrode is formed by the mixed powder spraying of the nickel powder and the YSZ powder as in Examples 1 and 2 which will be described later, as shown on the left side of FIGS.
On the solid electrolyte membrane 3 made of nickel particles 41 and Y
The SZ particles 42 are stacked and bonded to each other to form a porous fuel electrode.

【0011】[0011]

【発明が解決しようとする課題】この様な電池を稼動さ
せると、約1000℃の高温雰囲気中に長期間置かれる
ため、燃料極を構成するニッケル粒子同士の焼結が接触
部から進行して燃料極の多孔度の低下および三相界面の
減少を招く結果、電池の発電性能が経時的に劣化する。
When such a battery is operated, it is placed in a high temperature atmosphere of about 1000 ° C. for a long period of time, so that sintering of nickel particles composing the fuel electrode progresses from the contact portion. As a result of a decrease in the porosity of the fuel electrode and a decrease in the three-phase interface, the power generation performance of the cell deteriorates over time.

【0012】燃料極の溶射成膜にYSZ粉末をニッケル
で被覆した複合粉を用いた場合は、構成粒子の表面が全
てニッケルであるだけに、燃料極の導電性は優れている
半面構成粒子同士の焼結の進行によるデメリットも大き
くなる。燃料極の溶射成膜にNi−YSZサーメット粉
末を用いた場合も、複合粉の場合とほぼ同様である。
When the composite powder in which YSZ powder is coated with nickel is used for the thermal spray coating of the fuel electrode, the surface of the constituent particles is all nickel, and the half surface constituent particles are excellent in the conductivity of the fuel electrode. The demerit due to the progress of sintering is also large. When Ni-YSZ cermet powder is used for the thermal spray coating of the fuel electrode, it is almost the same as the case of the composite powder.

【0013】また、固体電解質3は前述したように緻密
なことが必要で、通気孔があってはならない訳である
が、現実には完全な緻密質に成膜するのは困難なことで
ある。ことに、燃料極との密着性の向上や三相界面の増
大を図るべく、例えば原料粉の粒度,溶射条件などの調
整により表面を粗に成膜した場合、そのメリットの半面
通気孔の残存は避け難い。そのため何等かの封孔処理、
それも燃料極を積層した後から施すことのできる方法が
望まれていた。
Further, the solid electrolyte 3 needs to be dense as described above and must not have a vent hole, but in reality, it is difficult to form a film with a perfect density. . In particular, in order to improve the adhesion with the fuel electrode and increase the three-phase interface, for example, when the surface is roughly formed by adjusting the particle size of the raw material powder, the spraying conditions, etc. Is hard to avoid. Therefore, some kind of sealing treatment,
A method which can be applied after stacking the fuel electrodes has been desired.

【0014】[0014]

【課題を解決するための手段】固体電解質および燃料極
の成膜後、固定化剤を含むスラリーまたは溶液を燃料極
の表面から含浸させ、燃料極の構成粒子の表面および固
体電解質との接合面の隙間に付着被覆させたのち乾燥お
よび焼成を行なう。ここで、固定化剤としては電極の特
性に悪影響しないものが望ましく、その意味で、もとも
と固体電解質の構成元素であり燃料極とも共通するZ
r,Y,Mg,Caまたはそれらの酸化物が適してい
る。これらの固定化剤は、その金属塩の水溶液として用
いてもよく、また、その微粉末を懸濁させたスラリーと
して用いることもできる。この場合、微粉末の粒度は1
μm以下であることが望ましい。
Means for Solving the Problems After a solid electrolyte and a fuel electrode are formed into a film, a slurry or a solution containing an immobilizing agent is impregnated from the surface of the fuel electrode, and the surfaces of the constituent particles of the fuel electrode and the joint surface with the solid electrolyte. After being adhered and coated in the gaps, dried and baked. Here, as the immobilizing agent, one that does not adversely affect the characteristics of the electrode is desirable, and in that sense, it is a constituent element of the solid electrolyte and is common to the fuel electrode.
r, Y, Mg, Ca or their oxides are suitable. These immobilizing agents may be used as an aqueous solution of the metal salt, or may be used as a slurry in which fine powder is suspended. In this case, the particle size of the fine powder is 1
It is desirable that it is not more than μm.

【0015】これらの固定化剤は、燃料極を構成するN
i粒子の表面に付着してNi同士の直接接触を妨げ、稼
動時の高温による焼結の進行を抑制する。さらに、固体
電解質膜に通気孔がある場合はそこに含浸充填して膜を
緻密化する。そしてこれらの作用の結果として、電池の
発電性能の経時的劣化が防止される。
These immobilizing agents are N constituting the fuel electrode.
It adheres to the surface of the i particles to prevent direct contact between Ni particles, and suppresses the progress of sintering due to high temperature during operation. Further, when the solid electrolyte membrane has a vent hole, it is impregnated and filled into the vent hole to densify the membrane. As a result of these actions, deterioration of the power generation performance of the battery over time is prevented.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1) 先ずランタンマンガン系酸化物粉末を押
し出し成形・焼成して多孔質の基体管1を作製し、その
外周面にランタンマンガン系酸化物粉末をArガス雰囲
気で高周波プラズマ溶射し、多孔質の空気極2を成膜し
た。
(Example 1) First, a lanthanum-manganese-based oxide powder was extruded and fired to produce a porous substrate tube 1, and the lanthanum-manganese-based oxide powder was sprayed on the outer peripheral surface of the lanthanum-manganese-based oxide powder in an Ar gas atmosphere by high-frequency plasma spraying. A quality cathode 2 was deposited.

【0017】固体電解質3は、粒度5〜25μmのイッ
トリア安定化ジルコニア(YSZ)粉末を主体としてこ
れにZr−8 mol%Y合金粉を重量比で10%添加した
混合粉を用意し、この混合粉の減圧下(100torr)プ
ラズマ溶射により空気極2の上に緻密に成膜した。次い
で固体電解質膜3の上に、YSZ粉末と酸化ニッケル粉
末の混合粉を大気圧溶射して、燃料極4を多孔質に成膜
した。
The solid electrolyte 3 is mainly composed of yttria-stabilized zirconia (YSZ) powder having a particle size of 5 to 25 μm, and a mixed powder prepared by adding 10% by weight of Zr-8 mol% Y alloy powder is prepared. The powder was densely formed on the air electrode 2 by plasma spraying under reduced pressure (100 torr). Next, a mixed powder of YSZ powder and nickel oxide powder was sprayed onto the solid electrolyte membrane 3 at atmospheric pressure to form the fuel electrode 4 as a porous film.

【0018】図1の左側はかくして得られた固体電解質
膜3および燃料極4の断面の模式図であり、緻密に成膜
された固体電解質膜3の上にYSZ粒子42と酸化ニッ
ケル粒子41が積み重なった状態で相互に結合し、多孔
質の燃料極4を形成している状態を示している。このま
まではニッケル粒子同士の接触部から焼結が進行し、好
ましくない結果を招くことは前述の通りである。
The left side of FIG. 1 is a schematic view of a cross section of the solid electrolyte membrane 3 and the fuel electrode 4 thus obtained, in which YSZ particles 42 and nickel oxide particles 41 are formed on the densely formed solid electrolyte membrane 3. It shows a state in which they are connected to each other in a stacked state to form a porous fuel electrode 4. As described above, if it is left as it is, the sintering proceeds from the contact portion between the nickel particles, resulting in an unfavorable result.

【0019】そこで、粒度を1μm以下に調整したジル
コニア粉末およびジルコニア酸化物粉末を含むスラリー
を燃料極側から含浸させ乾燥した後、酸化雰囲気中70
0〜1000℃で焼成することにより、燃料極を構成す
る各粒子を被覆・固定すると共に、燃料極と固体電解質
との隙間を充填した。図1の右側は、この固定化処理に
よりニッケル粒子が固定された状態を模式的に示したも
のである。
Therefore, a slurry containing zirconia powder and zirconia oxide powder having a particle size adjusted to 1 μm or less is impregnated from the fuel electrode side and dried, and then in an oxidizing atmosphere 70
By firing at 0 to 1000 ° C., each particle forming the fuel electrode was coated and fixed, and the gap between the fuel electrode and the solid electrolyte was filled. The right side of FIG. 1 schematically shows a state in which nickel particles are fixed by this fixing treatment.

【0020】次に、この固定化処理を施す前後の各試料
それぞれにインターコネクタを形成して燃料電池に仕上
げた後、それぞれ500時間の稼働後に発電特性を比較
したところ、処理前の試料(図の左側の状態の試料)の
場合は300mA/cm2 の時に劣化率が13.2%/
1000hであったのに対して、固定化処理後の試料
(図の右側の状態の試料)の場合は劣化率が3.1%/
1000hと著しく減少する結果が得られ、本発明に係
る固定化処理の有効なことが確認された。
Next, when an interconnector was formed on each of the samples before and after the immobilization treatment to complete a fuel cell, and the power generation characteristics were compared after 500 hours of operation, the samples before treatment (Fig. In the case of the sample on the left side of (1), the deterioration rate is 13.2% / at 300 mA / cm 2.
The deterioration rate was 3.1% / in the case of the sample after the immobilization treatment (the sample in the state on the right side of the figure), while it was 1000 h.
It was confirmed that the immobilization treatment according to the present invention was effective, since the result was remarkably reduced to 1000 hours.

【0021】(実施例2) 基体管1および空気極は前
記の実施例1と同様にして形成し、固体電解質3は、粒
度5〜25μmのイットリア安定化ジルコニア(YS
Z)粉末の減圧下(100torr)プラズマ溶射により空
気極2の上に成膜した。次いで固体電解質膜3の上に、
YSZ粉末と酸化ニッケル粉末の混合粉を大気圧溶射し
て、燃料極4を多孔質に成膜した。
(Example 2) The substrate tube 1 and the air electrode were formed in the same manner as in Example 1 described above, and the solid electrolyte 3 was made of yttria-stabilized zirconia (YS) having a particle size of 5 to 25 µm.
Z) Powder was formed on the air electrode 2 by plasma spraying under reduced pressure (100 torr). Then, on the solid electrolyte membrane 3,
A mixed powder of YSZ powder and nickel oxide powder was sprayed at atmospheric pressure to form the fuel electrode 4 in a porous film.

【0022】図2の左側はかくして得られた固体電解質
膜3および燃料極の断面の模式図であり、YSZ粒子4
2と酸化ニッケル粒子41が重積して多孔質の燃料極を
形成している状態は実施例1(図1の左側)の場合と同
様であるが、固体電解質3に通気孔31があり、図示し
ない空気極側に連通している。このままでは前述したニ
ッケル粒子同士の焼結進行のほか、空気と燃料ガスが混
合する虞れがある。
The left side of FIG. 2 is a schematic view of the cross section of the solid electrolyte membrane 3 and the fuel electrode thus obtained, and YSZ particles 4
The state in which 2 and the nickel oxide particles 41 are stacked to form a porous fuel electrode is similar to that in the case of Example 1 (left side of FIG. 1), but the solid electrolyte 3 has the vent holes 31, It communicates with the air electrode side (not shown). If this is left as it is, there is a possibility that air and fuel gas may be mixed in addition to the progress of sintering of the nickel particles described above.

【0023】そこで、酢酸ジルコニウムの水溶液を燃料
極側から含浸させて乾燥した後、酸化雰囲気中700〜
1000℃で焼成することにより、燃料極を構成する各
粒子を被覆・固定すると共に、燃料極と固体電解質との
隙間、および固体電解質3の通気孔31を充填した。図
2の右側は、この固定化処理によってニッケル粒子が固
定され、かつ固体電解質の通気孔31が封孔された状態
を模式的に示したものである。
Therefore, an aqueous solution of zirconium acetate is impregnated from the fuel electrode side and dried, and then 700 to 700 in an oxidizing atmosphere.
By firing at 1000 ° C., each particle constituting the fuel electrode was covered and fixed, and the gap between the fuel electrode and the solid electrolyte and the vent hole 31 of the solid electrolyte 3 were filled. The right side of FIG. 2 schematically shows a state in which nickel particles are fixed by this fixing treatment and the air holes 31 of the solid electrolyte are sealed.

【0024】次に、この固定化処理を施す前後の各試料
それぞれにインターコネクタを形成して燃料電池に仕上
げた後、それぞれ500時間の稼働後に発電特性の比較
試験をしたところ、固定化処理前の試料の場合は300
mA/cm2 の時に劣化率が12.9%/1000hで
あったのに対して、固定化処理後の試料の場合は劣化率
が2.2%/1000hの結果が得られ、この実施例に
おいても固定化処理の有効なことが確認された。
Next, an interconnector was formed on each of the samples before and after the immobilization treatment to complete a fuel cell, and a comparative test of power generation characteristics was carried out after 500 hours of operation. 300 for the sample
The deterioration rate was 12.9% / 1000 h at mA / cm 2 , whereas the deterioration rate was 2.2% / 1000 h for the sample after the immobilization treatment. It was confirmed that the immobilization treatment was also effective in.

【0025】[0025]

【発明の効果】以上に詳述したように、この発明によれ
ば、燃料電池稼働中における燃料極を構成するNi粒子
同士の焼結の進行を抑制し、さらに、固体電解質膜に通
気孔がある場合はその膜を緻密化する。そしてこれらの
作用の結果として、燃料電池の発電性能の経時的劣化を
防ぎ、初期の効率を永続させる効果を奏する。
As described above in detail, according to the present invention, the progress of sintering of Ni particles constituting the fuel electrode during the operation of the fuel cell is suppressed, and the solid electrolyte membrane has a vent hole. In some cases, the film is densified. As a result of these actions, there is an effect of preventing the power generation performance of the fuel cell from deteriorating with time and making the initial efficiency permanent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を説明する、燃料極4および固
体電解質3の断面の模式図である。
FIG. 1 is a schematic view of a cross section of a fuel electrode 4 and a solid electrolyte 3 for explaining an embodiment of the present invention.

【図2】本発明の他の実施例を説明する、燃料極4およ
び固体電解質3の断面の模式図である。
FIG. 2 is a schematic cross-sectional view of a fuel electrode 4 and a solid electrolyte 3 for explaining another embodiment of the present invention.

【図3】固体電解質型燃料電池(円筒方式)の一般的な
構造を示す斜視図である。
FIG. 3 is a perspective view showing a general structure of a solid oxide fuel cell (cylindrical method).

【符号の説明】[Explanation of symbols]

1 基体管 2 空気極 3 固体電解質 4 燃料極 5 インターコネクタ 31 通気孔 41 ニッケル粒子 42 YSZ粒子 43 複合粒子 44 固定化剤 DESCRIPTION OF SYMBOLS 1 Base tube 2 Air electrode 3 Solid electrolyte 4 Fuel electrode 5 Interconnector 31 Vent hole 41 Nickel particle 42 YSZ particle 43 Composite particle 44 Immobilizing agent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岡 悟 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoru Yamaoka 5-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Stock Company

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質の膜を挾んでその一方の面に
空気極,他の一方の面には燃料極が積層され、空気極側
に空気を、燃料極側に水素を含む燃料ガスを供給して発
電する構成の固体電解質型燃料電池において、固定化剤
を燃料極の表面から固体電解質側に含浸させ、燃料極の
構成粒子の表面および固体電解質との接合面の隙間に付
着被覆させたのち乾燥および焼成を行なうことを特徴と
する、固体電解質型燃料電池の製造方法。
1. A solid electrolyte membrane is sandwiched between an air electrode on one side and a fuel electrode on the other side, and air is placed on the side of the air electrode and fuel gas containing hydrogen is placed on the side of the fuel electrode. In a solid oxide fuel cell configured to supply and generate electric power, an immobilizing agent is impregnated into the solid electrolyte side from the surface of the fuel electrode, and adheres to and covers the gaps between the surface of the constituent particles of the fuel electrode and the joint surface with the solid electrolyte. A method for producing a solid oxide fuel cell, which comprises performing drying and firing.
【請求項2】 固体電解質の膜を挾んでその一方の面に
空気極,他の一方の面には燃料極が積層され、空気極側
に空気を、燃料極側に水素を含む燃料ガスを供給して発
電する構成の固体電解質型燃料電池において、固定化剤
を燃料極の表面から固体電解質側に含浸させ、燃料極の
構成粒子の表面,燃料極と固体電解質の接合面の隙間お
よび固体電解質膜の残存通気孔内に付着被覆させたの
ち、乾燥および焼成を行なうことを特徴とする、固体電
解質型燃料電池の製造方法。
2. A solid electrolyte membrane is sandwiched and an air electrode is laminated on one surface of the solid electrolyte membrane, and a fuel electrode is laminated on the other surface of the solid electrolyte membrane. Air is placed on the air electrode side and fuel gas containing hydrogen is placed on the fuel electrode side. In a solid oxide fuel cell configured to supply and generate electric power, an immobilizing agent is impregnated into the solid electrolyte side from the surface of the fuel electrode, and the surface of the constituent particles of the fuel electrode, the gap between the joint surface of the fuel electrode and the solid electrolyte, and the solid A method for producing a solid oxide fuel cell, which comprises drying and firing after depositing and covering the inside of the remaining vent holes of the electrolyte membrane.
【請求項3】 固定化剤が、固体電解質の構成元素であ
るZr,Y,Mg,Caおよびその酸化物の少なくとも
何れか1種の微粉末を含むスラリーである、請求項1ま
たは請求項2に記載の固体電解質型燃料電池の製造方
法。
3. The immobilizing agent is a slurry containing a fine powder of at least one kind of Zr, Y, Mg, Ca which is a constituent element of the solid electrolyte and an oxide thereof. The method for producing a solid oxide fuel cell according to item 1.
【請求項4】 固定化剤が、固体電解質の構成元素であ
るZr,Y,Mg,Caの少なくとも何れか1種の金属
塩を含む溶液である、請求項1または請求項2に記載の
固体電解質型燃料電池の製造方法。
4. The solid according to claim 1, wherein the immobilizing agent is a solution containing at least one metal salt of Zr, Y, Mg, and Ca, which is a constituent element of the solid electrolyte. Method for manufacturing electrolyte fuel cell.
【請求項5】 固体電解質の膜を挾んでその一方の面に
空気極,他の一方の面には燃料極が積層され、空気極側
に空気を、燃料極側に水素を含む燃料ガスを供給して発
電するよう構成された固体電解質型燃料電池において、
燃料極の構成粒子の表面,燃料極と固体電解質の接合面
の隙間および固体電解質膜の残存通気孔内に、固体電解
質の構成元素であるZr,Y,Mg,Caおよびその酸
化物の少なくとも何れか1種からなる固定化剤が含浸固
定されていることを特徴とする固体電解質型燃料電池。
5. A solid electrolyte membrane is sandwiched and an air electrode is laminated on one surface of the solid electrolyte membrane, and a fuel electrode is laminated on the other surface of the solid electrolyte membrane. Air is placed on the air electrode side and fuel gas containing hydrogen is placed on the fuel electrode side. In a solid oxide fuel cell configured to supply and generate power,
At least one of Zr, Y, Mg, Ca, which is a constituent element of the solid electrolyte, and an oxide thereof is present on the surface of the constituent particles of the fuel electrode, the gap between the joint surface of the fuel electrode and the solid electrolyte, and the remaining vent holes of the solid electrolyte membrane. A solid oxide fuel cell characterized in that it is impregnated and fixed with one type of fixing agent.
JP7264365A 1995-10-12 1995-10-12 Solid electrolyte fuel cell and manufacture thereof Pending JPH09106821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7264365A JPH09106821A (en) 1995-10-12 1995-10-12 Solid electrolyte fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7264365A JPH09106821A (en) 1995-10-12 1995-10-12 Solid electrolyte fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09106821A true JPH09106821A (en) 1997-04-22

Family

ID=17402149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7264365A Pending JPH09106821A (en) 1995-10-12 1995-10-12 Solid electrolyte fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09106821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351405A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Sofc fuel electrode, and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351405A (en) * 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> Sofc fuel electrode, and its manufacturing method

Similar Documents

Publication Publication Date Title
AU713760B2 (en) Electrode substrate for fuel cell
US20070117006A1 (en) Direct Fabrication of Copper Cermet for Use in Solid Oxide Fuel Cell
JPH09223508A (en) High temperature fuel cell having thin film electrolyte
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
JP3495654B2 (en) Cell tube seal structure
JP2706197B2 (en) Method of forming ceramic thin film
EP0478185B1 (en) Fuel electrodes for solid oxide fuel cells and production thereof
JP4761104B2 (en) Cylindrical fuel cell
JP5389378B2 (en) Composite ceramic electrolyte structure, manufacturing method thereof and related article
JP2003263994A (en) Solid electrolyte fuel cell
JP2003288914A (en) Solid oxide fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JP2000030728A (en) Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method
JP6134085B1 (en) Electrochemical cell
JP5550223B2 (en) Ceramic electrolyte processing method and related products
JPH09106821A (en) Solid electrolyte fuel cell and manufacture thereof
JPH0992294A (en) Solid electrolyte type fuel cell and its manufacture
JP3339998B2 (en) Cylindrical fuel cell
JP3342621B2 (en) Solid oxide fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
JP3238086B2 (en) Solid oxide fuel cell
JPH09265999A (en) Solid electrolyte type fuel cell and its manufacture
JPH1012252A (en) Solid electrolyte fuel cell and manufacture therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817