JPH03222261A - Electrode for solid electrolytic fuel cell - Google Patents

Electrode for solid electrolytic fuel cell

Info

Publication number
JPH03222261A
JPH03222261A JP2014984A JP1498490A JPH03222261A JP H03222261 A JPH03222261 A JP H03222261A JP 2014984 A JP2014984 A JP 2014984A JP 1498490 A JP1498490 A JP 1498490A JP H03222261 A JPH03222261 A JP H03222261A
Authority
JP
Japan
Prior art keywords
electrode
fuel
fuel cell
battery
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014984A
Other languages
Japanese (ja)
Inventor
Hiroshi Mihara
三原 浩
Hirotaka Nakagawa
中川 大隆
Yoshihito Uemoto
好仁 上元
Hiroshi Tsuneizumi
常泉 浩志
Takuya Kadowaki
琢哉 門脇
Eiji Matsuda
松田 英治
Koichi Yokosuka
横須賀 剛一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11876225&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03222261(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2014984A priority Critical patent/JPH03222261A/en
Publication of JPH03222261A publication Critical patent/JPH03222261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To unify current distribution and put a large battery into practical use by changing the porosity on the fuel-electrode inlet side of a battery to a small extent and that on the outlet side to a large extent. CONSTITUTION:It is made up with a solid electrolyte 1, an air electrode 1, a fuel electrode 3, a grooved separator 4, a collector 5, a fuel electrode inlet 7, a fuel electrode outlet 8 and a battery. In this case, the porosity of the battery 9 is changed continuously or discontinuously to a small extent on the fuel- electrode inlet 7 side and to a large extent on the fuel-electrode outlet 8 side. That results in uniform current distribution at each of positions from the inlet 7 to the outlet 8. Stress distribution is thus unified as well to put a large battery into practical use.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、固体電解質型燃料電池Vの電極に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode for a solid oxide fuel cell V.

[従来の技術] 近時、化学反応の自由エネルギー変化を直接に電気エネ
ルギーに変換する装置として、燃料電池が注目され開発
されている。
[Prior Art] Recently, fuel cells have attracted attention and have been developed as a device that directly converts free energy changes in chemical reactions into electrical energy.

燃料電池は、通常の化学電池と規を−にするものである
が、異なるところは、電極の活物質を電池容器内に収め
ておらず、燃料電極には燃料を、また空気電極には燃料
を酸化する物質例えば空気を連続的に供給して発電する
ことであり、有力な直接発電システムの一つとして商用
化が積極的に検討されている。
A fuel cell is different from a normal chemical cell, but the difference is that the active material of the electrode is not contained within the cell container, and the fuel electrode is filled with fuel, while the air electrode is filled with fuel. The method is to generate electricity by continuously supplying a substance that oxidizes the gas, such as air, and commercialization is being actively considered as one of the leading direct power generation systems.

これら燃料電池の中で第3世代燃料電池として、安定化
ジルコニアを電解質とする固体電解質型燃料電池が注目
されている。
Among these fuel cells, solid electrolyte fuel cells using stabilized zirconia as an electrolyte are attracting attention as third generation fuel cells.

即ちジルコニア(Z r O2)は1150℃付近で単
斜晶形から正方品形への結晶構造の転移があり、この際
、約9%の容積変化が現れる。この容積変化を防ぐため
に、カルシウム、イツトリウムなどの酸化物をジルコニ
アに固溶させることが行われ、このような固溶体を安定
化ジルコニアと称している。
That is, zirconia (Z r O2) undergoes a crystal structure transition from a monoclinic form to a tetragonal form at around 1150°C, and at this time, a volume change of about 9% appears. In order to prevent this volume change, oxides such as calcium and yttrium are dissolved in zirconia as a solid solution, and such a solid solution is called stabilized zirconia.

第10図は、この様な燃料電池の原理の説明図である。FIG. 10 is an explanatory diagram of the principle of such a fuel cell.

第10図に示すように、例えば安定化ジルコニアのよう
な固体電解質1の一方の表面に空気電極2が、そして他
方の表面に燃料電極3が設けられている。
As shown in FIG. 10, an air electrode 2 is provided on one surface of a solid electrolyte 1, such as stabilized zirconia, and a fuel electrode 3 is provided on the other surface.

空気電極2に空気(02)を流し、燃料電極3に燃料ガ
ス(H,Co)を流すと、 空気電極2側において、 02+4e→20 の反応が起こり、 燃料電極3側において、 20 →02 + 4 e の反応が生ずる。
When air (02) flows through the air electrode 2 and fuel gas (H, Co) flows through the fuel electrode 3, the reaction 02+4e→20 occurs on the air electrode 2 side, and 20 →02 + on the fuel electrode 3 side. 4 e reaction occurs.

上記反応により発生した電子(e  )は、燃料電極3
側から空気電極2に向けて移動し、空気電極2と、燃料
電極3との間に電気が流れる。
The electrons (e) generated by the above reaction are transferred to the fuel electrode 3
Electricity moves from the side toward the air electrode 2 and flows between the air electrode 2 and the fuel electrode 3.

H+1/20  →H20 2 の反応で、同時に発生した水は系外に排出される。H+1/20 →H20 2 During this reaction, water generated at the same time is discharged from the system.

燃料電池は、上述のように、固体電解質1、空気電極2
及び燃料電極3によって構成された1つのセルを、複数
段積み重ねることによって形成される。
As mentioned above, the fuel cell includes a solid electrolyte 1 and an air electrode 2.
It is formed by stacking a plurality of cells each including a fuel electrode 3 and a fuel electrode 3 in multiple stages.

第1図は、この様な複数段のセルからなる燃料電池の一
例を示す概略断面の説明図である。
FIG. 1 is a schematic cross-sectional view showing an example of such a fuel cell consisting of multiple stages of cells.

第1図に示すように、固体電解質1の一方の表面に、セ
ラミックス多孔質焼結体からなる板状の空気電極2が設
けられ、固体電解質1の他方の表面に、Ni多孔質焼結
体からなる板状の燃料電極3が設けられている。
As shown in FIG. 1, a plate-shaped air electrode 2 made of a ceramic porous sintered body is provided on one surface of the solid electrolyte 1, and a Ni porous sintered body is provided on the other surface of the solid electrolyte 1. A plate-shaped fuel electrode 3 is provided.

空気電極2及び燃料電極3の各々の外側には、溝付のセ
パ−レータ4が設けられ集電を兼ねる構造となっている
A grooved separator 4 is provided on the outside of each of the air electrode 2 and the fuel electrode 3, and has a structure that also serves as a current collector.

空気電極2に空気または酸素を、そして燃料電極3に水
素または燃料ガスを供給することにより、前記のように
発生した電気は、セパレータ4によって集電され、各セ
ルの電気を集電する。
By supplying air or oxygen to the air electrode 2 and hydrogen or fuel gas to the fuel electrode 3, the electricity generated as described above is collected by the separator 4, and the electricity of each cell is collected.

これら安定化ジルコニアなどを用いた固体電解質型燃料
電池の有利な点は、全固体構造をとることが出来ると共
に、電極における反応が、溶融炭酸塩電池よりも簡単な
ことである。
The advantage of solid oxide fuel cells using stabilized zirconia and the like is that they can have an all-solid structure and the reaction at the electrodes is simpler than in molten carbonate cells.

C発明が解決しようとする課題] 以上の如き従来の固体電解質型燃料電池においては、第
7図に示すように、電池9面の片側の人ロアから、燃料
ガス及び酸化剤ガス(空気)を供給する場合、燃料ガス
は、発電効率を高めるために、電池面9内にて反応して
発電するために必要な量に対して少しだけ余分に流す程
度であり、むやみに多くを流すことは出来ない。そうし
た場合には、ガス人ロア側では燃料は豊富に有るが、出
口8側には燃料がかなり減ることになる。
Problems to be Solved by Invention C] In the conventional solid oxide fuel cell as described above, as shown in FIG. When supplying fuel gas, in order to increase power generation efficiency, the fuel gas should be flowed in a small amount in excess of the amount required for reacting within the cell surface 9 to generate power, and it is important not to flow an unnecessarily large amount of fuel gas. Can not. In such a case, there will be plenty of fuel on the gas man's lower side, but there will be considerably less fuel on the exit 8 side.

このときの電流密度の分布は、第8図に示すように人ロ
ア側に電流密度が高く、ガス人ロア側からの距離が遠い
出口8側が低く、極端な電流のアンバランスを生ずる。
At this time, the current density distribution is as shown in FIG. 8, where the current density is high on the lower man side and lower on the exit 8 side, which is far from the lower gas man side, resulting in an extreme current imbalance.

このように、電流の不均一な分布になると、電池反応に
伴って発生する熱も不均一になり、電池9面内の熱応力
分布も不均一となり電池の強度面に対して悪影響を与え
損傷させる可能性を与える。
In this way, if the current is unevenly distributed, the heat generated by the battery reaction will also be uneven, and the thermal stress distribution within the battery 9 will also be uneven, which will adversely affect the strength of the battery and cause damage. give you the possibility to

また、こうした不均一な電流分布をもつ電池を多数積層
して電池スタックを構成すると、電流は第9図に示すよ
うに、燃料電極3.固体電解質1及び空気電極2とから
なる電池3層膜10に直角な方向に流れるので、セパレ
ータ4や電池膜10に局部的に大きな電流が流れ、強度
上及び抵抗損失上好ましくない。
Furthermore, when a battery stack is constructed by stacking a large number of cells with such non-uniform current distribution, the current is distributed between the fuel electrodes 3 and 3, as shown in FIG. Since the current flows in a direction perpendicular to the battery three-layer membrane 10 consisting of the solid electrolyte 1 and the air electrode 2, a large current locally flows through the separator 4 and the battery membrane 10, which is unfavorable in terms of strength and resistance loss.

特に大面積の電池で、入口側と出口側の距離を大きくす
ると、電流分布の差が大きくなり熱分布。
Especially in large-area batteries, if the distance between the inlet and outlet sides is increased, the difference in current distribution will increase and the heat distribution will increase.

熱応力分布の不均一により電池の損傷が発生しやすい。Battery damage is likely to occur due to uneven thermal stress distribution.

従来、このような固体電解質型燃料電池における電流の
不均一化についての報文は有るが電流の均一化に対する
具体的な報文はない。
Conventionally, there have been reports on non-uniformity of current in such solid oxide fuel cells, but there are no specific reports on equalization of current.

本発明は、上記の固体電解質型燃料電池における問題点
を解決する損傷の少ない長寿命の固体電解質型燃料電池
の電極を提供することを目的とするものである。
An object of the present invention is to provide an electrode for a solid oxide fuel cell that is less susceptible to damage and has a long life, which solves the above-mentioned problems in the solid oxide fuel cell.

[課題を解決するための手段] 本発明の固体電解質型燃料電池の電極は、固体電解質、
空気電極及び燃料電極とから成る固体電解質型燃料電池
において、該電池の燃料電極部人口側の気孔率を小に、
出口側の気孔率を大に変化させたことを特徴とするもの
であり、 前記電極表面が、金属またはセラミック粉末を添加して
成り、 前記添加粉末が、N 1. N iO、AM 203 
[Means for Solving the Problems] The electrode of the solid oxide fuel cell of the present invention comprises a solid electrolyte,
In a solid electrolyte fuel cell consisting of an air electrode and a fuel electrode, the porosity of the fuel electrode portion of the cell is reduced,
The electrode is characterized in that the porosity on the outlet side is greatly changed, the electrode surface is made by adding metal or ceramic powder, and the added powder is N1. Nio, AM 203
.

ZrO、Si  N   SiCのうち少なくとも2 
 34′ 1種であることを特徴とする固体電解質型燃料電池の電
極である。
At least 2 of ZrO, Si N SiC
34' An electrode for a solid electrolyte fuel cell characterized by being of type 1.

[作用コ 本発明の固体電解質型燃料電池によれば、後述する実施
例の第4図及び第5図に示すように、電池の燃料電極の
燃料ガス入口に近い部分の気孔率を連続的に又は断続的
に下げることにより、燃料ガスが固体電解質に到達し難
くなり、電気化学反応が抑制され、燃料が出口側に温存
され電流分布の不均一が減少されるものである。
[Function] According to the solid oxide fuel cell of the present invention, as shown in FIGS. 4 and 5 of Examples described later, the porosity of the fuel electrode of the cell near the fuel gas inlet is continuously adjusted. Alternatively, by intermittent lowering, it becomes difficult for the fuel gas to reach the solid electrolyte, the electrochemical reaction is suppressed, the fuel is conserved on the outlet side, and the non-uniformity of the current distribution is reduced.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例] 第1図は、本発明の電極の適用例である複数段のセルか
らなる固体電解質型燃料電池の一実施例を示す概略断面
の説明図、第2図はその電極電池面の説明図、第3図は
、本発明の電極の適用例である他の実施例を示す固体電
解質型燃料電池の概略断面の説明図である。
[Example] Fig. 1 is a schematic cross-sectional view showing an example of a solid oxide fuel cell consisting of multiple stages of cells, which is an application example of the electrode of the present invention, and Fig. 2 is an explanatory diagram of the electrode cell surface. The explanatory diagram and FIG. 3 are explanatory diagrams of a schematic cross section of a solid oxide fuel cell showing another example to which the electrode of the present invention is applied.

図において、1は固体電解質、2は空気電極、3は燃料
電極、4は溝付きセパレータ、5は集電体、6はインタ
ーコネクター、7は燃料電極入口。
In the figure, 1 is a solid electrolyte, 2 is an air electrode, 3 is a fuel electrode, 4 is a grooved separator, 5 is a current collector, 6 is an interconnector, and 7 is a fuel electrode inlet.

8は燃料電極出口、9は電池である。8 is a fuel electrode outlet, and 9 is a battery.

第1図に示すように、本発明を適用する固体電解質型燃
料電池の一実施態様例は、カルシウム。
As shown in FIG. 1, one embodiment of a solid oxide fuel cell to which the present invention is applied uses calcium.

イツトリウムなどの酸化物をジルコニアに固溶させた安
定化ジルコニアからなる固体電解質1の一方の表面に、
ランタンとマンガンの複合酸化物(LaMnO3)のよ
うなセラミックス多孔質焼結体からなる板状の空気電極
2を設け、固体電解質1の他方の表面に、厚さ50〜1
00−のNi多孔質焼結体からなる板状の燃料電極3を
設け、さらに空気電極2及び燃料電極3の各々の外側に
は、セル運転中は1000℃に達するので、CrlB%
On one surface of the solid electrolyte 1 made of stabilized zirconia in which an oxide such as yttrium is dissolved in zirconia,
A plate-shaped air electrode 2 made of a ceramic porous sintered body such as a composite oxide of lanthanum and manganese (LaMnO3) is provided on the other surface of the solid electrolyte 1 with a thickness of 50 to 1
A plate-shaped fuel electrode 3 made of a 00-Ni porous sintered body is provided, and CrlB%
.

Fe  7%を含むニッケル合金(インコネル600)
のような耐熱金属板からなる溝付きセパレータ4が設け
られ集電も兼ねて行うことからなる固体電解質型燃料電
池である。
Nickel alloy containing 7% Fe (Inconel 600)
This is a solid oxide fuel cell which is provided with a grooved separator 4 made of a heat-resistant metal plate such as the one shown in FIG.

かかる固体電解質型燃料電池において、空気電極2に空
気または酸素を、そして燃料電極3に水素または燃料ガ
スを供給することにより発生した電気は、溝付きセパレ
ータ4によって集電され、各セルの電気を集電する。
In such a solid oxide fuel cell, electricity generated by supplying air or oxygen to the air electrode 2 and hydrogen or fuel gas to the fuel electrode 3 is collected by the grooved separator 4, and the electricity in each cell is collected. Collect current.

この電池において、第2図に示す固体電解質型燃料電池
の電池9面の燃料電極部穴ロア側の気孔率を、第4図及
び第5図に示すように、非連続又は連続的に燃料電極部
ロア側を小に、燃料電極出口8側を大に変化させた。
In this cell, the porosity on the lower side of the fuel electrode hole on the 9th side of the battery of the solid oxide fuel cell shown in FIG. 2 was adjusted discontinuously or continuously as shown in FIGS. The fuel electrode outlet 8 side was changed to a small one on the lower side and a large one on the fuel electrode outlet 8 side.

その結果、入ロアから出口8間の位置毎の電流分布は第
6図に示すように、均一化された。
As a result, the current distribution at each position between the entrance lower part and the exit part 8 was made uniform as shown in FIG.

従って、その為に応力の分布も均一化されるので、大型
電池の実用化が可能となり、電流分布の不均一化による
セパレータ材や電極材の温度の均一化が図られ、局部的
電流増加による抵抗ロスが小さく出来るものである。
Therefore, the stress distribution becomes uniform, which makes it possible to put large-sized batteries into practical use, and the temperature of the separator material and electrode material becomes uniform due to the uneven current distribution, and the local increase in current It is possible to reduce resistance loss.

なお、電池の燃料電極部入口の気孔率を変化させるに当
たっては種々な方法が採用出来、その方法を限定するも
のではないが、例えば固体電解質型燃料電池の成膜に当
って、膜上に溶射材を溶射条件を変更することにより、
気孔率を変更することが好ましい。その際の溶射条件と
しては(1)被溶射材の表面と溶射ノズルとの角度を変
更する。
Note that various methods can be used to change the porosity at the inlet of the fuel electrode part of the battery, and the method is not limited. For example, when forming a film for a solid oxide fuel cell, thermal spraying on the film By changing the thermal spraying conditions,
Preferably, the porosity is changed. The spraying conditions at this time are (1) changing the angle between the surface of the material to be sprayed and the spray nozzle;

(2)溶射材の原料粉末の組成を変更する。(2) Changing the composition of the raw material powder for thermal spraying material.

(3)電極材料の粉末を液体中に分散させたスラリーを
電解質膜の表面に塗布し、次いで焼成するに当り、前記
スラリー組成を変更する。
(3) A slurry in which electrode material powder is dispersed in a liquid is applied to the surface of the electrolyte membrane, and then the composition of the slurry is changed during firing.

(4)あらかじめ気孔率が一定となるように作成した燃
料電極部の表面に、N L 、 N i O、A920
3、ZrO、Si  N   SiCのうち少な2  
   3  4 ′ くとも1種の金属またはセラミック粉末を添加する。
(4) N L , N i O, A920 was applied to the surface of the fuel electrode section, which was prepared in advance so that the porosity was constant.
3. Less than 2 of ZrO, Si N SiC
3 4 ' Add at least one metal or ceramic powder.

こと等の (1)〜(4〉の条件により溶射し、気孔率
を変更することが望ましい。
It is desirable to perform thermal spraying under the conditions (1) to (4), such as the following, to change the porosity.

なお、本発明の電極は、第1図に示すような平板型固体
電解質型燃料電池に限らず、第3図に示すような他の固
体電解質型燃料電池の場合にも適用出来るものである。
Note that the electrode of the present invention is applicable not only to the flat plate solid oxide fuel cell as shown in FIG. 1, but also to other solid oxide fuel cells as shown in FIG.

第3図の固体電解質型燃料電池は、空気電極2に空気ま
たは酸素を、そして燃料電極3に水素または燃料ガスを
供給することにより発生した電気は、第1図の溝付きセ
パレータ4の代わりに、セパレータ4と同じ材質である
インコネル60oからなる集電体5によって集電され、
且つ、集電体5の外側には、単電池を直列に結ぶ導電体
として、電解質1の膨脂係数に近い、例えばマグネシウ
ムをドープした酸化ランタンクロム(LaCr、9Mg
0)からなる平板状の耐熱金属板から0.13 なるインターコネクター6を設けてなる固体電解質型燃
料電池であり、このインターコネクター6により、各セ
ルの電気を集電する。
In the solid oxide fuel cell shown in FIG. 3, electricity generated by supplying air or oxygen to the air electrode 2 and hydrogen or fuel gas to the fuel electrode 3 is generated using the grooved separator 4 in place of the grooved separator 4 shown in FIG. , current is collected by a current collector 5 made of Inconel 60o, which is the same material as the separator 4,
In addition, on the outside of the current collector 5, a lanthanum chromium oxide (LaCr, 9Mg
This is a solid electrolyte fuel cell equipped with an interconnector 6 made of a flat heat-resistant metal plate made of 0.0.

以上のような電池の他、多管型固体電解質型燃料電池イ
こも本発明は適用出来るものである。
In addition to the above-mentioned batteries, the present invention can also be applied to multitubular solid electrolyte fuel cells.

[発明の効果] 本発明の固体電解質型燃料電池の電極によれば、大面積
の燃料電池においても電流分布ひいては熱応力の分布を
均一化しやすいので、大型電池の実用化が可能となり、
電流分布の不均一化によるセパレータ材や電極材の温度
の均一化が図られ、寿命が長く、局部的電流増加による
抵抗ロスが小さく出来る等の効果を奏するものである。
[Effects of the Invention] According to the electrode of the solid oxide fuel cell of the present invention, it is easy to equalize the current distribution and even the distribution of thermal stress even in a large-area fuel cell, so it is possible to put a large-sized battery into practical use.
By making the current distribution non-uniform, the temperature of the separator material and the electrode material can be made uniform, resulting in long lifespan and reduced resistance loss due to local current increase.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電極の適用例である複数段のセルから
なる固体電解質型燃料電池の一実施例を示す概略断面の
説明図、第2図はその電極電池面の説明図、第3図は、
本発明の電極の適用例である他の実施例を示す固体電解
質型燃料電池の概略断面の説明図、第4図及び第5図は
電極の入口から出口の位置と気孔率との関係の説明図、
第6図は入口から出口間の位置毎の電流分布の説明図、
第7図〜第9図は夫々本発明の説明図、第10図は燃料
電池の原理の説明図である。 図において、1:固体電解質、2:空気電極、3:燃料
電極、4:セパレータ、5:集電体、6インターコネク
ター 7=燃燃料電極口、8:燃料電極出口、9:電池
、10:電池3層膜。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a solid oxide fuel cell consisting of multiple cells, which is an application example of the electrode of the present invention; FIG. 2 is an explanatory view of the electrode cell surface; The diagram is
An explanatory diagram of a schematic cross section of a solid oxide fuel cell showing another example of application of the electrode of the present invention, and FIGS. 4 and 5 illustrate the relationship between the position from the inlet to the outlet of the electrode and the porosity. figure,
Figure 6 is an explanatory diagram of the current distribution for each position between the inlet and the outlet,
FIGS. 7 to 9 are explanatory views of the present invention, and FIG. 10 is an explanatory view of the principle of the fuel cell. In the figure, 1: solid electrolyte, 2: air electrode, 3: fuel electrode, 4: separator, 5: current collector, 6 interconnector, 7 = fuel electrode port, 8: fuel electrode outlet, 9: battery, 10: Battery 3-layer membrane.

Claims (3)

【特許請求の範囲】[Claims] (1)固体電解質、空気電極及び燃料電極とから成る固
体電解質燃料電池において、該電池の燃料電極部入口側
の気孔率を小に、出口側の気孔率を大に変化させたこと
を特徴とする固体電解質型燃料電池の電極。
(1) A solid electrolyte fuel cell consisting of a solid electrolyte, an air electrode, and a fuel electrode is characterized in that the porosity on the inlet side of the fuel electrode portion of the cell is made small and the porosity on the outlet side is made large. electrodes for solid oxide fuel cells.
(2)前記電極表面が、金属またはセラミック粉末を添
加して成ることを特徴とする請求項1記載の固体電解質
型燃料電池の電極。
(2) The electrode for a solid oxide fuel cell according to claim 1, wherein the electrode surface is formed by adding metal or ceramic powder.
(3)前記添加粉末が、Ni、NiO、Al_2O_3
、ZrO_2、Si_3N_4、SiCのうち少なくと
も1種であることを特徴とする請求項2記載の固体電解
質型燃料電池の電極。
(3) The additive powder is Ni, NiO, Al_2O_3
, ZrO_2, Si_3N_4, and SiC, the electrode for a solid oxide fuel cell according to claim 2.
JP2014984A 1990-01-26 1990-01-26 Electrode for solid electrolytic fuel cell Pending JPH03222261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014984A JPH03222261A (en) 1990-01-26 1990-01-26 Electrode for solid electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014984A JPH03222261A (en) 1990-01-26 1990-01-26 Electrode for solid electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH03222261A true JPH03222261A (en) 1991-10-01

Family

ID=11876225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014984A Pending JPH03222261A (en) 1990-01-26 1990-01-26 Electrode for solid electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH03222261A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100323A (en) * 2001-09-27 2003-04-04 Mitsubishi Materials Corp Power collector and its manufacturing method, and solid electrolyte type fuel cell
US6924057B2 (en) 1998-11-24 2005-08-02 Ballard Power Systems Inc. Electrochemical fuel cell with an electrode having an in-plane nonuniform structure
US7291417B2 (en) 2003-01-16 2007-11-06 Hewlett-Packard Development Company, L.P. Compositional and structural gradients for fuel cell electrode materials
JP2008243572A (en) * 2007-03-27 2008-10-09 Equos Research Co Ltd Current collector and fuel cell
JP2012054015A (en) * 2010-08-31 2012-03-15 Kyocera Corp Solid oxide fuel battery cell and fuel battery
JP2012094427A (en) * 2010-10-28 2012-05-17 Kyocera Corp Solid oxide fuel cell and fuel cell module
JP2014216297A (en) * 2013-04-30 2014-11-17 日本特殊陶業株式会社 Single cell for fuel battery, fuel battery, and method for producing single cell for fuel battery
JP2015028888A (en) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 Fuel battery cell and fuel battery cell stack
JP2015028889A (en) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 Fuel battery cell and fuel battery cell stack
JP2018098081A (en) * 2016-12-14 2018-06-21 Toto株式会社 Solid oxide fuel cell stack

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924057B2 (en) 1998-11-24 2005-08-02 Ballard Power Systems Inc. Electrochemical fuel cell with an electrode having an in-plane nonuniform structure
JP2003100323A (en) * 2001-09-27 2003-04-04 Mitsubishi Materials Corp Power collector and its manufacturing method, and solid electrolyte type fuel cell
US7291417B2 (en) 2003-01-16 2007-11-06 Hewlett-Packard Development Company, L.P. Compositional and structural gradients for fuel cell electrode materials
US7556880B2 (en) * 2003-01-16 2009-07-07 Hewlett-Packard Development Company, L.P. Compositional and structural gradients for fuel cell electrode materials
JP2008243572A (en) * 2007-03-27 2008-10-09 Equos Research Co Ltd Current collector and fuel cell
JP2012054015A (en) * 2010-08-31 2012-03-15 Kyocera Corp Solid oxide fuel battery cell and fuel battery
JP2012094427A (en) * 2010-10-28 2012-05-17 Kyocera Corp Solid oxide fuel cell and fuel cell module
JP2014216297A (en) * 2013-04-30 2014-11-17 日本特殊陶業株式会社 Single cell for fuel battery, fuel battery, and method for producing single cell for fuel battery
JP2015028888A (en) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 Fuel battery cell and fuel battery cell stack
JP2015028889A (en) * 2013-07-30 2015-02-12 日本特殊陶業株式会社 Fuel battery cell and fuel battery cell stack
JP2018098081A (en) * 2016-12-14 2018-06-21 Toto株式会社 Solid oxide fuel cell stack

Similar Documents

Publication Publication Date Title
JP2016081813A (en) Electrochemical cell stack, and power system
JP5226290B2 (en) Solid oxide battery
EP3046171B1 (en) Fuel cell and fuel cell stack
JP6483837B2 (en) Conductive member, cell stack, module, and module housing device
JPH03222261A (en) Electrode for solid electrolytic fuel cell
WO2024125205A1 (en) Supporting and connecting body for solid oxide fuel cell or electrolysis cell, and preparation method therefor
US9831517B2 (en) Unit cell of solid oxide fuel cell, stack using the unit cell, and methods of manufacturing the unit cell and the stack
KR20050051671A (en) Electrode-supported fuel cell
JP2004039573A (en) Sealing material for low-temperature operation solid oxide fuel cell
JPS63119166A (en) Fuel battery
KR20120033661A (en) Metal-supported solid oxide fuel cell and manufacturing method
JP2004146131A (en) Sealing structure and sealing method of solid oxide fuel cell
JP2018181745A (en) Conductive member, electrochemical reaction unit, and electrochemical reaction cell stack
JP3575650B2 (en) Molten carbonate fuel cell
KR101905499B1 (en) Unit cell module and stack for solid oxide fuel cell
JPH03238758A (en) Fuel cell of solid electrolyte type
JPS62268063A (en) Manufacture of solid electrolyte
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture
JPH07320756A (en) Solid electrolytic fuel cell
JPH0462757A (en) Solid electrolyte type fuel cell
KR20140082300A (en) Solid oxide fuel cell
JPH01267964A (en) Fuel battery with solid electrolyte
JPH09190825A (en) Solid electrolyte fuel cell and unit cell used to its fuel cell
JP2001196083A (en) Solid electrolyte fuel cell
JP2002358989A (en) Gas preheating device for fuel cell