JPH08185882A - Manufacture of solid electrolytic fuel cell - Google Patents

Manufacture of solid electrolytic fuel cell

Info

Publication number
JPH08185882A
JPH08185882A JP6326990A JP32699094A JPH08185882A JP H08185882 A JPH08185882 A JP H08185882A JP 6326990 A JP6326990 A JP 6326990A JP 32699094 A JP32699094 A JP 32699094A JP H08185882 A JPH08185882 A JP H08185882A
Authority
JP
Japan
Prior art keywords
fuel cell
solid oxide
electrolyte
interconnector
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6326990A
Other languages
Japanese (ja)
Inventor
Seiji Takatsuki
誠治 高月
Osao Kudome
長生 久留
Junichi Kanzaki
潤一 神前
Hiroshi Tsukuda
洋 佃
Tsutomu Hashimoto
勉 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6326990A priority Critical patent/JPH08185882A/en
Publication of JPH08185882A publication Critical patent/JPH08185882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To obtain a method for a solid electrolytic fuel cell of tubular and horizontal stripe type. CONSTITUTION: Regarding the manufacture of a solid electrolytic fuel cell of tubular and horizontal stripe type, films up to a fuel electrode 12 and an electrolyte 13 or an interconnector 15 are sequentially formed on a primarily baked substrate tube 11 by use of the slurry sintering method. Thereafter, the substrate 11 with the films is baked in an integrated state, thereby forming a dense electrolytic film. Then, an air electrode 14 as well as the interconnector 15 are filmed and baked with the slurry sintering method or the flame splaying method for forming the cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円筒横縞型の固体電解
質型燃料電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a cylindrical horizontal stripe type solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質型燃料電池には円筒型と平板
型とに大きく大別される。このうち円筒型としては図4
に示した縦縞型(円筒単素子タイプ)と図5に示した横
縞型(円筒多素子タイプ)とに分類される。
2. Description of the Related Art Solid oxide fuel cells are roughly classified into a cylindrical type and a flat type. Of these, the cylindrical type is shown in FIG.
The vertical stripe type (cylindrical single element type) shown in FIG. 5 and the horizontal stripe type (cylindrical multi-element type) shown in FIG.

【0003】ここで、図4に示す円筒縦縞型(円筒単素
子タイプ)の固体電解質型燃料電池01は多孔質支持管
011の表面に酸素極012、電解質013、燃料極0
14及びインターコネクタ015を順次設けてなるもの
である。一方の、図5に示す円筒横縞型(円筒多素子タ
イプ)の固体電解質型燃料電池02は円筒の基体管02
1の表面に燃料極024、電解質023、インターコネ
クタ025及び空気極022並びに保護膜026、を順
次設けてなるものである。
In the cylindrical vertical stripe type (cylindrical single element type) solid oxide fuel cell 01 shown in FIG. 4, an oxygen electrode 012, an electrolyte 013, and a fuel electrode 0 are formed on the surface of a porous support tube 011.
14 and the interconnector 015 are sequentially provided. On the other hand, a cylindrical horizontal stripe type (cylindrical multi-element type) solid oxide fuel cell 02 shown in FIG.
1, a fuel electrode 024, an electrolyte 023, an interconnector 025, an air electrode 022, and a protective film 026 are sequentially provided on the surface of No. 1.

【0004】上記固体電解質型燃料電池の製造方法とし
ては、溶射法,焼結法,EVD法あるいはCVD法など
が知られているが、このうち円筒型の固体電解質型燃料
電池を製造する上で緻密な電解質膜を得るために確立さ
れた方法として、現在ではプラズマ溶射法またはEVD
法による成膜が主として行われている。また、円筒縦縞
型のセルにおいては上記の成膜方法の他に、電解質の原
料粉をスラリー化し基材上に塗布して焼成する焼結法に
よる成膜が試みられている。
As a method for manufacturing the above solid oxide fuel cell, a thermal spraying method, a sintering method, an EVD method or a CVD method is known. Among them, in manufacturing a cylindrical solid oxide fuel cell, Currently, plasma spraying or EVD is the established method for obtaining a dense electrolyte membrane.
Film formation by the method is mainly performed. Further, in the case of the cylindrical vertical stripe type cell, in addition to the above-described film forming method, an attempt is made to form a film by a sintering method in which a raw material powder of an electrolyte is slurried and applied on a base material and baked.

【0005】しかしながら、焼結法においては焼成時に
電解質膜が収縮し割れや剥離等を生じるため、石膏など
の吸水性の鋳型を用いて電解質,電極(燃料極または空
気極)の各スラリーを順次鋳込み成形し、それを一体で
焼成したり、あるいは未焼成の電極(燃料極または空気
極)成形体上に電解質を塗布し、一体で焼成する試みな
どがなされている。
However, in the sintering method, the electrolyte membrane shrinks and cracks or peels off during firing. Therefore, a water-absorptive mold such as gypsum is used to sequentially deposit each slurry of the electrolyte and the electrode (fuel electrode or air electrode). Attempts have been made such as casting and firing it integrally, or applying an electrolyte to an unfired electrode (fuel electrode or air electrode) molded body and firing it integrally.

【0006】[0006]

【発明が解決しようとする課題】上記した前者の溶射法
あるいはEVD法による成膜方法では、成膜工程が複雑
な上に一回の成膜にかなりの時間を要し、また、原料歩
留まりが悪く製造装置も高価である。このため生産性に
劣り、製造コスト的にも量産化への対応が極めて困難で
ある、という問題がある。
In the former film forming method using the thermal spraying method or the EVD method, the film forming process is complicated, a single film forming process requires a considerable amount of time, and the raw material yield is high. Unfortunately, the manufacturing equipment is expensive. Therefore, there is a problem that productivity is poor and it is extremely difficult to cope with mass production in terms of manufacturing cost.

【0007】また、焼結法による緻密な電解質の成膜技
術の開発は主として縦縞型のセルを対象として行われて
おり、縦縞型のセルへの適用例はほとんど無い。
Further, the development of a dense electrolyte film forming technique by the sintering method is mainly conducted for vertical stripe type cells, and there is almost no application example to the vertical stripe type cells.

【0008】また、鋳込み成形法などによって電解質と
燃料極の複合成形体を形成し、一体で焼成する方法を横
縞型のセルへそのまま応用することは構造上困難であ
る、という問題がある。
Further, there is a problem in that it is structurally difficult to directly apply the method of forming a composite molded body of an electrolyte and a fuel electrode by a casting method or the like and firing it integrally to a horizontal stripe type cell.

【0009】本発明は上記問題に鑑み、円筒横縞型の固
体電解質型燃料電池を作製するに当って、焼結法により
緻密な電解質膜を形成し、これを有する円筒横縞型の固
体電解質型燃料電池の製造方法を提供することを目的と
する。
In view of the above problems, the present invention is directed to the production of a cylindrical horizontal stripe type solid electrolyte fuel cell, in which a dense electrolyte membrane is formed by a sintering method, and a cylindrical horizontal stripe solid electrolyte fuel having the same is formed. An object is to provide a method for manufacturing a battery.

【0010】[0010]

【課題を解決するための手段】前記目的を達成する本発
明に係る固体電解質型燃料電池の製造方法は、円筒横縞
型の固体電解質型燃料電池の製造方法において、仮焼し
た多孔質の基体管上にスラリー焼結法により燃料極,電
解質あるいはインターコネクタまでを順次成膜後、一体
で焼成して緻密な電解質膜を形成した後、さらに空気
極,インターコネクタをスラリー焼結法により成膜・焼
成するか、あるいは溶射法により成膜することによって
セルを形成することを特徴とする。
A method for manufacturing a solid oxide fuel cell according to the present invention, which achieves the above object, is a method for manufacturing a cylindrical horizontal stripe type solid oxide fuel cell, in which a calcined porous substrate tube is used. The fuel electrode, the electrolyte, and the interconnector are sequentially formed on the upper surface by the slurry sintering method, and then baked together to form a dense electrolyte membrane, and then the air electrode and the interconnector are formed by the slurry sintering method. It is characterized in that the cell is formed by firing or by forming a film by a thermal spraying method.

【0011】上記固体電解質型燃料電池の製造方法にお
いて、上記基体管材料が、カルシア安定化ジルコニア
(CSZ)に第二成分として酸化ニッケル(NiO),
酸化セリウム(CeO2 )等を添加して一体焼成体を製
造することを特徴とする。
In the method for producing a solid oxide fuel cell, the base tube material is composed of calcia-stabilized zirconia (CSZ) and nickel oxide (NiO) as a second component.
It is characterized in that cerium oxide (CeO 2 ) or the like is added to produce an integrally fired body.

【0012】上記固体電解質型燃料電池の製造方法にお
いて、上記燃料極材料が、酸化ニッケル(NiO)とイ
ットリア安定化ジルコニア(YSZ)またはスピネル系
酸化物(MgAl24)の混合物からなることを特徴とす
る。
In the method for manufacturing a solid oxide fuel cell, the fuel electrode material may be a mixture of nickel oxide (NiO) and yttria-stabilized zirconia (YSZ) or spinel oxide (MgAl 2 O 4 ). Characterize.

【0013】上記固体電解質型燃料電池の製造方法にお
いて、上記空気極材料が、スラリー焼結法または溶射法
の何れかで成膜する際に、 AX(1-X)CO3(A,B,
Cは金属)で表されるペロブスカイト型酸化物におい
て、AはLaであり、BはSr,Ca,Baの何れかで
あり、CはMn,Coの何れかであることを特徴とす
る。
In the method for producing a solid oxide fuel cell, when the air electrode material is formed into a film by either a slurry sintering method or a thermal spraying method, A X B (1-X) CO 3 (A, B,
In a perovskite type oxide represented by (C is a metal), A is La, B is any one of Sr, Ca and Ba, and C is one of Mn and Co.

【0014】上記固体電解質型燃料電池の製造方法にお
いて、上記インターコネクタ材料が、スラリー焼結法で
成膜する場合、AX(1-X)CO3(A,B,Cは金属)で
表されるペロブスカイト型酸化物において、AはLa で
あり、BはSr,Ca,Ba の何れかであり、CはCrであ
り、また溶射法で成膜する場合、耐熱合金(Ni−Alま
たはNi−Cr)とAl23 とのサーメットであることを
特徴とする。
In the method for manufacturing a solid oxide fuel cell, when the interconnector material is formed into a film by a slurry sintering method, A X B (1-X) CO 3 (A, B and C are metals) is used. In the perovskite type oxide represented, A is La, B is any one of Sr, Ca, Ba, C is Cr, and when a film is formed by the thermal spraying method, a heat-resistant alloy (Ni-Al or It is a cermet of Ni-Cr) and Al 2 O 3 .

【0015】以下、本発明の内容を詳細に説明する。The contents of the present invention will be described in detail below.

【0016】ここで、本発明では、円筒横縞型のセル
において焼結法により緻密な電解質膜を形成するため、
押出し成形法などによって基体管を成形し、ハンドリン
グに耐えうる強度まで仮焼して多孔質の基体管を製造す
る工程と、 基体管上に、燃料極及び電解質を順次スラリー法によ
り成膜・乾燥し、一体で焼成する工程と、 さらに空気極及びインターコネクタを焼結法あるいは
溶射法により個別に成膜する工程とから固体電解質型燃
料電池を製造することとしている。
Here, in the present invention, since a dense electrolyte membrane is formed by a sintering method in a cylindrical lateral stripe type cell,
A step of forming a base tube by extrusion molding, etc. and calcining to a strength that can withstand handling to produce a porous base tube, and forming and drying a fuel electrode and an electrolyte on the base tube in sequence by the slurry method. Then, the solid oxide fuel cell is to be manufactured from the step of integrally firing and the step of individually forming the air electrode and the interconnector by a sintering method or a thermal spraying method.

【0017】上記の製造工程において、インターコネク
タを焼結法で成膜する場合には、基体管上に燃料極,電
解質及びインターコネクタまでを順次スラリー法で成膜
・乾燥して、一体焼成した後、空気極を焼結法あるいは
溶射法で成膜するようにしている。
In the above manufacturing process, when the interconnector is formed into a film by the sintering method, the fuel electrode, the electrolyte and the interconnector are sequentially formed into a film on the substrate tube by the slurry method, dried, and integrally fired. After that, the air electrode is formed into a film by a sintering method or a thermal spraying method.

【0018】上記製造工程において、基体管,燃料管,
電解質あるいはインターコネクタまでの一体焼成には、
構成部材間の焼結に伴う収縮差による電解質膜などの構
成膜の割れや剥離等による破損を防止するため、仮焼し
た基体管を用い、一体焼成時に基体管にある程度の収縮
量をもたせるとともに、他の構成部材についても使用材
料の粒度分布あるいはスラリー条件を適正化して、各構
成部材の収縮率を電解質のそれと極力一致化するように
している。
In the above manufacturing process, the base pipe, the fuel pipe,
For integral firing of electrolyte or interconnector,
In order to prevent damage such as cracking or peeling of constituent films such as electrolyte membrane due to shrinkage difference due to sintering between constituent members, use a calcined base tube and give the base tube a certain amount of shrinkage during integral firing. With respect to the other constituent members, the particle size distribution of the materials used or the slurry conditions are optimized so that the shrinkage ratio of each constituent member is made as close as possible to that of the electrolyte.

【0019】上記製造工程において、焼成降温時などの
熱履歴で問題となる構成部材間での熱膨張差による電解
質膜などの構成膜の割れや剥離などの破損を防止するた
め、各構成部材の使用材料として、電解質の熱膨張率に
他の構成部材のそれを極力近づけた組み合わせになるよ
うにしている。
In the above manufacturing process, in order to prevent damage such as cracking or peeling of constituent films such as an electrolyte membrane due to a difference in thermal expansion between the constituent members, which is a problem in heat history during firing and cooling, each constituent member is prevented. As a material used, the coefficient of thermal expansion of the electrolyte is made to be as close as possible to that of other constituent members.

【0020】上記製造工程において、上記した条件を満
足する各構成部材の使用材料例としては以下のものが挙
げられる。ただし、本発明にかかる方法の使用材料とし
ては、これらに限定されるものではなく、これと略同等
なもの及びに近い特性を有するものであれば、この限り
ではない。
In the above manufacturing process, examples of materials used for the respective constituent members satisfying the above conditions are as follows. However, the material used in the method according to the present invention is not limited to these, and is not limited to this as long as it has substantially equivalent properties and properties close thereto.

【0021】基体管材料としては、カルシア安定化ジル
コニア(CSZ)を主成分に酸化ニッケル(NiO),
酸化セリウム(CeO2)等をの第2成分を添加したもの
を、用いるとよい。
The base tube material is mainly composed of calcia-stabilized zirconia (CSZ), nickel oxide (NiO),
It is preferable to use a material to which a second component such as cerium oxide (CeO 2 ) is added.

【0022】燃料極材料としては、酸化ニッケル(Ni
O)とイットリア安定化ジルコニア(YSZ)またはス
ピネル系酸化物(MgAl24 など)の混合物サーメッ
トを、用いるとよい。
As the fuel electrode material, nickel oxide (Ni
O) and a mixture cermet of yttria-stabilized zirconia (YSZ) or spinel oxide (such as MgAl 2 O 4 ) may be used.

【0023】空気極材料としては、スラリー焼結法また
は溶射法の何れの方法で成膜する場合において、AX
(1-X)CO3(A,B,Cは金属)で表されるペロブスカ
イト型酸化物が好ましく、ここで、AはLa、BはSr
,Ca,Baの何れか、CはMn,Coの何れかとす
るのがよい。
As the air electrode material, A X B can be used in forming a film by either a slurry sintering method or a thermal spraying method.
A perovskite type oxide represented by (1-X) CO 3 (A, B and C are metals) is preferable, where A is La and B is Sr.
, Ca, or Ba, and C is preferably Mn or Co.

【0024】インターコネクタ材料としては、スラリー
焼結法で成膜する場合、AxB(1-X ) CO3(A,B,Cは
金属)で表されるペロブスカイト型酸化物が好ましく、
ここで、AはLa であり、BはSr,Ca,Baの何れ
かであり、CはCrとするのがよい。また溶射法で成膜
する場合、耐熱合金(Ni−Al またはNi−Cr)とAl2
3との混合物サーメットとするのがよい。
The interconnector material is preferably a perovskite type oxide represented by AxB (1-X ) CO 3 (A, B and C are metals) when the film is formed by the slurry sintering method.
Here, A is La, B is any one of Sr, Ca, and Ba, and C is preferably Cr. When the film is formed by the thermal spraying method, a heat-resistant alloy (Ni-Al or Ni-Cr) and Al 2
A mixture with O 3 is preferably a cermet.

【0025】また電解質材料としては、一般的に使用さ
れている代表的な固体電解質であるイットリア安定化ジ
ルコニア(YSZ)を用いるのが、好ましい。
As the electrolyte material, it is preferable to use yttria-stabilized zirconia (YSZ), which is a typical solid electrolyte generally used.

【0026】[0026]

【作用】本発明においては、基体管,燃料極,電解質あ
るいはインターコネクタまでを含めて一体焼成する際
に、各構成部材の収縮率及び熱膨張率を極力近づけるこ
とによって、構成膜の割れや剥離等の破損を生じること
なく、緻密な電解質膜を形成することができる。
In the present invention, when the base tube, the fuel electrode, the electrolyte, and even the interconnector are integrally fired, the shrinkage rate and the thermal expansion rate of each constituent member are made as close as possible so that the constituent film is cracked or peeled. A dense electrolyte membrane can be formed without causing damage such as.

【0027】この場合、特に基体管は仮焼したものを使
用するため、仮焼温度による基体管自体の収縮量の制御
が可能である。このため、電解質の成膜性に対して影響
が大きい基体管の収縮率を電解質のそれと一致化するこ
とが容易である。
In this case, in particular, since the base tube is used after being calcined, the amount of shrinkage of the base tube itself can be controlled by the calcining temperature. Therefore, it is easy to make the contraction rate of the substrate tube, which has a great influence on the film forming property of the electrolyte, equal to that of the electrolyte.

【0028】また、本発明による円筒横縞セルは基体管
支持構造であるため、多孔質の基体管上に燃料極,電解
質あるいはインターコネクタまでを直接成膜し、一体で
焼成するので、石膏型などの鋳型を必要とせず、工程が
簡略化できる。
Further, since the cylindrical horizontal striped cell according to the present invention has a substrate tube supporting structure, a fuel electrode, an electrolyte or even an interconnector is directly formed on a porous substrate tube and baked integrally, so that a gypsum mold or the like is used. No mold is required and the process can be simplified.

【0029】[0029]

【実施例】以下、本発明によるセルの製造方法を実施例
により更に具体的に説明するが、本発明はこの実施例に
限定されるものではない。
EXAMPLES The method for producing a cell according to the present invention will be described below in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0030】図1は本実施例による製造方法によって作
製したセルの断面図である。また図2は本発明における
セルの製造工程のフローチャートを示す。以下、図1及
び図2に従ってセル製造工程を説明する。
FIG. 1 is a sectional view of a cell manufactured by the manufacturing method according to this embodiment. FIG. 2 shows a flow chart of the cell manufacturing process in the present invention. Hereinafter, the cell manufacturing process will be described with reference to FIGS.

【0031】基体管11の材料として、0〜20vol %
の酸化ニッケル(NiO)を添加したカルシア安定化ジ
ルコニア(CSZ)を用い、原料粉の重量比が65〜7
5%となるように溶媒の水に分散剤,バインダー,消泡
剤,及び充填率制御のための有機物セルロースとともに
加え、加圧ニーダで混練後、押出し成形機によって外形
22mm,内径16mmの円筒を成形した。続いて、この成
形体を1100〜1200℃で焼成し、仮焼基体管を得
る。
The material of the base tube 11 is 0 to 20 vol%
The calcia-stabilized zirconia (CSZ) added with nickel oxide (NiO) is used, and the weight ratio of the raw material powder is 65 to 7
Dispersant, binder, defoamer, and organic cellulose for controlling the filling rate are added to the solvent water so as to be 5%, and after kneading with a pressure kneader, a cylinder having an outer diameter of 22 mm and an inner diameter of 16 mm is formed by an extrusion molding machine. Molded. Then, this molded body is fired at 1100 to 1200 ° C. to obtain a calcined base tube.

【0032】次に燃料極12の材料として、45〜65
vol %酸化ニッケル(NiO)とスピネル型酸化物(Mg
Al24)との混合物サーメットを用い、原料粉の重量比
で25〜35%となるように溶媒の水に分散剤,バイン
ダー及び消泡剤とともに加え、ボールミル混合法によっ
てスラリー化する。さらに、8〜10%に希釈したスラ
リーを用い、マスキングを施した基体管11上の所定の
位置にディッピング法によって0.3〜0.5mmの厚さに成
膜する。なお、本実施例ではディッピング法によって燃
料極12を成膜したが、その他にスラリー塗布法,スク
リーン印刷法などでもよい。
Next, as the material of the fuel electrode 12, 45 to 65
vol% nickel oxide (NiO) and spinel oxide (Mg
A mixture cermet of Al 2 O 4), dispersing agent in water solvent so that 25% to 35% by weight of the raw material powder, added together with a binder and defoaming agent to the slurry by ball mill mixing method. Further, using a slurry diluted to 8 to 10%, a film having a thickness of 0.3 to 0.5 mm is formed at a predetermined position on the masked substrate tube 11 by a dipping method. Although the fuel electrode 12 is formed into a film by the dipping method in this embodiment, a slurry coating method, a screen printing method or the like may be used.

【0033】同様に電解質13の材料として、イットリ
ア安定化ジルコニア(YSZ)を用い、原料粉の重量比
60〜70%でボールミル混合してスラリー化した後、
20〜25%に希釈し、燃料極2を成膜・乾燥した後マ
スキングを施した基体管1上の所定の位置にディッピン
グ法により0.2〜0.3mmの厚さに成膜する。また、この
場合も電解質13の成膜方法としては、燃料極12と同
様にスラリー塗布法,スクリーン印刷法などでもよい。
Similarly, yttria-stabilized zirconia (YSZ) was used as the material of the electrolyte 13, and the mixture was slurried by mixing with a ball mill at a weight ratio of the raw material powder of 60 to 70%.
After diluting to 20 to 25% and forming and drying the fuel electrode 2, a film is formed at a predetermined position on the masked substrate tube 1 by a dipping method to a thickness of 0.2 to 0.3 mm. Also in this case, the method for depositing the electrolyte 13 may be the slurry coating method, the screen printing method, or the like as in the case of the fuel electrode 12.

【0034】以上によって得られた基体管11,燃料極
12及び電解質13の複合成形体は、約100℃で乾燥
後、大気中1450〜1500℃で一体焼成することに
よって、燃料極12及び緻密な電解質膜13を形成した
基体管11となる。
The composite molded body of the base tube 11, the fuel electrode 12 and the electrolyte 13 obtained as described above is dried at about 100 ° C., and then integrally fired at 1450 to 1500 ° C. in the air to form the fuel electrode 12 and a dense mixture. The base tube 11 is formed with the electrolyte membrane 13.

【0035】続いて空気極14の材料として、La0.9
a0.1MnO3で表されるプロブスカイト型酸化物を用い、
原料粉を重量比で80〜85%となるように溶媒の水に
分散剤,バインダー及び消泡剤とともに加え、三本ロー
ラで混練してペースト状とし、前記で得られた燃料極1
2及び電解質13を有する基体管11上の所定の位置
に、塗布法によって0.5〜1mmの厚さに成膜・乾燥後、
大気中1300℃で焼成する。
Subsequently, as a material of the air electrode 14, La 0.9 C
Using a perovskite type oxide represented by a 0.1 MnO 3 ,
The raw material powder was added to water as a solvent together with a dispersant, a binder and a defoaming agent so that the weight ratio was 80 to 85%, and the mixture was kneaded with a three-roller to form a paste.
2 and the electrolyte 13 are formed on a predetermined position on the substrate tube 11 by a coating method to a thickness of 0.5 to 1 mm and dried,
Bake at 1300 ° C. in air.

【0036】なお、本実施例では空気極を塗布法で成膜
したが、燃料極,電解質同様にディッピング法やスクリ
ーン印刷法により成膜してもよい。
Although the air electrode is formed by the coating method in this embodiment, the film may be formed by the dipping method or the screen printing method like the fuel electrode and the electrolyte.

【0037】さらに、前記の燃料極12,電解質13及
び空気極14を各々形成した基体管11にマスキングを
施し、インターコネクタ15の材料としてNi−Al/A
l2 3 サーメットを用い、プラズマ溶射法によって所定
の位置に厚さ0.25〜0.3mmの厚さに成膜する。
Further, the fuel electrode 12, electrolyte 13 and
Masking the base tube 11 on which the cathode and the air electrode 14 are formed.
Ni-Al / A as the material of the interconnector 15
l2O 3Predetermined by plasma spraying method using cermet
A film having a thickness of 0.25 to 0.3 mm is formed at the position.

【0038】さらに、インターコネクタ材料の金属成分
であるNi−Alの酸化を防止するため、さらにマスキン
グを施し、所定の位置に保護膜16としてアルミナ(A
l2 3)をプラズマ溶射法によって成膜する。
Furthermore, the metal component of the interconnector material
In order to prevent the oxidation of Ni-Al, which is
A protective film 16 is formed on the alumina (A
l2O 32) is formed by a plasma spraying method.

【0039】以上の製造工程によって、基体管上に緻密
な電解質膜を有し、セル素子を直列に接続・配置した円
筒横縞タイプの固体電解質型燃料電池を作製することが
できる。
Through the above manufacturing steps, a cylindrical horizontal stripe type solid oxide fuel cell having a dense electrolyte membrane on a base tube and having cell elements connected and arranged in series can be manufactured.

【0040】図3は本発明による製造方法によって基体
管上にセル素子を2素子直列に形成した円筒横縞タイプ
のセルの室温におけるガス透過係数の差圧依存性を示し
たものである。図3より差圧が0〜400mmH2Oにお
いてもガス透過係数は10-1g・cc/sec以下とガスリーク
が極めて少なく、緻密な電解質膜が形成されていること
が確認できる。
FIG. 3 shows the differential pressure dependence of the gas permeation coefficient at room temperature of a cylindrical horizontal stripe type cell in which two cell elements are formed in series on a base tube by the manufacturing method according to the present invention. From FIG. 3, it can be confirmed that even when the differential pressure is 0 to 400 mmH 2 O, the gas permeation coefficient is 10 −1 g · cc / sec or less, gas leakage is extremely small, and a dense electrolyte membrane is formed.

【0041】[0041]

【発明の効果】上記した如く、本発明においては基体
管,燃料極,電解質あるいはインターコネクタまでを含
めて一体焼成するため、緻密な電解質膜を有するセル素
子を基体管上に直列に接続・配置した円筒横縞タイプの
固体電解質型燃料電池を作製することができる。
As described above, in the present invention, since the base tube, the fuel electrode, the electrolyte, and even the interconnector are integrally fired, cell elements having a dense electrolyte membrane are connected and arranged in series on the base tube. A cylindrical horizontal stripe type solid oxide fuel cell can be manufactured.

【0042】本発明で作製するセルは基体管,燃料極,
電解質あるいはインターコネクタまでを一体で焼結する
ため、各構成材間の界面での密着性に優れており、特に
セルの性能に対して重要である燃料極と電解質との界面
における過電圧の大幅な低減が期待できる。
The cell produced in the present invention comprises a base tube, a fuel electrode,
Since the electrolyte or the interconnector is integrally sintered, it has excellent adhesion at the interface between each component, and in particular, the overvoltage at the interface between the fuel electrode and the electrolyte, which is important for cell performance, is significantly reduced. Reduction can be expected.

【0043】また、円筒横縞型の固体電解質型燃料電池
を作製するに当って、基体管,燃料極,電解質あるいは
インターコネクタまでを含めて一体焼成するため製造工
程が簡略化でき生産性が高い。さらにセル構成膜の大部
分を溶射法,EVD法などの方法に比べて原料歩留まり
が高い焼結法で成膜するため、製造コストの大幅な低減
可能である。
Further, in manufacturing a cylindrical horizontal stripe type solid oxide fuel cell, since the base tube, the fuel electrode, the electrolyte, and even the interconnector are integrally fired, the manufacturing process can be simplified and the productivity is high. Furthermore, since most of the cell constituent films are formed by a sintering method, which has a higher raw material yield than methods such as the thermal spraying method and the EVD method, the manufacturing cost can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の円筒横縞型固体電解質型燃料電池のセ
ル断面図である。
FIG. 1 is a cell cross-sectional view of a cylindrical horizontal stripe type solid oxide fuel cell of the present invention.

【図2】本発明におけるセルの製造工程を示すフローチ
ャートである。
FIG. 2 is a flowchart showing a cell manufacturing process in the present invention.

【図3】本発明により作製したセルのガス透過係数の差
圧依存性を示す。
FIG. 3 shows the differential pressure dependence of the gas permeation coefficient of the cell manufactured according to the present invention.

【図4】円筒縦縞型の固体電解質型燃料電池の代表的な
セル構造を示す。
FIG. 4 shows a typical cell structure of a cylindrical vertical stripe type solid oxide fuel cell.

【図5】円筒横縞型の固体電解質型燃料電池の代表的な
セル構造を示す。
FIG. 5 shows a typical cell structure of a cylindrical horizontal stripe type solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

11 基体管 12 燃料極 13 電解質 14 空気極 15 インターコネクタ 16 保護膜(アルミナ:Al23)11 Base Tube 12 Fuel Electrode 13 Electrolyte 14 Air Electrode 15 Interconnector 16 Protective Film (Alumina: Al 2 O 3 )

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 8/02 Y (72)発明者 佃 洋 長崎県長崎市深堀町5丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 橋本 勉 長崎県長崎市深堀町5丁目717番1号 三 菱重工業株式会社長崎研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location H01M 8/02 Y (72) Inventor Tsukuda Hiroshi 5717-1 Fukahoricho, Nagasaki City, Nagasaki Prefecture 3 (72) Inventor Tsutomu Hashimoto 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanryo Heavy Industry Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 円筒横縞型の固体電解質型燃料電池の製
造方法において、 仮焼した多孔質の基体管上にスラリー焼結法により燃料
極,電解質あるいはインターコネクタまでを順次成膜
後、 一体で焼成して緻密な電解質膜を形成した後、 さらに空気極,インターコネクタをスラリー焼結法によ
り成膜・焼成するか、あるいは溶射法により成膜するこ
とによってセルを形成することを特徴とする固体電解質
型燃料電池の製造方法。
1. A method for manufacturing a cylindrical horizontal stripe type solid oxide fuel cell, in which a fuel electrode, an electrolyte and an interconnector are sequentially formed on a calcined porous substrate tube by a slurry sintering method and then integrally formed. A solid characterized by forming a dense electrolyte membrane by firing, and then forming and firing the air electrode and interconnector by a slurry sintering method or by a thermal spraying method to form a cell. Method for manufacturing electrolyte fuel cell.
【請求項2】 請求項1記載の固体電解質型燃料電池の
製造方法において、 上記基体管材料が、カルシア安定化ジルコニア(CS
Z)に第二成分として酸化ニッケル(NiO),酸化セ
リウム(CeO2 )等を添加して一体焼成体を製造する
ことを特徴とする固体電解質型燃料電池の製造方法。
2. The method for producing a solid oxide fuel cell according to claim 1, wherein the base tube material is calcia-stabilized zirconia (CS).
A method for producing a solid oxide fuel cell, characterized in that nickel oxide (NiO), cerium oxide (CeO 2 ) or the like is added as a second component to Z) to produce an integrally fired body.
【請求項3】 請求項1記載の固体電解質型燃料電池の
製造方法において、 上記燃料極材料が、酸化ニッケル(NiO)とイットリ
ア安定化ジルコニア(YSZ)またはスピネル系酸化物
(MgAl24)の混合物からなることを特徴とする固体
電解質型燃料電池の製造方法。
3. The method for producing a solid oxide fuel cell according to claim 1, wherein the fuel electrode material is nickel oxide (NiO) and yttria-stabilized zirconia (YSZ) or spinel oxide (MgAl 2 O 4 ). A method for producing a solid oxide fuel cell, which comprises a mixture of
【請求項4】 請求項1記載の固体電解質型燃料電池の
製造方法において、 上記空気極材料が、スラリー焼結法または溶射法の何れ
かで成膜する際に、 AX(1-X)CO3(A,B,Cは金属)で表されるペロブ
スカイト型酸化物において、AはLaであり、BはS
r,Ca,Baの何れかであり、CはMn,Coの何れ
かであることを特徴とする固体電解質型燃料電池の製造
方法。
4. The method for manufacturing a solid oxide fuel cell according to claim 1, wherein when the air electrode material is formed into a film by either a slurry sintering method or a thermal spraying method, A X B (1-X ) In the perovskite type oxide represented by CO 3 (A, B and C are metals), A is La and B is S
r is a Ca, or Ba, and C is any one of Mn and Co.
【請求項5】 請求項1記載の固体電解質型燃料電池の
製造方法において、 上記インターコネクタ材料が、スラリー焼結法で成膜す
る場合、AX(1-X)CO3(A,B,Cは金属)で表され
るペロブスカイト型酸化物において、AはLaであり、
BはSr,Ca,Ba の何れかであり、CはCrであり、 また溶射法で成膜する場合、耐熱合金(Ni−Al また
はNi−Cr)とAl23とのサーメットであることを特徴
とする固体電解質型燃料電池の製造方法。
5. The method for producing a solid oxide fuel cell according to claim 1, wherein when the interconnector material is formed into a film by a slurry sintering method, A X B (1-X) CO 3 (A, B) , C is a metal), and A is La in the perovskite type oxide represented by
B is any one of Sr, Ca and Ba, C is Cr, and when forming a film by a thermal spraying method, it is a cermet of a heat-resistant alloy (Ni-Al or Ni-Cr) and Al 2 O 3. A method for manufacturing a solid oxide fuel cell, comprising:
JP6326990A 1994-12-28 1994-12-28 Manufacture of solid electrolytic fuel cell Pending JPH08185882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6326990A JPH08185882A (en) 1994-12-28 1994-12-28 Manufacture of solid electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6326990A JPH08185882A (en) 1994-12-28 1994-12-28 Manufacture of solid electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH08185882A true JPH08185882A (en) 1996-07-16

Family

ID=18194079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6326990A Pending JPH08185882A (en) 1994-12-28 1994-12-28 Manufacture of solid electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH08185882A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562505B1 (en) * 1999-08-23 2003-05-13 Mitsubishi Heavy Industries, Ltd. Sealing structure of cell tube
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
JP2004186119A (en) * 2002-12-06 2004-07-02 Mitsubishi Heavy Ind Ltd Electrode forming method
JP2005327512A (en) * 2004-05-12 2005-11-24 Nippon Shokubai Co Ltd Anode supporting base plate for solid oxide fuel cell and manufacturing method of the same
JP2006172952A (en) * 2004-12-16 2006-06-29 Tokyo Gas Co Ltd Horizontal-striped solid oxide type fuel cell
KR100707113B1 (en) * 2005-12-20 2007-04-16 한국과학기술연구원 Single chamber solid oxide fuel cells with isolated electrolyte
JP2009048917A (en) * 2007-08-21 2009-03-05 Tokyo Gas Co Ltd Lateral stripe type solid oxide fuel cell stack, and formation method thereof
JP2009193775A (en) * 2008-02-13 2009-08-27 Toshiba Corp Electrochemical cell, its manufacturing method, and operation method
CN110890570A (en) * 2019-11-19 2020-03-17 西安交通大学 Preparation method of tubular solid oxide fuel cell with double-layer connecting electrodes connected in series

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562505B1 (en) * 1999-08-23 2003-05-13 Mitsubishi Heavy Industries, Ltd. Sealing structure of cell tube
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
JP2004186119A (en) * 2002-12-06 2004-07-02 Mitsubishi Heavy Ind Ltd Electrode forming method
JP2005327512A (en) * 2004-05-12 2005-11-24 Nippon Shokubai Co Ltd Anode supporting base plate for solid oxide fuel cell and manufacturing method of the same
JP2006172952A (en) * 2004-12-16 2006-06-29 Tokyo Gas Co Ltd Horizontal-striped solid oxide type fuel cell
KR100707113B1 (en) * 2005-12-20 2007-04-16 한국과학기술연구원 Single chamber solid oxide fuel cells with isolated electrolyte
JP2009048917A (en) * 2007-08-21 2009-03-05 Tokyo Gas Co Ltd Lateral stripe type solid oxide fuel cell stack, and formation method thereof
JP2009193775A (en) * 2008-02-13 2009-08-27 Toshiba Corp Electrochemical cell, its manufacturing method, and operation method
CN110890570A (en) * 2019-11-19 2020-03-17 西安交通大学 Preparation method of tubular solid oxide fuel cell with double-layer connecting electrodes connected in series
CN110890570B (en) * 2019-11-19 2021-05-28 西安交通大学 Preparation method of tubular solid oxide fuel cell with double-layer connecting electrodes connected in series

Similar Documents

Publication Publication Date Title
EP1665424B1 (en) Solid oxide fuel cells with novel internal geometry
AU644905B2 (en) Composite membranes and electrochemical cells containing them
EP1698002B1 (en) Anode-supported solid oxide fuel cells using a cermet electrolyte
US6893762B2 (en) Metal-supported tubular micro-fuel cell
JP2005071982A (en) Fuel electrode support type flat tube type solid oxide fuel cell stack and method of manufacturing the same
KR20010035672A (en) Tubular Solid Oxide Fuel Cell supported by Fuel Electrode and Method for the same
EP0617475B1 (en) Method of forming an interconnection layer by sintering on an electrode of an electrochemical cell
JPH11111309A (en) Manufacture of solid electrolyte fuel cell
JPH08185882A (en) Manufacture of solid electrolytic fuel cell
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JP3636406B2 (en) SUPPORT FOR SOLID ELECTROLYTE FUEL CELL, UNIT CELL FOR SOLID ELECTROLYTE FUEL CELL, AND METHOD FOR PRODUCING SUPPORT FOR SOLID ELECTROLYTE FUEL CELL
JP2004087353A (en) Substrate tube for solid electrolyte fuel cell
JP4811776B2 (en) SOLID ELECTROLYTE FUEL CELL FUEL ELECTRODE AND METHOD FOR PRODUCING THE SAME
JPH05251094A (en) Manufacture of solid electrolytic cell
JP3924199B2 (en) Manufacturing method of fuel cell
JP3238086B2 (en) Solid oxide fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP2001229934A (en) Method of producing solid electrolyte fuel cell
JP3389469B2 (en) Solid oxide fuel cell
WO2007069939A2 (en) Tubular element (variants) for electrochemical device batteries provided with a thin-layer solid electrolyte and a method for the production thereof
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell
JPH11283640A (en) Cylindrical solid-electrolyte fuel cell
JPH07130380A (en) Cylindrical lateral stripe type solid electrolyte electrolytic cell and manufacture thereof
Changrong et al. Soft chemical route and new solid oxide fuel cells
JP2001332273A (en) Ceramics membrane and manufacturing method therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010508