JP2005085522A - Supporting membrane type solid oxide fuel cell - Google Patents

Supporting membrane type solid oxide fuel cell Download PDF

Info

Publication number
JP2005085522A
JP2005085522A JP2003313719A JP2003313719A JP2005085522A JP 2005085522 A JP2005085522 A JP 2005085522A JP 2003313719 A JP2003313719 A JP 2003313719A JP 2003313719 A JP2003313719 A JP 2003313719A JP 2005085522 A JP2005085522 A JP 2005085522A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
fuel cell
oxide fuel
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003313719A
Other languages
Japanese (ja)
Inventor
Takashi Yamada
喬 山田
Kiichi Komada
紀一 駒田
Kazunori Adachi
和則 足立
Masaharu Yamada
雅治 山田
Koji Hoshino
孝二 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2003313719A priority Critical patent/JP2005085522A/en
Publication of JP2005085522A publication Critical patent/JP2005085522A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the breakage of a power generating cell by increasing the strength of an electrode supporter and enhance power generating performance by thinning a solid electrolyte. <P>SOLUTION: A supporting membrane type solid oxide fuel cell has a power generating cell 5 in which a fuel electrode 3 having electrode supporting structure is arranged on one side of the solid electrolyte 2 and an air electrode 4 is arranged on the other side of the solid electrolyte 2. The solid electrolyte 2 has a thickness of 5-100 μm, and porous ceramic having a thickness of 0.2-3 mm obtained by compressing and/baking a molded body having three-dimensional skeletal structure is used as the fuel electrode supporter. Particles 22 of an electrode material are attached to the surface of a ceramic skeleton and in of pores 23. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電極を支持体として構成した支持膜式固体酸化物形燃料電池に関し、特に、電池の信頼性と発電性能の向上を図った固体酸化物形燃料電池に関するものである。   The present invention relates to a support membrane type solid oxide fuel cell in which an electrode is used as a support, and more particularly to a solid oxide fuel cell with improved cell reliability and power generation performance.

固体酸化物形燃料電池は、第三世代の発電用燃料電池として開発が進んでいる。現在、この固体酸化物形燃料電池は、円筒型、モノリス型、および平板積層型の3種類が提案されており、何れも酸化物イオン伝導体から成る固体電解質を空気極と燃料極との間に挟んだ積層構造を有する。この積層体から成る発電セルとセパレータを交互に積層することにより所定出力の燃料電池スタックが構成できる。   Solid oxide fuel cells are being developed as third-generation fuel cells for power generation. At present, three types of solid oxide fuel cells have been proposed: a cylindrical type, a monolith type, and a flat plate type, all of which have a solid electrolyte composed of an oxide ion conductor between an air electrode and a fuel electrode. It has a laminated structure sandwiched between. A fuel cell stack having a predetermined output can be configured by alternately laminating power generation cells and separators made of this laminate.

発電セルには、空気極側に酸化剤ガスとしての酸素(空気)が、燃料極側に燃料ガス(H2 、CO、CH4 等)が供給される。空気極と燃料極は、ガスが固体電解質との界面に到達することができるように、いずれも多孔質とされている。空気極側に供給された酸素は、空気極層内の気孔を通って固体電解質との界面近傍に到達し、この部分で空気極から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極の方向に向かって固体電解質内を拡散移動する。燃料極との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2 O、CO2 等)を生じ、燃料極に電子を放出する。 The power generation cell is supplied with oxygen (air) as an oxidant gas on the air electrode side and fuel gas (H 2 , CO, CH 4, etc.) on the fuel electrode side. The air electrode and the fuel electrode are both porous so that the gas can reach the interface with the solid electrolyte. Oxygen supplied to the air electrode side passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte, where it receives electrons from the air electrode and is ionized to oxide ions (O 2− ). The The oxide ions diffusely move in the solid electrolyte toward the fuel electrode. Oxide ions that have reached the vicinity of the interface with the fuel electrode react with the fuel gas at this portion to generate reaction products (H 2 O, CO 2, etc.), and emit electrons to the fuel electrode.

燃料に水素を用いた場合の電極反応は次のようになる。
空気極: 1/2 O2 + 2e- → O2-
燃料極: H2 + O2- → H2 O+2e-
全体 : H2 + 1/2 O2 → H2
The electrode reaction when hydrogen is used as the fuel is as follows.
Air electrode: 1/2 O 2 + 2e → O 2−
Fuel electrode: H 2 + O 2− → H 2 O + 2e
Overall: H 2 +1/2 O 2 → H 2 O

ところで、平板積層型の固体酸化物形燃料電池は、固体電解質の層を厚くした自立膜式と、電極支持体により強度を持たせた支持膜式とに大別できる。   By the way, flat-stacked solid oxide fuel cells can be roughly classified into a self-supporting membrane type in which the solid electrolyte layer is thickened and a support membrane type in which strength is provided by an electrode support.

自立膜式の固体酸化物形燃料電池では、発電セルの強度を上げるために固体電解質の厚さを200〜500μm程度と厚くしている。電解質層を厚くするとその抵抗が増大し、高出力が得難くなることから、十分な発電特性を得るため電池の作動温度は通常1000℃前後の高温に設定されている。これは、固体電解質のイオン導電率が温度に依存し、低温になるほど導電率が低下するためである。
しかしながら、このような高温下においては、電池構成材料はセラミックスを使用するため、その耐久性が電池の寿命や性能に大いに影響することになる。
In the self-supporting membrane type solid oxide fuel cell, the thickness of the solid electrolyte is increased to about 200 to 500 μm in order to increase the strength of the power generation cell. When the electrolyte layer is thickened, its resistance increases and it becomes difficult to obtain a high output. Therefore, in order to obtain sufficient power generation characteristics, the operating temperature of the battery is usually set at a high temperature of about 1000 ° C. This is because the ionic conductivity of the solid electrolyte depends on the temperature, and the conductivity decreases as the temperature decreases.
However, since the battery constituent material uses ceramics at such a high temperature, its durability greatly affects the life and performance of the battery.

一方、支持膜式の固体酸化物形燃料電池は、厚みの厚い電極支持体(例えば、燃料極支持体として、Ni/YSZサーメット)に電解質膜を成膜した構造を有し、この支持体により強度を得ることにより、固体電解質の厚みを薄くすることができる。固体電解質の薄膜化により、電池の作動温度を700℃前後に低下させることができる。   On the other hand, a support membrane type solid oxide fuel cell has a structure in which an electrolyte membrane is formed on a thick electrode support (for example, Ni / YSZ cermet as a fuel electrode support). By obtaining strength, the thickness of the solid electrolyte can be reduced. By reducing the thickness of the solid electrolyte, the operating temperature of the battery can be lowered to around 700 ° C.

しかしながら、電極支持体は、燃料ガスを固体電解質との境界まで供給するためのガス透過性を有する多孔体であることから、それ自体、機械的強度の弱いものであり、それ故、従来の支持膜式固体酸化物形燃料電池は、発電セルが割れ易く信頼性に欠けるものであった。電極支持体の厚みを厚くすれば強度は増すが、その分、ガス拡散性が低下し電池出力が低下するため、燃料極支持体の厚みを無闇に厚くすることは避けなければならない。   However, since the electrode support is a porous body having gas permeability for supplying the fuel gas to the boundary with the solid electrolyte, the electrode support itself has a low mechanical strength. In the membrane type solid oxide fuel cell, the power generation cell is easily broken and lacks reliability. Increasing the thickness of the electrode support increases the strength. However, the gas diffusibility decreases and the battery output decreases accordingly. Therefore, it is necessary to avoid increasing the thickness of the fuel electrode support unnecessarily.

本発明は、上記した従来の問題点に鑑み、電極支持体の強度を向上して発電セルの割れを防止すると共に、固体電解質の薄型化を図って発電性能の向上を図った支持膜式固体酸化物形燃料電池を提供することを目的としている。   In view of the above-described conventional problems, the present invention improves the power generation performance by improving the strength of the electrode support to prevent cracking of the power generation cell and reducing the thickness of the solid electrolyte to improve the power generation performance. An object of the present invention is to provide an oxide fuel cell.

すなわち、請求項1に記載の本発明は、固体電解質の一方の面に電極支持構造の電極を配置した発電セルを備える支持膜式固体酸化物形燃料電池において、前記固体電解質の厚みが5〜100μmであり、且つ、電極支持体として三次元骨格構造の成形体を圧縮・焼成して得られる厚み0.2〜3mmの多孔質焼結体を使用すると共に、多孔質焼結体の表面および気孔内に電極材料の粒子が付着していることを特徴としている。   That is, the present invention described in claim 1 is a support membrane type solid oxide fuel cell including a power generation cell in which an electrode having an electrode support structure is disposed on one surface of a solid electrolyte. 100 μm and a porous sintered body having a thickness of 0.2 to 3 mm obtained by compressing and firing a molded body having a three-dimensional skeleton structure as an electrode support, and the surface of the porous sintered body and It is characterized in that particles of the electrode material are adhered in the pores.

また、請求項2に記載の本発明は、請求項1に記載の支持膜式固体酸化物形燃料電池において、前記固体電解質としてランタンガレート系材料を使用することを特徴としている。   The present invention described in claim 2 is characterized in that, in the support membrane type solid oxide fuel cell described in claim 1, a lanthanum gallate material is used as the solid electrolyte.

また、請求項3に記載の本発明は、請求項1または請求項2の何れかに記載の支持膜式固体酸化物形燃料電池において、前記多孔質焼結体として、セリア系のセラミックを用いることを特徴としている。   Further, the present invention described in claim 3 uses a ceria-based ceramic as the porous sintered body in the support membrane type solid oxide fuel cell according to claim 1 or 2. It is characterized by that.

また、請求項4に記載の本発明は、請求項1から請求項3までの何れかに記載の支持膜式固体酸化物形燃料電池において、燃料極材料の粒子はNiとサマリウム添加セリア(SDC)の混合体であり、且つ、骨格の界面ではNiの混合量をSDCより少なくすると共に、表面に向けてNiの混合比を増加したことを特徴としている。   According to a fourth aspect of the present invention, there is provided the support membrane type solid oxide fuel cell according to any one of the first to third aspects, wherein the particles of the fuel electrode material are Ni and samarium-added ceria (SDC). In addition, the amount of Ni mixed at the interface of the skeleton is less than that of SDC, and the Ni mixing ratio is increased toward the surface.

請求項1から請求項3に記載の構成では、電極支持体として上記した三次元骨格構造の多孔質セラミックスを用いることにより、電極支持体の強度が向上し、固体電解質を薄膜化しても発電セルとして十分な機械的強度が得られるようになる。これにより、発電セルが割れ難くなり、固体酸化物形燃料電池の信頼性が向上する。加えて、上記のように固体電解質を薄くすることにより、固体電解質の抵抗が低減され、発電性能の向上が図れる。
また、請求項4に記載の構成では、燃料極材料粒子に組成傾斜を持たせることにより、燃料極支持体におけるセラミックス骨格と電極材料の界面における急激な熱膨張率の変化を避けることができ、電極剥離を防止することができる。
In the structure according to any one of claims 1 to 3, by using the porous ceramic having the three-dimensional skeleton structure described above as the electrode support, the strength of the electrode support is improved, and the power generation cell can be obtained even if the solid electrolyte is thinned. Sufficient mechanical strength can be obtained. As a result, the power generation cell is difficult to break and the reliability of the solid oxide fuel cell is improved. In addition, by reducing the thickness of the solid electrolyte as described above, the resistance of the solid electrolyte is reduced, and the power generation performance can be improved.
Further, in the configuration according to claim 4, by providing the composition gradient to the fuel electrode material particles, it is possible to avoid a rapid change in the coefficient of thermal expansion at the interface between the ceramic skeleton and the electrode material in the fuel electrode support, Electrode peeling can be prevented.

以上説明したように、本発明によれば、電極支持体の強度を向上でき、固体電解質を薄膜化しても発電セルとして十分な機械的強度が得られるようになる。これにより、発電セルが割れにくくなり、固体酸化物形燃料電池の信頼性が向上する。また、固体電解質の薄膜化により固体電解質の抵抗を減少し、発電性能の向上が図れる。   As described above, according to the present invention, the strength of the electrode support can be improved, and sufficient mechanical strength as a power generation cell can be obtained even if the solid electrolyte is thinned. Thereby, it becomes difficult to break a power generation cell, and the reliability of a solid oxide fuel cell is improved. In addition, by reducing the thickness of the solid electrolyte, the resistance of the solid electrolyte can be reduced, and the power generation performance can be improved.

また、本発明によれば、燃料極支持体における電極剥離を防止することができる。   Moreover, according to this invention, electrode peeling in a fuel electrode support body can be prevented.

以下、図面に基づいて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係る発電セルの内部構造を示している。
図1に示すように、発電セル5は、固体電解質2とその両面に配した燃料極3と空気極4とで構成されている。
FIG. 1 shows the internal structure of a power generation cell according to the present invention.
As shown in FIG. 1, the power generation cell 5 includes a solid electrolyte 2, a fuel electrode 3 and an air electrode 4 disposed on both surfaces thereof.

固体電解質2は、酸化物イオンの移動媒体であると同時に、燃料ガスと空気を直接接触させないための隔壁としても機能するため、ガス不透過性の緻密な構造となっている。この固体電解質2は、酸化物イオン伝導性が高く、空気極側の酸化性雰囲気から燃料極側の還元性雰囲気までの条件下で化学的に安定で、且つ、熱衝撃に強い材料から構成する必要があり、一般的にはイットリアを添加した安定化ジルコニア(YSZ)が使用されている。
本実施形態では、このYSZを凌ぐ導電性を示す酸化物イオン伝導性材料として、ペロブスカイト型結晶構造のランタンガレート系材料(LaGaO3 )を用い、厚さ約80μm程の電解質層を形成している。この材料は、低温でも高い導電性を示すので従来の1000℃前後より運転温度を低くした固体酸化物形燃料電池の実現に好適である。
Since the solid electrolyte 2 functions as a partition wall for preventing the fuel gas and the air from being brought into direct contact with each other, it has a dense structure that is impermeable to gas. The solid electrolyte 2 is made of a material that has high oxide ion conductivity, is chemically stable under conditions from an oxidizing atmosphere on the air electrode side to a reducing atmosphere on the fuel electrode side, and is resistant to thermal shock. Generally, stabilized zirconia (YSZ) added with yttria is used.
In this embodiment, a lanthanum gallate material (LaGaO 3 ) having a perovskite crystal structure is used as the oxide ion conductive material exhibiting conductivity exceeding YSZ, and an electrolyte layer having a thickness of about 80 μm is formed. . Since this material exhibits high conductivity even at a low temperature, it is suitable for realizing a solid oxide fuel cell having a lower operating temperature than the conventional temperature of about 1000 ° C.

電極である空気極(カソード)4および燃料極(アノード)3はいずれも電子伝導性の高い材料から構成する必要がある。空気極材料につては、700℃前後の高温の酸化性雰囲気中で化学的に安定でなければならないため、金属は不適当であり、電子伝導性を持つペロブスカイト型酸化物材料、具体的にはLaMnO3 もしくはLaCoO3 、または、これらのLaの一部をSr、Ca等で置換した固溶体、さらに、SmCoO3 、またはSmの一部をSr、Ca等で置換した固溶体が使用されている。 Both the air electrode (cathode) 4 and the fuel electrode (anode) 3 that are electrodes must be made of a material having high electron conductivity. As for the air electrode material, it must be chemically stable in a high-temperature oxidizing atmosphere of around 700 ° C., so that the metal is inappropriate and a perovskite oxide material having electron conductivity, specifically, LaMnO 3 or LaCoO 3 , or a solid solution in which a part of these La is substituted with Sr, Ca or the like, and further a solid solution in which a part of SmCoO 3 or Sm is substituted with Sr, Ca or the like are used.

一方、燃料極3は、図1に示すように、三次元骨格構造の多孔質焼結体から成る骨格21(電極骨格)に電極材料の粒子22を付着させた電極支持構造を備えている。この三次元骨格構造の骨格21は、液体の蒸発による気泡発生により生成した大きな気孔23を有しており、骨格21の外表面に粒子22が付着し、且つ、この大きな気孔23の内部空間に粒子22が充填された状態で焼き付けられている。
因みに、この電極支持体の厚さは約0.5mm、骨格の太さは約0.05mm、気孔率は約60%である。
On the other hand, as shown in FIG. 1, the fuel electrode 3 has an electrode support structure in which particles 22 of an electrode material are attached to a skeleton 21 (electrode skeleton) made of a porous sintered body having a three-dimensional skeleton structure. The skeleton 21 of this three-dimensional skeleton structure has large pores 23 generated by the generation of bubbles by evaporation of liquid, particles 22 adhere to the outer surface of the skeleton 21, and the internal space of the large pores 23 The particles 22 are baked in a filled state.
Incidentally, the thickness of this electrode support is about 0.5 mm, the thickness of the skeleton is about 0.05 mm, and the porosity is about 60%.

係る燃料極支持体において、粒子22が付着した骨格21の外表面と粒子22が充填された骨格構造内の大きな気孔23が電極面となり、この電極面と固体電解質2との界面に反応層が形成される。因みに、反応層の面積比は20%以下である。   In such a fuel electrode support, the outer surface of the skeleton 21 to which the particles 22 are attached and the large pores 23 in the skeleton structure filled with the particles 22 serve as electrode surfaces, and a reaction layer is formed at the interface between the electrode surfaces and the solid electrolyte 2. It is formed. Incidentally, the area ratio of the reaction layer is 20% or less.

通常、電極支持体に多孔質体を用いると焼成過程において固体電解質2と電極支持体とが固溶反応して固体電解質の組成が変動し、固体電解質の性能が低下するという問題が生じる。本実施形態では、電極支持体に三次元骨格構造を有する多孔質体を用い、電極面と固体電解質2との界面における反応層の面積比を上記のように少なくすることにより、この問題を解消している。   Usually, when a porous body is used for the electrode support, the solid electrolyte 2 and the electrode support are subjected to a solid solution reaction in the firing process, the composition of the solid electrolyte is changed, and the performance of the solid electrolyte is deteriorated. In the present embodiment, this problem is solved by using a porous body having a three-dimensional skeleton structure as the electrode support and reducing the area ratio of the reaction layer at the interface between the electrode surface and the solid electrolyte 2 as described above. doing.

また、骨格21の気孔率が非常に大きいことから、熱衝撃および熱歪みに対する緩和作用も大きく、よって、運転時の熱サイクルにおいて、固体電解質2との熱膨張率の差による発電セル5の割れの発生を防止することができる。   In addition, since the porosity of the skeleton 21 is very large, the mitigating action against thermal shock and thermal strain is also large, and therefore cracking of the power generation cell 5 due to the difference in thermal expansion coefficient with the solid electrolyte 2 in the thermal cycle during operation. Can be prevented.

ここで、電極骨格21は、固体電解質2に通じる酸化物イオンの通り道になるので、ある程度の酸化物イオン伝導性が必要である。そのため、骨格の材料として酸化物イオン伝導性材料を用いる。本実施形態では、セリア系のセラミックとしてサマリウム添加セリア(SDC:CeSmO2 )を使用し、これにNiを分散したものを用いている。
また、他の骨格材料として、ジルコニア系材料やランタンガレート系材料を用いることができる。
Here, since the electrode skeleton 21 becomes a passage for oxide ions leading to the solid electrolyte 2, some degree of oxide ion conductivity is required. Therefore, an oxide ion conductive material is used as a skeleton material. In this embodiment, samarium-added ceria (SDC: CeSmO 2 ) is used as the ceria-based ceramic, and Ni is dispersed therein.
As other skeleton materials, zirconia materials and lanthanum gallate materials can be used.

一方、付着粒子22は、三相界面で酸化物イオンの受渡しに必要な電子の通り道になるので、ある程度の電子伝導性が必要であり、電子伝導性材料と酸化物イオン伝導性材料との混合物を用いる。粒径は約1μmである。   On the other hand, the adhering particle 22 becomes a passage of electrons necessary for the delivery of oxide ions at the three-phase interface, and therefore requires a certain degree of electron conductivity, and a mixture of an electron conductive material and an oxide ion conductive material. Is used. The particle size is about 1 μm.

本実施形態では、Ni(或いは、Co、Cu)とSDCの混合体を用いており、且つ、この電極材料Ni/SDCに組成傾斜を持たせている。即ち、骨格21との界面では、Niの混合量をSDCより少なくすると共に、表面側に向けてNiの混合比を徐々に増加し、最表面においてNiとしている。
Ni/SDCの組成に上記のような傾斜を持たせることにより、電極支持体における骨格と電極材料の界面における急激な熱膨張率の変化を避けることができ、電極剥離を防止することができる。
尚、酸化物イオン伝導性材料としては、上記の他、ジルコニア系材料やランタンガレート系材料等、固体電解質2と同じ材料が用いられる。
In this embodiment, a mixture of Ni (or Co, Cu) and SDC is used, and the electrode material Ni / SDC has a composition gradient. That is, at the interface with the skeleton 21, the amount of Ni mixed is made smaller than SDC, and the Ni mixing ratio is gradually increased toward the surface side, so that Ni is formed on the outermost surface.
By providing the Ni / SDC composition with the inclination as described above, a rapid change in the coefficient of thermal expansion at the interface between the skeleton and the electrode material in the electrode support can be avoided, and electrode peeling can be prevented.
In addition to the above, as the oxide ion conductive material, the same material as the solid electrolyte 2 such as a zirconia material or a lanthanum gallate material is used.

このように、燃料極支持体に上記した三次元骨格構造の多孔質セラミックスを用いることにより、燃料極支持体自体の強度を向上でき、固体電解質を薄膜化(5〜100μm)しても発電セル5として十分な機械的強度が得られるようになる。これにより、発電セル5が割れ難くなり、固体酸化物形燃料電池の信頼性が向上する。また、固体電解質2を薄くすることにより、固体電解質2の抵抗が減少し、発電性能の向上が図れる。   As described above, by using the porous ceramic having the above-described three-dimensional skeleton structure for the fuel electrode support, the strength of the fuel electrode support itself can be improved, and even if the solid electrolyte is thinned (5 to 100 μm), the power generation cell As a result, sufficient mechanical strength can be obtained. Thereby, the power generation cell 5 becomes difficult to break, and the reliability of the solid oxide fuel cell is improved. Further, by reducing the thickness of the solid electrolyte 2, the resistance of the solid electrolyte 2 is reduced, and the power generation performance can be improved.

次に、上記構成の発電セル5の製造工程を説明すれば、先ず、電極骨格21の原料粉末を発泡シート成形して、三次元骨格構造を持つ未焼結の電極骨格用の多孔質シートを得る。この多孔質シートに、シート成形法により緻密に形成した未焼結の固体電解質用のシートを、例えば、ホットプレスを用いて熱圧着させ、(圧縮率は約90%)得られた積層体を焼結させると、電極骨格/固体電解質の積層体が製造できる。
次いで、焼結して得られた電極骨格/電解質積層体の電極骨格に燃料極材料粒子22(例えば、Ni/SDCの混合体)を含有するスラリーを含浸させて骨格21の表面及び気孔23の内部に粒子22を付着させる。含浸後、積層体を再度焼結して、付着粒子を骨格21に結合させると、燃料極支持体が製造される。一方、空気極4については、従来のスクリーン印刷により形成することができる。
Next, the manufacturing process of the power generation cell 5 having the above-described configuration will be described. First, the raw material powder of the electrode skeleton 21 is formed into a foam sheet to form a porous sheet for an unsintered electrode skeleton having a three-dimensional skeleton structure. obtain. An unsintered solid electrolyte sheet, which is densely formed by a sheet forming method, is thermocompression-bonded to the porous sheet using, for example, a hot press (compressibility is about 90%). When sintered, an electrode skeleton / solid electrolyte laminate can be produced.
Next, the electrode skeleton of the electrode skeleton / electrolyte laminate obtained by sintering is impregnated with a slurry containing fuel electrode material particles 22 (for example, a mixture of Ni / SDC), so that the surface of the skeleton 21 and the pores 23 are formed. The particles 22 are adhered inside. After the impregnation, the laminate is sintered again, and the adhered particles are bonded to the skeleton 21 to produce the fuel electrode support. On the other hand, the air electrode 4 can be formed by conventional screen printing.

以上、本実施形態では、燃料極3側を三次元骨格構造の孔質体による支持体としたが、当支持体を空気極側に適用することも可能であり、この場合は付着粒子の材料として既述したLaMnO3 系、LaCoO3 系およびSmCoO3 系等の電子伝導性材料を用いる。また、燃料極3、空気極4共に電極支持構造体とすることも勿論可能である。何れの構成においても、電解質特性を大幅に向上し、且つ、熱衝撃や熱歪みによる電池の割れを防止した信頼性の高い支持膜式固体酸化物形燃料電池を実現することができる。 As described above, in the present embodiment, the fuel electrode 3 side is a support body made of a porous body having a three-dimensional skeleton structure, but the support body can also be applied to the air electrode side. As described above, electron-conductive materials such as LaMnO 3 , LaCoO 3, and SmCoO 3 are used. Of course, both the fuel electrode 3 and the air electrode 4 may be electrode support structures. In any configuration, it is possible to realize a highly reliable support membrane type solid oxide fuel cell that greatly improves the electrolyte characteristics and prevents the cell from being cracked due to thermal shock or thermal strain.

次に、図2に基づいて本発明が適用される固体酸化物形燃料電池の構成を説明する。
図2中、符号1は燃料電池スタックを示し、固体電解質2の両面に燃料極3と空気極4を配した発電セル5と、燃料極3の外側の燃料極集電体6と、空気極層4の外側の空気極集電体7と、各集電体6、7の外側のセパレータ8を順番に積層した構造を有する。
また 燃料電池スタック1の側方には、各セパレータ8の燃料通路11に接続管13を通して燃料ガスを供給する燃料用マニホールド15と、各セパレータ8の酸化剤通路12に接続管14を通して酸化剤ガスを供給する酸化剤用マニホールド16とが、発電セル5の積層方向に延在して設けられている。
Next, the configuration of a solid oxide fuel cell to which the present invention is applied will be described with reference to FIG.
In FIG. 2, reference numeral 1 denotes a fuel cell stack, a power generation cell 5 in which a fuel electrode 3 and an air electrode 4 are arranged on both surfaces of a solid electrolyte 2, a fuel electrode current collector 6 outside the fuel electrode 3, and an air electrode. The air electrode current collector 7 outside the layer 4 and the separator 8 outside the current collectors 6 and 7 are sequentially stacked.
Further, on the side of the fuel cell stack 1, a fuel manifold 15 that supplies fuel gas to the fuel passage 11 of each separator 8 through the connection pipe 13, and an oxidant gas through the connection pipe 14 to the oxidant passage 12 of each separator 8. An oxidant manifold 16 is provided to extend in the stacking direction of the power generation cells 5.

本発明に係る支持膜式発電セルの構造を示す図。The figure which shows the structure of the support membrane type power generation cell which concerns on this invention. 本発明が適用される固体酸化物形燃料電池の構造を示す図。The figure which shows the structure of the solid oxide fuel cell to which this invention is applied.

符号の説明Explanation of symbols

2 固体電解質
3 燃料極
4 空気極
21 骨格
22 粒子
23 空間内部
2 Solid Electrolyte 3 Fuel Electrode 4 Air Electrode 21 Skeleton 22 Particles 23 Inside Space

Claims (4)

固体電解質の一方の面および/または他方の面に電極支持構造の電極を配置した発電セルを備える支持膜式固体酸化物形燃料電池において、
前記固体電解質の厚みが5〜100μmであり、且つ、電極支持体として三次元骨格構造の成形体を圧縮・焼成して得られる厚み0.2〜3mmの多孔質焼結体を使用すると共に、多孔質焼結体の表面および気孔内に電極材料の粒子が付着していることを特徴とする支持膜式固体酸化物形燃料電池。
In a support membrane type solid oxide fuel cell comprising a power generation cell in which an electrode having an electrode support structure is disposed on one surface and / or the other surface of a solid electrolyte,
The solid electrolyte has a thickness of 5 to 100 μm, and uses a porous sintered body having a thickness of 0.2 to 3 mm obtained by compressing and firing a molded body having a three-dimensional skeleton structure as an electrode support. A support membrane type solid oxide fuel cell, characterized in that particles of an electrode material adhere to the surface and pores of a porous sintered body.
前記固体電解質としてランタンガレート系材料を使用することを特徴とする請求項1に記載の支持膜式固体酸化物形燃料電池。 The support membrane solid oxide fuel cell according to claim 1, wherein a lanthanum gallate material is used as the solid electrolyte. 前記多孔質焼結体として、セリア系のセラミックを用いることを特徴とする請求項1または請求項2の何れかに記載の支持膜式固体酸化物形燃料電池。 3. The support membrane solid oxide fuel cell according to claim 1, wherein ceria-based ceramic is used as the porous sintered body. 燃料極材料の粒子はNiとサマリウム添加セリア(SDC)の混合体であり、且つ、骨格の界面ではNiの混合量をSDCより少なくすると共に、表面に向けてNiの混合比を増加したことを特徴とする請求項1から請求項3までの何れかに記載の支持膜式固体酸化物形燃料電池。 The anode material particles are a mixture of Ni and samarium-added ceria (SDC), and the amount of Ni mixed at the interface of the skeleton is less than SDC and the Ni mixing ratio is increased toward the surface. The support membrane type solid oxide fuel cell according to any one of claims 1 to 3, wherein the support membrane type solid oxide fuel cell is provided.
JP2003313719A 2003-09-05 2003-09-05 Supporting membrane type solid oxide fuel cell Pending JP2005085522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313719A JP2005085522A (en) 2003-09-05 2003-09-05 Supporting membrane type solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313719A JP2005085522A (en) 2003-09-05 2003-09-05 Supporting membrane type solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2005085522A true JP2005085522A (en) 2005-03-31

Family

ID=34414563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313719A Pending JP2005085522A (en) 2003-09-05 2003-09-05 Supporting membrane type solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2005085522A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035435A (en) * 2005-07-27 2007-02-08 Kansai Electric Power Co Inc:The Solid oxide fuel cell, and its manufacturing method
JP2009134979A (en) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
WO2009119771A1 (en) 2008-03-26 2009-10-01 財団法人ファインセラミックスセンター Stack structure for solid exide fuel cell stack, solid oxide fuel cell stack, and production method for the same
JP2009295497A (en) * 2008-06-06 2009-12-17 Kansai Electric Power Co Inc:The Composite substrate and manufacturing method of composite substrate, solid oxide fuel battery cell, solid oxide fuel cell and manufacturing method of solid oxide fuel cell
JP2011023327A (en) * 2009-07-15 2011-02-03 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell
JP2015127999A (en) * 2013-12-27 2015-07-09 Toto株式会社 Solid oxide fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275621A (en) * 1997-03-31 1998-10-13 Kyocera Corp Cylindrical solid electrolyte fuel cell
JP2000200614A (en) * 1999-01-06 2000-07-18 Mitsubishi Materials Corp Electrode for solid-oxide fuel cell and its manufacture
JP2002015756A (en) * 2000-06-28 2002-01-18 Mitsubishi Materials Corp Solid oxide fuel cell
JP2002134131A (en) * 2000-10-23 2002-05-10 Toho Gas Co Ltd Supporting membrane type solid electrolyte fuel cell
JP2002373676A (en) * 2001-06-13 2002-12-26 Ibiden Co Ltd Material for fuel cell
JP2003132906A (en) * 2001-10-24 2003-05-09 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolytic fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275621A (en) * 1997-03-31 1998-10-13 Kyocera Corp Cylindrical solid electrolyte fuel cell
JP2000200614A (en) * 1999-01-06 2000-07-18 Mitsubishi Materials Corp Electrode for solid-oxide fuel cell and its manufacture
JP2002015756A (en) * 2000-06-28 2002-01-18 Mitsubishi Materials Corp Solid oxide fuel cell
JP2002134131A (en) * 2000-10-23 2002-05-10 Toho Gas Co Ltd Supporting membrane type solid electrolyte fuel cell
JP2002373676A (en) * 2001-06-13 2002-12-26 Ibiden Co Ltd Material for fuel cell
JP2003132906A (en) * 2001-10-24 2003-05-09 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolytic fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035435A (en) * 2005-07-27 2007-02-08 Kansai Electric Power Co Inc:The Solid oxide fuel cell, and its manufacturing method
JP2009134979A (en) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
WO2009119771A1 (en) 2008-03-26 2009-10-01 財団法人ファインセラミックスセンター Stack structure for solid exide fuel cell stack, solid oxide fuel cell stack, and production method for the same
KR20110005814A (en) 2008-03-26 2011-01-19 자이단호진 화인 세라믹스 센터 Stack structure for solid oxide fuel cell stack, solid oxide fuel cell stack, and production method for the same
US8658328B2 (en) 2008-03-26 2014-02-25 Japan Fine Ceramics Center Stack structure for laminated solid oxide fuel cell, laminated solid oxide fuel cell and manufacturing method
JP2009295497A (en) * 2008-06-06 2009-12-17 Kansai Electric Power Co Inc:The Composite substrate and manufacturing method of composite substrate, solid oxide fuel battery cell, solid oxide fuel cell and manufacturing method of solid oxide fuel cell
JP2011023327A (en) * 2009-07-15 2011-02-03 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell
JP2015127999A (en) * 2013-12-27 2015-07-09 Toto株式会社 Solid oxide fuel cell system

Similar Documents

Publication Publication Date Title
US8703352B2 (en) Solid oxide fuel cell having a closed recessed structure
KR20080033153A (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
JP2009507356A (en) Ceramic membrane with integral seal and support, and electrochemical cell and electrochemical cell stack structure including the same
US9005844B2 (en) Structure of solid oxide fuel cell
JP4923407B2 (en) Method for producing solid oxide fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
JP4512911B2 (en) Solid oxide fuel cell
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
JP6134085B1 (en) Electrochemical cell
JP5920880B2 (en) Mounting structure of stacked solid oxide fuel cell
JP6748518B2 (en) Method for manufacturing electrochemical reaction cell
JP2004265742A (en) Surface treatment method of collector member
JP2006127973A (en) Fuel battery cell
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
JP2012142241A (en) Method for manufacturing single cell for solid oxide fuel cell
JP2009087539A (en) Fuel battery cell and fuel battery cell stack, as well as fuel battery
JP3336171B2 (en) Solid oxide fuel cell
JP2002358980A (en) Solid electrolyte fuel cell
JP2005322452A (en) Cell plate for solid oxide fuel cell, and solid oxide fuel cell
JP2020113503A (en) Electrochemical reaction cell stack
JP2019075197A (en) Electrochemical reaction single cell, and electrochemical reaction cell stack
JP5412534B2 (en) Method for producing composite substrate and method for producing solid oxide fuel cell
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JP6048974B2 (en) Solid oxide fuel cell
JP2005216619A (en) Fuel battery cell and fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615