JPS63119166A - Fuel battery - Google Patents

Fuel battery

Info

Publication number
JPS63119166A
JPS63119166A JP61262704A JP26270486A JPS63119166A JP S63119166 A JPS63119166 A JP S63119166A JP 61262704 A JP61262704 A JP 61262704A JP 26270486 A JP26270486 A JP 26270486A JP S63119166 A JPS63119166 A JP S63119166A
Authority
JP
Japan
Prior art keywords
fuel gas
cell
fuel
gas flow
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61262704A
Other languages
Japanese (ja)
Inventor
Katsunori Sakai
勝則 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61262704A priority Critical patent/JPS63119166A/en
Publication of JPS63119166A publication Critical patent/JPS63119166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve reliability and performance of a fuel battery by increasing a cross-sectional area of fuel gas flow passage in a unit cell located at the lower part of layered stack. CONSTITUTION:The differential pressure of fuel gas fed to a fuel gas supply manifold 11 between outlet and inlet of a battery is large at the upper part but is small at the lower part of battery. By the arrangement that a layered group C 15 located at the lower part has a large cross-sectional area of fuel gas flow passage in a unit cell, the pressure loss is reduced and the fuel gas flows easily even if the differential pressure between outlet and inlet of the battery is small.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は燃料電池に係り、特に積層スタック中の各セル
への燃料ガス及び酸化剤ガスの均一供給に改良を施した
燃料電池に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel cell, and in particular to a fuel cell that improves uniform supply of fuel gas and oxidant gas to each cell in a laminated stack. Regarding fuel cells.

(従来の技術) 従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換する装置として燃料電池が知られてい
る。この燃料電池は通常、電解質を保持したマトリック
スを挟んで一対の多孔質電極を配置するとともに、一方
の電極背面に水素等の燃料ガスを接触させ、また他方の
電極の背面に酸素等の酸化剤ガスを接触させ、このとき
起こる電気化学的反応を利用して上記電極間から電気エ
ネルギーを出力する単位セルを、複数個積層して構成す
るようにしたものであり、上記燃料ガスと酸化剤ガスが
供給されている限り高い変換効率で電気エネルギーを取
り出すことができるものである。
(Prior Art) Fuel cells are conventionally known as devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell usually has a pair of porous electrodes sandwiched between a matrix holding an electrolyte, a fuel gas such as hydrogen is brought into contact with the back of one electrode, and an oxidizing agent such as oxygen is brought into contact with the back of the other electrode. It is constructed by stacking a plurality of unit cells that output electrical energy from between the electrodes by bringing gas into contact and utilizing the electrochemical reaction that occurs at this time, and the fuel gas and oxidizing gas are Electrical energy can be extracted with high conversion efficiency as long as it is supplied.

第4図(A)、(B)にこの種の従来の燃料電池の構成
を示した。即ち、第4図(A)に示した様に、電解質を
含浸したマトリックス1を挟んで、上側には前記マトリ
ックス1に接する面に触媒が塗布された多孔質体から構
成されているリブ付アノード電極2が配設され、下側に
は同様にマトリックス1に接する面に触媒が塗布された
多孔質体から構成されているリブ付カソード電極3が配
設されて、単位セル4が構成されている。
FIGS. 4(A) and 4(B) show the configuration of this type of conventional fuel cell. That is, as shown in FIG. 4(A), a ribbed anode made of a porous body whose surface in contact with the matrix 1 is coated with a catalyst is placed on the upper side with a matrix 1 impregnated with an electrolyte sandwiched therebetween. An electrode 2 is disposed, and a ribbed cathode electrode 3 made of a porous material whose surface in contact with the matrix 1 is similarly coated with a catalyst is disposed on the lower side, thereby forming a unit cell 4. There is.

また第4図(B)に示した様に、従来の燃料電池におい
ては積層された単位セル4に適当な間隔をおいて、発電
反応に伴って発生する熱を冷却するための冷却板5が挿
入されている。
Furthermore, as shown in FIG. 4(B), in the conventional fuel cell, cooling plates 5 are installed at appropriate intervals between the stacked unit cells 4 to cool the heat generated during the power generation reaction. It has been inserted.

また前記積層セル4はその上下をシール用導体6によっ
て挟まれ、その」1下に配設された締付金具7によって
積層方向に締付固定されて積層スタックが形成されてい
る。
Further, the laminated cell 4 is sandwiched between the sealing conductor 6 at its upper and lower sides, and is tightened and fixed in the stacking direction by a fastening fitting 7 disposed below the sealing conductor 6, thereby forming a laminated stack.

一方この様に形成された電池本体の側面には、燃料ガス
または酸化剤ガスを供給または排出するためのマニホー
ルド8が取り付けられている。
On the other hand, a manifold 8 for supplying or discharging fuel gas or oxidant gas is attached to the side surface of the battery body formed in this manner.

さらにマニホールド8には、燃料ガスまたは酸化剤ガス
の供給管9が取り付けられており、供給管9より供給さ
れた燃料ガスまたは酸化剤ガスは積層セルの各単位セル
4に供給される。
Furthermore, a fuel gas or oxidant gas supply pipe 9 is attached to the manifold 8, and the fuel gas or oxidant gas supplied from the supply pipe 9 is supplied to each unit cell 4 of the stacked cells.

(発明が解決しようとする問題点) 上記の様な従来の燃料電池における問題点を第3図(A
)及び(B)を用いて説明する。
(Problems to be solved by the invention) The above-mentioned problems in conventional fuel cells are illustrated in Figure 3 (A
) and (B).

燃料ガス供給口10より供給された燃料ガス供給マニホ
ールド11内の燃料ガスは水素濃度が高いための密度は
小さいが、積層セル4通過後の燃料ガス排気マニホール
ド12内では水素が消費され、かわりに水蒸気が混入し
てくるために密度は大きくなる。この結果、積層スタッ
ク高さ方向の圧力分布は、第3図(B)に示す如く、静
水圧力ρgh(ρ:密度、g:重力加速度、h:高さ)
の効果のために電池出入口間の差圧は電池上部で大きく
下部で小さい。このため電池下部へ流れる燃料ガス流量
は少なくなってしまう。
The fuel gas in the fuel gas supply manifold 11 supplied from the fuel gas supply port 10 has a high hydrogen concentration and therefore has a low density, but after passing through the stacked cells 4, hydrogen is consumed in the fuel gas exhaust manifold 12 and is replaced by hydrogen. The density increases due to the introduction of water vapor. As a result, the pressure distribution in the stack height direction is the hydrostatic pressure ρgh (ρ: density, g: gravitational acceleration, h: height) as shown in Figure 3 (B).
Due to this effect, the differential pressure between the battery inlet and outlet is large at the top of the battery and small at the bottom. For this reason, the flow rate of fuel gas flowing to the lower part of the battery is reduced.

この結果、燃料電池運転中積層セル4下部セルには、十
分な燃料ガスが供給されないため、下部セルの特性が大
幅に低下する。さらには、必要流量以下の燃料ガスしか
供給されない場合、そのセルは転極現象を起こし、電池
本体が破損するなどの大きな問題点があった。
As a result, sufficient fuel gas is not supplied to the lower cell of the stacked cell 4 during fuel cell operation, and the characteristics of the lower cell are significantly degraded. Furthermore, if only a smaller amount of fuel gas is supplied than the required flow rate, the cell will undergo a polarity reversal phenomenon, resulting in major problems such as damage to the battery body.

本発明は、上記事情に鑑みてなされたもので、積層セル
の各セルに均一に燃1料ガスを供給するようにして、燃
料電池の信頼性を高め高性能化を可能とした燃料電池を
提供することを目的とする。
The present invention was made in view of the above circumstances, and provides a fuel cell that improves the reliability of the fuel cell and enables higher performance by uniformly supplying fuel gas to each cell of a stacked cell. The purpose is to provide.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の燃料電池は、積層スタックの下部に位置する単
位セルの燃料ガス流通路断面積を上部のそれより増大さ
せたものである。
(Means for Solving the Problems) In the fuel cell of the present invention, the cross-sectional area of the fuel gas flow passage of the unit cell located at the lower part of the stack is made larger than that of the unit cell at the upper part.

(作  用) 本発明の燃料電池は、下部単位セルの燃料ガス流通路の
断面積を大きくすることで、下部単位セルの燃料ガス流
通路の圧損を小さくし、下部セル=4− にも容易に燃料ガスが流通できるようにすることで、積
層セルの各セルに均一に燃料ガスが供給される。
(Function) In the fuel cell of the present invention, by increasing the cross-sectional area of the fuel gas flow passage of the lower unit cell, the pressure drop of the fuel gas flow passage of the lower unit cell is reduced, and the lower cell = 4- is easily formed. By allowing the fuel gas to flow through the stacked cells, the fuel gas is uniformly supplied to each cell of the stacked cells.

〔実 施 例〕〔Example〕

(実施例の構成) 本実施例において第1図に示した様に、単位セル4は、
複数個積層され、その適当な間隔をおいて冷却板5を挿
入して積層スタックを構成し前記積層スタックの一側面
に、アノード電極2に燃料ガスを供給するための燃料ガ
ス供給用マニホールド11、対向する側面に燃料ガスを
排出するための燃料ガス排出用マニホールド12が設置
されている。
(Configuration of Example) In this example, as shown in FIG. 1, the unit cell 4 is
A fuel gas supply manifold 11 for supplying fuel gas to the anode electrode 2 is formed by stacking a plurality of layers and inserting cooling plates 5 at appropriate intervals to form a stack, and on one side of the stack. A fuel gas discharge manifold 12 for discharging fuel gas is installed on the opposing side.

ここで、第3図(B)に示す様に、電池入口の燃料ガス
は、水素濃度が高いため密度は小さいが、電池出口では
、水素が消費され、かわりに水蒸気が混入してくるため
密度は大きくなり、電池高さ方向の圧力分布は、静水圧
ρghの効果のために、電池出入口間の差圧は、電池上
部で大きく、下部で小さい。
Here, as shown in Figure 3 (B), the fuel gas at the cell inlet has a high hydrogen concentration and therefore has a low density, but at the cell outlet the hydrogen is consumed and water vapor is mixed in instead, so the density is low. increases, and the pressure distribution in the battery height direction is such that due to the effect of the hydrostatic pressure ρgh, the differential pressure between the battery inlet and outlet is large at the top of the battery and small at the bottom.

そこで、前記積層スタックは第1図に示す様に、単位セ
ルの燃料ガス流通路断面積の異なる3つ以上のグループ
に分かれる様に構成されている。この時3つのグループ
のセル燃料ガス流通路断面積は、第3図(B)で示した
電池高さ方向に伴う圧力分布による電池出入口間の差圧
を考慮し、燃料ガス流通路の圧損が、前記出入口間の差
圧とバランスを取る様に成形されている。
Therefore, as shown in FIG. 1, the laminated stack is configured to be divided into three or more groups having different cross-sectional areas of the fuel gas flow passages of the unit cells. At this time, the cross-sectional area of the cell fuel gas flow passages for the three groups is determined by taking into account the differential pressure between the cell inlet and outlet due to the pressure distribution along the cell height direction shown in Figure 3 (B), and the pressure drop in the fuel gas flow passages is , and is shaped to balance the differential pressure between the inlet and outlet.

つまり第1図(B)に示す如く、下部に位置する積層グ
ループはど燃料ガス流通路断面積が大きくなる様に構成
されている。(燃料ガス流通路断面積グループA〈グル
ープB〈グループC)(実施例の作用) この様な構成を有する本実施例の燃料電池においては、
燃料ガス供給マニホールドに送られた、燃料ガスは、静
水圧ρghの効果のために、電池出入口の差圧が電池上
部が大きく、下部で小さくなる。
In other words, as shown in FIG. 1(B), the laminated group located at the bottom has a larger cross-sectional area of the fuel gas flow passage. (Fuel gas flow passage cross-sectional area Group A <Group B <Group C) (Function of the embodiment) In the fuel cell of this embodiment having such a configuration,
Due to the effect of the hydrostatic pressure ρgh, the fuel gas sent to the fuel gas supply manifold has a differential pressure at the cell inlet and outlet, which is large at the top of the cell and small at the bottom.

この時、下部に位置する積層グループC15は単位セル
燃料ガス流通路断面積が大きく、圧損が小さいため電池
出入日間差圧が小さくとも、燃料ガスは流れ易くくなる
。この結果、積層セルの各セルに均一に燃料ガスが供給
されるようになる。
At this time, the stacked group C15 located at the bottom has a large cross-sectional area of the unit cell fuel gas flow passage and a small pressure loss, so that even if the differential pressure between inlet and outlet of the cell is small, the fuel gas flows easily. As a result, fuel gas is uniformly supplied to each cell of the stacked cells.

〔発明の効果〕〔Effect of the invention〕

以上の様に、積層スタック下部グループのセル燃料ガス
流通路断面積を大きくすることで、下部セルにも容易に
燃料ガスが流通できるようにし、積層セルの各セルに均
一に燃料ガスが供給されるようにしたので、積層セル運
転時に生じる。燃料ガス不足による下部セル特性低下を
防止でき燃料電池の信頼性を高め高性能化を実現するこ
とができる。
As described above, by increasing the cross-sectional area of the cell fuel gas flow passages in the lower group of the laminated stack, fuel gas can easily flow to the lower cells, and fuel gas can be uniformly supplied to each cell in the laminated stack. This occurs during stacked cell operation. It is possible to prevent the lower cell characteristics from deteriorating due to fuel gas shortage, thereby increasing the reliability of the fuel cell and achieving higher performance.

(他の実施例) なお、本発明は上述の実施例に限定されるものでなく、
第2図に示す様に、単位セル4の燃料ガス流通路入口部
分に絞り16を設け、燃料ガス流通路の圧損をコントロ
ールする。
(Other Examples) Note that the present invention is not limited to the above-mentioned Examples,
As shown in FIG. 2, a throttle 16 is provided at the inlet of the fuel gas flow path of the unit cell 4 to control the pressure drop in the fuel gas flow path.

この場合、絞り16の小さいセルを積層スタック下部グ
ループに位置することで、電池出入口間の差圧が小さく
ても燃料ガスが流れ易くなり、本実施例と同様の効果が
得ることができる。
In this case, by locating a cell with a small aperture 16 in the lower group of the laminated stack, the fuel gas can flow easily even if the differential pressure between the cell inlet and outlet is small, and the same effect as in this embodiment can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明の燃料電池の一実施例を示す断面
図、第1図(B)は第1図(A)の要部拡大図、第2図
は本発明の燃料電池の他の実施例を示す要部拡大図、第
3図(A)は従来の燃料電池の問題点を示す断面図、第
3図(B)は、積層スタックの入口出口間のガス密度差
を示す図、第4図(A>は単位セルの構成を示す斜視図
、第4図(B)は従来の燃料電池の構成を示す断面図で
ある。 1・・・マトリックス   2・・・アノード電極1.
0・・・燃料ガス供給口 11・・・燃料ガス供給マニホールド 12・・・燃料ガス排気マニホールド 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第  1 図 (ハ) 第  1 図 (B) 第  2 図 第  3 図 (8) 第   3  因 (A)
FIG. 1(A) is a sectional view showing one embodiment of the fuel cell of the present invention, FIG. 1(B) is an enlarged view of the main part of FIG. 1(A), and FIG. 2 is a cross-sectional view showing an embodiment of the fuel cell of the present invention. An enlarged view of the main parts showing another embodiment, FIG. 3(A) is a sectional view showing the problems of the conventional fuel cell, and FIG. 3(B) shows the gas density difference between the inlet and outlet of the laminated stack. 4 (A> is a perspective view showing the structure of a unit cell, and FIG. 4 (B) is a sectional view showing the structure of a conventional fuel cell. 1... Matrix 2... Anode electrode 1 ..
0...Fuel gas supply port 11...Fuel gas supply manifold 12...Fuel gas exhaust manifold Representative Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata Figure 1 (C) Figure 1 (B) Figure 2 Figure 3 (8) Third cause (A)

Claims (2)

【特許請求の範囲】[Claims] (1)燃料ガス流通路および酸化剤ガス流通路を有する
一対のアノード電極およびカソード電極に、電解質を保
持するマトリックスを配してなる単位セルを複数個積層
し、その単セル内に適当な間隔をおいて冷却板を挿入し
て積層スタックを形成し、前記積層スタックの対向する
側面に、前記カソード電極に酸化剤ガスを供給又は排出
するための酸化剤ガス供給用マニホールドおよび排出用
マニホールドがそれぞれ配設され、また、積層スタック
の一側面に、前記アノード電極に燃料ガスを供給又は排
出するための燃料ガス供給用マニホールドおよび排出用
マニホールドが並置されて配設された燃料電池において
、前記積層スタック下部に位置する単位セルの燃料ガス
流通路の断面積を、上部に位置する単位セルのそれのよ
り増大させたことを特徴とする燃料電池。
(1) A plurality of unit cells each consisting of a pair of anode and cathode electrodes each having a fuel gas flow path and an oxidant gas flow path and a matrix for holding an electrolyte are stacked, and an appropriate interval is set within the single cell. A cooling plate is inserted to form a laminated stack, and an oxidant gas supply manifold and a discharge manifold are respectively provided on opposite sides of the laminated stack for supplying or discharging the oxidant gas to the cathode electrode. In the fuel cell, a fuel gas supply manifold and a discharge manifold for supplying or discharging fuel gas to or from the anode electrode are arranged side by side on one side of the stack. 1. A fuel cell characterized in that the cross-sectional area of the fuel gas flow path of the unit cell located at the bottom is made larger than that of the unit cell located at the top.
(2)単位セルの燃料ガス流通路の入口に絞りを設けて
断面積を変化させたことを特徴とする特許請求の範囲第
1項記載の燃料電池。
(2) The fuel cell according to claim 1, characterized in that a throttle is provided at the entrance of the fuel gas flow path of the unit cell to change the cross-sectional area.
JP61262704A 1986-11-06 1986-11-06 Fuel battery Pending JPS63119166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61262704A JPS63119166A (en) 1986-11-06 1986-11-06 Fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61262704A JPS63119166A (en) 1986-11-06 1986-11-06 Fuel battery

Publications (1)

Publication Number Publication Date
JPS63119166A true JPS63119166A (en) 1988-05-23

Family

ID=17379434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61262704A Pending JPS63119166A (en) 1986-11-06 1986-11-06 Fuel battery

Country Status (1)

Country Link
JP (1) JPS63119166A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048262A1 (en) * 1999-02-11 2000-08-17 Forschungszentrum Jülich GmbH Fuel cell stack with fuel admission through a perforated plate
KR20040050612A (en) * 2002-12-10 2004-06-16 엘지전자 주식회사 Bipolar plate structure of fuel cell
WO2004006370A3 (en) * 2002-07-04 2004-12-16 Forschungszentrum Juelich Gmbh Low-temperature fuel-cell stack
KR100486562B1 (en) * 2002-07-30 2005-05-03 엘지전자 주식회사 Structure for protecting pressure loss of bipolar plate in fuel cell
CN100336261C (en) * 2004-04-27 2007-09-05 松下电器产业株式会社 Fuel battery
EP1968149A1 (en) * 2007-03-02 2008-09-10 Siemens Aktiengesellschaft Fuel cell unit
US7582377B2 (en) 2001-11-15 2009-09-01 Toyota Jidosha Kabushiki Kaisha Fuel cell and method of assembling the same
US7960066B2 (en) * 2006-01-25 2011-06-14 Canon Kabushiki Kaisha Fuel cell system
WO2013038700A1 (en) * 2011-09-16 2013-03-21 日本特殊陶業株式会社 Fuel cell
JP2016015222A (en) * 2014-07-01 2016-01-28 トヨタ紡織株式会社 Fuel cell separator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048262A1 (en) * 1999-02-11 2000-08-17 Forschungszentrum Jülich GmbH Fuel cell stack with fuel admission through a perforated plate
US7582377B2 (en) 2001-11-15 2009-09-01 Toyota Jidosha Kabushiki Kaisha Fuel cell and method of assembling the same
WO2004006370A3 (en) * 2002-07-04 2004-12-16 Forschungszentrum Juelich Gmbh Low-temperature fuel-cell stack
KR100486562B1 (en) * 2002-07-30 2005-05-03 엘지전자 주식회사 Structure for protecting pressure loss of bipolar plate in fuel cell
KR20040050612A (en) * 2002-12-10 2004-06-16 엘지전자 주식회사 Bipolar plate structure of fuel cell
US7745063B2 (en) 2004-04-27 2010-06-29 Panasonic Corporation Fuel cell stack
CN100336261C (en) * 2004-04-27 2007-09-05 松下电器产业株式会社 Fuel battery
US7960066B2 (en) * 2006-01-25 2011-06-14 Canon Kabushiki Kaisha Fuel cell system
WO2008107358A1 (en) * 2007-03-02 2008-09-12 Siemens Aktiengesellschaft Fuel cell unit
EP1968149A1 (en) * 2007-03-02 2008-09-10 Siemens Aktiengesellschaft Fuel cell unit
KR101533571B1 (en) * 2007-03-02 2015-07-06 지멘스 악티엔게젤샤프트 Fuel cell unit
WO2013038700A1 (en) * 2011-09-16 2013-03-21 日本特殊陶業株式会社 Fuel cell
CN103828113A (en) * 2011-09-16 2014-05-28 日本特殊陶业株式会社 Fuel cell
US9385381B2 (en) 2011-09-16 2016-07-05 Ngk Spark Plug Co., Ltd. Fuel cell stack
JP2016015222A (en) * 2014-07-01 2016-01-28 トヨタ紡織株式会社 Fuel cell separator
US9735436B2 (en) 2014-07-01 2017-08-15 Toyota Boshoku Kabushiki Kaisha Separator for fuel cell

Similar Documents

Publication Publication Date Title
CA2490877C (en) Humidity controlled solid polymer electrolyte fuel cell assembly
RU2269842C2 (en) Fuel-cell module using solid polymeric electrolyte, fuel cell pile, and method for feeding chemically active gas to fuel cell
CN109904484B (en) Fuel cell bipolar plate structure and fuel cell
JPS63119166A (en) Fuel battery
JPH05159790A (en) Solid electrolyte fuel cell
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JP2001202984A (en) Solid-polymer fuel cell stack
JP3673252B2 (en) Fuel cell stack
JPH1167258A (en) Fuel cell
JPH04370664A (en) Fuel cell
JPS61148766A (en) Fused carbonate type fuel cell
JPH0249640Y2 (en)
JPH01151163A (en) Fuel cell
JPH0782874B2 (en) Fuel cell
JPS63155561A (en) Fuel cell
JPS6273568A (en) Fuel cell
JP2004241185A (en) Polymer electrolyte type fuel cell
JPH04303566A (en) Solid electrolyte fuel cell
KR20240006345A (en) Separator module for fuel cell and unit cell for fuel cell including the same
JPH02253564A (en) Molten carbonate fuel cell
JPH02126561A (en) Fuel cell
JP2001202974A (en) Solid polymer fuel cell stack
JPS6113576A (en) Internal reformed type fuel cell
JPS62122072A (en) Fuel cell
JPH0945346A (en) Phosphoric acid type fuel cell