JP3725997B2 - Method for manufacturing solid oxide fuel cell - Google Patents

Method for manufacturing solid oxide fuel cell Download PDF

Info

Publication number
JP3725997B2
JP3725997B2 JP18592699A JP18592699A JP3725997B2 JP 3725997 B2 JP3725997 B2 JP 3725997B2 JP 18592699 A JP18592699 A JP 18592699A JP 18592699 A JP18592699 A JP 18592699A JP 3725997 B2 JP3725997 B2 JP 3725997B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
air electrode
fuel cell
electrode
site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18592699A
Other languages
Japanese (ja)
Other versions
JP2001015129A (en
Inventor
雅人 西原
高志 重久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18592699A priority Critical patent/JP3725997B2/en
Publication of JP2001015129A publication Critical patent/JP2001015129A/en
Application granted granted Critical
Publication of JP3725997B2 publication Critical patent/JP3725997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状の空気極の外面に、希土類元素を含有する部分安定化または安定化ZrO2からなる固体電解質、燃料極が順次形成された固体電解質型燃料電池セルの製造方法に関するものである。
【0002】
【従来技術】
従来より、固体電解質型燃料電池はその作動温度が900〜1050℃と高温であるため発電効率が高く、第3世代の発電システムとして期待されている。
【0003】
一般に固体電解質型燃料電池セルには、円筒型と平板型が知られている。平板型燃料電池セルは、発電の単位体積当たり出力密度は高いという特徴を有するが、実用化に関してはガスシール不完全性やセル内の温度分布の不均一性などの問題がある。それに対して、円筒型燃料電池セルでは、出力密度は低いものの、セルの機械的強度が高く、またセル内の温度の均一性が保てるという特徴がある。
【0004】
両形状の固体電解質型燃料電池セルとも、それぞれの特徴を生かして積極的に研究開発が進められている。
【0005】
円筒型燃料電池セルは、図2に示すように開気孔率30〜40%程度のLaMnO3 系材料からなる多孔性の空気極支持管2を形成し、その表面にY2 3 安定化ZrO2 からなる固体電解質3を被覆し、さらにこの表面に多孔性のNi−ジルコニアの燃料極4が設けられている。
【0006】
燃料電池のモジュールにおいては、各セルはLaCrO3 系の集電体(インターコネクタ)5を介して接続される。発電は、空気極支持管2内部に空気(酸素)6を、外部に燃料(水素)7を流し、1000〜1050℃の温度で行われる。また、空気極としての機能を合わせ持つ空気極支持管2材料としては、LaをCaで20原子%又はSrで10〜15原子%置換した固溶体材料が用いられている。
【0007】
上記のような燃料電池セルを製造する方法としては、例えば絶縁粉末を押出成形法などにより円筒状に成形後、これを焼成して円筒状支持管を作製し、この支持管の外周面に空気極、固体電解質、燃料極、集電体のスラリーを塗布してこれを順次焼成して積層するか、あるいは円筒状支持管の表面に電気化学的蒸着法(EVD法)やプラズマ溶射法などにより空気極、固体電解質、燃料極、集電体を順次形成することも行われている。
【0008】
近年ではセルの製造工程を簡略化し且つ製造コストを低減するために、各構成材料のうち少なくとも2つを同時焼成する、いわゆる共焼結法が提案されている。この共焼結法は、例えば、円筒状の空気極支持管の成形体に固体電解質成形体及び集電体成形体をロール状に巻き付けて同時焼成を行い、その後固体電解質層表面に燃料極層を形成する方法である。
【0009】
この共焼結法は非常に簡単なプロセスで製造工程数も少なく、セルの製造時の歩留まり向上、コスト低減に有利である。このような共焼結法による燃料電池セルでは、Y2 3 安定化または部分安定化ZrO2 からなる固体電解質を用い、この固体電解質に熱膨張係数を合致させる等のため、空気極材料として、LaMnO3 からなるペロブスカイト型複合酸化物のLaの一部をYおよびCaで置換したものが用いられている(特開平10−162847号公報等参照)。
【0010】
【発明が解決しようとする課題】
しかしながら、上述した共焼結法により円筒型燃料電池セルを作製すると、空気極と固体電解質との界面に、空気極と固体電解質を構成するそれぞれの成分元素が界面で相互間に拡散し、固体電解質からのYと、空気極からのCa、Yとが、空気極と固体電解質との界面にCaZrO3 、Y2 3 の反応生成物及び分解物を析出し、発電性能において固体電解質と空気極との界面の分極値が高く、出力が時間とともに急激に劣化していくという問題があった。
【0011】
特に、CaZrO3 の反応生成物においては、固体電解質、空気極および集電体の三相界面に析出するため、発電性能において固体電解質と空気極との界面の分極値が高く、出力が時間とともに急激に劣化していくという問題があった。
【0012】
また、希土類元素Yの酸化物の熱膨張係数は、セル構成部材、例えば、固体電解質や空気極と異なるために、共焼結時や、それ以降の熱処理工程において、空気極から固体電解質が剥離するという問題があった。
【0013】
また、従来の空気極材料は、La、CaおよびYからなるAサイトと、MnからなるBサイトとの比(A/B比)が0.995〜1.000の定比に近い組成であるために、共焼結の際Mnの蒸発・拡散に伴って過剰となったAサイト成分が分解し易く、その結果、分解物が固体電解質側へ向かって拡散し、Ca、Y元素が空気極と固体電解質との界面に酸化物として高濃度で析出しやすくなるという問題があった。
【0014】
本発明は、空気極と固体電解質との界面反応を抑制して接合強度を向上するとともに、長期的に安定した出力性能を維持できる固体電解質型燃料電池セルの製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明は、少なくともLa、Ca、希土類元素(Laを除く)およびMnを含有し、Aサイトが前記La、Ca、希土類元素、Bサイトが前記MnであるLaMnO 系のペロブスカイト型複合酸化物からなる円筒状の空気極の外面に、希土類元素を含有する部分安定化または安定化ZrO2からなる固体電解質、燃料極が順次形成された固体電解質型燃料電池セルの製造方法において、少なくとも前記空気極と前記固体電解質を共焼結し、前記空気極に含有されるMnを前記固体電解質中に拡散せしめ、該固体電解質の燃料極側の表層部へのMn到達量を0.3〜1.2重量%とすることを特徴とするものである。
【0016】
【作用】
La、Ca、YおよびMnを含有するペロブスカイト型複合酸化物からなる円筒状の空気極と、その外面の希土類元素を含有する部分安定化または安定化ZrO2 からなる固体電解質を共焼結(同時焼成)すると、共焼結時に空気極を構成するそれぞれの成分元素の中でもMn元素が他のLa、Ca、Yに比べとりわけ拡散(蒸発及び固相内での拡散) が速く、しかもこの空気極からのMnの拡散量は固体電解質と空気極間の反応生成物等の生成量に因果関係が有る。
【0017】
即ち、空気極中のBサイトを構成するMnが固体電解質側に拡散すると、必然的に空気極中のAサイトを構成するLa、Ca、Yが過剰となり、分解して、空気極と固体電解質との間に拡散し、ここで、希土類元素酸化物、例えばY2 3 の析出と固体電解質との反応により生成したCaZrO3 が生成し、発電性能において固体電解質と空気極との界面の分極値が高く、出力が時間とともに急激に劣化していく。また、Y2 3 の酸化物の熱膨張係数は、セル構成部材、例えば、固体電解質や空気極と異なるために、共焼結時や、それ以降の熱処理工程において、空気極から固体電解質が剥離し易い。
【0018】
また、従来の空気極材料は、La、Ca、YからなるAサイトと、MnからなるBサイトとの比(A/B比)が0.995〜1.000の定比に近い組成であるために、共焼結の際Mnの蒸発・拡散に伴って過剰となったAサイト成分が分解し易く、その結果、分解物が固体電解質側へ向かって拡散し、希土類元素であるY元素が空気極と固体電解質との界面に酸化物として高濃度で析出し易い。
【0019】
本発明の固体電解質型燃料電池セルの製造方法では、予め空気極材料として、Mnリッチのペロブスカイト型複合酸化物を使用し、つまり、固体電解質の燃料極側の表層部におけるMn量が0.3〜1.2重量%となるように、La、希土類元素等からなるAサイトと、MnからなるBサイトとの比(A/B比)を1より小さくし、空気極からMnが拡散したとしてもAサイト過剰とならないようにすることにより、空気極のAサイト構成成分La、Ca、Yが空気極と固体電解質との界面に拡散することを防止でき、固体電解質と空気極との界面の分極値を低くして、出力密度の経時変化を小さくできるとともに、空気極からの固体電解質の剥離を防止できる。
【0020】
以上のことから、セル製造及び発電時において固体電解質層と空気極層との界面反応を抑制することができ、これに伴い初期の高い出力密度を長時間にわたり維持できる。
【0021】
【発明の実施の形態】
本発明における固体電解質型燃料電池セルは、図1に示すように、円筒状の固体電解質31の内面に空気極32、外面に燃料極33を形成してセル本体34が構成されており、このセル本体34の外面に、空気極32と電気的に接続する集電体35が形成されている。
【0022】
即ち、固体電解質31の一部に切欠部36が形成され、固体電解質31の内面に形成されている空気極32の一部が露出しており、この露出面37および切欠部36近傍の固体電解質31の両端部表面が集電体35により被覆され、集電体35が、固体電解質31の両端部表面、および固体電解質31の切欠部36から露出した空気極32の表面に接合されている。
【0023】
空気極32と電気的に接続する集電体35はセル本体34の外面に形成され、ほぼ段差のない連続同一面39を覆うように形成されており、燃料極33とは電気的に接続されていない。この集電体35は、セル同士を接続する際に、他のセルの燃料極にNiフェルトを介して電気的に接続され、これにより燃料電池モジュールが構成される。連続同一面39は、固体電解質成形体の両端部と空気極成形体の一部とが連続したほぼ同一面となるまで、固体電解質成形体の両端部間を研摩することにより形成される。
【0024】
固体電解質31は、例えば3〜20モル%のY2 3 あるいはYb2 3 を含有した部分安定化あるいは安定化ZrO2 が用いられ、このうちでも3〜20モル%のY2 3 を含有した部分安定化あるいは安定化ZrO2 が望ましい。
【0025】
また、空気極32は、LaおよびMnを含有するペロブスカイト型複合酸化物を主成分とし、これにCa、希土類元素のうち少なくとも一種を含有するものである。希土類元素としては、Y、Nd、Dy、Er、Yb等があり、このうちでもYが望ましい。燃料極33としては、例えば、50〜80重量%Niを含むZrO2 (Y2 3 含有)サーメットが用いられる。
【0026】
集電体35は、金属元素としてLa、CrおよびMgを含有するぺロブスカイト型複合酸化物を主結晶とするものであり、希土類元素やアルカリ土類金属元素を含有するものであっても良い。集電体35には、さらにMgO結晶を含有することが、集電体35の熱膨張係数を高くして、固体電解質31や空気極32のそれと一致させることができるため望ましい。
【0027】
集電体35や燃料極33としては、上記例に限定されるものではなく、公知材料を用いても良い。上記材料からなる固体電解質31の熱膨張係数は、ほぼ10.5×10-6/℃である。
【0028】
そして、本発明の固体電解質型燃料電池セルの製造方法では、固体電解質の燃料極側表層部へのMn到達量が0.3〜1.2重量%であることを特徴とする。
【0029】
ここで、Mn拡散に伴う固体電解質の表層部への到達量を上記範囲に定めたのは、表層部におけるMn量が0.3重量%より少ない場合には、空気極のA/Bサイト比の出発組成はほぼ定比に近く、セル製造時のMn拡散によりAサイト成分量がより過剰となり、このAサイト成分の過剰分が分解し界面反応を促進するからである。
【0030】
一方、表層部におけるMn量が1.2重量%よりも多い場合には、出発組成の段階からBサイト成分が過剰の不定比組成、つまりMnリッチ組成のため、Mn拡散によりペロブスカイトの組成変動が生じてもAサイト成分の分解は起こらない。 しかしながら、空気極の焼結性向上のため緻密になりすぎ、セル発電時にガス透過不足となり性能の劣化を伴うからである。
【0031】
尚、固体電解質中における全Mn量は全量中0.8〜1.5重量%であることが望ましい。
【0032】
本発明の固体電解質型燃料電池セルの製造方法によれば、固体電解質型燃料電池は以下のようにして作製される。空気極の作製は、先ず、例えば所定の調合組成に従いLa23、Y23、CaO、MnO2の素原料を秤量・混合した後、1500℃程度の温度で2〜10時間焼成し、その後4〜8μmの粒度に調製する。この際、セル製造の際の固体電解質の表層部へのMn拡散による到達量が0.3〜1.2重量%の範囲になるようなMn含有量、すなわちA/Bサイトの原子比率を調製する必要がある。
【0033】
空気極は、ABO3 で表されるペロブスカイト型複合酸化物であり、La、Ca、YからなるAサイトと、MnからなるBサイトとの比(A/B比)が0.94〜0.99であることが望ましいため、原料粉末は、そのA/B比が焼結体よりも小さくする必要がある。
【0034】
調製した粉体に、バインダーを混合、混練し押出成形法により円筒状の空気極成形体を作製し、さらに脱バインダー処理し、1200〜1250℃で仮焼を行うことで空気極仮焼体を作製する。
【0035】
固体電解質31用のシートは、例えば3〜20モル%のY2 3 あるいはYb2 3 を含有した部分安定化あるいは安定化ZrO2 からなる粉末を0.1〜5μmの大きさに調製し、市販の溶媒、分散剤、バインダーを所定濃度添加しドクターブレード等の方法により50〜100μmの厚さのシートを作製する。
【0036】
集電体35用のシートは、上記固体電解質31同様、LaCrO3 系材料からなる粉末を用いてドクターブレード等の方法により50〜100μmの厚さのシートを作製する。
【0037】
そして、空気極仮焼体の表面に、固体電解質シート、集電体シートをそれぞれ貼り付け、これを1400〜1550℃の温度で2〜10時間大気中焼成することにより得られる。この焼成により、空気極からMnが固体電解質へ拡散するが、この拡散によっても、空気極のA/B比は0.94〜0.99と1よりも小さくする。
【0038】
また、燃料極33は、70〜90重量%NiとZrO2 からなる(Y2 3 含有)組成を有し、固体電解質表面にシートとして貼り付けるか、あるいはスラリーを塗布するかにより作製する。焼成は、大気中1400〜1550℃の温度で2〜10時間行うが、この場合、固体電解質、空気極、集電体の共焼結を行う際に同時に焼成しても構わない。
【0039】
以上のように構成された固体電解質型燃料電池セルでは、固体電解質の燃料極側の表層部におけるMn量を0.3〜1.2重量%としたので、La、Ca、YからなるAサイトと、MnからなるBサイトとの比(A/B比)を1より小さくし、空気極からMnが拡散したとしてもAサイト過剰とならないようにすることにより、空気極のAサイト構成成分La、Ca、Yが空気極と固体電解質との界面に拡散することを防止でき、固体電解質と空気極との界面の分極値を低くして、出力の経時変化を小さくできるとともに、空気極からの固体電解質の剥離を防止できる。
【0040】
尚、本発明の燃料電池セルは、固体電解質の片面に空気極、他面に燃料極が形成されていればよく、その構造は図1に限定されるものではない。
【0041】
【実施例】
市販の純度99.9%以上のLa2 3 、Y2 3 、CaCO3 、MnO2 を出発原料として、ペロブスカイトのA/Bサイトの原子比率が異なる組成になるように調合し、複数種の空気極材料を作製し、押出成形により円筒状の空気極成形体を作製し、これを1250℃で仮焼し、空気極仮焼体を作製した。
【0042】
次に、8モル%Y2 3 部分安定化ZrO2 粉末を用いて100μmの固体電解質シートを作製した。さらに、市販の純度99.9%以上のLa2 3 、Cr2 3 、MgOを出発原料として、La(Mg0.3 Cr0.7 0.973 を満足する組成の粉末を用いてドクターブレード法により100μmの厚さの集電体シートを作製した。
【0043】
空気極仮焼体に固体電解質シートを、その両端部が開口するようにロール状に巻き付けた後、仮焼し、次に固体電解質シートの両端部間に空気極を露出させるように平坦に研磨し、この部分に集電体シートを積層して大気中1500℃で6hrの条件で共焼結体を作製した。
【0044】
次に、円筒型セルを作製するため、共焼結体表面に燃料極の形成、また前記共焼結体片端部に封止部材の接合を、以下のようにして行った。先ず、NiO粉末にZrO2 (8mol%Y2 3 含有)粉末を重量比で80:20になるように混合した混合粉末に水を溶媒として加えて燃料極スラリーを調製し、厚さ50μmの燃料極スラリーを共焼結体表面に塗布乾燥した。
【0045】
次に、Y2 3 を8mol%の割合で含有する平均粒子径が1μmのZrO2 粉末に水を溶媒として加えてスラリーを調製し、このスラリーに前記共焼結体の片端部を浸漬し、厚さ100μmになるように片端部外周面に塗布し120℃の温度で1hr乾燥した。
【0046】
封止部材としてのキャップ形状を有する成形体は、前記スラリー組成と同組成の粉末を用いて静水圧成形(ラバープレス)を行い切削加工した。その後、前記スラリーを被覆した前記共焼結体片端部を封止部材用成形体に挿入した。
【0047】
その後、大気中1400℃の温度で2hr焼成を行うことにより、燃料極膜の形成と封止部材による接合を同時に行った。
【0048】
以上の工程を経て作製した各円筒型セルを用いて、固体電解質の表層部のMn拡散量と、固体電解質と空気極との界面に生成する反応生成物を確認するための試料を作製した。まず、燃料極を形成する前の円筒型共焼結体(空気極/固体電解質/集電体)を準備し、長さ10mm程度に切り出した試料の固体電解質表面をEPMAを用いた定量分析により存在する全成分の定量を行った。それから、Mn成分の全成分に対する含有濃度を算出した。尚、EPMAにより分析できるのは、固体電解質の表面から5μmまでの深さである。よって、この部分が表層部となる。
【0049】
次に、作製した円筒型セルから長さ20mm程度に切り出した試料を準備し、希釈した塩酸溶液中に一昼夜浸漬し、空気極を溶解した。固体電解質は、固体電解質の空気極と接した側からXRD分析により相の同定を行った。さらに円筒型セルから空気極のみを切り出して密度測定を行った。その結果を表1に示す。
【0050】
【表1】

Figure 0003725997
【0051】
この表1より、固体電解質の表層部におけるMn量が0.3重量%よりも少ない試料No.1は界面にCaZrO3 と Y2 3 が生成した。一方、表層部におけるMn量が1.2重量%よりも多い試料No.10では、界面のCaZrO3 と Y2 3 は消失するものの、Mn2 3 が生成し、空気極密度が高くなることが判る。
【0052】
また、本発明者等は、上記試料No.1、2、5、6、8、10について、セルの出力密度を測定し、その結果を表1に併せて記載した。発電は、1000℃でセルの内側に空気を、外側に水素を流し出力値が安定した際の初期値と1000hr保持後の値をそれぞれ測定した。
【0053】
最もMn量が少なく界面に反応物を形成した試料No.1のセルは、初期値が0.26W/cm2 までしか到達せず、しかも保持時間とともに出力値が徐々に劣化していった。一方、試料No.2、5、6、8のセルは、出力値が初期の段階で0.30W/cm2 を上回り、1000時間経過後も出力値がほぼ安定、若しくは増加していく傾向が見られた。試料No.10のセルは、初期値は0.30W/cm2 を上回ったが、時間とともに急激に劣化することが確認された。
【0054】
従って、固体電解質の表層部におけるMn量が0.3重量%よりも小さい場合には固体電解質と空気極との界面の分極値が高く、初期状態の出力密度が小さく、また、出力密度が時間とともに急激に劣化し、1.2重量%よりも大きくなると、Mn2 3 が生成し、空気極密度が高くなり、それに伴いガスの透過性が悪化して出力密度の経時変化が大きいことが判る。
【0055】
【発明の効果】
本発明の固体電解質型燃料電池セルの製造方法によれば、固体電解質の燃料極側の表層部へのMn到達量を0.3〜1.2重量%とすることにより、空気極のAサイト構成成分La、Ca、Yが空気極と固体電解質との界面に拡散することを防止でき、固体電解質と空気極との界面の分極値を低くして、出力密度の経時変化を小さくできるとともに、空気極からの固体電解質の剥離を防止でき、安定した発電性能を得ることができる。
【図面の簡単な説明】
【図1】本発明の固体電解質型燃料電池セルを示す断面図である。
【図2】従来の固体電解質型燃料電池セルを示す斜視図である。
【符号の説明】
31・・・固体電解質
32・・・空気極
33・・・燃料極
35・・・集電体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a solid electrolyte fuel cell in which a solid electrolyte comprising a partially stabilized or stabilized ZrO 2 containing a rare earth element and a fuel electrode are sequentially formed on the outer surface of a cylindrical air electrode. is there.
[0002]
[Prior art]
Conventionally, a solid oxide fuel cell has a high power generation efficiency because its operating temperature is as high as 900 to 1050 ° C., and is expected as a third generation power generation system.
[0003]
Generally, cylindrical and flat plate types are known as solid oxide fuel cells. The flat fuel cell has a feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas seal and non-uniform temperature distribution in the cell for practical use. On the other hand, the cylindrical fuel cell has the characteristics that although the power density is low, the cell has high mechanical strength and the temperature in the cell can be kept uniform.
[0004]
Both types of solid oxide fuel cells have been actively researched and developed taking advantage of their characteristics.
[0005]
As shown in FIG. 2, the cylindrical fuel battery cell is formed with a porous air electrode support tube 2 made of a LaMnO 3 based material having an open porosity of about 30 to 40%, and the surface thereof is Y 2 O 3 stabilized ZrO. A solid electrolyte 3 made of 2 is coated, and a porous Ni-zirconia fuel electrode 4 is provided on this surface.
[0006]
In the fuel cell module, each cell is connected via a LaCrO 3 current collector (interconnector) 5. Power generation is performed at a temperature of 1000 to 1050 ° C. by flowing air (oxygen) 6 inside the air electrode support tube 2 and flowing fuel (hydrogen) 7 outside. In addition, as the air electrode support tube 2 material having the function as an air electrode, a solid solution material in which La is replaced by 20 atomic% with Ca or 10-15 atomic% with Sr is used.
[0007]
As a method for producing the fuel cell as described above, for example, an insulating powder is formed into a cylindrical shape by an extrusion method or the like, and then fired to produce a cylindrical support tube, and air is formed on the outer peripheral surface of the support tube. Apply electrode, solid electrolyte, fuel electrode, and current collector slurry and fire and stack them sequentially, or use an electrochemical deposition (EVD) method or plasma spraying method on the surface of a cylindrical support tube. An air electrode, a solid electrolyte, a fuel electrode, and a current collector are sequentially formed.
[0008]
In recent years, in order to simplify the cell manufacturing process and reduce the manufacturing cost, a so-called co-sintering method in which at least two of the constituent materials are simultaneously fired has been proposed. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound in a roll shape around a cylindrical air electrode support tube molded body, and then co-fired, and then the fuel electrode layer is formed on the surface of the solid electrolyte layer. It is a method of forming.
[0009]
This co-sintering method is a very simple process and has a small number of manufacturing steps, and is advantageous in improving the yield during manufacturing of cells and reducing costs. In such a fuel cell by the co-sintering method, a solid electrolyte composed of Y 2 O 3 stabilized or partially stabilized ZrO 2 is used, and the thermal expansion coefficient is matched with this solid electrolyte. A perovskite complex oxide composed of LaMnO 3 in which part of La is substituted with Y and Ca is used (see JP-A-10-162847, etc.).
[0010]
[Problems to be solved by the invention]
However, when a cylindrical fuel cell is manufactured by the above-described co-sintering method, each component element constituting the air electrode and the solid electrolyte diffuses between the air electrode and the solid electrolyte at the interface, and the solid fuel cell is solid. Y from the electrolyte and Ca and Y from the air electrode deposit reaction products and decomposition products of CaZrO 3 and Y 2 O 3 at the interface between the air electrode and the solid electrolyte, and the solid electrolyte and air in the power generation performance. There was a problem that the polarization value at the interface with the pole was high, and the output deteriorated rapidly with time.
[0011]
In particular, the reaction product of CaZrO 3 precipitates at the three-phase interface of the solid electrolyte, the air electrode, and the current collector. Therefore, in the power generation performance, the polarization value at the interface between the solid electrolyte and the air electrode is high, and the output increases with time. There was a problem that it deteriorated rapidly.
[0012]
In addition, since the thermal expansion coefficient of the rare earth element oxide is different from that of a cell component, for example, a solid electrolyte or an air electrode, the solid electrolyte is peeled off from the air electrode during co-sintering or in the subsequent heat treatment process. There was a problem to do.
[0013]
Further, the conventional air electrode material has a composition in which the ratio (A / B ratio) between the A site made of La, Ca and Y and the B site made of Mn is close to a constant ratio of 0.995 to 1.000. Therefore, the A-site component that has become excessive due to evaporation and diffusion of Mn during co-sintering is easily decomposed. As a result, the decomposition product diffuses toward the solid electrolyte side, and the Ca and Y elements become air electrodes. There is a problem that it is easy to deposit at a high concentration as an oxide at the interface between the solid electrolyte and the solid electrolyte.
[0014]
An object of the present invention is to provide a method for manufacturing a solid oxide fuel cell that can suppress the interfacial reaction between the air electrode and the solid electrolyte to improve the bonding strength and maintain stable output performance over the long term. To do.
[0015]
[Means for Solving the Problems]
The present invention comprises a LaMnO 3 -based perovskite complex oxide containing at least La, Ca, rare earth elements (excluding La) and Mn, wherein the A site is the La, Ca, rare earth element, and the B site is the Mn. In the method of manufacturing a solid electrolyte fuel cell in which a solid electrolyte comprising a partially stabilized or stabilized ZrO 2 containing a rare earth element and a fuel electrode are sequentially formed on the outer surface of the cylindrical air electrode, at least the air electrode And the solid electrolyte are co-sintered, Mn contained in the air electrode is diffused in the solid electrolyte, and the amount of Mn reaching the surface layer portion of the solid electrolyte on the fuel electrode side is 0.3 to 1.2. It is characterized by the weight percent.
[0016]
[Action]
Co-sintering a cylindrical air electrode made of a perovskite complex oxide containing La, Ca, Y and Mn and a solid electrolyte made of partially stabilized or stabilized ZrO 2 containing a rare earth element on its outer surface (simultaneously Calcination), among the constituent elements constituting the air electrode during co-sintering, Mn element has a particularly fast diffusion (evaporation and diffusion in the solid phase) compared to other La, Ca and Y, and this air electrode The amount of Mn diffused from the catalyst has a causal relationship with the amount of reaction product produced between the solid electrolyte and the air electrode.
[0017]
That is, when Mn constituting the B site in the air electrode diffuses to the solid electrolyte side, La, Ca, and Y constituting the A site in the air electrode are inevitably excessive and decomposed to decompose the air electrode and the solid electrolyte. Here, a rare earth element oxide, for example, CaZrO 3 produced by the reaction between the precipitation of Y 2 O 3 and the solid electrolyte is produced, and the polarization at the interface between the solid electrolyte and the air electrode is generated in the power generation performance. The value is high and the output deteriorates rapidly with time. In addition, since the thermal expansion coefficient of the oxide of Y 2 O 3 is different from that of the cell component, for example, the solid electrolyte or the air electrode, the solid electrolyte is removed from the air electrode during the co-sintering or the subsequent heat treatment process. Easy to peel off.
[0018]
Further, the conventional air electrode material has a composition in which the ratio (A / B ratio) between the A site made of La, Ca, and Y and the B site made of Mn is close to a constant ratio of 0.995 to 1.000. Therefore, the A-site component that has become excessive due to evaporation and diffusion of Mn at the time of co-sintering is easily decomposed. As a result, the decomposition product diffuses toward the solid electrolyte side, and the rare earth element Y element is It is easy to deposit at a high concentration as an oxide at the interface between the air electrode and the solid electrolyte.
[0019]
In the method for producing a solid electrolyte fuel cell of the present invention, a Mn-rich perovskite complex oxide is used as the air electrode material in advance, that is, the Mn content in the surface layer portion on the fuel electrode side of the solid electrolyte is 0.3. The ratio (A / B ratio) between the A site made of La, rare earth elements and the like and the B site made of Mn is made smaller than 1 so that Mn diffuses from the air electrode so that it becomes -1.2% by weight. By preventing the A site from becoming excessive, it is possible to prevent the A site constituent components La, Ca, Y of the air electrode from diffusing to the interface between the air electrode and the solid electrolyte. The polarization value can be lowered to reduce the change in power density with time, and the solid electrolyte can be prevented from peeling from the air electrode.
[0020]
From the above, the interface reaction between the solid electrolyte layer and the air electrode layer can be suppressed during cell manufacture and power generation, and accordingly, the initial high power density can be maintained for a long time.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the solid oxide fuel cell according to the present invention has an air electrode 32 on the inner surface of a cylindrical solid electrolyte 31 and a fuel electrode 33 on the outer surface to form a cell body 34. A current collector 35 that is electrically connected to the air electrode 32 is formed on the outer surface of the cell body 34.
[0022]
That is, a notch 36 is formed in a part of the solid electrolyte 31, and a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the solid electrolyte in the vicinity of the exposed surface 37 and the notch 36. The surface of both ends of 31 is covered with a current collector 35, and the current collector 35 is joined to the surface of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31.
[0023]
A current collector 35 that is electrically connected to the air electrode 32 is formed on the outer surface of the cell body 34, and is formed so as to cover a continuous identical surface 39 having almost no step, and is electrically connected to the fuel electrode 33. Not. When the current collectors 35 are connected to each other, the current collectors 35 are electrically connected to the fuel electrodes of other cells via Ni felts, thereby forming a fuel cell module. The continuous coplanar surface 39 is formed by polishing between both end portions of the solid electrolyte molded body until both end portions of the solid electrolyte molded body and a part of the air electrode molded body are substantially the same plane.
[0024]
As the solid electrolyte 31, for example, partially stabilized or stabilized ZrO 2 containing 3 to 20 mol% of Y 2 O 3 or Yb 2 O 3 is used, and among these, 3 to 20 mol% of Y 2 O 3 is used. The partially stabilized or stabilized ZrO 2 contained is desirable.
[0025]
The air electrode 32 is mainly composed of a perovskite complex oxide containing La and Mn, and contains at least one of Ca and rare earth elements. Examples of rare earth elements include Y, Nd, Dy, Er, Yb, etc. Among these, Y is desirable. As the fuel electrode 33, for example, ZrO 2 (containing Y 2 O 3 ) cermet containing 50 to 80 wt% Ni is used.
[0026]
The current collector 35 has a perovskite complex oxide containing La, Cr, and Mg as metal elements as a main crystal, and may contain a rare earth element or an alkaline earth metal element. It is desirable that the current collector 35 further contains MgO crystals because the coefficient of thermal expansion of the current collector 35 can be increased to match that of the solid electrolyte 31 and the air electrode 32.
[0027]
The current collector 35 and the fuel electrode 33 are not limited to the above examples, and known materials may be used. The solid electrolyte 31 made of the above material has a thermal expansion coefficient of approximately 10.5 × 10 −6 / ° C.
[0028]
In the method for producing a solid oxide fuel cell according to the present invention, the amount of Mn reaching the fuel electrode side surface layer of the solid electrolyte is 0.3 to 1.2% by weight.
[0029]
Here, when the amount of Mn in the surface layer portion is less than 0.3% by weight, the amount of the solid electrolyte that reaches the surface layer portion due to Mn diffusion is determined within the above range. This is because the A-site component amount becomes more excessive due to Mn diffusion during cell production, and the excess amount of the A-site component is decomposed to promote the interfacial reaction.
[0030]
On the other hand, when the amount of Mn in the surface layer part is more than 1.2% by weight, the composition variation of the perovskite is caused by Mn diffusion due to the non-stoichiometric composition in which the B site component is excessive from the starting composition stage, that is, Mn rich composition. Even if it occurs, decomposition of the A site component does not occur. However, this is because it becomes too dense for improving the sinterability of the air electrode, resulting in insufficient gas permeation during cell power generation, resulting in deterioration of performance.
[0031]
The total amount of Mn in the solid electrolyte is desirably 0.8 to 1.5% by weight in the total amount.
[0032]
According to the method for producing a solid oxide fuel cell of the present invention, the solid oxide fuel cell is produced as follows. For preparing the air electrode, first, for example, raw materials of La 2 O 3 , Y 2 O 3 , CaO and MnO 2 are weighed and mixed according to a predetermined composition, and then fired at a temperature of about 1500 ° C. for 2 to 10 hours. And then prepared to a particle size of 4-8 μm. At this time, the Mn content, that is, the atomic ratio of the A / B site is adjusted so that the amount reached by the Mn diffusion to the surface layer of the solid electrolyte during cell production is in the range of 0.3 to 1.2% by weight. There is a need to.
[0033]
The air electrode is a perovskite complex oxide represented by ABO 3 , and the ratio (A / B ratio) of the A site composed of La, Ca, and Y to the B site composed of Mn is 0.94 to 0.00. Since it is desirable that the raw material powder is 99, the A / B ratio of the raw material powder needs to be smaller than that of the sintered body.
[0034]
The prepared powder is mixed and kneaded, and a cylindrical air electrode molded body is produced by an extrusion molding method. Further, the binder is debindered and calcined at 1200 to 1250 ° C. to obtain the air electrode calcined body. Make it.
[0035]
The sheet for the solid electrolyte 31 is prepared by, for example, preparing a powder made of partially stabilized or stabilized ZrO 2 containing 3 to 20 mol% of Y 2 O 3 or Yb 2 O 3 to a size of 0.1 to 5 μm. A commercially available solvent, a dispersant, and a binder are added at a predetermined concentration, and a sheet having a thickness of 50 to 100 μm is prepared by a method such as a doctor blade.
[0036]
Sheet current collector for 35, like the solid electrolyte 31, to produce a sheet having a thickness of 50~100μm by a method such as a doctor blade with a powder consisting of LaCrO 3 system material.
[0037]
Then, a solid electrolyte sheet and a current collector sheet are respectively attached to the surface of the air electrode calcined body, and this is obtained by firing in the atmosphere at a temperature of 1400 to 1550 ° C. for 2 to 10 hours. Due to this firing, Mn diffuses from the air electrode to the solid electrolyte. This diffusion also makes the A / B ratio of the air electrode 0.94 to 0.99, which is smaller than 1.
[0038]
The fuel electrode 33 has a composition (containing Y 2 O 3 ) composed of 70 to 90% by weight of Ni and ZrO 2, and is produced by sticking as a sheet on the surface of the solid electrolyte or applying slurry. Firing is performed in the atmosphere at a temperature of 1400 to 1550 ° C. for 2 to 10 hours. In this case, the co-sintering of the solid electrolyte, the air electrode, and the current collector may be performed at the same time.
[0039]
In the solid oxide fuel cell configured as described above, the Mn amount in the surface layer portion of the solid electrolyte on the fuel electrode side is set to 0.3 to 1.2% by weight, so that the A site composed of La, Ca, and Y And the ratio of the M site to the B site (A / B ratio) is smaller than 1, and even if Mn diffuses from the air electrode, the A site component La of the air electrode is prevented from becoming excessive. , Ca and Y can be prevented from diffusing to the interface between the air electrode and the solid electrolyte, the polarization value at the interface between the solid electrolyte and the air electrode can be lowered, and the change with time of the output can be reduced. The peeling of the solid electrolyte can be prevented.
[0040]
In the fuel cell of the present invention, an air electrode may be formed on one side of the solid electrolyte, and a fuel electrode may be formed on the other side, and the structure is not limited to FIG.
[0041]
【Example】
Using commercially available La 2 O 3 , Y 2 O 3 , CaCO 3 , and MnO 2 with a purity of 99.9% or more as a starting material, they are formulated so that the atomic ratio of the A / B site of perovskite is different. A cylindrical air electrode molded body was prepared by extrusion molding, and calcined at 1250 ° C. to prepare an air electrode calcined body.
[0042]
Next, a 100 μm solid electrolyte sheet was prepared using 8 mol% Y 2 O 3 partially stabilized ZrO 2 powder. Furthermore, using La 2 O 3 , Cr 2 O 3 , and MgO with a purity of 99.9% or more as a starting material, a powder having a composition satisfying La (Mg 0.3 Cr 0.7 ) 0.97 O 3 is used by a doctor blade method. A current collector sheet having a thickness of 100 μm was produced.
[0043]
The solid electrolyte sheet is wound around the air electrode calcined body in a roll shape so that both ends thereof are open, then calcined, and then polished flat so that the air electrode is exposed between both ends of the solid electrolyte sheet. Then, a current collector sheet was laminated on this portion to produce a co-sintered body in the atmosphere at 1500 ° C. for 6 hours.
[0044]
Next, in order to produce a cylindrical cell, a fuel electrode was formed on the surface of the co-sintered body, and a sealing member was joined to one end of the co-sintered body as follows. First, an anode slurry is prepared by adding water as a solvent to a mixed powder obtained by mixing ZrO 2 (containing 8 mol% Y 2 O 3 ) powder with NiO powder at a weight ratio of 80:20, and having a thickness of 50 μm. The fuel electrode slurry was applied to the surface of the co-sintered body and dried.
[0045]
Next, a slurry is prepared by adding water as a solvent to a ZrO 2 powder containing 8 mol% of Y 2 O 3 and having an average particle size of 1 μm, and one end of the co-sintered body is immersed in this slurry. The film was applied to the outer peripheral surface of one end so as to have a thickness of 100 μm, and dried at a temperature of 120 ° C. for 1 hour.
[0046]
The molded body having a cap shape as a sealing member was subjected to isostatic pressing (rubber press) using a powder having the same composition as the slurry composition and cut. Thereafter, the end portion of the co-sintered body coated with the slurry was inserted into a molded body for a sealing member.
[0047]
Thereafter, the fuel electrode film was formed and the sealing member was joined at the same time by firing for 2 hours at a temperature of 1400 ° C. in the atmosphere.
[0048]
A sample for confirming the amount of Mn diffusion in the surface layer portion of the solid electrolyte and the reaction product produced at the interface between the solid electrolyte and the air electrode was produced using each cylindrical cell produced through the above steps. First, a cylindrical co-sintered body (air electrode / solid electrolyte / current collector) before forming the fuel electrode is prepared, and the solid electrolyte surface of the sample cut out to a length of about 10 mm is quantitatively analyzed using EPMA. Quantification of all components present was performed. Then, the concentration of the Mn component relative to all components was calculated. Note that what can be analyzed by EPMA is a depth of 5 μm from the surface of the solid electrolyte. Therefore, this part becomes the surface layer part.
[0049]
Next, a sample cut out to a length of about 20 mm from the prepared cylindrical cell was prepared, and immersed in a diluted hydrochloric acid solution all day and night to dissolve the air electrode. The phase of the solid electrolyte was identified by XRD analysis from the side of the solid electrolyte in contact with the air electrode. Furthermore, only the air electrode was cut out from the cylindrical cell, and the density measurement was performed. The results are shown in Table 1.
[0050]
[Table 1]
Figure 0003725997
[0051]
From Table 1, the sample No. in which the amount of Mn in the surface layer portion of the solid electrolyte is less than 0.3% by weight. No. 1 produced CaZrO 3 and Y 2 O 3 at the interface. On the other hand, in sample No. 10 in which the amount of Mn in the surface layer part is greater than 1.2 wt%, although CaZrO 3 and Y 2 O 3 at the interface disappear, Mn 2 O 3 is generated and the air electrode density is increased. I understand that.
[0052]
In addition, the present inventors have made the above-mentioned sample No. The cell output density was measured for 1, 2, 5, 6, 8, and 10, and the results are also shown in Table 1. For power generation, the initial value when the output value was stabilized by flowing air inside the cell and flowing hydrogen outside the cell at 1000 ° C. and the value after holding for 1000 hours were measured.
[0053]
Sample No. with the least amount of Mn and a reactant formed at the interface. The initial value of the cell No. 1 reached only 0.26 W / cm 2 , and the output value gradually deteriorated with the holding time. On the other hand, sample No. In the cells 2 , 5, 6, and 8, the output value exceeded 0.30 W / cm 2 at the initial stage, and the output value tended to be almost stable or increased after 1000 hours. Sample No. The initial value of 10 cells exceeded 0.30 W / cm 2 , but it was confirmed that the cell rapidly deteriorated with time.
[0054]
Therefore, when the amount of Mn in the surface layer portion of the solid electrolyte is smaller than 0.3% by weight, the polarization value at the interface between the solid electrolyte and the air electrode is high, the output density in the initial state is small, and the output density is time. When it deteriorates rapidly and becomes larger than 1.2% by weight, Mn 2 O 3 is generated, the air electrode density increases, and the gas permeability deteriorates accordingly, and the change in output density with time is large. I understand.
[0055]
【The invention's effect】
According to the method for producing a solid electrolyte fuel cell of the present invention, the amount of Mn reaching the surface layer portion of the solid electrolyte on the fuel electrode side is set to 0.3 to 1.2% by weight. The constituent components La, Ca, and Y can be prevented from diffusing to the interface between the air electrode and the solid electrolyte, the polarization value at the interface between the solid electrolyte and the air electrode can be lowered, and the change in output density with time can be reduced. Separation of the solid electrolyte from the air electrode can be prevented, and stable power generation performance can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a solid oxide fuel cell of the present invention.
FIG. 2 is a perspective view showing a conventional solid oxide fuel cell.
[Explanation of symbols]
31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel electrode 35 ... Current collector

Claims (1)

少なくともLa、Ca、希土類元素(Laを除く)およびMnを含有し、Aサイトが前記La、Ca、希土類元素、Bサイトが前記MnであるLaMnO 系のペロブスカイト型複合酸化物からなる円筒状の空気極の外面に、希土類元素を含有する部分安定化または安定化ZrO2からなる固体電解質、燃料極が順次形成された固体電解質型燃料電池セルの製造方法において、
少なくとも前記空気極と前記固体電解質を共焼結し、前記空気極に含有されるMnを前記固体電解質中に拡散せしめ、該固体電解質の燃料極側の表層部へのMn到達量を0.3〜1.2重量%とすることを特徴とする固体電解質型燃料電池セルの製造方法。
A cylindrical shape composed of a LaMnO 3 -based perovskite complex oxide containing at least La, Ca, rare earth elements (excluding La), and Mn, wherein the A site is the La, Ca, rare earth element, and the B site is the Mn . In the method for producing a solid electrolyte fuel cell in which a solid electrolyte comprising a partially stabilized or stabilized ZrO 2 containing a rare earth element and a fuel electrode are sequentially formed on the outer surface of the air electrode,
At least the air electrode and the solid electrolyte are co-sintered, Mn contained in the air electrode is diffused in the solid electrolyte, and the amount of Mn reaching the surface layer portion of the solid electrolyte on the fuel electrode side is 0.3. A method for producing a solid oxide fuel cell, characterized by comprising -1.2 wt%.
JP18592699A 1999-06-30 1999-06-30 Method for manufacturing solid oxide fuel cell Expired - Fee Related JP3725997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18592699A JP3725997B2 (en) 1999-06-30 1999-06-30 Method for manufacturing solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18592699A JP3725997B2 (en) 1999-06-30 1999-06-30 Method for manufacturing solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2001015129A JP2001015129A (en) 2001-01-19
JP3725997B2 true JP3725997B2 (en) 2005-12-14

Family

ID=16179301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18592699A Expired - Fee Related JP3725997B2 (en) 1999-06-30 1999-06-30 Method for manufacturing solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3725997B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
US20070141422A1 (en) * 2005-12-16 2007-06-21 Saint-Gobain Ceramics & Plastics, Inc. Fuel cell component having an electrolyte dopant
JP5348710B2 (en) 2008-12-18 2013-11-20 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Highly sintered lanthanum strontium titanate interconnects by doping
JP2015506081A (en) 2011-12-22 2015-02-26 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Interconnection of solid oxide fuel cells containing ceramic interconnect material and partially stabilized zirconia
JP6292897B2 (en) * 2014-01-23 2018-03-14 キヤノン株式会社 Display control device, control method, and program

Also Published As

Publication number Publication date
JP2001015129A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
JP4462727B2 (en) Solid electrolyte fuel cell
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP4743949B2 (en) Solid electrolyte fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
JP3359413B2 (en) Solid oxide fuel cell
JP3339998B2 (en) Cylindrical fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP3725994B2 (en) Solid oxide fuel cell
JP3342541B2 (en) Solid oxide fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP3570900B2 (en) Solid oxide fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP3652932B2 (en) Solid oxide fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JP3740342B2 (en) Solid oxide fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JP2001126745A (en) Solid electrolytic fuel cell
JP3595215B2 (en) Solid oxide fuel cell
JPH08130029A (en) Solid electrolyte fuel cell and its manufacture
JP3677401B2 (en) Cylindrical solid electrolyte fuel cell
JP3726002B2 (en) Solid oxide fuel cell and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees