JPH065294A - Flat type solid electrolytic fuel cell - Google Patents

Flat type solid electrolytic fuel cell

Info

Publication number
JPH065294A
JPH065294A JP4160860A JP16086092A JPH065294A JP H065294 A JPH065294 A JP H065294A JP 4160860 A JP4160860 A JP 4160860A JP 16086092 A JP16086092 A JP 16086092A JP H065294 A JPH065294 A JP H065294A
Authority
JP
Japan
Prior art keywords
fuel cell
metal
layer
type solid
support layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4160860A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yoshimoto
和博 吉本
Kiyoshi Watanabe
潔 渡辺
Fusayuki Nanjo
房幸 南條
Koichi Takenobu
弘一 武信
Mitsuhiro Irino
光博 入野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4160860A priority Critical patent/JPH065294A/en
Publication of JPH065294A publication Critical patent/JPH065294A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a stable fuel cell which has high size precision and scarcely shows volume change even if exposed to a reducing atmosphere by using a metal which has a shape to absorb the elongation caused by thermal expansion and a prescribed heat-resistant temperature as a supporting layer in the fuel passing route side. CONSTITUTION:In a flat-type solid electrolytic fuel cell composed of an electricity generating layer 4, an inter connector layer 1, and a supporting layer set between both layers, a metal having a shape to absorb the elongation caused by thermal expansion and 900-1100 deg.C heat resistant temperature is used for the supporting layer in the fuel passing route side. As the metal to be used, there are heat resistant metals or alloys of Cr, Si, Sm, Sc, W, Ti, Fe, Ni, Pt, Hf, Be, Mn, Mo, etc., and in the case a cermet is used for the supporting material, volume is changed and stress is caused since it is exposed to reducing atmosphere at the operation time and by contraries in the case of a metal, stress is not caused at all.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は平板型固体電解質燃料電
池に関し、特に平板型固体電解質型、溶融炭酸塩型およ
びリン酸型燃料電池の燃料極側支持層に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat plate type solid electrolyte fuel cell, and more particularly to a fuel electrode side support layer of a flat plate type solid electrolyte type, molten carbonate type and phosphoric acid type fuel cell.

【0002】[0002]

【従来の技術】従来の平板型固体電解質燃料電池の燃料
極側支持膜の要求条件として、還元性雰囲気に耐えるこ
と、電池運転温度900〜1100℃にて使用可能なこ
と及び運転温度において材料がもつ固有の熱膨張により
電池を構成する他の部材へ悪影響を与えないことという
条件があることから、発電層上の電極と同じ材質である
NiO+YSZ(イットリア安定化ジルコニア)のサー
メットを成形した支持材が使われてきた。
2. Description of the Related Art Requirements for a fuel electrode side support membrane of a conventional flat plate solid oxide fuel cell are that it can withstand a reducing atmosphere, that it can be used at a cell operating temperature of 900 to 1100 ° C. Since there is a condition that it does not adversely affect other members constituting the battery due to its inherent thermal expansion, a support material formed by forming a cermet of NiO + YSZ (yttria-stabilized zirconia), which is the same material as the electrode on the power generation layer. Has been used.

【0003】[0003]

【発明が解決しようとする課題】従来の固体電解質燃料
電池の支持層製作方法としては、材料に電極材と同じN
iO+YSZサーメットを使用しているため、支持層と
して利用するまでに粉末の混合・混練→薄膜製作→波形
成型→焼成等の多くの工程を必要としている。このため
従来の支持層には下記のような問題点があった。 (1)支持層、成形体は焼成工程により支持層に含まれ
る結合剤等が分解しその後収縮が始まる。この収縮は原
料粉末の粒度、焼成セッタのすべり系数、焼成炉の温度
分布に影響されるため支持層の寸法精度にばらつきが発
生する。 (2)支持層はNiO+YSZのサーメットからできて
いるため燃料電池の運転時に還元性雰囲気にさらされる
と、サーメットからNiに変わる。この時支持層に体積
変化が起こり他の膜に悪影響をおよぼす。
As a conventional method for manufacturing a support layer for a solid oxide fuel cell, the same material as the electrode material, N, is used.
Since iO + YSZ cermet is used, many steps such as powder mixing / kneading → thin film production → corrugation → firing are required before it can be used as a support layer. Therefore, the conventional supporting layer has the following problems. (1) The binder and the like contained in the support layer are decomposed in the support layer and the molded body by the firing step, and then shrinkage starts. Since this shrinkage is affected by the particle size of the raw material powder, the sliding coefficient of the firing setter, and the temperature distribution of the firing furnace, the dimensional accuracy of the support layer varies. (2) Since the support layer is made of NiO + YSZ cermet, when exposed to a reducing atmosphere during operation of the fuel cell, the cermet changes to Ni. At this time, a volume change occurs in the support layer, which adversely affects other membranes.

【0004】本発明は上記技術水準に鑑み、製作時の工
程を大幅に少なくでき、加工も容易で焼成等も不要なこ
とから寸法精度が高く、しかも還元性雰囲気にさらされ
ても体積変化もなく安定である支持層を有する平板型固
体電解質燃料電池を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention has a significantly reduced number of manufacturing steps, is easy to process and does not require firing, etc., and thus has high dimensional accuracy, and its volume changes even when exposed to a reducing atmosphere. An object of the present invention is to provide a flat-plate type solid electrolyte fuel cell having a stable support layer.

【0005】[0005]

【課題を解決するための手段】本発明は発電層とインタ
コネクタ層と該両層の間に設けられた支持層からなる平
板型固体電解質燃料電池において、燃料通路側支持層と
して熱膨張により発生する伸びを吸収しうる形状の耐熱
温度900〜1100℃の金属を用いてなることを特徴
とする平板型固体電解質燃料電池である。
DISCLOSURE OF THE INVENTION The present invention is a plate type solid electrolyte fuel cell comprising a power generation layer, an interconnector layer and a supporting layer provided between the two layers, and is generated by thermal expansion as a fuel passage side supporting layer. The flat plate type solid electrolyte fuel cell is characterized by using a metal having a heat resistant temperature of 900 to 1100 ° C. and having a shape capable of absorbing elongation.

【0006】すなわち、本発明の平板型固体電解質燃料
電池の燃料極側支持層は支持層を構成する部材が燃料電
気の運転温度範囲900℃〜1100℃にて常用できる
金属(Cr,Si,Sm,Sc,W,Ti,Fe,N
i,Pt,Hf,Be,Mn,Mo等からなる耐熱性金
属又は合金)からなるものであって、これらの金属を支
持層として用いることから燃料電池の運転温度900℃
〜1100℃の間で発生する金属の伸びを吸収できるよ
うに線径0.05mm〜0.1mmからなる45°なな
め織りメッシュを金属成形コルゲータにて波形形状に成
形したもの、又はスリット加工を行った薄板を金属成形
コルゲータにて加工したもの等のように金属の伸びを吸
収する構造をもったものにしたものである。
That is, in the fuel electrode side support layer of the flat plate type solid electrolyte fuel cell of the present invention, the members constituting the support layer are metals (Cr, Si, Sm) which can be commonly used in the operating temperature range of fuel electricity 900 ° C to 1100 ° C. , Sc, W, Ti, Fe, N
i, Pt, Hf, Be, Mn, Mo, etc., which is a heat-resistant metal or alloy), and these metals are used as a supporting layer, so that the operating temperature of the fuel cell is 900 ° C.
〜1100 ° C, a 45 ° slanted woven mesh with a wire diameter of 0.05 mm to 0.1 mm is formed into a corrugated shape with a metal forming corrugator so as to absorb the elongation of metal, or slit processing is performed. It has a structure that absorbs the elongation of metal, such as a thin plate processed by a metal forming corrugator.

【0007】[0007]

【作用】サーメット支持層から金属支持層に変えること
により燃料電池運転時に体積変化に伴う応力をなくすこ
とができるようになり、金属を支持層に用いることによ
り従来の支持層製造工程に比べ工程を大幅に簡略化で
き、又寸法精度も従来に比べ大幅に改善される。また、
従来のNiOとYSZ粉末からなる支持層では供給され
る燃料ガスが2分され半分は有効に利用できなかったが
金属支持層を用いることにより形状を自由に加工できる
ことから燃料ガスを2分させずに有効に利用する構造を
採用できるようになった。
[Function] By changing from the cermet support layer to the metal support layer, it becomes possible to eliminate the stress due to the volume change during the operation of the fuel cell. The simplification can be greatly simplified, and the dimensional accuracy can be greatly improved compared to the conventional one. Also,
In the conventional support layer composed of NiO and YSZ powder, the supplied fuel gas was divided into two and half could not be effectively used. However, since the metal support layer allows the shape to be freely processed, the fuel gas is not divided into two. It is now possible to adopt a structure that can be effectively used for.

【0008】具体的な金属支持層を例示すると、Ni−
23%Cr−14%Fe(1000℃弾性率:11.4
×103 kg/mm2 )、Ni−22%Cr−14%W
−2%Mo(1000℃弾性率:11.4×103 kg
/mm2 )、Co−22%Ni−22%Cr−14.5
%W(1000℃弾性率:14.8×103 kg/mm
2 )、Ni−16%Cr−4.5%Al(1000℃弾
性率:13.9×10 3 kg/mm2 )などがあげられ
る。
An example of a specific metal supporting layer is Ni-
23% Cr-14% Fe (1000 ° C. elastic modulus: 11.4
× 103kg / mm2), Ni-22% Cr-14% W
-2% Mo (1000 ° C. elastic modulus: 11.4 × 103kg
/ Mm2), Co-22% Ni-22% Cr-14.5
% W (1000 ° C. elastic modulus: 14.8 × 103kg / mm
2), Ni-16% Cr-4.5% Al (1000 ° C bullet
Sex ratio: 13.9 × 10 3kg / mm2) Etc.
It

【0009】[0009]

【実施例】本発明の一実施例を図1〜図3を参照して説
明する。図1において、発電層4とインタコネクタ層1
と前記両層の間にはさまれた支持層2,5の還元剤支持
膜2に金属(1000℃の弾性率13.9×103 kg
/mm2 のNi−16%Cr−4.5%Al)を使用し
た。還元剤側支持膜2に該金属を使った時の支持膜形状
例を図2,図3に示す。金属支持膜を使用した例として
図2は0.05〜0.1mmの金属細線を45°のなな
め織りメッシュとした支持部材2−1(図2の左図)を
ガス通路を形成するために波型に加工した部品2′(図
2の右図)の例である。図3は厚さ50〜200μmの
金属薄板にスリット加工をほどこした支持部材2−2
(図3の左図)をガス通路として波型加工した部材2″
(図3の右図)である。このようにして支持層を加工し
実際に電池内に組込んだものが図1の平板型固体電解質
燃料電池である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. In FIG. 1, a power generation layer 4 and an interconnector layer 1
The elastic modulus 13.9 × 10 metal (1000 ° C. in a reducing agent supporting film 2 of the support layer 2 and 5 sandwiched between the two layers and 3 kg
/ Mm 2 Ni-16% Cr-4.5% Al) was used. An example of the shape of the supporting film when the metal is used for the reducing agent side supporting film 2 is shown in FIGS. As an example of using a metal supporting film, FIG. 2 shows a case where a metal thin wire of 0.05 to 0.1 mm is used as a support member 2-1 (left side of FIG. 2) made of 45 ° slanted mesh to form a gas passage. It is an example of a corrugated part 2 '(the right side of FIG. 2). FIG. 3 shows a supporting member 2-2 in which a metal thin plate having a thickness of 50 to 200 μm is slit.
A member 2 ″ that is corrugated as a gas passage (left side of FIG. 3)
(Right view of FIG. 3). The flat layer type solid electrolyte fuel cell of FIG. 1 is obtained by processing the support layer in this manner and actually incorporating it into the cell.

【0010】[0010]

【発明の効果】本発明は前述のように燃料電池運転温度
において発生する熱膨張の伸びを吸収する構造をもつ金
属を還元剤側支持膜に用いることにより、サーメット支
持層では製作時に多くの工程を有していたが金属とする
ことにより製作工程が大幅に短縮できた。また、サーメ
ット支持部材では運転時に還元雰囲気にさらされるため
体積変化を起こし応力を発生していたが金属とすること
で応力発生がなくなった。さらに、サーメット支持層で
は成形状の問題により燃料ガスが2分される形状にしか
成形できなかったが金属とすることにより加工が容易と
なり、ガスを2分することなく有効利用できるようにな
った。
As described above, according to the present invention, a metal having a structure for absorbing the expansion of thermal expansion generated at the fuel cell operating temperature is used for the reducing agent side supporting film, so that the cermet supporting layer has many steps during manufacturing. However, by using metal, the manufacturing process could be shortened significantly. Further, the cermet support member was exposed to a reducing atmosphere during operation, which caused a volume change and generated stress, but the use of metal eliminated the stress. Further, the cermet support layer could be molded only into a shape in which the fuel gas could be divided into two due to the problem of molding shape, but using a metal facilitates the processing, and the gas can be effectively used without dividing into two. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の平板型固体電解質燃料電池
の構成の説明図。
FIG. 1 is an explanatory diagram of a configuration of a flat plate type solid electrolyte fuel cell according to an embodiment of the present invention.

【図2】図1の還元剤側支持層の一例の説明図。FIG. 2 is an explanatory diagram of an example of a reducing agent side support layer of FIG.

【図3】図1の還元剤側支持層の他例の説明図。3 is an explanatory view of another example of the reducing agent side support layer of FIG. 1. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武信 弘一 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 入野 光博 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichi Takenobu, Koichi Takenobu 1-1-1, Wadasaki-cho, Hyogo-ku, Kobe, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Mitsuhiro Irino, Niihama, Arai-cho, Takasago-shi, Hyogo Prefecture 1-1-1 Mitsubishi Heavy Industries Ltd. Takasago Research Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発電層とインタコネクタ層と該両層の間
に設けられた支持層からなる平板型固体電解質燃料電池
において、燃料通路側支持層として熱膨張により発生す
る伸びを吸収しうる形状の耐熱温度900〜1100℃
の金属を用いてなることを特徴とする平板型固体電解質
燃料電池。
1. A flat type solid electrolyte fuel cell comprising a power generation layer, an interconnector layer, and a support layer provided between the layers, and having a shape capable of absorbing elongation generated by thermal expansion as a fuel passage side support layer. Heat resistance temperature of 900-1100 ℃
A flat plate type solid electrolyte fuel cell, which is characterized by using the above metal.
JP4160860A 1992-06-19 1992-06-19 Flat type solid electrolytic fuel cell Withdrawn JPH065294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4160860A JPH065294A (en) 1992-06-19 1992-06-19 Flat type solid electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160860A JPH065294A (en) 1992-06-19 1992-06-19 Flat type solid electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH065294A true JPH065294A (en) 1994-01-14

Family

ID=15723947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160860A Withdrawn JPH065294A (en) 1992-06-19 1992-06-19 Flat type solid electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH065294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007318A (en) * 2001-06-21 2003-01-10 Mitsubishi Materials Corp Solid electrolyte fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007318A (en) * 2001-06-21 2003-01-10 Mitsubishi Materials Corp Solid electrolyte fuel cell
JP4512911B2 (en) * 2001-06-21 2010-07-28 三菱マテリアル株式会社 Solid oxide fuel cell

Similar Documents

Publication Publication Date Title
DE69905019T2 (en) FLEXIBLE INORGANIC ELECTROLYTIC FUEL CELL DESIGN
JP2008529244A (en) Interconnector for high-temperature fuel cells
JP2001196069A (en) Fuel cell
US7144649B2 (en) Interconnect for solid oxide fuel cells
JPH02288162A (en) Conductive inter-connector and fuel cell having same
JPH065294A (en) Flat type solid electrolytic fuel cell
KR20050051671A (en) Electrode-supported fuel cell
JPH07166301A (en) Separator for solid electrolyte fuel cell
JPH0869804A (en) Anode for fused carbonate fuel cell and its preparation
US3306780A (en) Sintered nickel-carbon gas diffusion electrode for fuel cells
CA3111133C (en) Metal member and manufacturing method thereof
JP2622261B2 (en) Method for manufacturing solid electrolyte fuel cell
KR101856839B1 (en) Thin electrode for thermal batteries and a manufacturing method therefor
JPH03285268A (en) High temperature type fuel cell and manufacture thereof
JPH05251094A (en) Manufacture of solid electrolytic cell
JPH10183315A (en) Iron-chrome sintered alloy, its manufacture and separator for fuel cell using it
JPH08273681A (en) Manufacture of separator of solid electrolyte fuel cell
JPH0722032A (en) Fuel electrode plate for flat plate type solid electrolyte fuel cell
JPH08287921A (en) Fuel electrode for solid electrolyte fuel cell
JPH11135138A (en) Manufacture of insulating constituent component of high temperature fuel cell and the high temperature fuel cell
Menzler et al. Degradation phenomena in SOFCs with metallic interconnects
JPH0745289A (en) Solid electrolyte fuel cell
JPH05135784A (en) Manufacture of solid electrolyte fuel cell
JPH0878026A (en) Separator for solid electrolyte fuel cell and its manufacture
WO2024115506A1 (en) A solid oxide cell stack made of single repeating units, each comprising a ceramic cell with a corrugated membrane and a flat metallic interconnect

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831