JPH06310155A - Manufacture of electrolytic cell for solid electrolytic fuel cell - Google Patents

Manufacture of electrolytic cell for solid electrolytic fuel cell

Info

Publication number
JPH06310155A
JPH06310155A JP5102187A JP10218793A JPH06310155A JP H06310155 A JPH06310155 A JP H06310155A JP 5102187 A JP5102187 A JP 5102187A JP 10218793 A JP10218793 A JP 10218793A JP H06310155 A JPH06310155 A JP H06310155A
Authority
JP
Japan
Prior art keywords
interconnector
cell
current lead
solid electrolyte
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5102187A
Other languages
Japanese (ja)
Inventor
Masayoshi Shimomichi
正義 下道
Osao Kudome
長生 久留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5102187A priority Critical patent/JPH06310155A/en
Publication of JPH06310155A publication Critical patent/JPH06310155A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the conductibility and to improve the power generating capacity by sintering an interconnector material in a high temperature reducing atmosphere, and forming a fuel electrode, a solid electrolyte, and an air electrode in that order. CONSTITUTION:To an alumina pipe 1 to be a porous holder, nickel-aluminum alloys 2a and 2b to be an interconnector and a current lead are formed. They are sintered in a reducing atmosphere in which hydrogen is added at a high temperature, so as to sinter the inter-connector 2a and the current lead 2b which consist of a nickel-aluminum alloy. After that, membranes are form in the order a nickel 3 to be a fuel electrode, a yttria stabilized zirconia 4 to be a solid electrolyte, and a lanthanum-cobolt complex oxide 5 to be an air electrode. As a result, the conductibility and the density are improved, and the product is made difficult to be oxidized easily. Consequently, the conductibility of the connector 2a, or the connector 2a and the lead 2b, is increased, and the power generating capacity of the cell can be improved largely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池の
電解セルの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrolytic cell of a solid oxide fuel cell.

【0002】[0002]

【従来の技術】従来の固体電解質型燃料電池の電解セル
の構造を図2によって説明する。図2は該電解セルの断
面図であり、6は多孔性支持体、7はインタコネクタ、
8は電流リード、9は燃料電極、10は固体電解質、1
1は空気電極である。従来の構造では図2に示されてい
るように、インタコネクタ7が空気極11近傍の比較的
上層部に形成されていた。
2. Description of the Related Art The structure of an electrolytic cell of a conventional solid oxide fuel cell will be described with reference to FIG. FIG. 2 is a sectional view of the electrolytic cell, 6 is a porous support, 7 is an interconnector,
8 is a current lead, 9 is a fuel electrode, 10 is a solid electrolyte, 1
1 is an air electrode. In the conventional structure, as shown in FIG. 2, the interconnector 7 is formed in a relatively upper layer near the air electrode 11.

【0003】[0003]

【発明が解決しようとする課題】前述した従来の電解セ
ルの構造ではインタコネクタが空気電極近傍の比較的上
層部に形成されていたため、発電中に酸化され易かっ
た。又、インタコネクタ膜は固体電解質と比較すると緻
密性が低いために、インタコネクタ部のガスリークがあ
り、これらのことが性能劣化に大きく影響を及ぼしてい
た。
In the structure of the conventional electrolytic cell described above, the interconnector is formed in a relatively upper layer portion in the vicinity of the air electrode, so that it is easily oxidized during power generation. Further, since the interconnector membrane is less dense than the solid electrolyte, there is a gas leak in the interconnector portion, which greatly affects the performance deterioration.

【0004】本発明は上記技術水準に鑑み、従来の固体
電解質型燃料電池の電解セルのような不具合のない同電
解セルの製造方法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention is to provide a method for producing the same electrolytic cell as the conventional electrolytic cell of a solid oxide fuel cell, which does not have a problem.

【0005】[0005]

【課題を解決するための手段】本発明は (1)多孔性支持体上の必要箇所にインタコネクタ材料
を適用し、該インタコネクタ材料を高温還元雰囲気中で
焼結させた後、燃料電極、固体電解質及び空気電極を順
次形成することを特徴とする固体電解質型燃料電池電解
セルの製造方法。 (2)多孔性支持体上の必要箇所にインタコネクタ材料
及び電流リード材料を適用し、該インタコネクタ材料及
び電流リード材料を高温還元雰囲気中で焼結させた後、
燃料電極、固体電解質及び空気電極を順次形成すること
を特徴とする固体電解質型燃料電池電解セルの製造方
法。 である。
According to the present invention, (1) an interconnector material is applied to a necessary portion of a porous support, the interconnector material is sintered in a high temperature reducing atmosphere, and then a fuel electrode, A method for producing a solid oxide fuel cell electrolysis cell, which comprises sequentially forming a solid electrolyte and an air electrode. (2) After applying the interconnector material and the current lead material to necessary portions on the porous support and sintering the interconnector material and the current lead material in a high temperature reducing atmosphere,
A method for producing a solid oxide fuel cell electrolysis cell, which comprises sequentially forming a fuel electrode, a solid electrolyte and an air electrode. Is.

【0006】[0006]

【作用】電極材料、固体電解質材料を形成する前に、イ
ンタコネクタ材料またはインタコネクタ材料と電流リー
ド材料を多孔性支持体に形成させるので、これらを高温
還元性雰囲気で焼結させて高導電性、緻密性を向上させ
ても電極材料、固体電解質材料に何んら影響を与えな
い。このため、インタコネクタ及び電極リードは緻密性
が向上し、該部からのガスのリークが防止される。
[Function] Since the interconnector material or the interconnector material and the current lead material are formed on the porous support before forming the electrode material and the solid electrolyte material, they are sintered in a high temperature reducing atmosphere to have high conductivity. Even if the denseness is improved, it has no effect on the electrode material and the solid electrolyte material. Therefore, the denseness of the interconnector and the electrode lead is improved, and the leakage of gas from this portion is prevented.

【0007】また、インタコネクタまたはインタコネク
タと電流リードを形成してから燃料電極、固体電解質及
び空気電極を順に形成するため、インタコネクタ、電流
リードは燃料電極側(還元性原料ガス側)に位置するよ
うになり、酸化を受けて導電性が低下することがなくな
る。
Further, since the fuel electrode, the solid electrolyte and the air electrode are sequentially formed after forming the interconnector or the current lead with the interconnector, the interconnector and the current lead are positioned on the fuel electrode side (reducing source gas side). As a result, the conductivity does not decrease due to oxidation.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1によって具体
的に説明する。図1は本発明の一実施例に係る固体電解
質型燃料電池の電解セルの構造を示す断面図である。図
1において、1は多孔性支持体のアルミナ管、2aはイ
ンタコネクタを形成するニッケルアルミニウム合金、2
bは電流リードを形成するニッケルアルミニウム合金、
3は燃料電極のニッケル、4は固体電解質のイットリア
安定化ジルコニア、5は空極電極のランタンコバルト複
合酸化物である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to FIG. FIG. 1 is a sectional view showing the structure of an electrolytic cell of a solid oxide fuel cell according to an embodiment of the present invention. In FIG. 1, 1 is an alumina tube of a porous support, 2a is a nickel aluminum alloy forming an interconnector, 2
b is a nickel aluminum alloy forming a current lead,
3 is nickel for a fuel electrode, 4 is yttria-stabilized zirconia for a solid electrolyte, and 5 is a lanthanum-cobalt composite oxide for an air electrode.

【0009】本発明では多孔性支持体であるアルミナ管
1にインタコネクタ及び電流リードとなるニッケルアル
ミニウム合金2a,2bを形成した後、1000〜13
00℃の高温中に水素を添加した還元雰囲気の中で焼成
し、ニッケルアルミニウム合金よりなるインタコネクタ
2a、電流リード2bを焼結させる。その後、燃料電極
となるニッケル3、固体電解質となるイットリア安定化
ジルコニア4及び空気電極となるランタンコバルト複合
酸化物5の順で膜を形成する。
In the present invention, 1000 to 13 are formed after forming the nickel aluminum alloys 2a and 2b to be interconnectors and current leads on the alumina tube 1 which is a porous support.
It is fired in a reducing atmosphere containing hydrogen at a high temperature of 00 ° C. to sinter the interconnector 2a and the current lead 2b made of a nickel aluminum alloy. After that, a film is formed in the order of nickel 3 as a fuel electrode, yttria-stabilized zirconia 4 as a solid electrolyte, and lanthanum cobalt composite oxide 5 as an air electrode.

【0010】[0010]

【発明の効果】以上説明したように、本発明では最初に
多孔性支持体にインタコネクタまたはインタコネクタと
電流リードを形成することにより、同膜を予め高温還元
雰囲気で焼結させることができ、導電性及び緻密性を向
上させることができる。さらにインタコネクタまたはイ
ンタコネクタと電流リードが燃料供給側に形成されてい
るので発電中に酸化されにくい。そのため、インタコネ
クタまたはインタコネクタと電流リードの導電性を高く
することとなり、電池の発電性能の向上に大きく寄与す
る。
As described above, according to the present invention, by first forming the interconnector or the interconnector and the current lead on the porous support, the film can be pre-sintered in a high temperature reducing atmosphere, The conductivity and the denseness can be improved. Further, since the interconnector or the interconnector and the current lead are formed on the fuel supply side, they are not easily oxidized during power generation. Therefore, the conductivity of the interconnector or the interconnector and the current lead is increased, which greatly contributes to the improvement of the power generation performance of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例で製造された固体電解質型燃
料電池の電解セルの断面図。
FIG. 1 is a cross-sectional view of an electrolysis cell of a solid oxide fuel cell manufactured according to an embodiment of the present invention.

【図2】従来の固体電解質型燃料電池の電解セルの一態
様の断面図。
FIG. 2 is a cross-sectional view of one aspect of an electrolytic cell of a conventional solid oxide fuel cell.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔性支持体上の必要箇所にインタコネ
クタ材料を適用し、該インタコネクタ材料を高温還元雰
囲気中で焼結させた後、燃料電極、固体電解質及び空気
電極を順次形成することを特徴とする固体電解質型燃料
電池電解セルの製造方法。
1. A method for applying an interconnector material to a required portion of a porous support, sintering the interconnector material in a high-temperature reducing atmosphere, and then forming a fuel electrode, a solid electrolyte, and an air electrode sequentially. A method for producing a solid oxide fuel cell electrolysis cell, comprising:
【請求項2】 多孔性支持体上の必要箇所にインタコネ
クタ材料及び電流リード材料を適用し、該インタコネク
タ材料及び電流リード材料を高温還元雰囲気中で焼結さ
せた後、燃料電極、固体電解質及び空気電極を順次形成
することを特徴とする固体電解質型燃料電池電解セルの
製造方法。
2. An interconnector material and a current lead material are applied to necessary portions on a porous support, and the interconnector material and the current lead material are sintered in a high temperature reducing atmosphere, and then a fuel electrode and a solid electrolyte. And a method for manufacturing a solid oxide fuel cell electrolysis cell, which comprises sequentially forming an air electrode.
JP5102187A 1993-04-28 1993-04-28 Manufacture of electrolytic cell for solid electrolytic fuel cell Withdrawn JPH06310155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5102187A JPH06310155A (en) 1993-04-28 1993-04-28 Manufacture of electrolytic cell for solid electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5102187A JPH06310155A (en) 1993-04-28 1993-04-28 Manufacture of electrolytic cell for solid electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH06310155A true JPH06310155A (en) 1994-11-04

Family

ID=14320668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5102187A Withdrawn JPH06310155A (en) 1993-04-28 1993-04-28 Manufacture of electrolytic cell for solid electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH06310155A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088783A1 (en) * 2003-03-31 2004-10-14 Tokyo Gas Company Limited Method for fabricating solid oxide fuel cell module
JP2006019059A (en) * 2004-06-30 2006-01-19 Kyocera Corp Solid electrolyte fuel battery cell, cell stack, and fuel battery
CN105531863A (en) * 2013-09-10 2016-04-27 日本特殊陶业株式会社 Fuel cell and fuel cell stack

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088783A1 (en) * 2003-03-31 2004-10-14 Tokyo Gas Company Limited Method for fabricating solid oxide fuel cell module
JPWO2004088783A1 (en) * 2003-03-31 2006-07-06 東京瓦斯株式会社 Method for producing solid oxide fuel cell module
US7838166B2 (en) 2003-03-31 2010-11-23 Tokyo Gas Co., Ltd. Method for fabricating solid oxide fuel cell module
JP2006019059A (en) * 2004-06-30 2006-01-19 Kyocera Corp Solid electrolyte fuel battery cell, cell stack, and fuel battery
CN105531863A (en) * 2013-09-10 2016-04-27 日本特殊陶业株式会社 Fuel cell and fuel cell stack
US9728797B2 (en) 2013-09-10 2017-08-08 Ngk Spark Plug Co., Ltd. Fuel cell and fuel cell stack
CN105531863B (en) * 2013-09-10 2017-10-24 日本特殊陶业株式会社 Fuel cell and fuel cell pack

Similar Documents

Publication Publication Date Title
JP4605885B2 (en) Support membrane type solid oxide fuel cell
EP1768208A2 (en) High performance anode-supported solid oxide fuel cell
JP5101777B2 (en) Electrode support manufacturing method and electrochemical cell
US20070141423A1 (en) Tubular electrochemical reactor cell and electrochemical reactor system which is composed of the cell
JP2004319491A (en) Fuel cell or electrode having passive support
JP2004319492A (en) Fuel cell and passive support
JP2706197B2 (en) Method of forming ceramic thin film
JP2001196069A (en) Fuel cell
JP4432384B2 (en) Solid oxide fuel cell
JP2003288914A (en) Solid oxide fuel cell
JP2979911B2 (en) Fuel reforming catalyst for fuel cells
JPH06310155A (en) Manufacture of electrolytic cell for solid electrolytic fuel cell
Kim et al. Direct-write fabrication of integrated planar solid oxide fuel cells
JP4093321B2 (en) Hybrid porous tube
JP2017188437A (en) Electrochemical cell
JPH0676836A (en) Manufacture of cylindrical solid electrolyte electrolytic cell
JPH08264188A (en) Solid electrolyte type fuel cell and its manufacture
JP2003086189A (en) Cylindrical, vertically-striped fuel cell
JPH103932A (en) Cylindrical lateral stripe type solid electrolyte fuel cell
JP4102877B2 (en) Method for producing hybrid molded porous tube
KR20190100610A (en) Method for fabricating solid oxide fuel cell
JPH03238758A (en) Fuel cell of solid electrolyte type
KR100813420B1 (en) The processing method of electrolyte layer on the outer surface of anode for solid oxide fuel cell
JP2001196083A (en) Solid electrolyte fuel cell
JPH07201340A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704