JPH05251094A - Manufacture of solid electrolytic cell - Google Patents

Manufacture of solid electrolytic cell

Info

Publication number
JPH05251094A
JPH05251094A JP4048245A JP4824592A JPH05251094A JP H05251094 A JPH05251094 A JP H05251094A JP 4048245 A JP4048245 A JP 4048245A JP 4824592 A JP4824592 A JP 4824592A JP H05251094 A JPH05251094 A JP H05251094A
Authority
JP
Japan
Prior art keywords
electrode material
interconnector
fuel electrode
sintered
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4048245A
Other languages
Japanese (ja)
Other versions
JP3064087B2 (en
Inventor
Osao Kudome
長生 久留
Tetsuichi Sasai
徹一 笹井
Yasuhiro Yamauchi
康弘 山内
Tatsuro Miyazaki
達郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4048245A priority Critical patent/JP3064087B2/en
Publication of JPH05251094A publication Critical patent/JPH05251094A/en
Application granted granted Critical
Publication of JP3064087B2 publication Critical patent/JP3064087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To stabilize performance and to reduce manufacturing processes by simultaneously burning all or most of the constituent members. CONSTITUTION:A fuel electrode material, an electrolytic material, an interconnector material, and an air material are painted to a molded and dried basic member. All the materials are sintered at a time. Or the fuel electrode material, the electrolytic material, and the interconnector material are painted on the molded and dried basic member, and all the materials are sintered at a time. The air electrode material is then film-formed on the sintered body. This dramatically reduces manufacturing processes. In addition, burning is made at least operating temp. in manufacturing processes. Thus, the electrode and the electrolytic film have little sintering and contraction even under continuous and high temp. (900-1000 deg.C) operation to manufacture a solid electrolytic cell excellent in durability and heat cycle resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質セル、例えば
固体電解質型燃料電池(SOFC)や高温水蒸気電解セ
ルの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid electrolyte cell such as a solid oxide fuel cell (SOFC) or a high temperature steam electrolysis cell.

【0002】[0002]

【従来の技術】従来の固体電解質型燃料電池の製造にお
いては、焼成された基体管{例えばカルシア安定化ジル
コニア(以下、CSZと略記)管}上に、電極及び電解
質膜を溶射法等により順次構成してゆく方法が採られて
いる。すなわち、図1に示すように、焼成された基体管
1の上に燃料極4、電解質3、インタコネクタ5、空気
極2を順次構成してゆく方法が一般的である。
2. Description of the Related Art In the manufacture of a conventional solid oxide fuel cell, electrodes and an electrolyte membrane are sequentially formed on a fired substrate tube (for example, calcia-stabilized zirconia (hereinafter abbreviated as CSZ) tube) by a thermal spraying method or the like. The method of composition is adopted. That is, as shown in FIG. 1, generally, a method of sequentially forming a fuel electrode 4, an electrolyte 3, an interconnector 5, and an air electrode 2 on a fired substrate tube 1 is used.

【0003】[0003]

【発明が解決しようとする課題】従来の固体電解質型燃
料電池の製造においては、焼成された基体管の上に、電
極、電解質膜、インタコネクタを塗布、溶射法サーモス
プレー法等の低温プロセスを経て構成してゆくため、高
温(900〜1000℃)での運転中に膜が徐々に焼結
してゆき収縮、剥離に伴う性能の低下が見られる。ま
た、各膜を個別に成膜してゆくため製造過程が煩雑にな
り量産化には適さない。
In the conventional manufacture of a solid oxide fuel cell, a low temperature process such as a spraying method, a thermospraying method or the like is applied on a fired substrate tube by coating an electrode, an electrolyte membrane and an interconnector. Since the film is formed after that, the film gradually sinters during operation at high temperature (900 to 1000 ° C.), shrinking, and deterioration of performance due to peeling is observed. In addition, since each film is formed individually, the manufacturing process becomes complicated, which is not suitable for mass production.

【0004】本発明は上記技術水準に鑑み、従来法にお
けるような不具合のない固体電解質セルの製造方法を提
供しようとするものである。
In view of the above-mentioned state of the art, the present invention aims to provide a method for producing a solid electrolyte cell which does not have the problems of the conventional method.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するため、基体部材、燃料極材、電解質材、インタコネ
クタ材及び空気極材の一部又は全部を同時に運転温度以
上で焼成することにより性能の安定化及び工程数の低減
を図るものである。
In order to solve the above-mentioned problems, the present invention sinters a part or all of the base member, the fuel electrode material, the electrolyte material, the interconnector material and the air electrode material at the same time or more at the operating temperature or higher. This stabilizes the performance and reduces the number of steps.

【0006】すなわち、本発明は (1)成形し乾燥した基体部材上に、燃料極材と電解質
材とインタコネクタ材と空気極材とを塗布し、これらを
一度に焼結することを特徴とする固体電解質セルの製造
方法。 (2)成形し乾燥した基体部材上に、燃料極材と電解質
材とインタコネクタ材を塗布し、これらを一度に焼結
し、その後に、空気極材を該焼結体上に成膜させること
を特徴とする固体電解質セルの製造方法。である。
That is, the present invention is characterized in that (1) a fuel electrode material, an electrolyte material, an interconnector material, and an air electrode material are applied onto a molded and dried base member, and these are sintered at once. Method for producing solid electrolyte cell. (2) A fuel electrode material, an electrolyte material, and an interconnector material are applied to a molded and dried base member, these are sintered at once, and then an air electrode material is formed into a film on the sintered body. A method for manufacturing a solid electrolyte cell, comprising: Is.

【0007】本発明において、基材部材、燃料極材、電
解質材、インタコネクタ材及び空気極材は熱膨張率を極
力近づけることが望ましいので、一般的に基材部材には
カルシア安定化ジルコニア(CSZ)、電解質材にはイ
ットリア安定化ジルコニア(YSZ)が用いられ、電極
材のうち燃料極材としてはニッケル又はニッケルとYS
Zのサーメット、空気極材としてランタンコバルト酸化
物(LaCoO3 )又はランタンマンガン酸化物(La
MnO3 )及びそれらの混合物が用いられ、インタコネ
クタ材としてはニッケル・アルミニウム(NiAl)な
どの金属系材料やLaCrO3 などが用いられる。
In the present invention, it is desirable that the base material, the fuel electrode material, the electrolyte material, the interconnector material, and the air electrode material have a coefficient of thermal expansion as close as possible. Therefore, in general, the base material member is a calcia-stabilized zirconia ( CSZ), yttria-stabilized zirconia (YSZ) is used as the electrolyte material, and nickel or nickel and YS is used as the fuel electrode material among the electrode materials.
Z cermet, lanthanum cobalt oxide (LaCoO 3 ) or lanthanum manganese oxide (La) as air electrode material
MnO 3 ) and mixtures thereof are used, and metal-based materials such as nickel-aluminum (NiAl) and LaCrO 3 are used as the interconnector material.

【0008】空気極材として、ランタンマンガン酸化物
(LaMnO3 )を使用する場合は、成形し乾燥した基
材部材上に、燃料極材、電解質材、インタコネクタ材及
び空気極材を塗布し、これらを一度に高温運転温度以上
の焼成温度で焼結することによって固体電解質セルを得
ることができるが(第一発明)、この場合においても燃
料極材としてニッケルを使用する場合は、ニッケルは1
400℃以上で軟化しガス透過性が阻害されるため、焼
成時には酸化雰囲気として酸化ニッケル(NiO)の形
で行う必要がある。インタコネクタ材についてもニッケ
ル・アルミニウムなどの金属系材料を使用する場合はニ
ッケル燃料極と同様に行う必要がある。
When lanthanum manganese oxide (LaMnO 3 ) is used as the air electrode material, the fuel electrode material, the electrolyte material, the interconnector material and the air electrode material are applied onto the molded and dried base material member, A solid electrolyte cell can be obtained by sintering them all at once at a firing temperature of a high operating temperature or higher (first invention). In this case as well, when nickel is used as the fuel electrode material, nickel is 1
Since it softens at 400 ° C. or higher and gas permeability is impaired, it is necessary to carry out in the form of nickel oxide (NiO) as an oxidizing atmosphere during firing. When using a metal-based material such as nickel or aluminum for the interconnector material, it is necessary to perform the same as for the nickel fuel electrode.

【0009】空気極としてランタンコバルト酸化物(L
aCoO3 )を使用する場合は、このものは焼結温度1
500℃以上では溶融するので、成形し乾燥した基体部
材上に、燃料極材、電解質材、インタコネクタ材を塗布
し、これらを一度に高温運転温度以上の焼成温度で焼結
した後、空気極材であるランタンコバルト酸化物を該焼
結体上に成膜することが必要である。(第二発明)この
場合においても、燃料極材、インタコネクタ材の種類に
応じては酸化雰囲気での焼成が必要であることは上述と
同じである。
Lanthanum cobalt oxide (L
If aCoO 3 ) is used, it has a sintering temperature of 1
Since it melts at 500 ° C or higher, the fuel electrode material, the electrolyte material, and the interconnector material are applied to the molded and dried base member, and these are sintered at once at a firing temperature higher than the high-temperature operating temperature. It is necessary to form a film of lanthanum cobalt oxide as a material on the sintered body. (Second invention) Also in this case, it is the same as described above that firing in an oxidizing atmosphere is necessary depending on the types of fuel electrode material and interconnector material.

【0010】また、第一発明、第二発明において、基体
部材、電解質材、電極材(燃料極、空気極)はスラリー
塗布した場合には、焼成時に約20%程度の収縮が生じ
るので、それらを考慮してスラリー塗布厚さを決定すべ
きである。なお、基体部材に適用される各材の塗布は、
一般のスラリー塗布のみではなく、プラズマ溶射法、サ
ーモスプレー法などでもよいことは云うまでもない。
Further, in the first and second inventions, when the base member, the electrolyte material, and the electrode material (fuel electrode, air electrode) are applied by slurry, shrinkage of about 20% occurs during firing. The slurry coating thickness should be determined in consideration of the above. In addition, the application of each material applied to the base member,
It goes without saying that not only general slurry coating but also plasma spraying, thermospraying, etc. may be used.

【0011】[0011]

【作用】本発明によれば、全部又は大部分の構成部材の
焼成が同時に行われるため、工程数が大幅に低減され、
また製造時に運転温度以上で焼成されるため、長期間の
高温(900〜1000℃)での運転にも、電極、電解
質膜の焼結、収縮が起きにくく、耐久性、耐ヒートサイ
クル性に優れた固体電解質セルを製造することができ
る。
According to the present invention, since all or most of the constituent members are fired at the same time, the number of steps is greatly reduced,
In addition, since it is fired at a temperature higher than the operating temperature during manufacturing, even when it is operated at a high temperature (900 to 1000 ° C) for a long period of time, the electrode and the electrolyte membrane are less likely to sinter and shrink, and the durability and heat cycle resistance are excellent. It is possible to manufacture a solid electrolyte cell.

【0012】[0012]

【実施例】【Example】

(実施例1)以下、本発明の一実施例に係る円筒型固体
電解質型燃料電池の製造法を説明する。まず、カルシア
安定化ジルコニアよりなる基体管材を押出し法等により
所定の長さ、径(例えば、径20×長さ700mm)に
押し出し、以降の作業性をよくするために自然乾燥及び
加熱乾燥を約1昼夜行う。
(Example 1) A method for manufacturing a cylindrical solid oxide fuel cell according to an example of the present invention will be described below. First, a base pipe material made of calcia-stabilized zirconia is extruded into a predetermined length and diameter (for example, diameter 20 × length 700 mm) by an extrusion method or the like, and natural drying and heat drying are performed to improve workability thereafter. Do one day and night.

【0013】成形された基体管上にニッケルよりなる燃
料極材をスラリー化したものをスラリー塗布法により所
定の位置に塗布し、さらに、YSZよりなる電解質材、
LaCrO3 よりなるインタコネクタ材及びLaMnO
3 よりなる空気極材を同様な方法で順次塗布する。
A fuel electrode material made of nickel is slurried on the molded base tube and applied at a predetermined position by a slurry application method, and further an electrolyte material made of YSZ,
Interconnector material consisting of LaCrO 3 and LaMnO
The air electrode material consisting of 3 is sequentially applied in the same manner.

【0014】最後に各構成膜を塗布し終った基体管を焼
成炉に入れ、焼成に必要な温度である1650℃で焼成
する。この際燃料極等に用いる金属系の材料は1400
℃以上では軟化するため酸化雰囲気にて焼成する。
Finally, the substrate tube on which each constituent film has been applied is placed in a firing furnace and fired at 1650 ° C. which is the temperature required for firing. At this time, the metal-based material used for the fuel electrode etc.
Since it softens at temperatures above ℃, it is baked in an oxidizing atmosphere.

【0015】このようにして、固体電解質燃料電池は従
来基体管の焼成のみを目的として行われた工程で完成す
ることになり、大幅な工程数低減と運転温度以上の製造
プロセスを経ることにより性能の安定化が可能となる。
In this way, the solid oxide fuel cell will be completed in the steps that were conventionally performed only for the firing of the substrate tube, and the performance will be improved by significantly reducing the number of steps and the manufacturing process above the operating temperature. Can be stabilized.

【0016】(実施例2)実施例1と同じ基体管上に、
ニッケルよりなる燃料極材、YSZよりなる電解質材、
NiAlよりなるインタコネクタ材をスラリー塗布法に
より順次塗布し、塗布した基体管を焼成炉に入れ、焼成
に必要な温度である1500℃で焼成した後、LaCo
3 よりなる空気極を成膜した。この実施例2において
も焼成は燃料極材、インタコネクタ材が金属系のもので
あるので酸化雰囲気で焼成を行った。この実施例2にお
いても、上記実施例1と同様の効果をもった固体電解質
燃料電池が得られた。
Example 2 On the same substrate tube as in Example 1,
Fuel electrode material made of nickel, electrolyte material made of YSZ,
An interconnector material made of NiAl is sequentially applied by a slurry application method, the applied base tube is put into a firing furnace, and fired at 1500 ° C. which is a temperature required for firing.
An air electrode made of O 3 was formed into a film. Also in Example 2, since the fuel electrode material and the interconnector material were made of metal, the firing was performed in an oxidizing atmosphere. Also in this Example 2, a solid oxide fuel cell having the same effect as that of Example 1 was obtained.

【0017】[0017]

【発明の効果】以上詳述した如く本発明によれば、固体
電解質型燃料電池の製造において、基体管の焼成と電極
及び電解質の一部及び全部を同時に焼成することによ
り、性能の安定化、製造の工数の低減を図ることが
可能となる。
As described above in detail, according to the present invention, in the production of the solid oxide fuel cell, the performance of the solid electrolyte fuel cell is stabilized by firing the base tube and firing some or all of the electrodes and the electrolyte at the same time. It is possible to reduce the number of manufacturing steps.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の固体電解質燃料電池の製造過程を示す説
明図。
FIG. 1 is an explanatory view showing a manufacturing process of a conventional solid oxide fuel cell.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮崎 達郎 長崎県長崎市深堀町5丁目717番1号 三 菱重工業株式会社長崎研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuro Miyazaki 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanryo Heavy Industries Ltd. Nagasaki Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 成形し乾燥した基体部材上に、燃料極材
と電解質材とインタコネクタ材と空気極材とを塗布し、
これらを一度に焼結することを特徴とする固体電解質セ
ルの製造方法。
1. A fuel electrode material, an electrolyte material, an interconnector material, and an air electrode material are applied onto a molded and dried substrate member,
A method for producing a solid electrolyte cell, which comprises sintering these at once.
【請求項2】 成形し乾燥した基体部材上に、燃料極材
と電解質材とインタコネクタ材を塗布し、これらを一度
に焼結し、その後に、空気極材を該焼結体上に成膜させ
ることを特徴とする固体電解質セルの製造方法。
2. A fuel electrode material, an electrolyte material, and an interconnector material are applied onto a molded and dried base member, which are sintered at one time, and then an air electrode material is formed on the sintered body. A method for producing a solid electrolyte cell, which comprises forming a membrane.
JP4048245A 1992-03-05 1992-03-05 Manufacturing method of solid electrolyte cell Expired - Lifetime JP3064087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4048245A JP3064087B2 (en) 1992-03-05 1992-03-05 Manufacturing method of solid electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4048245A JP3064087B2 (en) 1992-03-05 1992-03-05 Manufacturing method of solid electrolyte cell

Publications (2)

Publication Number Publication Date
JPH05251094A true JPH05251094A (en) 1993-09-28
JP3064087B2 JP3064087B2 (en) 2000-07-12

Family

ID=12798063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4048245A Expired - Lifetime JP3064087B2 (en) 1992-03-05 1992-03-05 Manufacturing method of solid electrolyte cell

Country Status (1)

Country Link
JP (1) JP3064087B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109613A (en) * 2001-09-28 2003-04-11 Mitsubishi Heavy Ind Ltd Method of manufacturing fuel cell pipe and ceramics manufacturing device
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
JP2004253376A (en) * 2003-01-27 2004-09-09 Kyocera Corp Fuel battery cell and method for manufacturing same, and fuel battery
JP2009289754A (en) * 2009-08-07 2009-12-10 Toto Ltd Solid-oxide fuel cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2822075A1 (en) 2013-07-03 2015-01-07 Toto Ltd. Solid oxide fuel cell unit
EP2854210A1 (en) 2013-09-27 2015-04-01 Toto Ltd. Solid oxide fuel cell stack
JP6721740B1 (en) 2019-02-28 2020-07-15 三菱日立パワーシステムズ株式会社 Fuel cell stack, fuel cell module, power generation system, and method for producing fuel cell stack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
JP2003109613A (en) * 2001-09-28 2003-04-11 Mitsubishi Heavy Ind Ltd Method of manufacturing fuel cell pipe and ceramics manufacturing device
JP2004253376A (en) * 2003-01-27 2004-09-09 Kyocera Corp Fuel battery cell and method for manufacturing same, and fuel battery
JP2009289754A (en) * 2009-08-07 2009-12-10 Toto Ltd Solid-oxide fuel cell

Also Published As

Publication number Publication date
JP3064087B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
CA2620421C (en) Reversible solid oxide fuel cell stack and method for preparing same
JPH11111309A (en) Manufacture of solid electrolyte fuel cell
KR20010035672A (en) Tubular Solid Oxide Fuel Cell supported by Fuel Electrode and Method for the same
JPH08106916A (en) Solid electrolyte fuel cell
JP4647901B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP2706197B2 (en) Method of forming ceramic thin film
US6217822B1 (en) Method of making straight fuel cell tubes
JPH05251094A (en) Manufacture of solid electrolytic cell
JP3636406B2 (en) SUPPORT FOR SOLID ELECTROLYTE FUEL CELL, UNIT CELL FOR SOLID ELECTROLYTE FUEL CELL, AND METHOD FOR PRODUCING SUPPORT FOR SOLID ELECTROLYTE FUEL CELL
JPH08185882A (en) Manufacture of solid electrolytic fuel cell
JP2001052725A (en) Material for peripheral member of cylindrical solid electrolyte fuel cell and cell making use of the same
JP3310866B2 (en) Cylindrical horizontal stripe solid electrolyte fuel cell
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
RU2310256C2 (en) Tubular cell (alternatives) for batteries of high-temperature electrochemical devices using thin-layer solid electrolyte and method for its manufacture
JPH0963605A (en) Solid electrolyte fuel cell
JPH1167243A (en) Support for electrochemical cell, electrochemical cell, and its manufacture
JPH1012252A (en) Solid electrolyte fuel cell and manufacture therefor
JPH0878041A (en) Manufacture of solid electrolyte electrochemical cell
JP2003086189A (en) Cylindrical, vertically-striped fuel cell
JPH07240216A (en) Cylindrical solid electrolyte fuel cell
JPH09115542A (en) Manufacture of solid oxide fuel cell
JPH04355058A (en) Solid electrolyte fuel cell and manufacture thereof
JP2001229934A (en) Method of producing solid electrolyte fuel cell
JPH06219834A (en) Sintered compact with electric conductivity at high temperature and its production
JPH06310155A (en) Manufacture of electrolytic cell for solid electrolytic fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12