JP4462727B2 - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell Download PDF

Info

Publication number
JP4462727B2
JP4462727B2 JP2000198813A JP2000198813A JP4462727B2 JP 4462727 B2 JP4462727 B2 JP 4462727B2 JP 2000198813 A JP2000198813 A JP 2000198813A JP 2000198813 A JP2000198813 A JP 2000198813A JP 4462727 B2 JP4462727 B2 JP 4462727B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
air electrode
electrode
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000198813A
Other languages
Japanese (ja)
Other versions
JP2002015754A (en
Inventor
雅人 西原
高志 重久
祥二 山下
勇 安田
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Tokyo Gas Co Ltd
Original Assignee
Kyocera Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Tokyo Gas Co Ltd filed Critical Kyocera Corp
Priority to JP2000198813A priority Critical patent/JP4462727B2/en
Publication of JP2002015754A publication Critical patent/JP2002015754A/en
Application granted granted Critical
Publication of JP4462727B2 publication Critical patent/JP4462727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気極の表面に、 を含有するZrO からなる固体電解質、金属粒子を含有する燃料極を積層してなる固体電解質形燃料電池セルに関するものである。
【0002】
【従来技術】
従来より、固体電解質燃料電池はその作動温度が900〜1050℃と高温であるため発電効率が高く、第3世代の発電システムとして期待されている。
【0003】
一般に固体電解質燃料電池セルには、円筒型と平板型が知られている。平板型燃料電池セルは、発電の単位体積当たり出力密度は高いという特徴を有するが、実用化に関してはガスシール不完全性やセル内の温度分布の不均一性などの問題がある。それに対して、円筒型燃料電池セルでは、出力密度は低いものの、セルの機械的強度が高く、またセル内の温度の均一性が保てるという特徴がある。両形状の固体電解質燃料電池セルとも、それぞれの特徴を生かして積極的に研究開発が進められている。
【0004】
円筒型燃料電池の単セルは、図2に示すように開気孔率30〜40%程度のLaMnO3系材料からなる多孔性の空気極支持管2を形成し、その表面にY23安定化ZrO2からなる固体電解質3を被覆し、さらにこの表面に多孔性のNi−ジルコニアの燃料極4を設けて構成されている。
【0005】
燃料電池のモジュールにおいては、各単セルはLaCrO3系の集電体(インターコネクタ)5を介して接続される。発電は、空気極支持管2内部に空気(酸素)6を、外部に燃料(水素)7を流し、1000〜1050℃の温度で行われる。
【0006】
上記のような燃料電池セルを製造する方法としては、例えばCaO安定化ZrO2からなる絶縁粉末を押出成形法などにより円筒状に成形後、これを焼成して円筒状支持体を作製し、この支持体の外周面に空気極、固体電解質、燃料極、集電体のスラリーを塗布してこれを順次焼成して積層するか、あるいは円筒状支持体の表面に電気化学的蒸着法(EVD法)やプラズマ溶射法などにより空気極、固体電解質、燃料極、集電体を順次形成することも行われている。
【0007】
近年ではセルの製造工程を簡略化し且つ製造コストを低減するために、各構成材料のうち少なくとも2つを同時焼成する、いわゆる共焼結法が提案されている。この共焼結法は、例えば、円筒状の空気極成形体に固体電解質成形体及び集電体成形体をロール状に巻き付けて同時焼成を行い、その後固体電解質層表面に燃料極層を形成する方法である。またプロセス簡略化のために、固体電解質成形体の表面にさらに燃料極成形体を積層して、同時焼成する共焼結法も提案されている。
【0008】
この共焼結法は非常に簡単なプロセスで製造工程数も少なく、セルの製造時の歩留まり向上、コスト低減に有利である。このような共焼結法による燃料電池セルでは、Y23安定化または部分安定化ZrO2からなる固体電解質を用い、この固体電解質に熱膨張係数を合致させる等のため、空気極材料として、LaMnO3からなるペロブスカイト型複合酸化物のLaの一部をYおよびCaで置換したものが用いられている(特開平10−162847号公報等参照)。
【0009】
【発明が解決しようとする課題】
上述した共焼結法を用いて円筒型燃料電池セルを作製すると、共焼結の際に、空気極の構成成分であるMn元素が、固体電解質を介して、燃料極内部に向かって固相内拡散する。その結果、燃料極中のMn量が増加し、燃料極サイトの分極値およびセル構成成分の実抵抗値が高くなり、これにより、初期における出力密度が低いという問題があった。
【0010】
本発明は、初期において高い出力密度を得ることができるとともに、長期に亘って高い出力密度を維持できる固体電解質燃料電池セルを提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の固体電解質形燃料電池セルは、少なくともLaおよびMnを含有するペロブスカイト型複合酸化物からなる空気極の表面に、3〜15モル%のY を含有する部分安定化あるいは安定化ZrO からなる固体電解質、燃料極をこの順に積層してなり、前記空気極、前記固体電解質、前記燃料極が同時に焼結された固体電解質形燃料電池セルにおいて、前記固体電解質と前記空気極との間に、Zrと、YまたはScと、Sm、Gd、Dy、Er、Ybのうち1種とが固溶したCeO、あるいはCeとYとSmとが固溶したZrO、あるいはそれらの混合体からなるMn拡散防止層を形成してなるものである。
【0012】
このような固体電解質燃料電池セルでは、固体電解質と空気極との間に、Zrと、YまたはScと、Sm、Gd、Dy、Er、Ybのうち1種とが固溶したCeO 、あるいはCeとYとSmとが固溶したZrO 、あるいはそれらの混合体からなるMn拡散防止層を形成したため、空気極から固体電解質を介して、燃料極に拡散しようとするMnを、Mn拡散防止層により遮断または抑制でき、燃料極中におけるMn含有量を減少でき、これにより、燃料極サイトの分極値およびセル構成成分の実抵抗値を低くでき、出力密度を高くできるとともに、高い出力密度を長期間に亘って維持できる。
【0013】
これは、燃料極中に存在するMn量が多い場合には、燃料極の焼結性を過剰に促進し、燃料極中の金属粒子の粒成長が過剰となり、金属粒子と固体電解質との接触面積が低下し、燃料極サイトの分極値が大きくなるからであり、さらに金属粒子間にMnが析出するため導電性が低下し、セル構成成分の実抵抗値が高くなるからである。
【0014】
また、このような構成によれば、Mn拡散防止層が、Zrと、YまたはScと、Sm、Gd、Dy、Er、Ybのうち1種とが固溶したCeO 、あるいはCeとYとSmとが固溶したZrO 、あるいはそれらの混合体であるため、少なくともLaおよびMnを含有するペロブスカイト型複合酸化物からなる空気極、固体電解質と、Mn拡散防止層との熱膨張率を近づけることができ、製造中或いは発電中における昇温冷却によって破損することを抑制できる。
【0015】
また、本発明の固体電解質燃料電池セルでは、前記燃料極中のMn量が0.2重量%以下であることが望ましい。このようにすることにより、燃料極サイトの分極値およびセル構成成分の実抵抗値をさらに低くできる。
【0016】
さらに、本発明の固体電解質形燃料電池セルでは、前記固体電解質が3〜15モル%のY を含有する部分安定化あるいは安定化ZrOからなる。また、Mn拡散防止層は、CeO中に、Zr、YおよびSmを固溶してなることが望ましい。
【0020】
【発明の実施の形態】
本発明の固体電解質燃料電池セルは、図1に示すように円筒状の固体電解質31の内面に空気極32、外面に燃料極33を形成してセル本体34が形成されており、空気極32には集電体(インターコネクタ)35が電気的に接続されている。
【0021】
即ち、固体電解質31の一部に切欠部36が形成され、固体電解質31の内面に形成されている空気極32の一部が露出しており、この露出面37及び切欠部36近傍の固体電解質31の表面が集電体35により被覆され、集電体35が、固体電解質31の両端部表面及び固体電解質31の切欠部36から露出した空気極32の表面に接合されている。
【0022】
空気極32と電気的に接続する集電体35は、セル本体34の外面に形成され、ほぼ段差のない連続同一面39を覆うように形成されており、燃料極33とは電気的に接続されていない。
【0023】
この集電体35は、セル同士間を接続する際に他のセルの燃料極にNiフェルトを介して電気的に接続され、これにより燃料電池モジュールが構成される。連続同一面39は、固体電解質の両端部と空気極の一部とが連続したほぼ同一面となるまで、固体電解質の両端部間を研磨することにより形成される。
【0024】
固体電解質31は、例えば3〜15モル%のY23含有した部分安定化あるいは安定化ZrO2が用いられる。また、空気極32としては、例えば、LaをCa又はSrで10〜30原子%、Yで5〜20原子%置換したLaMnO3が用いられ、集電体35としては、例えば、CrをMgで10〜30原子%置換したLaCrO3が用いられる。
【0025】
燃料極33としては、50〜80重量%Niを含むZrO2(Y23含有)サーメットが用いられる。固体電解質31、集電体35、燃料極33としては、上記例に限定されるものではなく、公知材料を用いても良い。空気極32としては、少なくともLaおよびMnを含有するペロブスカイト型複合酸化物からなるものであれば良い。
【0026】
そして、本発明の固体電解質燃料電池セルでは、固体電解質31と空気極32との間に、Zrと、YまたはScと、Sm、Gd、Dy、Er、Ybのうち1種とが固溶したCeO 、あるいはCeとYとSmとが固溶したZrO 、あるいはそれらの混合体からなるMn拡散防止層41が形成されている。Mn拡散防止層41の厚みは、部材間の熱膨張係数の整合という点から2〜15μmが望ましい。
【0027】
また、燃料極33中のMn量は0.2重量%以下とされている。このように燃料極33中のMn量を0.2重量%以下とすることにより、燃料極サイトの分極値およびセル構成成分の実抵抗値をさらに低くできる。
【0028】
以上のように構成された固体電解質燃料電池セルの製法は、まず、円筒状の空気極成形体を形成する。この円筒状の空気極成形体は、例えば所定の調合組成に従いLa、Y、CaCOおよびMnの素原料を秤量、混合する。
【0029】
この後、例えば、1500℃程度の温度で2〜10時間仮焼し、その後4〜8μmの粒度に粉砕調製する。調製した粉体に、バインダーを混合、混練し押出成形法により円筒状の空気極成形体を作製し、さらに脱バインダー処理し、1200〜1250℃で仮焼を行うことで円筒状の空気極仮焼体を作製する。尚、Mnの拡散は1400℃以上で顕著であるため、上記空気極成形体の仮焼温度ではMnは殆ど拡散しない。
【0030】
また、例えば、Y またはSc3を含有するZrO粉末と、組成式が(CeO1−x(AO1.5(AはSm、Gd、Dy、Er、Ybのうち少なくとも1種)で表わされる粉末とを混合し、この混合粉末に、溶媒としてトルエンを添加し、ペーストを作製し、このペーストを円筒状の空気極仮焼体の表面に塗布してMn拡散防止層41の塗布膜を形成した。
【0031】
シート状の第1固体電解質成形体として、所定粉末にトルエン、バインダー、市販の分散剤を加えてスラリー化したものをドクターブレード等の方法により、例えば、100〜120μmの厚さに成形したものを用い、円筒状の空気極仮焼体の表面に形成されたMn拡散防止層41の塗布膜の表面に、第1固体電解質成形体を貼り付けて仮焼し、空気極仮焼体の表面に第1固体電解質仮焼体を形成する。尚、第1固体電解質成形体を仮焼したが、仮焼しなくても良い。
【0032】
次に、シート状の燃料極成形体を作製する。まず、例えば、所定比率に調製したNi/YSZ混合粉体にトルエン、バインダーを加えてスラリー化したものを準備する。前記第1固体電解質成形体の作製と同様、成形、乾燥し、例えば、15μmの厚さのシート状の第2固体電解質成形体を形成する。
【0033】
この第2固体電解質成形体上に燃料極層成形体を印刷、乾燥した後、第1固体電解質仮焼体上に、燃料極層成形体が形成された第2固体電解質成形体を、第1固体電解質仮焼体に第2固体電解質成形体が当接するように巻き付け、積層する。
【0034】
次に、固体電解質成形体の調製同様、100〜120μmの厚さに成形した集電体成形体を所定箇所に貼り付ける。
【0035】
この後、円筒状空気極仮焼体、Mn拡散防止層41の塗布膜、第1固体電解質仮焼体、第2固体電解質成形体、燃料極成形体および集電体成形体の積層体は、例えば、大気中1400〜1550℃の温度で、4層同時に共焼成される。
【0036】
Mnの拡散は、焼成温度、保持時間にも影響するため、焼成温度をできるだけ低下させ、焼成時間をできるだけ短くすることにより、さらにMn量を減少できる。
【0037】
このような製法では、 またはSc を含有するZrO 2 粉末と、組成式が(CeO 1−x (AO 1.5 (AはSm、Gd、Dy、Er、Ybのうち少なくとも1種)で表わされる粉末とを混合して作製されたペーストを、円筒状の空気極仮焼体の表面に塗布してMn拡散防止層41の塗布膜を形成し、固体電解質成形体、燃料極成形体を順次積層した後、同時焼成することにより、固体電解質と空気極との間に、Zrと、YまたはScと、Sm、Gd、Dy、Er、Ybのうち1種とが固溶したCeO 、あるいはCeとYとSmとが固溶したZrO 、あるいはそれらの混合体からなるMn拡散防止層41が形成され、このMn拡散防止層41により、空気極成形体から固体電解質成形体へのMnの拡散を抑制でき、燃料極中におけるMnの拡散量を減少できる。
【0038】
また、例えばYを含有するZrO、CeOおよびSmを含有するペーストを用いて、Mn拡散防止層41形成することで、少なくともLaおよびMnを含有するペロブスカイト型複合酸化物からなる空気極と、Mn拡散防止層との熱膨張率を近づけることができ、製造中における破損や、発電中における昇温冷却によって破損することを抑制できる。
【0039】
尚、上記例では円筒状の固体電解質燃料電池セルについて説明したが、本発明は上記例に限定されるものではなく、空気極上で固体電解質と燃料極を一体焼結して作製する平板型形状の燃料電池セルにおいても適用できる。
【0040】
また、円筒状の固体電解質燃料電池セルにおいても、固体電解質の片面に空気極、他面に燃料極が形成されていればよく、その構造は図1に限定されるものではない。
【0041】
さらに、上記例では、空気極仮焼体、第1固体電解質仮焼体を形成した例について説明したが、これらが、空気極成形体、第1固体電解質成形体であっても良い。
【0042】
【実施例】
円筒状の固体電解質燃料電池セルを共焼結法により作製するため、まず円筒状の空気極仮焼体を以下の手順で作製した。市販の純度99.9%以上のLa、Y、CaCO、Mnを出発原料として、1500℃で仮焼し、(La0.560.14Ca0.30.97MnOを作製し、その後、5μmの粒度に粉砕調整し、これを用いて、押出成形後、1250℃の条件で脱バインダー処理、仮焼し、空気極仮焼体を作製した。
【0043】
次に、Y23を8モル%の割合で含有する平均粒径が1〜2μmのZrO2粉末を用いてスラリーを調製し、ドクターブレード法により厚さ100μmと厚さ15μmの第1及び2固体電解質成形体としてのシートを作製した。
【0044】
次に、燃料極成形体の作製について説明する。平均粒径が0.4μmのNi粉末に対し、平均粒径が0.6μmのY23を8モル%の割合で含有するZrO2粉末を準備し、Ni/YSZ比率(重量分率)が65/35になるように調合し、粉砕混合処理を行い、スラリー化した。
【0045】
その後、調製したスラリーを第2固体電解質成形体上に、30μmの厚さになるように全面に印刷した。
【0046】
次に、市販の純度99.9%以上のLa23、Cr23、MgOを出発原料として、これをLa(Mg0.3Cr0.70.973の組成になるように秤量混合した後1500℃で3時間仮焼粉砕し、この固溶体粉末を用いてスラリーを調製し、ドクターブレード法により厚さ100μmの集電体成形体を作製した。
【0047】
また、Y23またはSc23を8モル%含有するZrO2粉末(8YSZ)と、組成式(CeO21-x(AO1.5x(AはSm、Gd、Dy、Er、Ybのうち少なくとも1種)と表した時、xが表1に示す値の粉末とを、表1に示す割合に混合し、この混合粉末に、溶媒として、トルエンを添加し、Mn拡散防止層のペーストを作製した。
【0048】
まず、前記空気極仮焼体に、Mn拡散防止層のペーストを塗布し、この塗布膜に、前記第1固体電解質成形体を、その両端部が開口するようにロール状に巻き付け1150℃で5時間の条件で仮焼した。仮焼後、第1固体電解質仮焼体の両端部間を空気極仮焼体を露出させるように平坦に研磨し、連続した同一面を形成するように加工した。
【0049】
次に、第1固体電解質仮焼体表面に、燃料極成形体が形成された第2固体電解質成形体を、第1固体電解質仮焼体と第2固体電解質成形体が当接するように積層し、乾燥した後、上記連続同一面に集電体成形体を貼り付け、この後、大気中1550℃で3時間の条件で焼成を行い、共焼結体を作製した。
【0050】
比較のため、Y23を8モル%含有するZrO2粉末に、溶媒としてトルエンを添加し、ペーストを作製し、このペーストを空気極仮焼体に塗布し、上記と同様にして共焼結体を作製した。
【0051】
本発明の共焼結体の断面について、走査型電子顕微鏡(SEM)により観察したところ、固体電解質と空気極との間に、CeO2中にZrと、YまたはScと、Sm、Gd、Dy、Er、Ybのうち1種が固溶したもの、あるいはZrO2中にCe、Y、Smが固溶したもの、あるいはこれらの混合体である、厚さ3〜5μmのMn拡散防止層が形成されていた。表1に、Mn拡散防止層の有無について記載した。
【0052】
次に、上記共焼結体を用いて、燃料極内部のMn拡散量を評価する試料を作製した。まず、長さ10mm程度に切り出した試料の断面の燃料極内部において、X線マイクロアナライザ(EPMA)を用い全構成成分の定量を行った。次に、Mn成分の燃料極全成分に対する含有濃度を算出した。その結果を、表1に示す。
【0053】
次に、発電用の円筒型セルを作製するため、前記共焼結体片端部に封止部材の接合を行った。封止部材の接合は、以下のような手順で行った。Y23を8モル%の割合で含有する平均粒子径が1μmのZrO2粉末に水を溶媒として加えてスラリーを調製し、このスラリーに前記共焼結体の片端部を浸漬し、厚さ100μmになるように片端部外周面に塗布し乾燥した。封止部材としてのキャップ形状を有する成形体は、前記スラリー組成と同組成の粉末を用いて静水圧成形(ラバープレス)を行い切削加工した。その後、前記スラリーを被覆した前記共焼結体片端部を封止部材用成形体に挿入し、大気中1300℃の温度で1時間焼成を行った。
【0054】
発電は、1000℃でセルの内側に空気を、外側に水素を流し、出力値が安定した際の初期値と1000時間保持後の値でそれぞれの性能を測定評価した。上記Mn量の結果と併せて、これらの測定結果を表1に示す。
【0055】
【表1】

Figure 0004462727
【0056】
この表1より、本発明の固体電解質燃料電池セルの試料では、固体電解質と空気極との間に、CeO中にZrと、YまたはScと、Sm、Gd、Dy、Er、Ybのうち1種が固溶したもの、あるいはZrO中にCeSmが固溶したもの、あるいはこれらの混合体からなるMn拡散防止層が形成されており、燃料極中のMn量が0.2重量%以下となり、初期から0.4W/cmを上回り、1000時間経過後も出力密度がほぼ安定していることが判る。
【0057】
一方、比較例の試料No.1では、Mn拡散防止層が形成されておらず、このため、燃料極中のMn量が0.2重量%よりも多くなり、本発明品よりも初期段階から出力密度が低いことが判る。
【0058】
【発明の効果】
以上詳述したように、本発明の固体電解質燃料電池セルでは、共焼結時に空気極側から燃料極内部に向かって拡散しようとするMnが、固体電解質と空気極との間に形成されたMn拡散防止層により遮断あるいは抑制され、固体電解質、燃料極中におけるMnの拡散量を減少でき、これにより、燃料極サイトの分極値およびセル構成成分の実抵抗値を低くでき、出力密度を高くできるとともに、高い出力密度を長期間に亘って維持できる。
【図面の簡単な説明】
【図1】(a)は本発明の円筒状の固体電解質燃料電池セルを示す断面図であり、(b)は(a)の一部を拡大して示す断面図である。
【図2】従来の円筒状の固体電解質燃料電池セルを示す斜視図である。
【符号の説明】
31・・・固体電解質
32・・・空気極
33・・・燃料極
35・・・集電体
41・・・Mn拡散防止層[0001]
BACKGROUND OF THE INVENTION
The present invention, on the surface of the air electrode, ZrO 2 Tona Ru solid electrolyte containing Y 2 O 3, it relates to a solid electrolyte fuel cell formed by laminating a fuel electrode containing metal particles.
[0002]
[Prior art]
Conventionally, the solid electrolyte fuel cell is its operating temperature of 900 to 1050 ° C. and high power generation efficiency because of the high temperature, is expected as a power system of the third generation.
[0003]
Generally the solid electrolyte fuel cell is cylindrical and the flat plate type are known. The flat fuel cell has a feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas seal and non-uniform temperature distribution in the cell for practical use. On the other hand, the cylindrical fuel cell has the characteristics that although the power density is low, the cell has high mechanical strength and the temperature in the cell can be kept uniform. Both solid electrolyte fuel cells of the two shapes, has been advanced research and development is actively taking advantage of their characteristics.
[0004]
As shown in FIG. 2, a single cell of a cylindrical fuel cell is formed with a porous air electrode support tube 2 made of a LaMnO 3 material having an open porosity of about 30 to 40%, and a Y 2 O 3 stable surface is formed on the surface thereof. The solid electrolyte 3 made of ZrO 2 is coated, and a porous Ni-zirconia fuel electrode 4 is provided on the surface.
[0005]
In the fuel cell module, each single cell is connected via a LaCrO 3 current collector (interconnector) 5. Power generation is performed at a temperature of 1000 to 1050 ° C. by flowing air (oxygen) 6 inside the air electrode support tube 2 and flowing fuel (hydrogen) 7 outside.
[0006]
As a method of manufacturing the fuel cell as described above, for example, an insulating powder made of CaO-stabilized ZrO 2 is formed into a cylindrical shape by an extrusion method or the like, and then fired to produce a cylindrical support. A slurry of an air electrode, a solid electrolyte, a fuel electrode, and a current collector is applied to the outer peripheral surface of the support and sequentially fired and laminated, or electrochemical deposition (EVD method) is applied to the surface of the cylindrical support. ) And plasma spraying methods, etc., an air electrode, a solid electrolyte, a fuel electrode, and a current collector are sequentially formed.
[0007]
In recent years, in order to simplify the cell manufacturing process and reduce the manufacturing cost, a so-called co-sintering method in which at least two of the constituent materials are simultaneously fired has been proposed. In this co-sintering method, for example, a solid electrolyte molded body and a current collector molded body are wound around a cylindrical air electrode molded body in a roll shape and co-fired, and then a fuel electrode layer is formed on the surface of the solid electrolyte layer. Is the method. In order to simplify the process, a co-sintering method in which a fuel electrode molded body is further laminated on the surface of the solid electrolyte molded body and co-fired has been proposed.
[0008]
This co-sintering method is a very simple process and has a small number of manufacturing steps, and is advantageous in improving the yield during manufacturing of cells and reducing costs. In such a fuel cell by the co-sintering method, a solid electrolyte composed of Y 2 O 3 stabilized or partially stabilized ZrO 2 is used, and the thermal expansion coefficient is matched with this solid electrolyte. A perovskite complex oxide composed of LaMnO 3 in which part of La is substituted with Y and Ca is used (see JP-A-10-162847, etc.).
[0009]
[Problems to be solved by the invention]
When a cylindrical fuel cell is produced using the above-mentioned co-sintering method, the Mn element, which is a constituent component of the air electrode, is solid-phased toward the inside of the fuel electrode via the solid electrolyte during co-sintering. It diffuses in. As a result, the amount of Mn in the fuel electrode is increased, and the polarization value of the fuel electrode site and the actual resistance value of the cell constituent components are increased, thereby causing a problem that the initial output density is low.
[0010]
The present invention makes it possible to obtain high power density in the initial, and an object thereof is to provide a solid electrolyte fuel cell cell Le capable of maintaining a high power density for a long period of time.
[0011]
[Means for Solving the Problems]
The solid electrolyte fuel cell of the present invention is partially stabilized or stabilized containing 3 to 15 mol% of Y 2 O 3 on the surface of an air electrode composed of a perovskite complex oxide containing at least La and Mn . ZrO 2 Tona Ru solid electrolyte, formed by laminating a fuel electrode in this order, said air electrode, the solid electrolyte, in the fuel electrode is a solid electrolyte fuel cell which is simultaneously sintered, the said solid electrolyte cathode Zr, Y or Sc, and CeO 2 in which one of Sm, Gd, Dy, Er, and Yb forms a solid solution, or ZrO 2 in which Ce, Y, and Sm form a solid solution, or these A Mn diffusion preventing layer made of a mixture of the above is formed.
[0012]
In such solid electrolyte fuel cells, between the solid electrolyte and the air electrode, Zr and, Y or Sc and, Sm, Gd, Dy, Er , CeO 2 to one and in a solid solution of Yb, Alternatively, since a Mn diffusion prevention layer made of ZrO 2 in which Ce, Y, and Sm are dissolved , or a mixture thereof is formed, Mn diffused from the air electrode through the solid electrolyte to the fuel electrode is diffused into Mn. It can be blocked or suppressed by the prevention layer, and the Mn content in the fuel electrode can be reduced, which can reduce the polarization value of the fuel electrode site and the actual resistance value of the cell components, increase the power density, and increase the power density. Can be maintained over a long period of time.
[0013]
This is because when the amount of Mn present in the fuel electrode is large, the sinterability of the fuel electrode is excessively promoted, the particle growth of the metal particles in the fuel electrode becomes excessive, and the contact between the metal particles and the solid electrolyte occurs. This is because the area decreases and the polarization value of the fuel electrode site increases, and further, Mn precipitates between the metal particles, so that the conductivity decreases and the actual resistance value of the cell constituent component increases.
[0014]
In addition, according to such a configuration, the Mn diffusion preventing layer includes CeO 2 in which Zr, Y or Sc, and one of Sm, Gd, Dy, Er, and Yb are dissolved , or Ce and Y. because there is a Sm is ZrO 2, or mixtures thereof in solid solution, and the air electrode made of a perovskite-type composite oxide containing at least La and Mn, and the solid electrolyte, the thermal expansion coefficient between the Mn diffusion preventing layer It can approach, and it can suppress that it breaks by temperature rising cooling during manufacture or electric power generation.
[0015]
Further, in the solid electrolyte fuel cell of the present invention, it is desirable that the Mn content in the fuel electrode is less than 0.2 wt%. By doing so, the polarization value of the fuel electrode site and the actual resistance value of the cell component can be further reduced.
[0016]
Furthermore, in the solid electrolyte fuel cell of the present invention, the solid electrolyte is from 3 to 15 mol% of Y 2 O 3 Ru partially stabilized or stabilized ZrO 2 Tona containing. The Mn diffusion preventing layer is preferably formed by dissolving Zr, Y and Sm in CeO 2 .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Solid electrolyte fuel cell of the present invention, the air electrode 32 to the inner surface of the cylindrical solid electrolyte 31, as shown in FIG. 1, a cell body 34 is formed by forming a fuel electrode 33 to the outer surface, the air electrode A current collector (interconnector) 35 is electrically connected to 32.
[0021]
That is, a notch 36 is formed in a part of the solid electrolyte 31, and a part of the air electrode 32 formed on the inner surface of the solid electrolyte 31 is exposed, and the solid electrolyte near the exposed surface 37 and the notch 36. The surface of 31 is covered with a current collector 35, and the current collector 35 is joined to the surface of both ends of the solid electrolyte 31 and the surface of the air electrode 32 exposed from the notch 36 of the solid electrolyte 31.
[0022]
The current collector 35 that is electrically connected to the air electrode 32 is formed on the outer surface of the cell body 34 and is formed so as to cover the continuous same surface 39 having almost no step, and is electrically connected to the fuel electrode 33. It has not been.
[0023]
The current collector 35 is electrically connected to the fuel electrode of another cell via a Ni felt when connecting the cells, thereby forming a fuel cell module. The continuous identical surface 39 is formed by polishing between both ends of the solid electrolyte until both ends of the solid electrolyte and a part of the air electrode become substantially the same continuous surface.
[0024]
As the solid electrolyte 31, for example, partially stabilized or stabilized ZrO 2 containing 3 to 15 mol% of Y 2 O 3 is used. As the air electrode 32, for example, LaMnO 3 in which La is replaced by 10 to 30 atomic% with Ca or Sr and 5 to 20 atomic% with Y is used. As the current collector 35, for example, Cr is replaced with Mg. 10-30 atomic% substituted LaCrO 3 is used.
[0025]
As the fuel electrode 33, ZrO 2 (containing Y 2 O 3 ) cermet containing 50 to 80 wt% Ni is used. The solid electrolyte 31, the current collector 35, and the fuel electrode 33 are not limited to the above examples, and known materials may be used. The air electrode 32 may be made of a perovskite complex oxide containing at least La and Mn.
[0026]
Then, the solid electrolyte fuel cell of the present invention, between the solid electrolyte 31 and the air electrode 32, and Zr, and Y, or Sc, Sm, Gd, Dy, Er, and the one of a Yb solute A Mn diffusion preventing layer 41 made of CeO 2 or ZrO 2 in which Ce, Y and Sm are dissolved , or a mixture thereof is formed. The thickness of the Mn diffusion preventing layer 41 is desirably 2 to 15 μm from the viewpoint of matching the thermal expansion coefficient between members.
[0027]
Further, the amount of Mn in the fuel electrode 33 is set to 0.2% by weight or less. Thus, by setting the amount of Mn in the fuel electrode 33 to 0.2 wt% or less, the polarization value of the fuel electrode site and the actual resistance value of the cell constituent components can be further reduced.
[0028]
Preparation of the constructed solid electrolyte fuel cell as described above, first, a cylindrical air electrode molding. In this cylindrical air electrode molded body, raw materials of La 2 O 3 , Y 2 O 3 , CaCO 3 and Mn 2 O 3 are weighed and mixed, for example, according to a predetermined preparation composition.
[0029]
Then, for example, it is calcined at a temperature of about 1500 ° C. for 2 to 10 hours, and then pulverized to a particle size of 4 to 8 μm. The prepared powder is mixed and kneaded with a binder to produce a cylindrical air electrode molded body by extrusion molding. Further, the binder is debindered and calcined at 1200 to 1250 ° C. A fired body is produced. Since Mn diffusion is significant at 1400 ° C. or higher, Mn hardly diffuses at the calcining temperature of the air electrode molded body.
[0030]
Further, for example, Y 2 O 3 or Sc 2 and ZrO 2 powder containing O 3, composition formula (CeO 2) 1-x ( AO 1.5) x (A is Sm, G d, Dy, Er, At least one of Yb) is mixed, and toluene is added as a solvent to the mixed powder to prepare a paste, and this paste is applied to the surface of a cylindrical air electrode calcined body. A coating film of the Mn diffusion preventing layer 41 was formed.
[0031]
As a sheet-like first solid electrolyte molded body, a slurry obtained by adding toluene, a binder, and a commercially available dispersant to a predetermined powder and molding it into a thickness of, for example, 100 to 120 μm by a method such as a doctor blade is used. The first solid electrolyte molded body is pasted and calcined on the surface of the coating film of the Mn diffusion prevention layer 41 formed on the surface of the cylindrical air electrode calcined body. A first solid electrolyte calcined body is formed. In addition, although the 1st solid electrolyte molded object was calcined, it is not necessary to calcine.
[0032]
Next, a sheet-shaped fuel electrode molded body is produced. First, for example, a slurry obtained by adding toluene and a binder to Ni / YSZ mixed powder prepared at a predetermined ratio is prepared. Similarly to the production of the first solid electrolyte molded body, the molded and dried mold is formed to form a sheet-like second solid electrolyte molded body having a thickness of 15 μm, for example.
[0033]
After the fuel electrode layer molded body is printed and dried on the second solid electrolyte molded body, the second solid electrolyte molded body on which the fuel electrode layer molded body is formed is formed on the first solid electrolyte calcined body. The solid electrolyte calcined body is wound and laminated so that the second solid electrolyte molded body comes into contact therewith.
[0034]
Next, as in the preparation of the solid electrolyte molded body, the current collector molded body molded to a thickness of 100 to 120 μm is attached to a predetermined location.
[0035]
Thereafter, the cylindrical air electrode calcined body, the coating film of the Mn diffusion preventing layer 41, the first solid electrolyte calcined body, the second solid electrolyte molded body, the fuel electrode molded body, and the laminate of the current collector molded body, For example, four layers are co-fired simultaneously at a temperature of 1400 to 1550 ° C. in the atmosphere.
[0036]
Since the diffusion of Mn affects the firing temperature and holding time, the amount of Mn can be further reduced by reducing the firing temperature as much as possible and shortening the firing time as much as possible.
[0037]
In such a production method, a ZrO 2 powder containing Y 2 O 3 or Sc 2 O 3 and a composition formula of (CeO 2 ) 1-x (AO 1.5 ) x (A is Sm, Gd, Dy, Er) , At least one kind of Yb) is applied to the surface of the cylindrical air electrode calcined body to form a coating film of the Mn diffusion prevention layer 41, electrolyte green body, were sequentially laminated anode green body, by co-firing, between the solid electrolyte and the air electrode, and Zr, and Y, or Sc, Sm, Gd, Dy, Er, among Yb 1 A Mn diffusion preventing layer 41 made of CeO 2 in which the seed is dissolved , ZrO 2 in which Ce, Y and Sm are dissolved , or a mixture thereof is formed. Of Mn from solid body to solid electrolyte compact And the amount of Mn diffused in the fuel electrode can be reduced.
[0038]
In addition, for example, by using a paste containing ZrO 2 , CeO 2 and Sm 2 O 3 containing Y 2 O 3 , a Mn diffusion prevention layer 41 is formed, so that a perovskite type composite oxide containing at least La and Mn is formed. The thermal expansion coefficient between the air electrode made of a product and the Mn diffusion preventing layer can be made close to each other, and it is possible to suppress damage during production and damage due to temperature rising and cooling during power generation.
[0039]
In the above example has been described cylindrical solid electrolyte fuel cell, but the present invention is not limited to the above examples, the flat plate type that produced by integrally sintering a solid electrolyte and the fuel electrode in an air superb The present invention can also be applied to a fuel cell having a shape.
[0040]
Also in the cylindrical solid electrolyte fuel cell, an air electrode on one surface of the solid electrolyte, it is sufficient that the fuel electrode is formed on the other surface, the structure is not limited to FIG.
[0041]
Furthermore, although the example which formed the air electrode calcined body and the 1st solid electrolyte calcined body was demonstrated in the said example, these may be an air electrode molded object and a 1st solid electrolyte molded object.
[0042]
【Example】
To produce a cylindrical solid electrolyte fuel cell by co-sintering method, a first cylindrical air electrode calcined body was produced by the following procedure. A commercially available La 2 O 3 , Y 2 O 3 , CaCO 3 , Mn 2 O 3 having a purity of 99.9% or higher was calcined at 1500 ° C. as a starting material, and (La 0.56 Y 0.14 Ca 0. 3) to prepare a 0.97 MnO 3, then pulverized adjusted to 5μm particle size, by using this, after extrusion, removal by Nda treatment under conditions of 1250 ° C., the calcined, air electrode calcined body Produced.
[0043]
Next, a slurry was prepared using a ZrO 2 powder having an average particle diameter of 1 to 2 μm containing Y 2 O 3 at a ratio of 8 mol%, and the first and the first 100 μm and 15 μm thick first and A sheet as a two-solid electrolyte molded body was produced.
[0044]
Next, production of the fuel electrode molded body will be described. A ZrO 2 powder containing 8 mol% of Y 2 O 3 having an average particle diameter of 0.6 μm with respect to Ni powder having an average particle diameter of 0.4 μm was prepared, and the Ni / YSZ ratio (weight fraction) Was adjusted to 65/35, pulverized and mixed, and slurried.
[0045]
Thereafter, the prepared slurry was printed on the entire surface of the second solid electrolyte molded body so as to have a thickness of 30 μm.
[0046]
Next, a commercially available purity of 99.9% or higher La 2 O 3, Cr 2 O 3, MgO as the starting material, which La (Mg 0.3 Cr 0.7) 0.97 O 3 after weighed mixed so that the composition After calcining and pulverizing at 1500 ° C. for 3 hours, a slurry was prepared using the solid solution powder, and a current collector molded body having a thickness of 100 μm was prepared by a doctor blade method.
[0047]
Further, a ZrO 2 powder (8YSZ) containing 8 mol% of Y 2 O 3 or Sc 2 O 3 and a composition formula (CeO 2 ) 1-x (AO 1.5 ) x (A is Sm, Gd, Dy, Er, When at least one of Yb) is expressed, x is mixed with a powder having the value shown in Table 1 in a proportion shown in Table 1, and toluene is added as a solvent to the mixed powder, and the Mn diffusion preventing layer is mixed. A paste was prepared.
[0048]
First, a paste of an Mn diffusion preventing layer is applied to the air electrode calcined body, and the first solid electrolyte molded body is wound around the coating film in a roll shape so that both ends thereof are open. Calcination was performed under conditions of time. After the calcination, the first solid electrolyte calcined body was polished flat so as to expose the air electrode calcined body and processed so as to form a continuous same surface.
[0049]
Next, the second solid electrolyte molded body on which the fuel electrode molded body is formed is laminated on the surface of the first solid electrolyte calcined body so that the first solid electrolyte calcined body and the second solid electrolyte molded body are in contact with each other. After drying, the current collector molded body was attached to the continuous same surface, and then fired at 1550 ° C. in the atmosphere for 3 hours to prepare a co-sintered body.
[0050]
For comparison, toluene is added as a solvent to ZrO 2 powder containing 8 mol% of Y 2 O 3 to prepare a paste, and this paste is applied to an air electrode calcined body and co-fired in the same manner as described above. A ligature was prepared.
[0051]
When the cross section of the co-sintered body of the present invention was observed with a scanning electron microscope (SEM), Zr, Y or Sc, Sm, Gd, Dy in CeO 2 was interposed between the solid electrolyte and the air electrode. A Mn diffusion prevention layer having a thickness of 3 to 5 μm, which is a solid solution of one of Er, Yb, or a solid solution of Ce, Y, Sm in ZrO 2 or a mixture thereof, is formed. It had been. Table 1 shows the presence or absence of the Mn diffusion preventing layer.
[0052]
Next, a sample for evaluating the amount of Mn diffusion inside the fuel electrode was produced using the co-sintered body. First, all components were quantified using an X-ray microanalyzer (EPMA) inside the fuel electrode in the cross section of the sample cut out to a length of about 10 mm. Next, the content concentration of the Mn component with respect to all the fuel electrode components was calculated. The results are shown in Table 1.
[0053]
Next, in order to produce a cylindrical cell for power generation, a sealing member was joined to one end of the co-sintered body. The sealing member was joined by the following procedure. A slurry is prepared by adding water as a solvent to a ZrO 2 powder containing Y 2 O 3 at a ratio of 8 mol% and having an average particle diameter of 1 μm, and one end of the co-sintered body is immersed in this slurry, The film was applied to the outer peripheral surface of one end so as to have a thickness of 100 μm and dried. The molded body having a cap shape as a sealing member was subjected to isostatic pressing (rubber press) using a powder having the same composition as the slurry composition and cut. Thereafter, the end portion of the co-sintered body coated with the slurry was inserted into a molded body for a sealing member, and baked at a temperature of 1300 ° C. in the atmosphere for 1 hour.
[0054]
For power generation, air was flown inside the cell and hydrogen was flown outside at 1000 ° C., and the performance was measured and evaluated with the initial value when the output value was stabilized and the value after holding for 1000 hours. These measurement results are shown in Table 1 together with the results of the amount of Mn.
[0055]
[Table 1]
Figure 0004462727
[0056]
From this Table 1, in the sample of the solid electrolyte fuel cell of the present invention, between the solid electrolyte and the air electrode, and Zr in CeO 2, and Y, or Sc, Sm, Gd, Dy, Er, and Yb those of which one is a solid solution, or those in ZrO 2 is Ce and Y and Sm in solid solution, or is Mn diffusion preventing layer consisting of the mixture is formed, the Mn content in the fuel electrode It is 0.2 wt% or less, exceeding 0.4 W / cm 2 from the beginning, and it can be seen that the output density is almost stable after 1000 hours.
[0057]
On the other hand, Sample No. In No. 1, the Mn diffusion preventing layer is not formed. Therefore, the amount of Mn in the fuel electrode is more than 0.2% by weight, and it can be seen that the output density is lower than the product of the present invention from the initial stage.
[0058]
【The invention's effect】
As described above in detail, the solid electrolyte fuel cell of the present invention, Mn of at co-sintering of the air electrode side tries to diffuse towards the interior of the fuel electrode is formed between the solid electrolyte and the air electrode The Mn diffusion prevention layer blocks or suppresses the amount of Mn diffusion in the solid electrolyte and fuel electrode, thereby reducing the polarization value of the fuel electrode site and the actual resistance value of the cell components, and reducing the output density. While being able to make it high, a high power density can be maintained over a long period of time.
[Brief description of the drawings]
1 (a) is a sectional view showing a cylindrical solid electrolyte fuel cell of the present invention, (b) is a sectional view showing an enlarged part of (a).
2 is a perspective view of a conventional cylindrical solid electrolyte fuel cells.
[Explanation of symbols]
31 ... Solid electrolyte 32 ... Air electrode 33 ... Fuel electrode 35 ... Current collector 41 ... Mn diffusion preventing layer

Claims (2)

少なくともLaおよびMnを含有するペロブスカイト型複合酸化物からなる空気極の表面に、3〜15モル%のY を含有する部分安定化あるいは安定化ZrO からなる固体電解質、燃料極をこの順に積層してなり、前記空気極、前記固体電解質、前記燃料極が同時に焼結された固体電解質形燃料電池セルにおいて、前記固体電解質と前記空気極との間に、Zrと、YまたはScと、Sm、Gd、Dy、Er、Ybのうち1種とが固溶したCeO、あるいはCeとYとSmとが固溶したZrO、あるいはそれらの混合体からなるMn拡散防止層が形成されていることを特徴とする固体電解質形燃料電池セル。At least La and perovskite complex comprising an oxide surface of the air electrode containing Mn, partially stabilized or stabilized ZrO 2 Tona Ru solid electrolyte containing 3-15 mol% of Y 2 O 3, a fuel electrode In the solid electrolyte fuel cell in which the air electrode, the solid electrolyte, and the fuel electrode are simultaneously sintered, Zr, Y, or Sc are interposed between the solid electrolyte and the air electrode. And a Mn diffusion prevention layer formed of CeO 2 in which one of Sm, Gd, Dy, Er, and Yb is dissolved, ZrO 2 in which Ce, Y, and Sm are dissolved, or a mixture thereof. A solid oxide fuel cell characterized by being made. 前記燃料極中のMn量が0.2重量%以下であることを特徴とする請求項1記載の固体電解質形燃料電池セル。  The solid oxide fuel cell according to claim 1, wherein the amount of Mn in the fuel electrode is 0.2 wt% or less.
JP2000198813A 2000-06-30 2000-06-30 Solid electrolyte fuel cell Expired - Fee Related JP4462727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198813A JP4462727B2 (en) 2000-06-30 2000-06-30 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198813A JP4462727B2 (en) 2000-06-30 2000-06-30 Solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002015754A JP2002015754A (en) 2002-01-18
JP4462727B2 true JP4462727B2 (en) 2010-05-12

Family

ID=18696916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198813A Expired - Fee Related JP4462727B2 (en) 2000-06-30 2000-06-30 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4462727B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743949B2 (en) * 2000-10-27 2011-08-10 京セラ株式会社 Solid electrolyte fuel cell
JP2002134132A (en) * 2000-10-27 2002-05-10 Kyocera Corp Solid electrolyte fuel cell and its manufacturing method
CA2553074A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
JP4849774B2 (en) * 2004-01-30 2012-01-11 京セラ株式会社 Solid electrolyte fuel cell and solid electrolyte fuel cell
EP1528615B1 (en) * 2003-10-31 2013-11-20 Kyocera Corporation Fuel cell
US8932783B2 (en) * 2008-10-09 2015-01-13 Ceramic Fuel Cells Limited Solid oxide fuel cell or solid oxide fuel cell sub-component and methods of preparing same
JP5729572B2 (en) * 2011-01-31 2015-06-03 Toto株式会社 Solid electrolyte material and solid oxide fuel cell having the same
JP5725449B2 (en) * 2011-01-31 2015-05-27 Toto株式会社 Solid oxide fuel cell
JP5622754B2 (en) * 2012-01-05 2014-11-12 三菱重工業株式会社 Method for producing solid oxide fuel cell and solid oxide fuel cell
WO2014012673A1 (en) 2012-07-19 2014-01-23 Technical University Of Denmark Solid oxide cell oxygen electrode with enhanced durability
WO2015016599A1 (en) * 2013-07-31 2015-02-05 주식회사 엘지화학 Solid oxide fuel cell and method for manufacturing same

Also Published As

Publication number Publication date
JP2002015754A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
EP2495791B1 (en) Fuel cell, cell stack, fuel cell module, and fuel cell device
JP4462727B2 (en) Solid electrolyte fuel cell
JP4383092B2 (en) Electrochemical element
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JP3347561B2 (en) Solid oxide fuel cell
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
CN110088965B (en) Single cell, single cell stack device, module, and module housing device
JP4743949B2 (en) Solid electrolyte fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP2004362849A (en) Base plate for electrochemical cell and electrochemical cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP3336171B2 (en) Solid oxide fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JPH09129245A (en) Cell for solid electrolyte fuel cell
JP4562230B2 (en) Manufacturing method of solid electrolyte fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JP3652932B2 (en) Solid oxide fuel cell
JP3740342B2 (en) Solid oxide fuel cell
JP3725994B2 (en) Solid oxide fuel cell
JP2000077082A (en) Solid electrolyte fuel cell
JP2001126745A (en) Solid electrolytic fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees