JP4512911B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP4512911B2
JP4512911B2 JP2001187789A JP2001187789A JP4512911B2 JP 4512911 B2 JP4512911 B2 JP 4512911B2 JP 2001187789 A JP2001187789 A JP 2001187789A JP 2001187789 A JP2001187789 A JP 2001187789A JP 4512911 B2 JP4512911 B2 JP 4512911B2
Authority
JP
Japan
Prior art keywords
electrode layer
current collector
fuel
fuel cell
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001187789A
Other languages
Japanese (ja)
Other versions
JP2003007318A (en
Inventor
順 秋草
孝二 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001187789A priority Critical patent/JP4512911B2/en
Publication of JP2003007318A publication Critical patent/JP2003007318A/en
Application granted granted Critical
Publication of JP4512911B2 publication Critical patent/JP4512911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セパレータと電極層との間に集電体を挟んだ構造の固体電解質型燃料電池に関する。
【0002】
【従来の技術】
酸化物イオン伝導体からなる固体電解質層を空気極層(酸化剤極層)と燃料極層との間に挟んだ積層構造を持つ固体電解質型燃料電池は、第三世代の発電用燃料電池として開発が進んでいる。固体電解質型燃料電池では、空気極側に酸素(空気)が、燃料極側には燃料ガス(H2 、CO等)が供給される。空気極と燃料極は、ガスが固体電解質との界面に到達することができるように、いずれも多孔質とされている。
【0003】
空気極側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で、空気極から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極の方向に向かって固体電解質層内を拡散移動する。燃料極との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2 O、CO2 等)を生じ、燃料極に電子を放出する。
【0004】
燃料に水素を用いた場合の電極反応は次のようになる。
空気極: 1/2 O2 + 2e- → O2-
燃料極: H2 + O2- → H2 O+2e-
全体 : H2 + 1/2 O2 → H2
【0005】
固体電解質層は、酸化物イオンの移動媒体であると同時に、燃料ガスと空気を直接接触させないための隔壁としても機能するので、ガス不透過性の緻密な構造となっている。この固体電解質層は、酸化物イオン伝導性が高く、空気極側の酸化性雰囲気から燃料極側の還元性雰囲気までの条件下で化学的に安定で、熱衝撃に強い材料から構成する必要があり、かかる要件を満たす材料として、イットリアを添加した安定化ジルコニア(YSZ)が一般的に使用されている。
【0006】
一方、電極である空気極(カソード)層と燃料極(アノード)層はいずれも電子伝導性の高い材料から構成する必要がある。空気極材料は、700℃前後の高温の酸化性雰囲気中で化学的に安定でなければならないため、金属は不適当であり、電子伝導性を持つペロブスカイト型酸化物材料、具体的にはLaMnO3 もしくはLaCoO3 、または、これらのLaの一部をSr、Ca等に置換した固溶体が一般に使用されている。また、燃料極材料は、Ni、Coなどの金属、或いはNi−YSZ、Co−YSZなどのサーメットが一般的である。
【0007】
固体酸化物型燃料電池には、1000℃前後の高温で作動させる高温作動型のものと、700℃前後の低温で作動させる低温作動型のものとがある。低温作動型の固体酸化物型燃料電池は、例えば電解質であるイットリアを添加した安定化ジルコニア(YSZ)の厚さを10μm程度まで薄膜化して、電解質の抵抗を低くして、低温でも燃料電池として発電するように改良された発電セルを使用する。
【0008】
高温の固体酸化物型燃料電池では、セパレータには、例えばランタンクロマイト(LaCrO3 )等の電子伝導性を有するセラミックスが用いられるが、低温作動型の固体酸化物燃料電池では、ステンレス等の金属材料を使用することができる。
【0009】
また、固体酸化物型燃料電池の構造には、円筒型、モノリス型、及び平板積層型の3種類が提案されている。それらの構造のうち、低温作動型の固体酸化物型燃料電池には、金属のセパレータを使用できることから、金属のセパレータに形状付与しやすい平板積層型の構造が適している。
【0010】
平板積層型の固体電解質型燃料電池のスタックは、発電セル、集電体、セパレータを交互に積層した構造を持つ。一対のセパレータが発電セルを両面から挟んで、一方は空気極集電体を介して空気極と、他方は燃料極集電体を介して燃料極と接している。燃料集電体には、Ni基合金等のスポンジ状の多孔質体を使用することができ、空気極集電体には、Ag基合金等の同じくスポンジ状の多孔質体を使用することができる。スポンジ状多孔質体は、集電機能、ガス透過機能、均一ガス拡散機能、クッション機能、熱膨脹差吸収機能等を兼ね備えるので、多機能の集電体材料として適している。
【0011】
セパレータは、発電セル間を電気接続すると共に、発電セルに対してガスを供給する機能を有するもので、燃料ガスをセパレータ外周面から導入してセパレータの燃料極層に対向する面から吐出させる燃料通路と、酸化剤ガスをセパレータ外周面から導入してセパレータの酸化剤極層に対向する面から吐出させる酸化剤通路とをそれぞれ有している。
【0012】
【発明が解決しようとする課題】
ところで、従来の燃料電池では、電極層とセパレータの間に多孔質クッション材よりなる集電体を配置し、この集電体を介してセパレータから電極層にガスを分配供給しているが、発電効率をアップするために、特に集電体と電極層の界面における性能の向上が一層要求されるようになってきた。
【0013】
本発明は、上記事情を考慮し、集電体−電極層間の性能を高めることで、発電効率のアップを図れるようにした固体電解質型燃料電池を提供することを目的とする。
【0014】
【課題を解決するための手段】
請求項1の発明は、固体電解質層の両面に燃料極層と酸化剤極層を配置し、燃料極層と酸化剤極層の外側にそれぞれ多孔質クッション材よりなる燃料極集電体と酸化剤極集電体を配置し、燃料極集電体と酸化剤極集電体の外側にセパレータを配置し、これらを圧力をかけて密着積層した固体電解質型燃料電池において、前記酸化剤極集電体は、金属粉末を含む発泡スラリーをスポンジ状に発泡させて焼成することによって得られたスポンジ状の多孔質焼結金属板からなり、かつ前記酸化剤極層の前記集電体との接触表面に、銀粉を、当該銀粉を含むスラリーを前記接触表面に塗布して加熱することによりその一部が溶着した状態で付着させたことを特徴とする。
【0017】
本発明では、酸化剤極層の表面上に金属粉(銀粉)を付着させることで、表面における交換電流密度を上昇させて、電極−集電体間の接触抵抗を低減させて、電池の性能向上を図っている。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1は実施形態の固体電解質型燃料電池における固体電解質層と電極層と集電体の積層構造を模式的に拡大して示す断面図である。図2は燃料電池の要部の分解断面図、図3は同要部の分解斜視図である。
【0019】
まず、実施形態の固体電解質型燃料電池の全体構成を、図2、図3を用いて説明する。図2において、1は燃料電池スタックである。この燃料電池スタック1は、固体電解質層2の両面に燃料極層3及び空気極層(酸化剤極層)4を配した発電セル(発電部)5と、燃料極層3の外側の燃料極集電体6と、空気極層4の外側の空気極集電体(酸化剤極集電体)7と、各集電体6、7の外側のセパレータ8とを順番に積層した構造を持つ。
【0020】
ここで、固体電解質層2はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層3はNi、Co等の金属あるいはNi−YSZ、Co−YSZ等のサーメットで構成され、空気極層4はLaMnO3 、LaCoO3 等で構成され、燃料極集電体6はNi基合金等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体7はAg基合金等のスポンジ状の多孔質焼結金属板で構成され、セパレータ8はステンレス等で構成されている。
【0021】
集電体6、7を構成する多孔質金属板は、次の工程を経ることで作製したものである。工程の順番は、スラリー調製工程→成形工程→発泡工程→乾燥工程→脱脂工程→焼結工程である。
【0022】
まず、スラリー調製工程において、金属粉末、有機溶剤(n−ヘキサン等)、界面活性剤(ドデシルベンゼンスルホン酸ナトリウム等)、水溶性樹脂結合剤(ヒドロキシプロピルメチルセルロース等)、可塑剤(グリセリン等)、水、を混ぜて発泡スラリーを調製する。これを成形工程において、ドクターブレード法によりキャリヤシート上に薄板状に成形してグリーンシートを得る。次に発泡工程において、このグリーンシートを高温高湿環境下で、揮発性有機溶剤の蒸気圧及び界面活性剤の起泡性を利用してスポンジ状に発泡させた後、乾燥工程、脱脂工程、焼成工程を経て多孔質金属板を得る。
【0023】
この場合、発泡工程において、グリーンシートの内部に発生した気泡は、全方向からほぼ等価な圧力を受けて略球状の形状で成長する。気泡が内部から拡散して大気との界面に近づくと、気泡は、気泡と大気の間のスラリーの薄い部分へと成長していき、やがて気泡は破れて、気泡内部の気体は、できた小孔から大気中へ拡散していく。よって、表面に開口した連続気孔を有する多孔質金属板が得られる。
【0024】
集電体6、7は、このように作製した3次元骨格構造を有する多孔質金属板を円形にカットすることで構成されている。また、図1に模式的に示すように、前記燃料極層3及び空気極層4の2つの電極層のうち少なくとも空気極層4の空気極集電体7との接触表面には、燃料電池の運転雰囲気において非酸化性を有する金属粉20が、点在状態で付着させられている。
【0025】
この場合の金属粉20としては、銀粉が用いられている。この金属粉20は、電極層(空気極層4)の表面に単に散布されていてもよいが、脱落防止のために、金属スラリー化されてスクリーン印刷等で表面に塗布された上で、加熱(約900℃)により一部が電極層に溶着しているのが好ましい。特に、溶かされながら発泡化されて密度の高い状態で、電極層の気孔を塞がないように電極層の表面に溶着しているのが好ましい。
【0026】
また、図2、図3に示すように、セパレータ8は、発電セル5間を電気接続すると共に、発電セル5に対してガスを供給する機能を有するもので、燃料ガスをセパレータ8の外周面から導入してセパレータ8の燃料極集電体6に対向する面から吐出させる燃料通路11と、酸化剤ガスをセパレータ8の外周面から導入してセパレータ8の空気極集電体7に対向する面から吐出させる酸化剤通路12とをそれぞれ有している。ただし、両端のセパレータ8(8A、8B)は、いずれかの通路11、12のみを有する。
【0027】
一方、図2に示すように、燃料電池スタック1の側方には、各セパレータ8の燃料通路11に接続管13を通して燃料ガスを供給する燃料用マニホールド15と、各セパレータ8の酸化剤通路12に接続管14を通して酸化剤ガスを供給する酸化剤用マニホールド16とが、発電セル5の積層方向に延在して設けられている。
【0028】
以上の構成の燃料電池では、空気極層4の表面上に金属粉(銀粉)を点在状態で付着させているので、空気極層4と空気極集電体7の接触界面における交換電流密度を上昇させることができ、同界面の接触抵抗を大幅に低減させることができ、電池の性能向上を図ることができる。
【0029】
なお、上述した実施形態では、空気極層4の表面にのみ金属粉を付着させているが、それに加えて、燃料極層3側の表面に金属粉を付着させてもよい。
【0030】
また、上述した実施形態では、発電セルの電解質にイットリアを添加した安定化ジルコニア(YSZ)を用いる固体酸化物型燃料電池を示したが、本発明は、その他の固体酸化物型燃料電池、例えばセリア系電解質、ガレート型電解質を用いる固体酸化物型燃料電池にも適用することができる。
【0031】
【発明の効果】
以上説明したように、本発明によれば、酸化剤極層の集電体との接触表面に銀粉を点在状態で付着させたので、電極層と集電体の接触界面における接触抵抗を大幅に低減させることができ、一層の発電効率の向上が図れる。また前記銀粉を加熱により電極層に溶着させているために脱落の心配がなく、安定した性能の維持が図れる。
【図面の簡単な説明】
【図1】本発明の実施形態の燃料電池における固体電解質層と電極層と集電体の積層構造を模式的に示す拡大断面図である。
【図2】同燃料電池の要部構成を示す分解断面図である。
【図3】同燃料電池の要部構成を示す分解斜視図である。
【符号の説明】
2 固体電解質層
3 燃料極層
4 空気極層(酸化剤極層)
6 燃料極集電体
7 空気極集電体(酸化剤極集電体)
8 セパレータ
20 金属粉
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid oxide fuel cell having a structure in which a current collector is sandwiched between a separator and an electrode layer.
[0002]
[Prior art]
A solid electrolyte fuel cell with a laminated structure in which a solid electrolyte layer made of an oxide ion conductor is sandwiched between an air electrode layer (oxidant electrode layer) and a fuel electrode layer is a third-generation fuel cell for power generation. Development is progressing. In a solid oxide fuel cell, oxygen (air) is supplied to the air electrode side, and fuel gas (H 2 , CO, etc.) is supplied to the fuel electrode side. The air electrode and the fuel electrode are both porous so that the gas can reach the interface with the solid electrolyte.
[0003]
Oxygen supplied to the air electrode side passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer. At this part, it receives electrons from the air electrode and converts them into oxide ions (O 2− ). Ionized. The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode. Oxide ions that have reached the vicinity of the interface with the fuel electrode react with the fuel gas at this portion to generate reaction products (H 2 O, CO 2, etc.), and emit electrons to the fuel electrode.
[0004]
The electrode reaction when hydrogen is used as the fuel is as follows.
Air electrode: 1/2 O 2 + 2e → O 2−
Fuel electrode: H 2 + O 2− → H 2 O + 2e
Overall: H 2 +1/2 O 2 → H 2 O
[0005]
The solid electrolyte layer is a moving medium for oxide ions and at the same time functions as a partition for preventing direct contact between the fuel gas and air, and thus has a dense structure that is impermeable to gas. This solid electrolyte layer should have a high oxide ion conductivity, be chemically stable under conditions from the oxidizing atmosphere on the air electrode side to the reducing atmosphere on the fuel electrode side, and be made of a material that is resistant to thermal shock. There is generally used stabilized zirconia (YSZ) to which yttria is added as a material satisfying such requirements.
[0006]
On the other hand, both the air electrode (cathode) layer and the fuel electrode (anode) layer, which are electrodes, must be made of a material having high electron conductivity. Since the air electrode material must be chemically stable in a high-temperature oxidizing atmosphere around 700 ° C., the metal is inappropriate, and a perovskite oxide material having electron conductivity, specifically LaMnO 3 Alternatively, LaCoO 3 or a solid solution in which a part of these La is substituted with Sr, Ca or the like is generally used. The fuel electrode material is generally a metal such as Ni or Co, or a cermet such as Ni—YSZ or Co—YSZ.
[0007]
Solid oxide fuel cells include a high temperature operation type that operates at a high temperature of about 1000 ° C. and a low temperature operation type that operates at a low temperature of about 700 ° C. A low temperature operation type solid oxide fuel cell is a fuel cell even at low temperatures, for example, by reducing the thickness of stabilized zirconia (YSZ) to which the electrolyte yttria is added to about 10 μm to reduce the resistance of the electrolyte. Use power generation cells modified to generate electricity.
[0008]
In a high-temperature solid oxide fuel cell, ceramics having electronic conductivity such as lanthanum chromite (LaCrO 3 ) is used as a separator. In a low-temperature solid oxide fuel cell, a metal material such as stainless steel is used. Can be used.
[0009]
Three types of solid oxide fuel cell structures have been proposed: a cylindrical type, a monolith type, and a flat plate type. Among these structures, a metal separator can be used for a low temperature operation type solid oxide fuel cell. Therefore, a flat plate type structure that is easy to give a shape to the metal separator is suitable.
[0010]
A stack of flat plate type solid oxide fuel cells has a structure in which power generation cells, current collectors, and separators are alternately stacked. A pair of separators sandwich the power generation cell from both sides, one being in contact with the air electrode via the air electrode current collector and the other being in contact with the fuel electrode via the fuel electrode current collector. A sponge-like porous body such as a Ni-based alloy can be used for the fuel current collector, and a similar sponge-like porous body such as an Ag-based alloy can be used for the air electrode current collector. it can. The sponge-like porous body has a current collecting function, a gas permeation function, a uniform gas diffusion function, a cushion function, a thermal expansion difference absorption function, and the like, and is therefore suitable as a multifunctional current collector material.
[0011]
The separator has a function of electrically connecting the power generation cells and supplying gas to the power generation cells. The fuel is introduced from the outer peripheral surface of the separator and discharged from the surface facing the separator fuel electrode layer. Each has a passage and an oxidant passage through which oxidant gas is introduced from the outer peripheral surface of the separator and discharged from the surface facing the oxidant electrode layer of the separator.
[0012]
[Problems to be solved by the invention]
By the way, in a conventional fuel cell, a current collector made of a porous cushion material is disposed between an electrode layer and a separator, and gas is distributed and supplied from the separator to the electrode layer via this current collector. In order to increase the efficiency, there has been a further demand for improvement in performance particularly at the interface between the current collector and the electrode layer.
[0013]
In view of the above circumstances, an object of the present invention is to provide a solid oxide fuel cell capable of improving the power generation efficiency by improving the performance between the current collector and the electrode layer.
[0014]
[Means for Solving the Problems]
According to the first aspect of the present invention, a fuel electrode layer and an oxidant electrode layer are disposed on both sides of the solid electrolyte layer, and a fuel electrode current collector and an oxidizer made of a porous cushion material are respectively provided outside the fuel electrode layer and the oxidant electrode layer In a solid oxide fuel cell in which an anode current collector is disposed, a separator is disposed outside the fuel electrode current collector and the oxidant electrode current collector, and these are closely stacked by applying pressure, the oxidant electrode current collector is provided. The electric body is made of a sponge-like porous sintered metal plate obtained by foaming and firing a foam slurry containing metal powder into a sponge, and the oxidizer electrode layer is in contact with the current collector A silver powder is adhered to the surface in a state where a part thereof is welded by applying a slurry containing the silver powder to the contact surface and heating .
[0017]
In the present invention, by attaching metal powder ( silver powder ) on the surface of the oxidizer electrode layer, the exchange current density on the surface is increased, the contact resistance between the electrode and the current collector is reduced, and the battery performance is increased. We are trying to improve.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing a laminated structure of a solid electrolyte layer, an electrode layer, and a current collector in the solid oxide fuel cell of the embodiment. 2 is an exploded cross-sectional view of the main part of the fuel cell, and FIG. 3 is an exploded perspective view of the main part.
[0019]
First, the whole structure of the solid oxide fuel cell of embodiment is demonstrated using FIG. 2, FIG. In FIG. 2, reference numeral 1 denotes a fuel cell stack. This fuel cell stack 1 includes a power generation cell (power generation unit) 5 in which a fuel electrode layer 3 and an air electrode layer (oxidant electrode layer) 4 are arranged on both surfaces of a solid electrolyte layer 2, and a fuel electrode outside the fuel electrode layer 3. A current collector 6, an air electrode current collector (oxidant electrode current collector) 7 outside the air electrode layer 4, and a separator 8 outside each current collector 6, 7 are sequentially stacked. .
[0020]
Here, the solid electrolyte layer 2 is composed of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer 3 is composed of a metal such as Ni or Co or a cermet such as Ni—YSZ or Co—YSZ, and air. The electrode layer 4 is made of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector 6 is made of a sponge-like porous sintered metal plate such as a Ni-based alloy, and the air electrode current collector 7 is made of an Ag-based alloy or the like. The separator 8 is made of stainless steel or the like.
[0021]
The porous metal plate which comprises the electrical power collectors 6 and 7 is produced through the following process. The order of the process is slurry preparation process → molding process → foaming process → drying process → degreasing process → sintering process.
[0022]
First, in the slurry preparation step, a metal powder, an organic solvent (such as n-hexane), a surfactant (such as sodium dodecylbenzenesulfonate), a water-soluble resin binder (such as hydroxypropylmethylcellulose), a plasticizer (such as glycerin), A foam slurry is prepared by mixing water. This is formed into a thin plate shape on a carrier sheet by a doctor blade method in a forming step to obtain a green sheet. Next, in the foaming process, the green sheet is foamed in a sponge shape using the vapor pressure of the volatile organic solvent and the foaming property of the surfactant in a high-temperature and high-humidity environment, followed by a drying process, a degreasing process, A porous metal plate is obtained through a firing step.
[0023]
In this case, in the foaming process, the bubbles generated inside the green sheet receive a substantially equivalent pressure from all directions and grow in a substantially spherical shape. When bubbles diffuse from the inside and approach the interface with the atmosphere, the bubbles grow into a thin portion of the slurry between the bubbles and the atmosphere, eventually breaking the bubbles, and the gas inside the bubbles is made small. It diffuses from the hole into the atmosphere. Therefore, a porous metal plate having continuous pores opened on the surface is obtained.
[0024]
The current collectors 6 and 7 are configured by cutting the porous metal plate having the three-dimensional skeleton structure manufactured in this way into a circle. As schematically shown in FIG. 1, a fuel cell is formed on at least the contact surface of the air electrode layer 4 with the air electrode current collector 7 of the two electrode layers of the fuel electrode layer 3 and the air electrode layer 4. The metal powder 20 having non-oxidizing properties in the operating atmosphere is attached in a scattered state.
[0025]
The metal powders 20 in this case, the silver powder is used. The metal powder 20 may be simply sprayed on the surface of the electrode layer (air electrode layer 4). In order to prevent the metal powder 20 from falling off, the metal powder 20 is heated to a metal slurry and applied to the surface by screen printing or the like. It is preferable that a part is welded to the electrode layer (about 900 ° C.). In particular, it is preferably welded to the surface of the electrode layer so as not to block the pores of the electrode layer in a state of being foamed while being melted and having a high density.
[0026]
As shown in FIGS. 2 and 3, the separator 8 has a function of electrically connecting the power generation cells 5 and supplying gas to the power generation cells 5. The fuel passage 11 is introduced from the surface of the separator 8 and discharged from the surface facing the fuel electrode current collector 6, and the oxidant gas is introduced from the outer peripheral surface of the separator 8 to face the air electrode current collector 7 of the separator 8. And an oxidant passage 12 to be discharged from the surface. However, the separators 8 (8A, 8B) at both ends have only one of the passages 11 and 12.
[0027]
On the other hand, as shown in FIG. 2, on the side of the fuel cell stack 1, a fuel manifold 15 that supplies fuel gas to the fuel passages 11 of the separators 8 through the connection pipes 13, and an oxidant passage 12 of each separator 8. An oxidant manifold 16 for supplying an oxidant gas through the connection pipe 14 extends in the stacking direction of the power generation cells 5.
[0028]
In the fuel cell of the above structure, the exchange current density at the contact interface so that deposited metal powder to the surface of the air electrode layer 4 (silver powder) in dotted state, the air electrode layer 4 and the air electrode current collector 7 The contact resistance at the interface can be greatly reduced, and the battery performance can be improved.
[0029]
In the above-described embodiment, the metal powder is attached only to the surface of the air electrode layer 4, but in addition, the metal powder may be attached to the surface on the fuel electrode layer 3 side.
[0030]
In the above-described embodiment, the solid oxide fuel cell using stabilized zirconia (YSZ) in which yttria is added to the electrolyte of the power generation cell has been shown. However, the present invention is not limited to other solid oxide fuel cells, for example, The present invention can also be applied to a solid oxide fuel cell using a ceria-based electrolyte and a gallate electrolyte.
[0031]
【The invention's effect】
As described above, according to the present invention, since the silver powder is deposited in a scattered state on the contact surface of the oxidizer electrode layer with the current collector, the contact resistance at the contact interface between the electrode layer and the current collector is greatly increased. The power generation efficiency can be further improved . Further, there is no fear of falling off because they were welded to the electrode layer by heating the silver powder, thereby to maintain the stable performance.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view schematically showing a laminated structure of a solid electrolyte layer, an electrode layer, and a current collector in a fuel cell according to an embodiment of the present invention.
FIG. 2 is an exploded cross-sectional view showing the main configuration of the fuel cell.
FIG. 3 is an exploded perspective view showing a main configuration of the fuel cell.
[Explanation of symbols]
2 Solid electrolyte layer 3 Fuel electrode layer 4 Air electrode layer (oxidant electrode layer)
6 Fuel electrode current collector 7 Air electrode current collector (oxidant electrode current collector)
8 Separator 20 Metal powder

Claims (1)

固体電解質層の両面に燃料極層と酸化剤極層を配置し、燃料極層と酸化剤極層の外側にそれぞれ多孔質クッション材よりなる燃料極集電体と酸化剤極集電体を配置し、燃料極集電体と酸化剤極集電体の外側にセパレータを配置し、これらを圧力をかけて密着積層した固体電解質型燃料電池において、
前記酸化剤極集電体は、金属粉末を含む発泡スラリーをスポンジ状に発泡させて焼成することによって得られたスポンジ状の多孔質焼結金属板からなり、
かつ前記酸化剤極層の前記集電体との接触表面に、銀粉を、当該銀粉を含むスラリーを前記接触表面に塗布して加熱することによりその一部が溶着した状態で付着させたことを特徴とする固体電解質型燃料電池。
A fuel electrode layer and an oxidant electrode layer are arranged on both sides of the solid electrolyte layer, and a fuel electrode current collector and an oxidant electrode current collector made of a porous cushion material are arranged outside the fuel electrode layer and the oxidant electrode layer, respectively. In a solid oxide fuel cell in which a separator is disposed outside the fuel electrode current collector and the oxidant electrode current collector, and these are closely laminated by applying pressure,
The oxidant electrode current collector comprises a sponge-like porous sintered metal plate obtained by foaming and firing a foamed slurry containing metal powder into a sponge shape,
And the contact surface between the collector of the oxidant electrode layer, a silver powder, that the part by heating by applying a slurry containing the silver powder to the contact surface is deposited in a state of welded A solid oxide fuel cell.
JP2001187789A 2001-06-21 2001-06-21 Solid oxide fuel cell Expired - Fee Related JP4512911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001187789A JP4512911B2 (en) 2001-06-21 2001-06-21 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001187789A JP4512911B2 (en) 2001-06-21 2001-06-21 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2003007318A JP2003007318A (en) 2003-01-10
JP4512911B2 true JP4512911B2 (en) 2010-07-28

Family

ID=19027032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001187789A Expired - Fee Related JP4512911B2 (en) 2001-06-21 2001-06-21 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4512911B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035571B2 (en) * 2003-07-24 2012-09-26 日産自動車株式会社 Current collecting structure for fuel cell and solid oxide fuel cell stack
JP4492119B2 (en) * 2003-07-24 2010-06-30 日産自動車株式会社 Current collecting structure for fuel cell and solid oxide fuel cell stack
JP4867155B2 (en) * 2004-11-10 2012-02-01 大日本印刷株式会社 Solid oxide fuel cell
JP4888682B2 (en) * 2005-04-27 2012-02-29 日産自動車株式会社 Electrode for solid oxide fuel cell and method for producing the same
WO2008156647A1 (en) * 2007-06-15 2008-12-24 Bloom Energy Corporation Dot pattern contact layer
JP5353160B2 (en) * 2007-09-28 2013-11-27 大日本印刷株式会社 Method for producing solid oxide fuel cell
JP5242985B2 (en) * 2007-10-15 2013-07-24 日本特殊陶業株式会社 Solid oxide fuel cell
JP5387821B2 (en) * 2009-02-10 2014-01-15 三菱マテリアル株式会社 Flat type solid oxide fuel cell
KR102585572B1 (en) * 2022-11-04 2023-10-06 한국세라믹기술원 Membrane electrode assembly having metal ball grid array type current collecting and pressurized structure and frel cell stack including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431263U (en) * 1990-07-06 1992-03-13
JPH04220954A (en) * 1990-03-15 1992-08-11 Asea Brown Boveri Ag Current collector for conducting current between stack-shapedly composed neighboring high-temperature fuel battery
JPH065294A (en) * 1992-06-19 1994-01-14 Mitsubishi Heavy Ind Ltd Flat type solid electrolytic fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220954A (en) * 1990-03-15 1992-08-11 Asea Brown Boveri Ag Current collector for conducting current between stack-shapedly composed neighboring high-temperature fuel battery
JPH0431263U (en) * 1990-07-06 1992-03-13
JPH065294A (en) * 1992-06-19 1994-01-14 Mitsubishi Heavy Ind Ltd Flat type solid electrolytic fuel cell

Also Published As

Publication number Publication date
JP2003007318A (en) 2003-01-10

Similar Documents

Publication Publication Date Title
US7517605B2 (en) Solid oxide fuel cell and separator
EP1732157B1 (en) Method and apparatus for forming electrode interconnect contacts for a solid-oxide fuel cell stack
JP2004511070A (en) Solid oxide fuel cell component and method of manufacturing solid oxide fuel cell component
JPH10302812A (en) Solid oxide fuel cell stack having composite electrode and production thereof
JP2009507356A (en) Ceramic membrane with integral seal and support, and electrochemical cell and electrochemical cell stack structure including the same
JP4552371B2 (en) Solid oxide fuel cell
JP4876363B2 (en) Current collector, method for producing the same, and solid oxide fuel cell
JP4512911B2 (en) Solid oxide fuel cell
JP4923407B2 (en) Method for producing solid oxide fuel cell
JP2002358996A (en) Manifold structure of flat laminate fuel cell
JP4300947B2 (en) Solid oxide fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JP4529393B2 (en) Solid oxide fuel cell
JP4304889B2 (en) Solid oxide fuel cell
JP2005203258A (en) Solid oxide fuel cell
JP4341259B2 (en) Solid oxide fuel cell and separator
JP2004200023A (en) Solid oxide fuel cell
JP2002358980A (en) Solid electrolyte fuel cell
JP4244579B2 (en) Flat stacked solid oxide fuel cell
JP2004355814A (en) Solid oxide fuel battery cell and its manufacturing method
JP4329345B2 (en) Internal reforming fuel cell
JP2003331871A (en) Flat solid oxide fuel cell and separator
JP2004200022A (en) Solid oxide fuel cell
JP4427929B2 (en) Solid oxide fuel cell with sealless structure
JP2005085522A (en) Supporting membrane type solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Ref document number: 4512911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees