JP3389469B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JP3389469B2
JP3389469B2 JP23462897A JP23462897A JP3389469B2 JP 3389469 B2 JP3389469 B2 JP 3389469B2 JP 23462897 A JP23462897 A JP 23462897A JP 23462897 A JP23462897 A JP 23462897A JP 3389469 B2 JP3389469 B2 JP 3389469B2
Authority
JP
Japan
Prior art keywords
sealing member
cell body
cell
cylindrical
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23462897A
Other languages
Japanese (ja)
Other versions
JPH1173980A (en
Inventor
勇二 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23462897A priority Critical patent/JP3389469B2/en
Publication of JPH1173980A publication Critical patent/JPH1173980A/en
Application granted granted Critical
Publication of JP3389469B2 publication Critical patent/JP3389469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有底筒状の固体電
解質型燃料電池セルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bottomed cylindrical solid oxide fuel cell.

【0002】[0002]

【従来の技術】従来より、固体電解質燃料電池はその作
動温度が900〜1050℃と高温であるため発電効率
が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, a solid electrolyte fuel cell has a high operating efficiency of 900 to 1050 ° C. and thus has high power generation efficiency, and is expected as a third generation power generation system.

【0003】一般に、固体電解質型燃料電池セルには、
円筒型と平板型が知られている。平板型燃料電池セル
は、発電の単位体積当たり出力密度が高いという特徴を
有するが、実用化に関してはガスシール不完全性やセル
内の温度分布の不均一性などの問題がある。それに対し
て、円筒型燃料電池セルでは、出力密度は低いもののセ
ルの機械的強度が高く、またセルの温度の均一性が保て
るという特徴がある。
Generally, a solid oxide fuel cell has
A cylindrical type and a flat type are known. The flat plate type fuel cell has a feature that the power density per unit volume of power generation is high, but when it is put into practical use, there are problems such as incomplete gas sealing and nonuniform temperature distribution in the cell. On the other hand, the cylindrical fuel cell has the characteristics that although the power density is low, the mechanical strength of the cell is high and the temperature uniformity of the cell can be maintained.

【0004】両形状の固体電解質型燃料電池セルとも、
それぞれの特徴をを生かして積極的に研究開発が進めら
れている。
Both types of solid oxide fuel cell unit,
Research and development is being actively promoted by making the most of each characteristic.

【0005】円筒型燃料電池の単セルは、図3に示した
ように、LaMnO3 系材料からなる多孔性の空気極1
を形成し、その表面にY2 3 部分安定化ZrO2 から
なる固体電解質2を被覆し、さらにこの表面に多孔性の
Ni−ジルコニアの燃料極3が設けられている。燃料電
池モジュールにおいては、各単セルはLaCrO3 系の
集電体(インターコネクター)4を介して接続される。
発電は円筒の内部に空気(酸素)6を、外部に燃料(水
素)7を流し、900〜1050℃の温度で行われる。
As shown in FIG. 3, the unit cell of the cylindrical fuel cell has a porous air electrode 1 made of LaMnO 3 system material.
And a solid electrolyte 2 made of partially stabilized Y 2 O 3 ZrO 2 is coated on the surface thereof, and a porous Ni-zirconia fuel electrode 3 is further provided on this surface. In the fuel cell module, each single cell is connected via a LaCrO 3 -based current collector (interconnector) 4.
Power generation is performed at a temperature of 900 to 1050 ° C. by flowing air (oxygen) 6 inside the cylinder and fuel (hydrogen) 7 outside.

【0006】空気極材料であるLaMnO3 系材料はセ
ルの支持管としての働きを有する。
The LaMnO 3 type material, which is an air electrode material, functions as a support tube for the cell.

【0007】支持管としての機能を有する空気極とし
て、LaをCaで20原子%またはSiで10〜15原
子%置換したLaMnO3 固溶体材料が用いられる。
As an air electrode having a function as a supporting tube, a LaMnO 3 solid solution material in which La is replaced by 20 atomic% with Ca or 10-15 atomic% with Si is used.

【0008】上記のような燃料電池セルを作製する方法
としてはLaMnO3 系材料からなる絶縁粉末を押出し
成形法等により円筒形に成形後、これを焼成して円筒状
の空気極からなる支持体を作製し、この円筒状空気極支
持体の外周面に固体電解質、燃料極、集電体のスラリー
を塗布して順次焼成して積層するか、あるいは円筒状空
気極支持体の表面に電気化学的蒸着法(EDV法)やプ
ラズマ溶射法等により固体電解質、燃料極、集電体を順
次形成することも行われている。
As a method for producing the fuel cell as described above, an insulating powder made of LaMnO 3 type material is formed into a cylindrical shape by an extrusion molding method or the like, and is then fired to form a support made of a cylindrical air electrode. Of the solid electrolyte, the fuel electrode, and the current collector are applied to the outer peripheral surface of the cylindrical air electrode support and sequentially sintered to be laminated, or the surface of the cylindrical air electrode support is subjected to electrochemical treatment. A solid electrolyte, a fuel electrode, and a current collector are sequentially formed by a dynamic vapor deposition method (EDV method), a plasma spraying method, or the like.

【0009】最近ではセルの製造工程を簡略化するため
に、各構成材料のうち少なくとも2つを同じ焼成すると
いう共焼結法も提案されている。この共焼結法は、例え
ば円筒状空気極支持管の成形体に固体電解質成形体およ
び集電体成形体をロール状に巻き付けて同時焼成を行
い、その後固体電解質表面に燃料極層を形成する方法で
ある。この共焼結法は製造工程が少なくなるためにセル
の製造時の歩留まり向上、コスト低減に有利である。
Recently, in order to simplify the cell manufacturing process, a co-sintering method has been proposed in which at least two of the constituent materials are fired in the same manner. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound around a molded body of a cylindrical air electrode support tube in a roll shape and simultaneously fired, and then a fuel electrode layer is formed on the solid electrolyte surface. Is the way. This co-sintering method is advantageous in improving the yield in manufacturing cells and reducing costs because the number of manufacturing steps is reduced.

【0010】そして、従来、セルの一端封止は、焼結し
て得られた円筒状のセル本体を実際に発電を行う炉内の
取付部材にセットし、取付部材に形成されたガラス層を
セル本体の一端に当接し、発電を行う際の昇温時に前記
ガラス層を溶融させ、セル本体の一端を前記取付部材に
より封止していた。
Conventionally, for sealing one end of a cell, a cylindrical cell body obtained by sintering is set on a mounting member in a furnace for actually generating electricity, and a glass layer formed on the mounting member is attached. The glass layer was brought into contact with one end of the cell body and melted at the time of temperature rise during power generation, and one end of the cell body was sealed by the mounting member.

【0011】また、空気極成形体、および空気極成形体
と同一材料により有底筒状の封止部材成形体を作製し、
空気極成形体の一端と封止部材用成形体の一端を当接し
焼成した後、前述のように電気化学的蒸着法(EDV
法)やプラズマ溶射法等により封止部材の表面に緻密質
セラミックス層を形成し、封止部材からのガスリークを
防止していた。
Further, a bottomed tubular sealing member molded body is produced from the air electrode molded body and the same material as the air electrode molded body,
After one end of the air electrode molded body and one end of the sealing member molded body are brought into contact with each other and baked, as described above, the electrochemical vapor deposition method (EDV) is used.
Method) or plasma spraying method to form a dense ceramic layer on the surface of the sealing member to prevent gas leakage from the sealing member.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、燃料電
池セルの一端をガラス材を用いて取付部材により封止す
る従来の方法では、実際に発電を行う時に封止すること
になるため、完全に封止がなされているか否かの確認が
困難であり、シール不良による単セルの出力低下が生じ
易く、特にスタック化した場合には封止個所の増加によ
りシール不良の発生確率が高くなり、結果として出力が
低下するという問題があった。
However, in the conventional method in which one end of the fuel cell is sealed with a mounting member using a glass material, sealing is performed when power is actually generated. It is difficult to confirm whether or not it has been stopped, and the output of the single cell is likely to decrease due to defective sealing.In particular, when stacking, the probability of defective sealing increases due to an increase in the number of sealing points. There was a problem that the output decreased.

【0013】また、空気極成形体の一端と封止部材成形
体の一端を当接した状態で焼成する方法では、空気極成
形体と封止部材との接合が困難であり、しかも、ガスリ
ークを防止するため、電気化学的蒸着法(EDV法)や
プラズマ溶射法等により封止部材の表面に緻密質セラミ
ック層を形成する必要があり、封止工程が面倒であり、
コスト高であるという問題があった。
Further, in the method of firing in a state where one end of the air electrode molded body and one end of the sealing member molded body are in contact with each other, it is difficult to join the air electrode molded body and the sealing member, and moreover, gas leak is caused. In order to prevent this, it is necessary to form a dense ceramic layer on the surface of the sealing member by an electrochemical vapor deposition method (EDV method), a plasma spraying method, etc., and the sealing step is troublesome.
There was a problem of high cost.

【0014】本発明は、セル本体のガスシールを容易か
つ確実に行うことができるとともに、ガスシールの確認
が容易な固体電解質型燃料電池セルを提供することを目
的とする。
An object of the present invention is to provide a solid oxide fuel cell unit in which gas sealing of the cell body can be easily and surely performed and the gas sealing can be easily confirmed.

【0015】[0015]

【課題を解決するための手段】本発明者は上記問題点に
対して検討を重ねた結果、セル本体の一端部外周面に、
封止部材用のセラミック成形体を外嵌して焼成し、封止
部材の焼成収縮により、セル本体の一端部に嵌着するこ
とにより、セル本体の一端を容易かつ確実に封止するこ
とができ、しかも封止状態を容易に確認し得ることを見
い出し、本発明に至った。
As a result of repeated studies on the above problems, the present inventor found that the outer peripheral surface of one end of the cell body was
The ceramic molded body for the sealing member is externally fitted and fired, and the one end of the cell body is easily and surely sealed by fitting the ceramic molded body for the sealing member to one end of the cell body due to the firing shrinkage of the sealing member. The present invention has been completed by discovering that the sealed state can be easily confirmed.

【0016】即ち、本発明の固体電解質型燃料電池セル
は、円筒状の固体電解質の片面に空気極、他面に燃料極
が形成されるとともに、前記空気極または前記燃料極に
電気的に接続され、かつ外面に露出する集電体を具備す
る円筒状のセル本体の一端部外周面に、基底部と円筒部
からなるセラミックス製の封止部材を外嵌してなる固体
電解質型燃料電池セルであって、前記封止部材の焼成収
縮により、該封止部材の円筒部が前記セル本体の一端部
を締め付けた状態で、前記セル本体の一端部に前記封止
部材が外嵌されており、前記封止部材の全長をL1、前
記円筒部の深さをL2、前記基底部の外径をD1、前記円
筒部の外径をD2、前記円筒部の内径をD3とした時、D
1/D2が0.78〜0.84、L2/L1が0.3〜0.
7、L2/D3が0.3〜0.7の範囲を満足するもので
ある。ここで、セル本体の一端部外周面に、セラミック
スからなるガスシール層を介して封止部材を外嵌してな
ることが望ましい。
That is, in the solid oxide fuel cell of the present invention, the air electrode is formed on one surface of the cylindrical solid electrolyte and the fuel electrode is formed on the other surface, and the solid electrolyte fuel cell is electrically connected to the air electrode or the fuel electrode. is, and the one end portion outer peripheral surface of a cylindrical cell body having a collector which is exposed to the outer surface, comprising a ceramic sealing member made from the base portion and the cylindrical portion fitted around the solid
A fuel cell for an electrolyte type fuel cell, comprising:
Due to the contraction, the cylindrical portion of the sealing member becomes an end portion of the cell body.
While tightening, seal the cell body at one end.
A member is externally fitted, the total length of the sealing member is L 1 , the depth of the cylindrical portion is L 2 , the outer diameter of the base portion is D 1 , the outer diameter of the cylindrical portion is D 2 , and the cylinder is When the inner diameter of the part is D 3 , D
1 / D 2 is 0.78~0.84, L 2 / L 1 is 0.3 to 0.
7, L 2 / D 3 is one which satisfies the range of 0.3 to 0.7. Here, it is desirable that a sealing member is externally fitted to the outer peripheral surface of one end of the cell body with a gas sealing layer made of ceramics interposed therebetween.

【0017】[0017]

【作用】本発明の固体電解質型燃料電池セルは、従来の
ように、発電用セル本体を炉内にセットし発電を行う際
にセル本体の一端を取付部材により封止するのではな
く、セル製造段階でセル本体の一端を緻密質セラミック
スにより封止するため、セル本体の一端の封止を容易か
つ確実に行うことができるとともに、発電用セル本体を
炉内にセットする前に封止状態を確認することができ、
発電の際のガスシール性が十分に保証される。
In the solid oxide fuel cell of the present invention, unlike the conventional case, one end of the cell main body is not sealed by a mounting member when the power generation cell main body is set in a furnace to generate electric power, Since one end of the cell body is sealed with dense ceramics at the manufacturing stage, one end of the cell body can be easily and surely sealed, and the cell body for power generation is sealed before being set in the furnace. You can check
The gas sealability during power generation is sufficiently guaranteed.

【0018】即ち、本発明の固体電解質型燃料電池セル
では、セル本体の一端部外周面に、封止部材用セラミッ
クス成形体を外嵌して焼成することにより、封止部材用
セラミックスが、該封止部材の全長をL1 、前記円筒部
の深さをL2 、前記基底部の外径をD1 、前記円筒部の
外径をD2 、前記円筒部の内径をD3 とした時、D1
2 が0.78〜0.84、L2 /L1 が0.3〜0.
7、L2 /D3 が0.3〜0.7の範囲を満足するもの
である。
That is, in the solid oxide fuel cell of the present invention, the ceramics for a sealing member is formed by externally fitting and firing the ceramics molding for a sealing member on the outer peripheral surface of one end of the cell body. When the total length of the sealing member is L 1 , the depth of the cylindrical portion is L 2 , the outer diameter of the base portion is D 1 , the outer diameter of the cylindrical portion is D 2 , and the inner diameter of the cylindrical portion is D 3. , D 1 /
D 2 is 0.78 to 0.84 and L 2 / L 1 is 0.3 to 0.
7, L 2 / D 3 is one which satisfies the range of 0.3 to 0.7.

【0019】セル本体の一端部に封止部材の円筒部が嵌
着すると同時に、焼成時にセル本体の外面と封止部材円
筒部の内側面とが接続するため、セル本体の一端の封止
を容易かつ確実に行うことができる。また、セル本体の
先端面と封止部材の基底部の内底面が接着することによ
り、封止部材をセル本体に強固に固定させることができ
る。
At the same time that the cylindrical portion of the sealing member is fitted to one end of the cell body, the outer surface of the cell body and the inner surface of the sealing member cylinder portion are connected at the same time during firing, so that one end of the cell body is sealed. It can be done easily and reliably. Further, the tip end surface of the cell body and the inner bottom surface of the base portion of the sealing member adhere to each other, whereby the sealing member can be firmly fixed to the cell body.

【0020】特に、本発明の固体電解質型燃料電池セル
では、セル本体の一端部外周面にセラミックススラリー
を塗布し、セラミックスからなるガスシール層を形成
し、その外周面に封止部材を嵌着することにより、集電
体がセル本体から突出する等によりセル本体の外周面に
凸凹が形成されている場合でも、ガスシール層により封
止部材が嵌着される部分のセル本体外周面が平坦化さ
れ、封止部材とセル本体を隙間なくより密着させること
ができ、ガスシール性を向上できる。
Particularly, in the solid oxide fuel cell of the present invention, ceramic slurry is applied to the outer peripheral surface of one end of the cell body to form a gas seal layer made of ceramics, and a sealing member is fitted to the outer peripheral surface. By doing so, even if the outer surface of the cell body is uneven due to the current collector protruding from the cell body, the outer surface of the cell body where the sealing member is fitted by the gas seal layer is flat. The sealing member and the cell body can be brought into close contact with each other without a gap, and the gas sealability can be improved.

【0021】また、本発明によれば、例えば、封止部材
としてZrO2 やLaCrO3 系の磁器を用いた場合
は、この磁器の焼成温度(1300℃以上)は、実際の
発電温度(1000℃)より高いので、発電時における
ガスリークの発生の怖れがなく、結果としてセル出力の
信頼性、長寿命化が図れる。さらに、複数のセルを用い
てスタックを組む際においては、発電を行う段階でのシ
ール箇所を極力少なくすることができるためにシステム
設計を容易にすることが可能となる。
Further, according to the present invention, for example, when a ZrO 2 or LaCrO 3 system porcelain is used as the sealing member, the firing temperature (1300 ° C. or higher) of this porcelain is the actual power generation temperature (1000 ° C.). ) Is higher, there is no fear of gas leakage during power generation, and as a result, reliability of cell output and longer life can be achieved. Furthermore, when assembling a stack using a plurality of cells, it is possible to simplify the system design because it is possible to minimize the number of sealing points at the stage of power generation.

【0022】[0022]

【発明の実施の形態】本発明におけるセル本体は、円筒
状の空気極の表面に固体電解質を形成し、この固体電解
質の表面に燃料極を形成し、さらに、空気極と電気的に
接続する集電体を設けてセル本体が形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION In the cell body of the present invention, a solid electrolyte is formed on the surface of a cylindrical air electrode, a fuel electrode is formed on the surface of this solid electrolyte, and the cell body is electrically connected to the air electrode. A cell body is formed by providing a current collector.

【0023】そして、図1に示すように、セル本体8の
一端部の外周面にはセラミックスからなるガスシール層
9が形成され、このガスシール層9の表面には.キャッ
プ形状の緻密質セラミックスからなる封止部材11が外
嵌されており、セル本体8とガスシール層9、封止部材
11が焼成により、一体化されている。即ち、セル本体
8の一端部外周面にセラミックススラリーを塗布するこ
とにより、セル本体8外周面の凸凹を無くし、平坦化し
た後、封止部材用セラミックス成形体を外嵌して焼成す
ることにより、封止部材用セラミックスが焼成収縮し、
セル本体8の一端部に嵌着すると同時に、焼成時にセル
本体8の外周面と封止部材11の内面とが、ガスシール
層9を介して接合している。
As shown in FIG. 1, a gas seal layer 9 made of ceramics is formed on the outer peripheral surface of one end of the cell body 8, and the gas seal layer 9 is formed on the surface of the gas seal layer 9. A cap-shaped sealing member 11 made of dense ceramics is externally fitted, and the cell body 8, the gas seal layer 9, and the sealing member 11 are integrated by firing. That is, by applying a ceramics slurry to the outer peripheral surface of one end of the cell body 8 to eliminate the irregularities on the outer peripheral surface of the cell body 8 and to flatten the surface, and then by externally fitting and firing the ceramic molded body for a sealing member. , The ceramics for the sealing member will shrink by firing,
At the same time as being fitted to one end of the cell body 8, the outer peripheral surface of the cell body 8 and the inner surface of the sealing member 11 are joined via the gas seal layer 9 during firing.

【0024】ガスシール層9は、例えば、部分安定化Z
rO2 や安定化ZrO2 、LaCrO3 系などの種々の
材料を用いることができるが、特には、熱膨張率の観点
から固体電解質材料と同一の材料から構成することが望
ましい。ガスシール層9の厚みはセル本体8の外表面の
凸凹をなくす程度あればよいが、50〜300μmが望
ましい。
The gas seal layer 9 may be, for example, a partially stabilized Z
Various materials such as rO 2 , stabilized ZrO 2 and LaCrO 3 can be used, but it is particularly preferable to use the same material as the solid electrolyte material from the viewpoint of the coefficient of thermal expansion. The thickness of the gas seal layer 9 may be such that the outer surface of the cell body 8 is not uneven, but is preferably 50 to 300 μm.

【0025】封止部材11はガスリークを防止するため
緻密質セラミックスからなるものであるが、緻密質セラ
ミックスとは、例えば、ガスシール層9と同様の材料を
用いることができる。また、ガスシール層9と同様に、
熱膨張率の観点から固体電解質材料と同一の材料から構
成することが望ましい。また、封止部材11、ガスシー
ル層9の熱膨張率は、Y2 3 部分安定化ZrO2 の場
合、Y2 3 とZrO2 の比を変化させることにより調
整できる。
The sealing member 11 is made of dense ceramics in order to prevent gas leakage. As the dense ceramics, for example, the same material as the gas seal layer 9 can be used. Also, like the gas seal layer 9,
From the viewpoint of the coefficient of thermal expansion, it is desirable to use the same material as the solid electrolyte material. In the case of Y 2 O 3 partially stabilized ZrO 2 , the coefficient of thermal expansion of the sealing member 11 and the gas seal layer 9 can be adjusted by changing the ratio of Y 2 O 3 and ZrO 2 .

【0026】封止部材11は、セル本体8が挿入される
円筒部13と基底部14とから構成されている。ここ
で、封止部材11の全長をL1 、円筒部13の深さをL
2 、基底部14の外径をD1 、円筒部13の外径を
2 、円筒部13の内径をD3 とした時、D1 /D2
0.78〜0.84、L2 /L1 が0.3〜0.7、L
2 /D3 が0.3〜0.7の範囲を満足する。
The sealing member 11 is composed of a cylindrical portion 13 into which the cell body 8 is inserted and a base portion 14. Here, the total length of the sealing member 11 is L 1 , and the depth of the cylindrical portion 13 is L 1 .
2 , when the outer diameter of the base portion 14 is D 1 , the outer diameter of the cylindrical portion 13 is D 2 , and the inner diameter of the cylindrical portion 13 is D 3 , D 1 / D 2 is 0.78 to 0.84, L 2 / L 1 is 0.3 to 0.7, L
2 / D 3 satisfies the range of 0.3 to 0.7.

【0027】基底部14の外径D1 と円筒部13の外径
2 との比(D1 /D2 )を0.78〜0.84とした
のは、この範囲内ならばセル本体8の外面に封止部材1
1が密着固定し、ガスの漏出がないからである。D1
2 が0.78よりも小さい場合には円筒部13と基底
部14の間に亀裂が発生し、燃料電池セルの還元処理試
験において破損するからであり、0.84よりも大きい
場合には.円筒部13によるセル本体8の締め付け力が
弱く、セル本体8と円筒部13との間からガスが漏出す
る虞があるからである。D1 /D2 の値は、ガスシール
性を向上し、かつ封止部材11の破損を防止する点、お
よび、高温負荷試験、サイクル試験において優れている
という点から0.80〜0.82が望ましい。
[0027] The ratio between the outer diameter D 2 of the outer diameter D 1 and the cylindrical portion 13 of the base portion 14 (D 1 / D 2) and 0.78 to 0.84, the cell body if within this range Sealing member 1 on the outer surface of 8
This is because the sample No. 1 is closely fixed and no gas leaks. D 1 /
This is because when D 2 is smaller than 0.78, a crack is generated between the cylindrical portion 13 and the base portion 14 and it is damaged in the reduction treatment test of the fuel cell, and when it is larger than 0.84. . This is because the tightening force of the cell body 8 by the cylindrical portion 13 is weak, and gas may leak from between the cell body 8 and the cylindrical portion 13. The value of D 1 / D 2 is 0.80 to 0.82 from the viewpoint of improving the gas sealing property and preventing the sealing member 11 from being damaged, and being excellent in the high temperature load test and the cycle test. Is desirable.

【0028】封止部材11の全長L1 と円筒部13の深
さL2 との比(L2 /L1 )を0.3〜0.7としたの
は、この比が0.3よりも小さい場合には燃料電池セル
の還元処理において破損するからであり、また、セル本
体8に封止部材用セラミック成形体31を挿入時に安定
しないからであり、セル本体8を横倒した場合に封止部
材用成形体31を安定してセル本体8の一端に挿入する
ことができないからである。一方、L2 /L1 が0.7
よりも大きい場合には、燃料極の形成面積が小さくな
り、発電能力が低下するからである。
The ratio (L 2 / L 1 ) between the total length L 1 of the sealing member 11 and the depth L 2 of the cylindrical portion 13 is set to 0.3 to 0.7 because the ratio is 0.3. This is because if it is too small, it will be damaged in the reduction process of the fuel cell, and because the ceramic molded body 31 for a sealing member will not be stable when it is inserted into the cell body 8. This is because the stopper member molded body 31 cannot be stably inserted into one end of the cell body 8. On the other hand, L 2 / L 1 is 0.7
If it is larger than the above range, the formation area of the fuel electrode becomes small and the power generation capacity decreases.

【0029】円筒部13の深さL2 と円筒部13の内径
3 の比(L2 /D3 )を0.3〜0.7としたのは、
2 /D3 が0.3よりも小さい場合には、燃料電池セ
ルの還元処理において破損するからであり、さらに、セ
ル本体に封止部材用セラミック成形体31を挿入時に安
定しないからであり、セル本体8を横倒した場合に封止
部材用成形体31を安定してセル本体8の一端に挿入す
ることができないからである。一方、L2 /D3 が0.
7よりも大きい場合には、燃料極の形成面積が小さくな
り、発電能力が低下するからである。また、封止部材成
形体31の切削加工が困難となり、また、封止部材成形
体31の保管時に破損しやすくなるからである。
The ratio (L 2 / D 3 ) between the depth L 2 of the cylindrical portion 13 and the inner diameter D 3 of the cylindrical portion 13 is 0.3 to 0.7.
This is because if L 2 / D 3 is smaller than 0.3, it will be damaged during the reduction treatment of the fuel cell, and further, it will not be stable when the ceramic molded body 31 for a sealing member is inserted into the cell body. This is because the molded body 31 for a sealing member cannot be stably inserted into one end of the cell body 8 when the cell body 8 is laid down sideways. On the other hand, L 2 / D 3 is 0.
This is because if it is larger than 7, the formation area of the fuel electrode becomes small and the power generation capacity is reduced. Further, it is difficult to cut the sealing member molded body 31 and the sealing member molded body 31 is easily damaged during storage.

【0030】即ち、L2 /L1 およびL2 /D3 を0.
3以上としたのは以下の理由による。封止部材用成形体
を挿入したセル本体の焼成時の姿勢は、長い円筒を直立
させる姿勢より、横倒しの姿勢とした方が安全である。
その場合、封止部材用成形体31は横倒しのセル本体8
の一端に挿入しても十分安定な形状をとる必要がある。
また、セル本体8の先端面と封止部材11の円筒部13
の内底面の接触が不十分だと、焼成後のセル本体8と封
止部材11の一体化が不完全となり、セル本体8と封止
部材11の接着が破壊する怖れがある。セルが横倒しの
姿勢でも、焼結前に挿入した封止部材用成形体31が安
定して一端部にあるためには、焼結させた後の封止部材
11の円筒部13の内径D3 に対して封止部材11の円
筒部13の深さL2 が30%以上を有し、封止部材11
の全長L1 に対して封止部材11の円筒部13の深さL
2 が30%以上である必要があるからである。
That is, L 2 / L 1 and L 2 / D 3 are set to 0.
The reason why the number is 3 or more is as follows. As for the posture of the cell body in which the molded body for the sealing member is inserted, during firing, it is safer to lay it sideways rather than to erect a long cylinder.
In that case, the molded body 31 for the sealing member is the cell body 8 which is laid sideways.
It must have a shape that is sufficiently stable even if it is inserted into one end of the.
In addition, the tip surface of the cell body 8 and the cylindrical portion 13 of the sealing member 11
If the inner bottom surface of the cell is insufficiently contacted, the cell body 8 and the sealing member 11 may not be completely integrated after firing, and the adhesion between the cell body 8 and the sealing member 11 may be broken. Even if the cell is in a horizontal position, the inner diameter D 3 of the cylindrical portion 13 of the sealing member 11 after sintering is required so that the sealing member molded body 31 inserted before sintering is stably at one end. The depth L 2 of the cylindrical portion 13 of the sealing member 11 is 30% or more,
Depth L of the cylindrical portion 13 of the sealing member 11 with respect to the total length L 1 of
This is because 2 needs to be 30% or more.

【0031】封止部材11にセル本体8を挿入したとき
の安定性より、L2 /L1 は0.4以上、L2 /D3
0.4以上が望ましい。また、封止部材用成形体31の
作製時の容易さから、L2 /L1 は0.6以下、L2
3 は0.6以下が望ましい。
In view of stability when the cell body 8 is inserted into the sealing member 11, L 2 / L 1 is preferably 0.4 or more and L 2 / D 3 is 0.4 or more. Also, the manufacturing time of the ease of the sealing member molded articles 31, L 2 / L 1 is 0.6 or less, L 2 /
D 3 is preferably 0.6 or less.

【0032】また、セル本体8の外表面に当接する封止
部材11の円筒部13の厚みtは、セルの直径の増大を
抑え、焼結時の収縮の応力で破損しないようにするため
に、0.3〜1.2mmが望ましい。
The thickness t of the cylindrical portion 13 of the sealing member 11 that abuts on the outer surface of the cell body 8 is to prevent the cell diameter from increasing and prevent the cell from being damaged by the contraction stress during sintering. , 0.3 to 1.2 mm is desirable.

【0033】このような固体電解質型燃料電池セルの製
造方法について詳述する。まず、セル本体を作製するた
めに、自己支持管としての機能を有する円筒状の空気極
成形体を押し出し成形により作製し、その後1200〜
1300℃の温度で5〜20時間程度脱バインダー・仮
焼をおこない、空気極仮焼体を作製する。この空気極仮
焼体は、ペロブスカイト型結晶相を主相とするLaCr
3 系の材料で、その平均結晶粒径は2〜30μm、特
に、5〜15μmであることが望ましい。これは主結晶
相の粒径が2μmより小さいと強度は高いもののガスの
透過性が低く、30μmを越えるとガス透過性は高くな
るものの強度が不十分となるためである。なお、空気極
の開気孔率は20〜45%、特に30〜40%が適当で
ある。また、平均細孔径は1.0〜5.0μmの範囲が
ガス透過性に優れる。
A method of manufacturing such a solid oxide fuel cell will be described in detail. First, in order to manufacture a cell body, a cylindrical air electrode molded body having a function as a self-supporting tube is manufactured by extrusion molding, and thereafter 1200 to
Debinding and calcination are performed at a temperature of 1300 ° C. for about 5 to 20 hours to prepare an air electrode calcined body. This air electrode calcined body is composed of LaCr containing a perovskite type crystal phase as a main phase.
It is an O 3 -based material, and its average crystal grain size is preferably 2 to 30 μm, particularly 5 to 15 μm. This is because if the particle size of the main crystal phase is smaller than 2 μm, the strength is high but the gas permeability is low, and if it exceeds 30 μm, the gas permeability is high but the strength is insufficient. The open porosity of the air electrode is preferably 20 to 45%, particularly 30 to 40%. Moreover, the gas permeability is excellent when the average pore diameter is in the range of 1.0 to 5.0 μm.

【0034】次に空気極仮焼体の表面に固体電解質を構
成する材料の成形体層を形成する。
Next, a compact layer of a material forming the solid electrolyte is formed on the surface of the air electrode calcined body.

【0035】この固体電解質成形体層は、平均粒径が
0.5〜3μmのY2 3 等の周知の安定化剤により安
定化されたZrO2 からなる粉体を用いてスラリーを調
製し、その後ドクターブレード法などにより作製された
グリーンシートを巻き付けて形成される。
The solid electrolyte molded body layer is prepared by preparing a slurry by using a powder made of ZrO 2 stabilized by a known stabilizer such as Y 2 O 3 having an average particle diameter of 0.5 to 3 μm. Then, it is formed by winding a green sheet produced by a doctor blade method or the like.

【0036】そして、空気極/固体電解質成形体を10
00〜1300℃の温度で1〜3時間程度仮焼し、その
後集電体の積層箇所となる固体電解質仮焼体の表面を平
滑に研磨し、空気極仮焼体を露出させ、固体電解質仮焼
体および空気極仮焼体の表面に集電体用成形体を積層す
る。集電体用成形体はLaCrO3 系の材料を使用し、
固体電解質成形体と同様にグリーンシートを積層して形
成される。
Then, the air electrode / solid electrolyte molded body was replaced with 10
Calcination is performed at a temperature of 00 to 1300 ° C. for about 1 to 3 hours, and then the surface of the solid electrolyte calcined body, which is the laminated portion of the current collector, is smoothed to expose the air electrode calcined body, A current collector molded body is laminated on the surfaces of the fired body and the air electrode calcined body. The current collector molded body uses a LaCrO 3 type material,
It is formed by stacking green sheets similarly to the solid electrolyte molded body.

【0037】この様にして作製した積層体は、大気など
の酸化雰囲気中、1300〜1600℃の温度で3〜1
5時間程度同時焼成することにより共焼結させ、円筒状
のセル本体8を作製する。
The laminated body produced in this manner is 3-1 at a temperature of 1300 to 1600 ° C. in an oxidizing atmosphere such as air.
Co-sintering is performed by co-firing for about 5 hours to produce a cylindrical cell body 8.

【0038】また、燃料極はNiを30〜80重量%含
有し残部が安定化ZrO2 (Y2 3 等の安定化剤含
む)からなる多孔質のサーメット材料を使用し、前記積
層焼結体の所定箇所に成形体を形成して焼結させるか、
あるいは前記空気極/固体電解質/集電体成形体を形成
した後、さらに燃料極成形体を積層し、これらを同時に
焼成し、円筒状のセル本体8を作製することもできる。
Further, the fuel electrode is made of a porous cermet material containing 30 to 80% by weight of Ni and the balance being stabilized ZrO 2 (including a stabilizing agent such as Y 2 O 3 ). Forming a compact at a predetermined place on the body and sintering,
Alternatively, after forming the air electrode / solid electrolyte / current collector formed body, a fuel electrode formed body is further laminated and these are fired at the same time, so that the cylindrical cell body 8 can be produced.

【0039】次に、例えば、固体電解質成形体と同様の
スラリーを用い、たとえば、スラリー中にセル本体8の
一端部を浸潰(ディッピング)することにより、セル本
体8の一端部の外表面にセラミックスラリーを塗布し、
100〜150℃で1〜3時間乾燥する。セラミックス
スラリーを塗布する方法としては、他にスプレー、刷毛
などによる塗布がある。セラミックススラリーは、封止
部材が外嵌される部分よりもわずかに広い面積で塗布さ
れることが望ましい。塗布厚みについては、セル本体8
外周面の凸凹が無くなる程度であれば、特に限定されな
い。本発明においては、このようなセラミックススラリ
ーの塗布工程(ガスシール層)は必ずしも必要ではない
が、よりガスシールを確実に行うという点から、ある事
が望ましい。
Next, for example, using the same slurry as the solid electrolyte molded body, for example, by dipping one end of the cell body 8 in the slurry, an outer surface of the one end of the cell body 8 is formed. Apply ceramic slurry,
Dry at 100-150 ° C for 1-3 hours. Other methods for applying the ceramics slurry include application by spraying or brush. It is desirable that the ceramics slurry is applied in a slightly larger area than the portion where the sealing member is fitted. Regarding the coating thickness, the cell body 8
There is no particular limitation as long as there is no unevenness on the outer peripheral surface. In the present invention, such a ceramic slurry coating step (gas seal layer) is not always necessary, but it is desirable to have a certain point from the viewpoint of more reliable gas seal.

【0040】封止部材11は発電の際にガスシール性を
要求されるため、例えば平均結晶粒径が0.5〜3μm
程度のZrO2 系やLaCrO3 系酸化物粉末を押し出
し成形や静水圧成形(ラバープレス)等により成形し、
キャップ形状に切削加工を行い封止部材用成形体31を
作製する。ガスシール層および封止部材は、イットリア
部分安定化ジルコニアを用いることが望ましい。
Since the sealing member 11 is required to have a gas sealing property during power generation, for example, the average crystal grain size is 0.5 to 3 μm.
About ZrO 2 type or LaCrO 3 type oxide powder is formed by extrusion molding or hydrostatic molding (rubber press),
The cap shape is cut to form the sealing member molded body 31. It is desirable to use yttria partially stabilized zirconia for the gas seal layer and the sealing member.

【0041】この時の封止部材用成形体31は、セル本
体8の外周面に当接し、締め付ける円筒部13の成形体
厚みは、0.7〜2.0mmであることが望ましい。こ
れは、0.7mmよりも薄い時には焼成時に封止部材1
1が壊れる場合があり、また、2.0mmより厚い場合
には、複数の固体電解質型燃料電池セルによりスタック
を作製する際のセル間の間隔が大きくなって電気的な接
続が困難になるからである。また、円筒部13の厚みの
分だけ外径が増大するため、なるべく外径の増大をなく
すため封止部材11の円筒部13の厚みを薄くすること
が要求され、薄くても十分な強度を有するイットリア部
分安定化ジルコニアが望ましい。
At this time, the molded body 31 for a sealing member is brought into contact with the outer peripheral surface of the cell body 8 and the cylindrical body 13 to be clamped preferably has a molded body thickness of 0.7 to 2.0 mm. When the thickness is less than 0.7 mm, this is the sealing member 1 during firing.
1 may be broken, and if it is thicker than 2.0 mm, the distance between the cells when making a stack with a plurality of solid oxide fuel cell units becomes large, and electrical connection becomes difficult. Is. Further, since the outer diameter increases by the thickness of the cylindrical portion 13, it is required to reduce the thickness of the cylindrical portion 13 of the sealing member 11 in order to prevent the outer diameter from increasing as much as possible. Yttria partially stabilized zirconia having is desirable.

【0042】また、セル本体8の一端が挿入される封止
部材用セラミックス成形体の円筒部33の内径は、セル
本体8の外径の1.05から1.25倍であることが望
ましい。これは、円筒部33の内径がセル本体8の1.
05倍より小さい場合には、封止部材11に歪みによる
われが生じやすく、また、1.25倍より大きい場合に
は、封止部材11とセル本体8の間に隙間が生じ、封止
できなくなる場合があるからである。また、封止部材1
1を単独で焼結させた場合の円筒部13の内径は、セル
本体8の外径よりも小さくなるように、封止部材用成形
体31の寸法、材料などが決定されている。
The inner diameter of the cylindrical portion 33 of the ceramic molded body for a sealing member into which one end of the cell body 8 is inserted is preferably 1.05 to 1.25 times the outer diameter of the cell body 8. This is because the inner diameter of the cylindrical portion 33 is 1.
If it is less than 05 times, cracking is likely to occur in the sealing member 11, and if it is more than 1.25 times, a gap is created between the sealing member 11 and the cell body 8 to allow sealing. This is because it may disappear. Also, the sealing member 1
The size, material, etc. of the sealing member molded body 31 are determined so that the inner diameter of the cylindrical portion 13 when 1 is singly sintered is smaller than the outer diameter of the cell body 8.

【0043】この後、図2に示すように、セル本体8の
一端部を封止部材用成形体31の円筒部33に挿入し、
大気などの酸化雰囲気中、1300〜1600℃の温度
で1〜5時間程度焼成し、図1に示したように、セル本
体8の一端部に、ガスシール層9を介して封止部材11
を嵌着し、本発明の固体電解質型燃料電池セルを得る。
焼成時のセル本体の姿勢は横倒しの安定な姿勢をとらせ
ることができる。
Thereafter, as shown in FIG. 2, one end of the cell body 8 is inserted into the cylindrical portion 33 of the molding member 31 for a sealing member,
In an oxidizing atmosphere such as the air, it is baked at a temperature of 1300 to 1600 ° C. for about 1 to 5 hours, and as shown in FIG. 1, the sealing member 11 is provided at one end of the cell body 8 via the gas seal layer 9.
To obtain the solid oxide fuel cell of the present invention.
The posture of the cell body at the time of firing can take a stable posture of being laid down.

【0044】封止部材用セラミックス成形体の焼成温度
は、特に1350〜1500℃の範囲で行うことが望ま
しい。即ち、セル本体8の焼結後に改めて封止部材11
を焼結させるため、ガスシール層9や封止部材11の焼
結温度はセル本体18の焼結温度以下であることが要求
される。例えばLaCrO3 系材料を用いた燃料電池セ
ルなどは1500℃程度で焼結されるが、イットリア部
分安定化ジルコニアはそれ以下の1400℃で焼結させ
ることができるため、封止部材11やガスシール層9と
してイットリア部分安定化ジルコニアが望ましい。
The firing temperature of the ceramic molded body for the sealing member is preferably in the range of 1350 to 1500 ° C. That is, after the cell body 8 is sintered, the sealing member 11 is newly formed.
In order to sinter, the sintering temperature of the gas seal layer 9 and the sealing member 11 is required to be lower than the sintering temperature of the cell body 18. For example, a fuel cell or the like using a LaCrO 3 system material is sintered at about 1500 ° C., but yttria partially stabilized zirconia can be sintered at 1400 ° C., which is lower than that, so that the sealing member 11 and the gas seal are used. Yttria partially stabilized zirconia is preferred for layer 9.

【0045】封止部材11の円筒部13の内側面とガス
シール層9とは焼成時に一体化し、さらにガスシール層
9とセル本体8一端部の外周面とも焼成時に一体化し、
これにより、封止部材11の円筒部13の内側面がガス
シール層9を介してセル本体8の一端部外周面に接合さ
れることになる。また、封止部材8の基底部14の内底
面とセル本体8の断面が焼成時に一体化することによ
り、封止部材11とセル本体8が強固に固定されること
になる。ガスシール層9、緻密質セラミックスからなる
封止部材11は、ガスリークを防止することができれば
よく、特に開気孔率5%以下であることが望ましい。
The inner surface of the cylindrical portion 13 of the sealing member 11 and the gas seal layer 9 are integrated during firing, and the gas seal layer 9 and the outer peripheral surface of one end of the cell body 8 are also integrated during firing.
As a result, the inner side surface of the cylindrical portion 13 of the sealing member 11 is joined to the outer peripheral surface of the one end portion of the cell body 8 via the gas seal layer 9. Further, the inner bottom surface of the base portion 14 of the sealing member 8 and the cross section of the cell body 8 are integrated during firing, so that the sealing member 11 and the cell body 8 are firmly fixed. It is sufficient that the gas seal layer 9 and the sealing member 11 made of dense ceramics can prevent gas leakage, and it is particularly preferable that the open porosity is 5% or less.

【0046】尚、本発明では、燃料極スラリーを、空気
極、固体電解質、集電体を有するセル本体に塗布した
後、セル本体を封止部材用成形体の円筒部に挿入し、燃
料極塗布膜と同時に前記封止部材用成形体を焼成し、燃
料極を固体電解質表面に焼き付けてもよい。この場合に
は、燃料極のみを焼き付けるための前処理行程を省略で
きる。
In the present invention, the fuel electrode slurry is applied to the cell body having the air electrode, the solid electrolyte and the current collector, and then the cell body is inserted into the cylindrical portion of the molded body for the sealing member to form the fuel electrode. You may bake the said molded body for sealing members simultaneously with a coating film, and bake a fuel electrode on the surface of a solid electrolyte. In this case, the pretreatment step for burning only the fuel electrode can be omitted.

【0047】[0047]

【実施例】円筒形の固体電解質型燃料電池セルを共焼結
により作製するため、まず円筒状空気極成形体を以下の
ようにして作製した。市販の純度99.9%以上のLa
23 、CaCO3 、Mn2 3 を出発原料として、こ
れをLa0.8 Ca0.2 MnO3 の組成になるように秤量
混合した後、1500℃で3時間仮焼し粉砕して平均粒
径が5μmの固溶体粉末を得た。また、この固溶体粉末
にバインダーを添加し、押し出し成型法で円筒状の空気
極成形体を作製した。前記空気極成形体は、乾燥後12
50℃で10時間脱バインダー・仮焼することにより円
筒状の空気極仮焼体を作製した。
EXAMPLE In order to manufacture a cylindrical solid oxide fuel cell unit by co-sintering, first, a cylindrical air electrode molded body was manufactured as follows. La with a purity of 99.9% or more on the market
2 O 3 , CaCO 3 , and Mn 2 O 3 were used as starting materials, and they were weighed and mixed so as to have a composition of La 0.8 Ca 0.2 MnO 3 and then calcined at 1500 ° C. for 3 hours and pulverized to obtain an average particle size of A solid solution powder of 5 μm was obtained. Further, a binder was added to this solid solution powder, and a cylindrical air electrode formed body was produced by an extrusion molding method. The air electrode molded body is dried 12
A cylindrical air electrode calcined body was produced by debinding and calcining at 50 ° C. for 10 hours.

【0048】次に、共沈法により得られたY2 3 を8
mol%の割合で含有する平均粒径が1μmのZrO2
粉末に、トルエンとバインダーを添加してスラリーを調
整し、ドクターブレード法により厚み130μmの固体
電解質シートを作製した。
Next, 8% of Y 2 O 3 obtained by the coprecipitation method was used.
ZrO 2 with an average particle size of 1 μm contained in a mol% ratio
Toluene and a binder were added to the powder to prepare a slurry, and a solid electrolyte sheet having a thickness of 130 μm was prepared by the doctor blade method.

【0049】次に、市販の純度99.9%以上のLa2
3 、Cr2 3 、MgOを出発原料として、これをL
a(Mg0.3 Cr0.7 0.973 の組成になるように秤
量混合した後、1500℃で3時間仮焼し粉砕して、平
均粒径が2μmの固溶体粉末を得た。次に、この固溶体
粉末にトルエンとバインダーを添加してスラリーを調整
し、ドクターブレード法により厚み130μmの集電体
シートを作製した。
Next, commercially available La 2 having a purity of 99.9% or more is used.
Using O 3 , Cr 2 O 3 and MgO as starting materials,
A (Mg 0.3 Cr 0.7 ) 0.97 O 3 was weighed and mixed so as to have a composition, then calcined at 1500 ° C. for 3 hours and pulverized to obtain a solid solution powder having an average particle diameter of 2 μm. Next, toluene and a binder were added to this solid solution powder to prepare a slurry, and a collector sheet having a thickness of 130 μm was prepared by the doctor blade method.

【0050】前記円筒状空気極仮焼体に前記固体電解質
シートをロール状に巻き付け、1100℃で3時間の仮
焼を行った。仮焼後、集電体シートの積層箇所となる固
体電解質の表面を平面研磨し、露出した空気極仮焼体ま
で表面上を平面研磨し、前記集電体シートを所定箇所に
帯状に巻き付けた。その後、大気中1500℃で6時間
の条件で共焼結を試みた。
The solid electrolyte sheet was wound around the cylindrical air electrode calcined body in a roll shape and calcined at 1100 ° C. for 3 hours. After calcination, the surface of the solid electrolyte to be the laminated portion of the current collector sheet was flat-polished, the surface was flat-polished to the exposed air electrode calcined body, and the current collector sheet was wound in a strip shape at a predetermined position. . After that, co-sintering was attempted under the conditions of 1500 ° C. for 6 hours in the atmosphere.

【0051】共焼結後、NiO粉末にZrO2 (10m
ol%Y2 3 含有)粉末を重量比80:20の割合で
混合した混合粉末に水を溶媒として加えて燃料極スラリ
ーを調整し、厚み50μmの燃料極スラリーを積層焼結
体表面に塗布乾燥し、外径約15mm、厚み2mmのセ
ル本体を作製した。
After co-sintering, ZrO 2 (10 m
ol% Y 2 O 3 ) powder was mixed at a weight ratio of 80:20 to prepare a fuel electrode slurry by adding water as a solvent to the fuel electrode slurry, and the fuel electrode slurry having a thickness of 50 μm was applied to the surface of the laminated sintered body. After drying, a cell body having an outer diameter of about 15 mm and a thickness of 2 mm was prepared.

【0052】次に、Y2 3 を3mol%の割合でそれ
ぞれ含有する平均粒径が1μmのZrO2 粉末に水を溶
媒として加えてスラリーを調整し、このスラリーにセル
本体の一端部を浸潰し、ディッピング法により、厚み1
00μmのセラミックススラリーをセルの片端部の外周
面に塗布し、120℃で1時間乾燥した。
Next, water was added as a solvent to ZrO 2 powder having an average particle size of 1 μm and containing Y 2 O 3 at a ratio of 3 mol%, to prepare a slurry, and one end of the cell body was dipped in the slurry. Thickness 1 by crushing and dipping method
A ceramic slurry of 00 μm was applied to the outer peripheral surface of one end of the cell, and dried at 120 ° C. for 1 hour.

【0053】次に、封止部材としてのキャップ形状の成
形体を作製する。まず、前記スラリー組成と同じ組成で
ある、Y2 3 を3mol%の割合でそれぞれ含有する
平均粒径が1μmのZrO2 系の粉末を用いて静水圧成
形(ラバープレス)を行いキャップ形状に切削加工し
た。その後、前記スラリーを被覆した前記セル片端部を
封止部材用成形体に挿入した。
Next, a cap-shaped molded body as a sealing member is produced. First, hydrostatic pressure molding (rubber press) was performed using ZrO 2 powder having an average particle diameter of 1 μm and containing Y 2 O 3 at a ratio of 3 mol%, which is the same composition as the slurry composition, to obtain a cap shape. It was cut. After that, the one end of the cell coated with the slurry was inserted into the molding for a sealing member.

【0054】セル本体の外周面と当接し、セル本体を締
め付ける封止部材用成形体の円筒部の肉厚tを0.7m
mに設定した。
The wall thickness t of the cylindrical portion of the molded body for a sealing member that contacts the outer peripheral surface of the cell body and tightens the cell body is 0.7 m.
set to m.

【0055】その後、大気中で1400℃で2時間の焼
成を行うことにより、燃料極層を形成するとともに、セ
ル本体の一端部外周面にガスシール層を介してキャップ
形状成形の封止部材を嵌合した。封止部材の全長を
1 、円筒部の深さをL2 、基底部の外径をD1 、円筒
部の外径をD2 、円筒部の内径をD3 とした時のD1
2 、L2 /L1 、L2 /D3 の値を表1に示す。
Thereafter, the fuel electrode layer is formed by firing at 1400 ° C. for 2 hours in the atmosphere, and a cap-shaped molding sealing member is formed on the outer peripheral surface of one end of the cell body via a gas sealing layer. Mated The total length of the sealing member L 1, the depth L 2 of the cylindrical portion, D 1 the outer diameter of the base portion, the outer diameter of the cylindrical portion D 2, D when the inner diameter of the cylindrical portion and the D 3 1 /
The values of D 2 , L 2 / L 1 and L 2 / D 3 are shown in Table 1.

【0056】そして、封止を行わなかった側のセル本体
の開口端から、外気圧に対しセル本体内部の内気圧を外
気圧よりも+1kgf/cm2 高くなるようにAirを
加圧して注入し、これを水没させ、気泡の発生の有無に
より、リークの有無を判断した。
Air is injected from the open end of the cell body on the non-sealed side by pressurizing Air so that the internal pressure inside the cell body is +1 kgf / cm 2 higher than the external pressure. Then, this was submerged in water, and the presence or absence of a leak was judged by the presence or absence of bubbles.

【0057】また、この試料をAir雰囲気1000℃
の高温下に放置し、途中100時間、500時間、10
00時間経過時点で常温まで冷却して取り出し、封止を
行わなかった側の開口端から、外気圧に対しセル本体内
部の内気圧を外気圧よりも+1kgf/cm2 高くなる
ようにAirを加圧して注入し、これを水没させ、気泡
の発生の有無により、リークの有無を判断した(高温負
荷試験)。さらに、Air雰囲気下で、常温から昇温速
度200℃/hで1000℃まで加熱し、そのまま1時
間放置し、その後降温速度200℃/hで1000℃か
ら常温まで冷却し、1時間放置する行程を10サイクル
繰り返した後、上記と同様にしてリークの有無を判断し
た。
This sample was also tested in an air atmosphere at 1000 ° C.
Left for 100 hours, 500 hours, 10 hours
After 00 hours, it is cooled to room temperature and taken out, and Air is added from the open end on the side where sealing is not performed so that the internal pressure inside the cell body is +1 kgf / cm 2 higher than the external pressure. It was injected under pressure, submerged in water, and the presence or absence of leak was judged by the presence or absence of bubbles (high temperature load test). Further, in an air atmosphere, the temperature is raised from room temperature to 1000 ° C. at a temperature rising rate of 200 ° C./h, left for 1 hour, then cooled from 1000 ° C. to room temperature at a temperature lowering rate of 200 ° C./h, and left for 1 hour. After repeating 10 cycles, the presence or absence of leak was judged in the same manner as above.

【0058】さらに、セル内部をAir雰囲気とし、セ
ル外部をH2 雰囲気として、1000℃で1時間放置し
て還元処理試験を行い、上記と同様にしてリークの有無
を判断した。これらの結果を表1に記載した。
Further, a reduction treatment test was conducted by leaving the inside of the cell in an Air atmosphere and the outside of the cell in an H 2 atmosphere at 1000 ° C. for 1 hour to determine whether or not there was a leak. The results are shown in Table 1.

【0059】[0059]

【表1】 [Table 1]

【0060】この表1より、本発明の試料では、焼結収
縮における応力による破損を防止でき、高温負荷試験、
サイクル負荷試験、還元処理試験においてリークがな
く、また破損もないことが判る。
From Table 1, the sample of the present invention can prevent damage due to stress in sintering shrinkage,
It can be seen that there is no leak and no damage in the cycle load test and reduction treatment test.

【0061】一方、L2 /L1 が0.3より小さい場合
や、L2 /D3 が0.3より小さい場合、封止部材が還
元処理試験において破損した。詳細には、封止部材が破
損して円筒部をセル本体に残して基底部がはずれてしま
った。同様の試料を再作製し、各負荷試験を実施する前
に封止部材の内底面とセル本体の断面の界面を観察した
ところ、隙間がみられた。これらは、円筒部の深さが十
分でなかったために、入炉から焼結までの課程で封止部
材がずれやすくなっていたために、封止部材の基底部の
内底面とセル本体の先端面の反応による固着が不十分に
なったためと考えられる。
On the other hand, when L 2 / L 1 was smaller than 0.3 or when L 2 / D 3 was smaller than 0.3, the sealing member was broken in the reduction treatment test. In detail, the sealing member was damaged and the base part was dislocated while leaving the cylindrical part in the cell body. When a similar sample was recreated and the interface between the inner bottom surface of the sealing member and the cross section of the cell body was observed before carrying out each load test, a gap was observed. These were because the depth of the cylindrical part was not sufficient, and the sealing member was easily displaced during the process from the furnace to the sintering.Therefore, the inner bottom surface of the base of the sealing member and the tip surface of the cell body were It is considered that the fixation due to the reaction of became insufficient.

【0062】[0062]

【発明の効果】以上詳述したように、本発明によれば、
セル本体の一端の封止を容易かつ確実に行うことができ
るとともに、発電用セル本体を炉内にセットする前に封
止状態を確認することができ、発電の際のガスシール性
が十分に保証され、長期的に安定したセル性能を維持で
きる。
As described in detail above, according to the present invention,
The one end of the cell body can be easily and reliably sealed, and the sealed state can be confirmed before the power generation cell body is set in the furnace, and the gas sealability during power generation is sufficient. Guaranteed and stable cell performance can be maintained over the long term.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体電解質型燃料電池セルの断面図で
ある。
FIG. 1 is a cross-sectional view of a solid oxide fuel cell unit of the present invention.

【図2】セル本体に封止部材用成形体を挿入した断面図
である。
FIG. 2 is a cross-sectional view in which a molding for a sealing member is inserted into a cell body.

【図3】固体電解質型燃料電池セルのセル本体を示す斜
視図である。
FIG. 3 is a perspective view showing a cell body of a solid oxide fuel cell unit.

【符号の説明】[Explanation of symbols]

1・・・空気極 2・・・固体電解質 3・・・燃料極 4・・・集電体 8・・・セル本体 9・・・ガスシール層 11・・・封止部材 13・・・円筒部 14・・・基底部 1 ... Air electrode 2 ... Solid electrolyte 3 ... Fuel electrode 4 ... Current collector 8: Cell body 9 ... Gas seal layer 11 ... Sealing member 13 ... Cylindrical part 14 ... Base

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円筒状の固体電解質の片面に空気極、他面
に燃料極が形成されるとともに、前記空気極または前記
燃料極に電気的に接続され、かつ外面に露出する集電体
を具備する円筒状のセル本体の一端部外周面に、基底部
と円筒部からなるセラミックス製の封止部材を外嵌して
なる固体電解質型燃料電池セルであって、前記封止部材
の焼成収縮により、該封止部材の円筒部が前記セル本体
の一端部を締め付けた状態で、前記セル本体の一端部に
前記封止部材が外嵌されており、前記封止部材の全長を
1、前記円筒部の深さをL2、前記基底部の外径を
1、前記円筒部の外径をD2、前記円筒部の内径をD3
とした時、D1/D2が0.78〜0.84、L2/L1
0.3〜0.7、L2/D3が0.3〜0.7の範囲を満
足することを特徴とする固体電解質型燃料電池セル。
1. A cylindrical solid electrolyte having an air electrode formed on one surface and a fuel electrode formed on the other surface, and a current collector which is electrically connected to the air electrode or the fuel electrode and is exposed on the outer surface. A cylindrical sealing member made of a base portion and a cylindrical portion is externally fitted to the outer peripheral surface of one end of the cylindrical cell body provided.
A solid oxide fuel cell unit comprising the sealing member
Due to the firing shrinkage of
While tightening one end of the
The sealing member is externally fitted, the total length of the sealing member is L 1 , the depth of the cylindrical portion is L 2 , the outer diameter of the base portion is D 1 , and the outer diameter of the cylindrical portion is D 2. , The inner diameter of the cylindrical portion is D 3
Then, D 1 / D 2 satisfies the ranges of 0.78 to 0.84, L 2 / L 1 satisfies the range of 0.3 to 0.7, and L 2 / D 3 satisfies the range of 0.3 to 0.7. A solid oxide fuel cell unit characterized by the above.
【請求項2】セル本体の一端部外周面に、セラミックス
からなるガスシール層を介して封止部材を外嵌してなる
ことを特徴とする請求項1記載の固体電解質型燃料電池
セル。
2. The solid oxide fuel cell according to claim 1, wherein a sealing member is fitted on the outer peripheral surface of one end of the cell body via a gas sealing layer made of ceramics.
JP23462897A 1997-08-29 1997-08-29 Solid oxide fuel cell Expired - Fee Related JP3389469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23462897A JP3389469B2 (en) 1997-08-29 1997-08-29 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23462897A JP3389469B2 (en) 1997-08-29 1997-08-29 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH1173980A JPH1173980A (en) 1999-03-16
JP3389469B2 true JP3389469B2 (en) 2003-03-24

Family

ID=16974023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23462897A Expired - Fee Related JP3389469B2 (en) 1997-08-29 1997-08-29 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3389469B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761104B2 (en) * 2004-05-13 2011-08-31 独立行政法人産業技術総合研究所 Cylindrical fuel cell
US7566509B2 (en) 2003-11-18 2009-07-28 National Institute Of Advanced Industrial Science And Technology Tubular fuel cell and method of producing the same

Also Published As

Publication number Publication date
JPH1173980A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP3495654B2 (en) Cell tube seal structure
JP2706197B2 (en) Method of forming ceramic thin film
JP4462727B2 (en) Solid electrolyte fuel cell
JPH1021935A (en) Solid electrolyte fuel cell
JP3389469B2 (en) Solid oxide fuel cell
CN113488689B (en) Solid oxide fuel cell stack and method for preparing the same
JP3238086B2 (en) Solid oxide fuel cell
JP4460881B2 (en) Fuel cell manufacturing method
JPH0992294A (en) Solid electrolyte type fuel cell and its manufacture
JPH11283640A (en) Cylindrical solid-electrolyte fuel cell
JP3285779B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3310866B2 (en) Cylindrical horizontal stripe solid electrolyte fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP3389468B2 (en) Solid oxide fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JPH11329463A (en) Solid electrolyte type fuel cell and its manufacture
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JPH10189016A (en) Solid electrolyte fuel cell
JPH11185780A (en) Cylindrical fuel cell with solid electrolyte
JP3281814B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3455054B2 (en) Manufacturing method of cylindrical solid oxide fuel cell
JP4721487B2 (en) Solid electrolyte fuel cell and fuel cell
JP4822633B2 (en) Solid electrolyte fuel cell and fuel cell
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees