JPH03238758A - Fuel cell of solid electrolyte type - Google Patents

Fuel cell of solid electrolyte type

Info

Publication number
JPH03238758A
JPH03238758A JP2032334A JP3233490A JPH03238758A JP H03238758 A JPH03238758 A JP H03238758A JP 2032334 A JP2032334 A JP 2032334A JP 3233490 A JP3233490 A JP 3233490A JP H03238758 A JPH03238758 A JP H03238758A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrode
fuel cell
fuel
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2032334A
Other languages
Japanese (ja)
Inventor
Hiroshi Mihara
三原 浩
Hirotaka Nakagawa
中川 大隆
Yoshihito Uemoto
好仁 上元
Hiroshi Tsuneizumi
常泉 浩志
Takuya Kadowaki
琢哉 門脇
Eiji Matsuda
松田 英治
Koichi Yokosuka
横須賀 剛一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2032334A priority Critical patent/JPH03238758A/en
Publication of JPH03238758A publication Critical patent/JPH03238758A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To simplify the construction of a fuel cell and reduce the internal resistance thereof by forming the films of a fuel electrode, a solid electrolyte and an air electrode in sequence on one side of a dense substrate comprising the same material as a fuel electrode part and having many through-holes. CONSTITUTION:In a solid electrolyte type fuel cell comprising a solid electrolyte 1, an air electrode 2 and a fuel electrode 3, one side of a dense substrate comprising the same material as the fuel electrode 3 and having many through-holes is applied with the films of the fuel electrode 3, the solid electrolyte 1 and the air electrode 2 respectively in that order. As the substrate is manufactured according to the aforesaid process, the high strength and small thickness thereof can be ensured. Also, even for a large fuel cell, compact construction can be applied. In addition, the internal resistance of the fuel cell can be lowered and the conductivity thereof can be increased, thereby improving cell performance.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、固体電解質型燃料電池特にその構造に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a solid oxide fuel cell, particularly its structure.

[従来の技術] 近時、化学反応の自由エネルギー変化を、直接に電気エ
ネルギーに変換する装置として、燃料電池か注目され開
発されている。燃料電池は、通常の化学電池と規を−に
するものであるが、異なるところは電極の活物質を電池
容器内に収めておらず、負極には燃料を、また正極には
燃料を酸化する物質を連続的に供給して発電することで
あり、有力な直接発電システムの一つとして商用化が積
極的に検討されている。これら燃料電池の中で第3世代
燃料電池として、安定化ジルコニアを電解質とする固体
電解質型燃料電池が注目されている。
[Prior Art] Recently, fuel cells have been attracting attention and being developed as a device that directly converts the free energy change of a chemical reaction into electrical energy. A fuel cell is different from a normal chemical cell, but the difference is that the active material of the electrode is not contained within the battery container, and the negative electrode oxidizes the fuel, and the positive electrode oxidizes the fuel. It generates electricity by continuously supplying materials, and commercialization is being actively considered as one of the leading direct power generation systems. Among these fuel cells, solid electrolyte fuel cells using stabilized zirconia as an electrolyte are attracting attention as third generation fuel cells.

即ちジルコニア(Z r O2)は、1150℃付近で
単斜晶形から正方晶形への結晶構造の転移があり、この
際、約9%の容積変化が現れる。この容積変化を防ぐた
めに、カルシウム、イツトリウムなどの酸化物をジルコ
ニアに固溶させることが行われ、このような固溶体を安
定化ジルコニアと称している。
That is, zirconia (Z r O2) undergoes a crystal structure transition from monoclinic to tetragonal at around 1150° C., and at this time, a volume change of about 9% occurs. In order to prevent this volume change, oxides such as calcium and yttrium are dissolved in zirconia as a solid solution, and such a solid solution is called stabilized zirconia.

第6図は、この様な燃料電池の原理の説明図である。FIG. 6 is an explanatory diagram of the principle of such a fuel cell.

第6図に示すように、例えば安定化ジルコニアのような
固体電解質1の一方の表面に空気極2が正極として、そ
して他方の表面に負極として燃料極3が設けられている
As shown in FIG. 6, an air electrode 2 is provided as a positive electrode on one surface of a solid electrolyte 1 such as stabilized zirconia, and a fuel electrode 3 is provided as a negative electrode on the other surface.

空気極2に空気(02)を流し、燃料極3に燃料ガス(
H,CO)を流すと、 空気極2側において、 02+4e→20 の反応が起こり、 燃料極3側において、 20 −02+46 の反応が生ずる。
Air (02) flows through the air electrode 2, and fuel gas (02) flows through the fuel electrode 3.
When H, CO) is flowed, the reaction 02+4e→20 occurs on the air electrode 2 side, and the reaction 20 -02+46 occurs on the fuel electrode 3 side.

上記反応により発生した電子(e  )は、燃料極3側
から空気極2に向けて移動し、正極である空気極2と、
負極である燃料極3との間に電気が流れる。
The electrons (e) generated by the above reaction move from the fuel electrode 3 side toward the air electrode 2, and the air electrode 2, which is the positive electrode,
Electricity flows between it and the fuel electrode 3, which is a negative electrode.

H2+l/202→H20 の反応で、同時に発生した水は系外に排出される。H2+l/202→H20 During this reaction, water generated at the same time is discharged from the system.

固体電解質型燃料電池は、上述のように構成されている
が、そのセル構造を実現するために、従来固体電解質1
を基体とするか、または、固体電解質1及び電極以外の
別の物質を基体としていた。
Solid electrolyte fuel cells are constructed as described above, but in order to realize the cell structure, conventional solid electrolyte 1
was used as a base, or another substance other than the solid electrolyte 1 and the electrode was used as a base.

第7図は、固体電解質を基体とした場合の一例を示す断
面図である。
FIG. 7 is a sectional view showing an example of a case where a solid electrolyte is used as a base.

第7図に示すように、基体として十分な厚さを有する安
定化ジルコニアからなる固体電解質1の一方の表面には
、酸化ニッケル粉体を高温で溶射した多孔質体からなる
薄い燃料極3が設けられ、固体電解質1の他方の表面に
は、例えばL a M n03のようなセラミックス多
孔質体からなる薄い空気極2が設けられている。
As shown in FIG. 7, on one surface of a solid electrolyte 1 made of stabilized zirconia having a sufficient thickness as a base, there is a thin fuel electrode 3 made of a porous material sprayed with nickel oxide powder at high temperature. On the other surface of the solid electrolyte 1, a thin air electrode 2 made of a porous ceramic material such as L a M n03 is provided.

第8図は、固体電解質1及び電極以外の別の物質を基体
とした場合の一例を示す断面図である。
FIG. 8 is a sectional view showing an example of a case where the substrate is made of a substance other than the solid electrolyte 1 and the electrodes.

第8図に示すように、セラミックス、例えば・アルミナ
、ジルコニア等の多孔質体からなる十分な厚さの基体4
の一方の表面上に、各々薄いNi多孔質体からなる燃料
極3と、安定化ジルコニアからなる固体電解質1と、セ
ラミックス多孔質体からなる空気極2とが積層されてい
る。
As shown in FIG. 8, a base 4 of sufficient thickness made of a porous material such as ceramics, e.g. alumina, zirconia, etc.
A fuel electrode 3 made of a thin Ni porous material, a solid electrolyte 1 made of stabilized zirconia, and an air electrode 2 made of a ceramic porous material are laminated on one surface of the electrode.

燃料電池は、上述のように、固体電解質1、空気極2.
燃料極3及び基体4によって構成された1つのセルを、
複数段積み重ねることによって形成される。
As mentioned above, the fuel cell includes a solid electrolyte 1, an air electrode 2.
One cell composed of a fuel electrode 3 and a base 4,
It is formed by stacking multiple layers.

第9図は、この様な複数段のセルからなる燃料電池の一
例を示す概略断面の説明図である。
FIG. 9 is a schematic cross-sectional view showing an example of such a fuel cell composed of multiple stages of cells.

第9図に示すように、固体電解質1の一方の表面に、セ
ラミックス多孔質焼結体からなる板状の空気極2が設け
られ、固体電解質1の他方の表面に、Ni多孔質焼結体
からなる板状の燃料極3が設けられている。
As shown in FIG. 9, a plate-shaped air electrode 2 made of a ceramic porous sintered body is provided on one surface of the solid electrolyte 1, and a Ni porous sintered body is provided on the other surface of the solid electrolyte 1. A plate-shaped fuel electrode 3 is provided.

空気極2及び燃料極3の各々の外側には、波板状の耐熱
金属板からなる集電体5が設けられ、且つ、集電体5の
外側には、平板状の耐熱金属板からなるインターコネク
ター(セパレータ)6が設けられている。
A current collector 5 made of a corrugated heat-resistant metal plate is provided on the outside of each of the air electrode 2 and the fuel electrode 3, and a current collector 5 made of a flat heat-resistant metal plate is provided on the outside of the current collector 5. An interconnector (separator) 6 is provided.

空気極2に空気または酸素をそして燃料極3に水素また
は燃料ガスを供給することにより前記のように発生した
電気は、波板状の集電体5によって集電され、インター
コネクター(セパレータ)6により各セルの電気を集電
する。
The electricity generated as described above by supplying air or oxygen to the air electrode 2 and hydrogen or fuel gas to the fuel electrode 3 is collected by a corrugated current collector 5 and connected to an interconnector (separator) 6. Collects electricity from each cell.

これら安定化ジルコニアなどを用いた酸化物焼結体固体
電解質型燃料電池の有利な点は、全固体構造をとること
が出来ると共に、電極における反応が、溶融炭酸塩電池
よりも簡単なことである。
The advantage of these oxide sintered solid electrolyte fuel cells using stabilized zirconia is that they can have an all-solid structure and the reaction at the electrodes is simpler than in molten carbonate batteries. .

[発明が解決しようとする課題] 前述の第8図に示すような固体電解質1以外の別の物質
を基体とした場合には、複数の電池を直列に接続する場
合には、外部で接続しなければならないため構造か複雑
になり、且つ電極内を電流が平行に流れるため、電池の
内部抵抗が増加する等の問題を生ずる。
[Problems to be Solved by the Invention] When a substrate is made of a material other than the solid electrolyte 1 as shown in FIG. This makes the structure complicated, and since current flows in parallel within the electrodes, problems such as an increase in internal resistance of the battery arise.

以上の如き、従来の固体電解質型燃料電池において、多
孔質基板をその後の成膜のための強度メンバーとして使
用すると共に、燃料電極としての機能を持たせる場合に
は、次のような問題が生ずる。
In the conventional solid oxide fuel cell as described above, when a porous substrate is used as a strength member for subsequent film formation and also functions as a fuel electrode, the following problems arise. .

1)燃料電極として効率良く電気化学反応をさせるため
には、固体電解質と燃料電極の界面における燃料電極の
構造は、できるだけ微細な粒子で構成される多孔質とす
ることにより、固体電解質、電極及びガスの三相界面を
ふやす必要がある。
1) In order to efficiently carry out electrochemical reactions as a fuel electrode, the structure of the fuel electrode at the interface between the solid electrolyte and the fuel electrode should be porous, consisting of as fine particles as possible, so that the solid electrolyte, electrode and It is necessary to increase the three-phase interface of gas.

こうした微細な構造を持つ燃料電極を、その後に続く成
膜のための強度メンバーとするために所定の厚さ(2關
程度)にすると、微細なボアのために基板内のガス透過
性か悪くなり、その結果良好な電池か得られない。
When a fuel electrode with such a fine structure is made to a predetermined thickness (approximately 2 inches) to serve as a strength member for subsequent film formation, the gas permeability within the substrate deteriorates due to the fine bore. As a result, a good battery cannot be obtained.

2)上記と逆に、基板内のガス透過性を向上させるため
に、大きな粒子による大きなボアを持つ多孔質とすると
、三相界面か減少し、良好な電池か得られない。
2) Contrary to the above, if the substrate is made porous with large pores due to large particles in order to improve gas permeability within the substrate, the number of three-phase interfaces decreases, making it impossible to obtain a good battery.

3)当然のことながら、上記1)と2)を組み合わせせ
て、大きなボアを持つ多孔質の表面付近を微細な構造を
持つ電極材とする方法も考えられるが、大きなボアを持
つ多孔質は、緻密なものに比べて強度か低いので、その
分厚くする必要かあり、ガス透過性を悪くすることにな
る。また、多孔質体は緻密なものに比べて導電率が落ち
るので、電池性能を下げる原因ともなる。
3) Of course, it is possible to combine 1) and 2) above and use the electrode material near the surface of a porous material with large bores as having a fine structure. Since the strength is lower than that of a dense material, it is necessary to make it thicker, which results in poor gas permeability. Furthermore, since porous materials have lower electrical conductivity than dense materials, they also cause deterioration in battery performance.

本発明は、上記の固体電解質型燃料電池における問題点
を解決する、構造が簡単で、且つ電池の内部抵抗か小さ
い電池を提供することを目的とするものである。
An object of the present invention is to provide a battery that solves the above-mentioned problems with solid oxide fuel cells and has a simple structure and low internal resistance.

[課題を解決するための手段] 本発明の固体電解質型燃料電池は、 固体電解質、空気電極及び燃料電極とから成る固体電解
質型燃料電池において、該電池の燃料電極部の材料と同
一の材料から成り、且つ多数の貫通孔を有する緻密な基
板の片面上に前記燃料電極、固体電解質及び空気電極の
順に成膜して成ることを特徴とする固体電解質型燃料電
池である。
[Means for Solving the Problems] The solid oxide fuel cell of the present invention includes a solid oxide fuel cell comprising a solid electrolyte, an air electrode, and a fuel electrode, which is made of the same material as the fuel electrode portion of the cell. A solid oxide fuel cell is characterized in that the fuel electrode, solid electrolyte, and air electrode are formed in this order on one side of a dense substrate having a large number of through holes.

そして、上記の燃料電極材料が、ニッケル・ジルコニア
・サーメットから成る固体電解質型燃料電池であり、ま
た 別な態様例として基板がテーノく一状の貫通孔を設けて
成り、 さらに別な態様例として、基板の貫通孔の一方に溝を加
えて成る固体電解質型燃料電池であり、またさらに、前
述の構成からなるセルの集電体として溝付きセパレータ
を使用することを特徴とする固体電解質型燃料電池であ
る。
The above fuel electrode material is a solid electrolyte fuel cell made of nickel-zirconia cermet, and as another embodiment, the substrate is provided with a tooth-shaped through hole. , a solid oxide fuel cell comprising a groove added to one of the through-holes of the substrate, and further characterized in that a grooved separator is used as a current collector of the cell configured as described above. It's a battery.

[作用] 本発明の固体電解質型燃料電池によれば、1〉多数の貫
通孔を有する基板を使うために、燃料ガスの透過性が良
好となる。
[Function] According to the solid oxide fuel cell of the present invention, 1> fuel gas permeability is improved because a substrate having a large number of through holes is used.

2)貫通孔に溝を付けることにより、電極部分へのガス
透過性か更に向上する。
2) By providing a groove in the through hole, gas permeability to the electrode portion is further improved.

3)緻密な材料で基板を製作するため、強度が高く、薄
い材料とすることができ、大型化の場合にもコンパクト
な構造となる。
3) Since the substrate is made of a dense material, it can be made of a strong and thin material, resulting in a compact structure even when increasing in size.

4)また緻密な材料で基板を製作するため、この部分の
導電率が高く、電池性能が向上する。
4) Furthermore, since the substrate is made of a dense material, the conductivity of this part is high, improving battery performance.

5)電気化学反応に直接関与する固体電解質界面の燃料
電極は微細な構造となるので、電池性能が向上する。
5) Since the fuel electrode at the solid electrolyte interface, which is directly involved in the electrochemical reaction, has a fine structure, battery performance is improved.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

[実施例コ 第1図 (a)〜(e)は本発明の電池の実施例である
固体電解質型燃料電池の製作を示す説明図、第2図、及
び第3図は別の実施例である基体(板)を示す説明図、
第4図(a) 、 (b)は溝の平面を示す説明図、第
5図はセル及び集電体の構成を示す説明図である。
[Example Figures 1 (a) to (e) are explanatory diagrams showing the fabrication of a solid oxide fuel cell which is an example of the battery of the present invention, and Figures 2 and 3 are another example. An explanatory diagram showing a certain base (plate),
FIGS. 4(a) and 4(b) are explanatory diagrams showing the planes of the grooves, and FIG. 5 is an explanatory diagram showing the configurations of cells and current collectors.

図において、1は固体電解質、2は空気極、3は燃料極
、4は基体(板)、4aはグリーンシート、5は集電体
、6はインターコネクター(セパレータ)、7は貫通孔
、8は溝、9は溝付きセパレータ、10はセルである。
In the figure, 1 is a solid electrolyte, 2 is an air electrode, 3 is a fuel electrode, 4 is a substrate (plate), 4a is a green sheet, 5 is a current collector, 6 is an interconnector (separator), 7 is a through hole, 8 9 is a groove, 9 is a grooved separator, and 10 is a cell.

■)第1図 (a)に示すように、厚さ1〜2III1
1のニッケル・ジルコニア・サーメットのグリーンシー
ト4aを成形する。
■) As shown in Figure 1 (a), thickness 1~2III1
A green sheet 4a of nickel-zirconia cermet No. 1 is molded.

2)第1図(b)に示すように、グリーンシート4aに
径0 、5 amの貫通孔7を開ける。
2) As shown in FIG. 1(b), a through hole 7 with a diameter of 0.5 am is made in the green sheet 4a.

3)次に、第1図(C)に示すように、グリーンシ−ト
4aを1200℃にて焼成し基板4を得る。
3) Next, as shown in FIG. 1(C), the green sheet 4a is fired at 1200 DEG C. to obtain the substrate 4.

4)第1図(d)に示すように、基板4上に厚さ30〜
40.のニッケル・ジルコニア・サーメットの微細な燃
料電極3を溶射し製作する。
4) As shown in FIG. 1(d), a thickness of 30~
40. A fine fuel electrode 3 made of nickel zirconia cermet is thermally sprayed and manufactured.

5)次いで、固体電解質1をPVD法により蒸着し、そ
の上に、ランタンとマンガンの複合酸化物(LaMnO
3)のようなセラミックス多孔質焼結体を溶射し、空気
電極2を設ける。
5) Next, solid electrolyte 1 is deposited by PVD method, and a composite oxide of lanthanum and manganese (LaMnO
3) A ceramic porous sintered body such as the one described above is thermally sprayed to provide an air electrode 2.

以上のように構成した電池に、要すれば、さらに空気極
2及び燃料極3の各々の外側に、第9図に示すように、
Cr16%、  Fe  7%を含むニッケル合金(イ
ンコネル600)のような波板状の耐熱金属板からなる
集電体5を設け、且つ、集電体の外側には、単電池を直
列に結ぶ導電体として、電解質1の膨張係数に近い、例
えばマグネシウムをドープした酸化ランタンクロム(L
aCr   Mo2S gO,L 03 )のセラミックスからなる平板状のセ
パレータ(インターコネクター)6を設け、固体電解質
型燃料電池を完成せしめる。
In the battery configured as above, if necessary, as shown in FIG.
A current collector 5 made of a corrugated heat-resistant metal plate such as a nickel alloy (Inconel 600) containing 16% Cr and 7% Fe is provided, and on the outside of the current collector, a conductive wire is provided to connect the single cells in series. For example, magnesium-doped lanthanum chromium oxide (L
A flat separator (interconnector) 6 made of ceramic (aCrMo2SgO,L03) is provided to complete the solid oxide fuel cell.

かかる固体電解質型燃料電池において、空気極2に空気
または酸素を、そして燃料極33こ水素または燃料ガス
を供給することにより発生した電気は、波板状の集電体
5によって集電され、セパレータ6により各セル10の
電気を集電する。
In such a solid oxide fuel cell, electricity generated by supplying air or oxygen to the air electrode 2 and hydrogen or fuel gas to the fuel electrode 33 is collected by a corrugated current collector 5, and is collected by a separator. 6 collects electricity from each cell 10.

この電池の前記の1)の工程において、第2図に示すよ
うに、グリーンシート4aにテーパー状の貫通孔7を設
けて、以下同じ工程にて製作された固体電解質型電池は
、この貫通孔7により、ガス透過性を高めることが出来
る。
In the step 1) of this battery, a tapered through hole 7 is provided in the green sheet 4a as shown in FIG. 7, gas permeability can be increased.

又、上記の貫通孔7の上部に、第3図並びに第4図(a
) 、 (b)に示すように、溝8を追加させるとより
電池反応を促進することが出来る。
In addition, on the upper part of the through hole 7, as shown in FIG.
), as shown in (b), the cell reaction can be further promoted by adding grooves 8.

更に別の態様例として第5図に示す如く、溝付きセパレ
ータ9を用いると構造が簡単で好ましい。
As another embodiment, as shown in FIG. 5, it is preferable to use a grooved separator 9 because the structure is simple.

なお、本発明の電極は第1図に示すような平板型固体電
解質燃料電池に限らず、多管型固体電解質燃料電池にも
適用出来るものである。
Note that the electrode of the present invention is applicable not only to a flat plate type solid electrolyte fuel cell as shown in FIG. 1, but also to a multi-tube type solid electrolyte fuel cell.

[発明の効果コ 本発明の固体電解質燃料電池によれば、■)強度を有す
る基板上に、電池の構成H3層を成膜することにより、
大面積の電池製作が可能となる。
[Effects of the Invention] According to the solid electrolyte fuel cell of the present invention, ■) By forming the cell structure H3 layer on a substrate having strength,
It becomes possible to manufacture large-area batteries.

2)基板に多数の貫通孔を設けたため、燃料ガスの透過
性が向上し、電池性能が向上する。
2) Since a large number of through holes are provided in the substrate, fuel gas permeability is improved and battery performance is improved.

3)基板は、比較的緻密な基板を使うために多孔質基板
より導電性が高く、電池性能が向上する。
3) Since the substrate is relatively dense, it has higher conductivity than a porous substrate, improving battery performance.

4)比較的緻密な基板を使うため、強度が上がり、多孔
質基板を使う場合より、薄くすることができ、コンパク
トな電池が得られる。
4) Since a relatively dense substrate is used, the strength is increased and the battery can be made thinner and more compact than when a porous substrate is used.

5)燃料電極用材料と基板の材料を同じものとしたため
、相互のなじみが良く、熱膨張率の差による損傷がなく
、安定した性能の電池が得られる。
5) Since the material for the fuel electrode and the material for the substrate are the same, they are compatible with each other, and there is no damage due to differences in thermal expansion coefficients, resulting in a battery with stable performance.

等の効果を奏するものである。It has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の電池の実施例である固
体電解質型燃料電池の製作を示す説明図、第2図及び第
3図は電池基板の別の実施例の説明図、第4図(a) 
、 (b)は溝の平面を示す説明図、第5図はセル及び
集電体の構成を示す説明図、第6図は燃料電池の原理の
説明図、第7図及び第8図は従来の固体電解質型燃料電
池の説明図、第9図は、従来の複数段のセルからなる燃
料電池の一例を示す概略断面の説明図である。 図において、1:固体電解質、2:空気極、3:燃料極
、4:基体(板)、4aニゲリーンシート、5:集電体
、6:インターコネクター(セパレータ)、7:貫通孔
、8:溝、9:溝付きセパレータ、10:セル。
FIGS. 1(a) to (e) are explanatory diagrams showing the fabrication of a solid oxide fuel cell which is an embodiment of the battery of the present invention, and FIGS. 2 and 3 are explanatory diagrams of another embodiment of the battery substrate. , Figure 4(a)
, (b) is an explanatory diagram showing the plane of the groove, Fig. 5 is an explanatory diagram showing the structure of the cell and current collector, Fig. 6 is an explanatory diagram of the principle of the fuel cell, and Figs. 7 and 8 are conventional diagrams. FIG. 9 is a schematic cross-sectional view showing an example of a conventional fuel cell consisting of multiple stages of cells. In the figure, 1: solid electrolyte, 2: air electrode, 3: fuel electrode, 4: substrate (plate), 4a nitrogen sheet, 5: current collector, 6: interconnector (separator), 7: through hole, 8 : groove, 9: grooved separator, 10: cell.

Claims (5)

【特許請求の範囲】[Claims] (1)固体電解質、空気電極及び燃料電極とから成る固
体電解質型燃料電池において、該電池の燃料電極部の材
料と同一の材料から成り、且つ多数の貫通孔を有する緻
密な基板の片面上に前記燃料電極、固体電解質及び空気
電極の順に成膜して成ることを特徴とする固体電解質型
燃料電池。
(1) In a solid electrolyte fuel cell consisting of a solid electrolyte, an air electrode, and a fuel electrode, on one side of a dense substrate made of the same material as the fuel electrode part of the cell and having many through holes. A solid electrolyte fuel cell characterized in that the fuel electrode, the solid electrolyte, and the air electrode are formed in this order.
(2)前記燃料電極部材料が、ニッケル・ジルコニア・
サーメットから成ることを特徴とする請求項1記載の固
体電解質型燃料電池。
(2) The fuel electrode material is nickel, zirconia,
The solid oxide fuel cell according to claim 1, characterized in that it is made of cermet.
(3)前記基板がテーパー状の貫通孔を設けて成ること
を特徴とする請求項1又は2記載の固体電解質型燃料電
池。
(3) The solid oxide fuel cell according to claim 1 or 2, wherein the substrate is provided with a tapered through hole.
(4)前記基板の貫通孔の一方に溝を加えたことを特徴
とする請求項1〜3記載の固体電解質型燃料電池。
(4) The solid oxide fuel cell according to any one of claims 1 to 3, wherein a groove is added to one of the through holes of the substrate.
(5)セルの集電体として溝付きセパレータを使用する
ことを特徴とする請求項1〜4記載の固体電解質型燃料
電池。
(5) The solid oxide fuel cell according to any one of claims 1 to 4, wherein a grooved separator is used as a current collector of the cell.
JP2032334A 1990-02-15 1990-02-15 Fuel cell of solid electrolyte type Pending JPH03238758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2032334A JPH03238758A (en) 1990-02-15 1990-02-15 Fuel cell of solid electrolyte type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2032334A JPH03238758A (en) 1990-02-15 1990-02-15 Fuel cell of solid electrolyte type

Publications (1)

Publication Number Publication Date
JPH03238758A true JPH03238758A (en) 1991-10-24

Family

ID=12356055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2032334A Pending JPH03238758A (en) 1990-02-15 1990-02-15 Fuel cell of solid electrolyte type

Country Status (1)

Country Link
JP (1) JPH03238758A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173091A (en) * 2004-12-16 2006-06-29 General Electric Co <Ge> High-performance fuel cell electrode and its manufacturing method
US7226691B2 (en) 2002-09-25 2007-06-05 Nissan Motor Co., Ltd. Unit cell solid oxide fuel cell and related method
JP2007250368A (en) * 2006-03-16 2007-09-27 Kyocera Corp Lateral stripe type fuel cell and fuel cell
JP2008226478A (en) * 2007-03-08 2008-09-25 Dainippon Printing Co Ltd Solid oxide fuel cell and its manufacturing method
JP2010232007A (en) * 2009-03-27 2010-10-14 Toyota Motor Corp Solid oxide fuel battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226691B2 (en) 2002-09-25 2007-06-05 Nissan Motor Co., Ltd. Unit cell solid oxide fuel cell and related method
JP2006173091A (en) * 2004-12-16 2006-06-29 General Electric Co <Ge> High-performance fuel cell electrode and its manufacturing method
JP2007250368A (en) * 2006-03-16 2007-09-27 Kyocera Corp Lateral stripe type fuel cell and fuel cell
JP2008226478A (en) * 2007-03-08 2008-09-25 Dainippon Printing Co Ltd Solid oxide fuel cell and its manufacturing method
JP2010232007A (en) * 2009-03-27 2010-10-14 Toyota Motor Corp Solid oxide fuel battery

Similar Documents

Publication Publication Date Title
US6589681B1 (en) Series/parallel connection of planar fuel cell stacks
KR20040038786A (en) Fuel cell with embedded current collector
US6921557B2 (en) Process for making dense thin films
JP3064746B2 (en) Flat solid electrolyte fuel cell
KR20040089525A (en) Fuel Cell and Passive Support
JP5061408B2 (en) STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JP2841340B2 (en) Solid electrolyte fuel cell
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
JPH10172590A (en) Solid electrolyte type fuel cell
JPH03222261A (en) Electrode for solid electrolytic fuel cell
JPH03238758A (en) Fuel cell of solid electrolyte type
JPH0355764A (en) Solid electrolytic type fuel cell
JP3244310B2 (en) Solid oxide fuel cell
KR101905499B1 (en) Unit cell module and stack for solid oxide fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH0462757A (en) Solid electrolyte type fuel cell
JPH07145492A (en) Steam electrolytic cell
JP2771090B2 (en) Solid oxide fuel cell
KR101606161B1 (en) Manufacturing method of a tubular metal supported solid oxide fuel cell
JP2013257973A (en) Solid oxide fuel cell stack
JP2948441B2 (en) Flat solid electrolyte fuel cell
JPH04101360A (en) Manufacture of solid electrolyte-type fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH09190825A (en) Solid electrolyte fuel cell and unit cell used to its fuel cell