JPH01151163A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH01151163A
JPH01151163A JP62308967A JP30896787A JPH01151163A JP H01151163 A JPH01151163 A JP H01151163A JP 62308967 A JP62308967 A JP 62308967A JP 30896787 A JP30896787 A JP 30896787A JP H01151163 A JPH01151163 A JP H01151163A
Authority
JP
Japan
Prior art keywords
gas
duct
fuel gas
fuel
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62308967A
Other languages
Japanese (ja)
Inventor
Toshio Hirota
広田 俊夫
Ko Kondo
香 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62308967A priority Critical patent/JPH01151163A/en
Publication of JPH01151163A publication Critical patent/JPH01151163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To unify the flow of fuel gas in the lamination direction of a cell laminated body by decreasing the cross section area of the electrode substrate of a unit cell or the gas passage duct of a separator in stages from the lower section of the lamination height to the upper section. CONSTITUTION:The width size of a gas passage duct 17 is decreased and the width of a projection forming the wall of the duct 17 is increased at the upper position of a laminated body, thus the cross section area of the whole gas passage is decreased and the passage resistance is increased. The excessive flow of the fuel gas at the upper section of lamination is thereby prevented by the difference of aerial height in the lamination direction of a cell laminated body 9. The width size of the duct 17 is made larger then that of the upper duct and the passage resistance is decreased at the middle position of lamination of the laminated body 9. The width of the duct 17 is made larger than that at the middle position and the passage resistance is decreased at the lower section of lamination of the laminated body 9. The difference of aerial height in the lamination direction can be thereby compensated, and the fuel gas flow in the lamination direction can be unified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単電池とセパレータとを交互に積層し、前記
単電池の電極基材あるいは電極に接するセパレータに燃
料ガスを供給するガスダクトを形成してなる電池積層体
を備えた燃料電池に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method of forming a gas duct by alternately stacking unit cells and separators to supply fuel gas to the electrode base material of the unit cell or the separator in contact with the electrode. The present invention relates to a fuel cell equipped with a cell stack made of.

〔従来の技術〕[Conventional technology]

燃料電池の電池積層体は単電池とセパレータとを交互に
積層して形成されている。この単電池とセパレークとの
組合わせにはいわゆるリブ付電極方式とリブ付セパレー
タ方式とが知られている。
A cell stack of a fuel cell is formed by alternately stacking unit cells and separators. The so-called ribbed electrode method and the ribbed separator method are known for the combination of a cell and a separator.

第3図はリプ付電極方式のものの分解斜視図であり、図
において1はマトリ、クスであり、これを挾持して燃料
電極触媒層2と酸化剤電極触媒層3とが配され、燃料電
極触媒層2にはガス透過性の燃料電極基材4が密着して
設けられ、一方酸化剤電極触媒層3にはガス透過性の酸
化剤電極基材5が密着して設けられている。そして燃料
電極基材4には燃料電極触媒層2に燃料ガスを供給する
溝状の流路4aが複数条設けられ、一方酸化剤電極基材
5には酸化剤電極触媒層3に酸化剤ガスを供給する溝状
の流路5aが流路4aと直交して複数条設けらnている
。電池積層体は上記の単電池とガス不透過性のセパレー
タとしてのセパレート板6とを交互に積層して形成され
る。
FIG. 3 is an exploded perspective view of the lip-equipped electrode system. In the figure, 1 is a matrix and a box, and a fuel electrode catalyst layer 2 and an oxidizer electrode catalyst layer 3 are placed between them, and the fuel electrode A gas permeable fuel electrode base material 4 is provided in close contact with the catalyst layer 2, while a gas permeable oxidant electrode base material 5 is provided in close contact with the oxidant electrode catalyst layer 3. The fuel electrode base material 4 is provided with a plurality of groove-shaped channels 4a for supplying fuel gas to the fuel electrode catalyst layer 2, while the oxidant electrode base material 5 is provided with a plurality of groove-like channels 4a for supplying fuel gas to the oxidant electrode catalyst layer 3. A plurality of groove-shaped channels 5a are provided perpendicularly to the channel 4a. The battery stack is formed by alternately stacking the above-mentioned unit cells and separator plates 6 as gas-impermeable separators.

リブ付セパレータ方式においては第4図の分解斜視図に
示すようにマトリ、クス1を挾持してその両側に燃料電
極触媒層2と酸化剤電極触媒層3とを配し、さらにこの
両側にガス不透過性のセパレータとしてのリプ付セパレ
ータ7を配している。
In the ribbed separator method, as shown in the exploded perspective view of FIG. 4, a matrix and a matrix 1 are sandwiched, and a fuel electrode catalyst layer 2 and an oxidizer electrode catalyst layer 3 are arranged on both sides of the matrix, and a gas A lipped separator 7 is provided as an impermeable separator.

リブ付セパレータ7の一方の面には燃料電極触媒層2に
燃料ガスを供給する複数条の溝状の流路7aが燃料電極
触媒層2に開口するように設けられており、一方セパレ
ータの他方の面には酸化剤電極触媒層3に酸化剤ガスを
供給する複数条の溝状の流路7bが流路7aと直交して
酸化剤電極触媒層に開口して設けられている。電池積層
体はこれらの単電池とリブ付セパレータとを交互に積層
して形成される。
A plurality of groove-shaped channels 7a for supplying fuel gas to the fuel electrode catalyst layer 2 are provided on one side of the ribbed separator 7 so as to open to the fuel electrode catalyst layer 2. A plurality of groove-shaped flow passages 7b for supplying oxidant gas to the oxidant electrode catalyst layer 3 are provided on the surface thereof, so as to be perpendicular to the flow passages 7a and open to the oxidant electrode catalyst layer. The battery stack is formed by alternately stacking these unit cells and ribbed separators.

第5図は上記のような電池積層体からなる燃料電池の分
解斜視図であり、図において9は電池積層体であり、電
池積層体9の対向する側面にそれぞれ燃料ガスの供給マ
ニホールド10と排出マニホールド11とをシール材加
を介して電池積層体9に取付けられ、一方他の対向する
側面にはそれぞれ酸化剤ガスの供給マニホールド稔ト排
出マニホールド13とがシール材加を介して電池積層体
9に取付けられている。燃料ガスと酸化剤ガスはこれら
のマニホールドを介して電池積層体に給排され、電池積
層体内の単電池にて電気化学反応を起こさせて電気を取
出している。
FIG. 5 is an exploded perspective view of a fuel cell composed of a battery stack as described above. In the figure, 9 is a battery stack, and a fuel gas supply manifold 10 and a fuel gas discharge manifold are arranged on opposite sides of the battery stack 9, respectively. A manifold 11 is attached to the battery stack 9 via a sealing material, while an oxidant gas supply manifold and a fertilization discharge manifold 13 are attached to the battery stack 9 via a sealant on the other opposing side. installed on. Fuel gas and oxidant gas are supplied to and discharged from the battery stack through these manifolds, causing an electrochemical reaction in the single cells in the battery stack to extract electricity.

ところで前述した燃料ガスや酸化剤ガスの流路には第6
図および第7図に示すものが知られている。第6図は第
5図の燃料電池の燃料ガス流路部での断面図である。図
においては燃料ガスの供給。
By the way, there is a sixth channel in the flow path for the fuel gas and oxidant gas mentioned above.
What is shown in FIG. 7 and FIG. 7 is known. FIG. 6 is a cross-sectional view of the fuel gas flow path portion of the fuel cell shown in FIG. 5. The figure shows the fuel gas supply.

排出マニホールド10 、11が電池積層体9の対向す
る側面に取付けられており、他の対向する側面には酸化
剤ガスの図示しない供給、排出マニホールドが取付けら
れている(以下の図面においてこの種の図には同じ図示
方法がとられる。)。
Discharge manifolds 10 and 11 are attached to opposite sides of the battery stack 9, and an unillustrated supply and discharge manifold for oxidizing gas is attached to the other opposite side (in the following drawings, this type of The same illustration method is used in the figures).

セパレート板7には第4図で説明したように燃料電極触
媒層2に燃料ガスを供給する溝状のガス通流ダクトであ
る第1のガスダクト15が供給、排出マニホールド10
 、11が取付けられた電池積層体9の両側面に開口し
て複数条の所定の数だけ設けられている。そしてこれら
の第1のガスダクト15間に連通して第1のガスダクト
15に直交する溝状の第2のガスダクト16が複数条の
所定の数だけ設けられている。このような構造により供
給マニホールドlOに流入した燃料ガスは第1のガスダ
クトで直進し、第2のガスダクトで横進しながら排出マ
ニホール)′11に集められ、ここから外部に排出され
る。
As explained in FIG. 4, the separate plate 7 is supplied with the first gas duct 15, which is a groove-shaped gas flow duct that supplies fuel gas to the fuel electrode catalyst layer 2, and the exhaust manifold 10.
, 11 are opened on both sides of the battery stack 9 to which a predetermined number of strips are provided. A predetermined number of groove-shaped second gas ducts 16 that communicate between these first gas ducts 15 and are orthogonal to the first gas ducts 15 are provided. With this structure, the fuel gas that has flowed into the supply manifold lO travels straight through the first gas duct, travels laterally through the second gas duct, and is collected in the exhaust manifold ()'11, from which it is discharged to the outside.

上記ではリブ付セパレータ方式のものについて説明した
が燃料電極基材4にも同じ構成の第1のガスダクトと第
2のガスダクトが設けられている。
Although the ribbed separator type was described above, the fuel electrode base material 4 is also provided with a first gas duct and a second gas duct having the same configuration.

なお酸化剤ガスを酸化剤電極触媒層に供給する流路も前
述と同様に配化剤電極基材またはセパレート板に第1の
ガスダクトと第2のガスダクトが設けられており、酸化
剤ガスは燃料ガスと直交するように第1のガスダクトと
第2のガスダクトを流れて酸化剤電極触媒層に酸化剤ガ
スを供給している。
Note that the flow path for supplying the oxidizing gas to the oxidizing agent electrode catalyst layer is also provided with a first gas duct and a second gas duct on the arranging agent electrode base material or the separate plate, as described above, and the oxidizing gas is supplied to the oxidizing agent electrode catalyst layer. The oxidant gas is supplied to the oxidant electrode catalyst layer by flowing through the first gas duct and the second gas duct so as to be perpendicular to the gas.

しかしながら、この種の燃料電池は多数の単電池を積層
するため電池積層体の高さが高くなる。
However, since this type of fuel cell stacks a large number of single cells, the height of the cell stack becomes high.

そのため反応ガス、特に燃料ガスは改質ガスとして炭酸
ガス等の非反応成分を含んだ水素からなるため、電池積
層体に供給される燃料ガスは単電池で水素が消費される
ことにより、電池積層体の出口で排出される燃料ガスは
水素より重い炭酸ガス等の成分比率が大きくなる。この
ため電池積層体の出口の燃料ガスの密度は入口のそれよ
り大きくなる。したがって電池積層体の入口と出口とに
おける燃料ガスの気柱高さは前述の密度差により差を生
じ、電池積層体の下方にいくにしたがって大きくなる。
Therefore, the reactive gas, especially the fuel gas, consists of hydrogen containing non-reactive components such as carbon dioxide gas as a reformed gas, so the fuel gas supplied to the battery stack is generated by consuming the hydrogen in the cell stack. The fuel gas discharged at the exit of the body has a higher proportion of components such as carbon dioxide, which is heavier than hydrogen. Therefore, the density of the fuel gas at the outlet of the battery stack is greater than that at the inlet. Therefore, the height of the fuel gas column at the inlet and outlet of the battery stack differs due to the above-mentioned density difference, and increases as it goes downwards in the battery stack.

このため比較的小さい圧力で燃料ガスを入口から送入す
るときは、ガスの密度差に基づくガス通路出口の大きな
気柱高さにより電池積層体の下方には燃料ガスが流れ難
くなり、積層高さ方向に燃料ガスが均等に流れないとい
う問題がある。
Therefore, when fuel gas is introduced from the inlet at a relatively low pressure, the fuel gas becomes difficult to flow below the battery stack due to the large air column height at the gas passage outlet due to the difference in gas density, which increases the stack height. There is a problem that the fuel gas does not flow evenly in the horizontal direction.

これらの問題を解決する手段として本出願人は先に実願
昭58−92571号により、電池を数セルのプロ、り
に形成し、このブロックを多数積層してブロックごとに
マニホールドを設け、見掛けの積層高さを低減する構成
を提案している。しかしこノ構成ではマニホールドの形
状が複雑となってコスト高になってしまう。
As a means to solve these problems, the present applicant previously proposed, in Utility Application No. 58-92571, to form a battery into a multi-cell block, stack a large number of these blocks, and provide a manifold for each block. We are proposing a configuration that reduces the stacking height. However, with this configuration, the shape of the manifold becomes complicated and costs increase.

また燃料電池から排出される燃料ガスをプロワを用いて
再び燃料電池に送入し、改質炉からの燃料ガスとともに
流量を増加させて圧力損失を大きくし、電池積層体の入
口での圧力を増加して、電池積層体の下方にも燃料ガス
が充分流れるようにする構成が知られている。しかしこ
の構成では循環プロワが必要となり設備費や補機動力が
増加するという問題がある。
In addition, the fuel gas discharged from the fuel cell is fed back into the fuel cell using a blower, and the flow rate is increased together with the fuel gas from the reformer to increase the pressure loss and reduce the pressure at the inlet of the cell stack. A configuration is known in which the amount of fuel gas is increased to allow sufficient flow of fuel gas even below the battery stack. However, this configuration requires a circulation blower, which increases equipment costs and auxiliary power.

また、この他に第8図に示すように電池積層体9の一方
の側面匿燃料ガスの供給マニホールド1゜と排出マニホ
ールド1】とを隣り合わせして設け、他方の側面に中間
マニホールド14を設け、燃料ガスを矢印の方向にUタ
ーンして流すことにより流路の長さをとって流路抵抗を
増加させ、を池積層体の入口での燃料ガスの圧力を増大
させて電池積層体の下方にも燃料ガスが流れるようにす
る構成が知られている。しかしこの構成では中間マニホ
ールドにて流れに偏流が生じ電池面内のガス流が均一に
ならないという問題がある。
In addition, as shown in FIG. 8, a fuel gas supply manifold 1° and a discharge manifold 1] are provided next to each other on one side of the battery stack 9, and an intermediate manifold 14 is provided on the other side. By making a U-turn and flowing the fuel gas in the direction of the arrow, the length of the flow path is increased and the flow path resistance is increased, and the pressure of the fuel gas at the inlet of the cell stack is increased and the fuel gas is flowed downward into the cell stack. There is also a known configuration that allows fuel gas to flow. However, this configuration has a problem in that the gas flow is uneven in the plane of the battery due to uneven flow in the intermediate manifold.

また本出願人は実願昭60−87218号により、ガス
流路に充填物を挿入してその一部を閉鎖し、流路抵抗を
増加させる提案をしたが、この提案の構成においては充
填物なる部品点数が増加するという問題があった。
Further, in Utility Application No. 60-87218, the present applicant proposed that a filling material be inserted into the gas flow path to close part of the gas flow path to increase the flow path resistance. There was a problem that the number of parts increased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のごとく、この種の燃料電池は多数の単電池を積層
するため電池着層体の高さが高くなる。
As mentioned above, this type of fuel cell has a large number of single cells stacked on top of each other, so the height of the cell stack becomes high.

そのため燃料ガスは炭酸ガス等の非反応分を含んだ水素
り、チなガスからなるため、単電池で水素が消費される
ことにより、電池積層体の出口で排出される燃料ガスは
水素より重い炭酸ガス等の成分比率が大きくなる。した
がって電池積層体の入口と出口とにおけるガスの気柱高
さは、差を生じ、電池積層体の下方にいくにしたがって
大きくなる。
Therefore, the fuel gas consists of hydrogen and other gases that contain non-reactive components such as carbon dioxide gas, so as the hydrogen is consumed in the single cell, the fuel gas discharged at the exit of the battery stack is heavier than hydrogen. The ratio of components such as carbon dioxide gas increases. Therefore, the height of the gas column at the inlet and outlet of the battery stack differs, and increases as it goes downwards in the battery stack.

このため比較的小さい圧力で燃料ガスを入口から送入す
るときは、ガスの密度差に基づくガス通路出口の大きな
気柱高さによりam積層体の下方には燃料ガスが流れ難
くなり、am高さ方向に燃料ガスが均等に流れないとい
う問題がある。
Therefore, when fuel gas is fed from the inlet at a relatively low pressure, the fuel gas becomes difficult to flow below the AM stack due to the large air column height at the gas passage outlet due to the difference in gas density, and the AM height increases. There is a problem that the fuel gas does not flow evenly in the horizontal direction.

これらの問題を解決する手段として前記した実願昭58
−92571号では、マニホールドの形状が複雑となる
し、前記した燃料ガスと燃料排ガスを供給する方法では
、循環ブロワが追加されたり、補機動力が増加するし、
前記した中間マニホールドを設け、燃料ガスをUターン
させる方法は、ガスの偏流が問題となり、同じく前記し
た実願昭印−87218号では充填物なる部品点数が増
えるという問題があった。
As a means to solve these problems,
In No. 92571, the shape of the manifold is complicated, and the above-described method of supplying fuel gas and fuel exhaust gas requires the addition of a circulation blower and an increase in the power of auxiliary equipment.
The above-mentioned method of providing an intermediate manifold and making a U-turn on the fuel gas has a problem of uneven flow of gas, and the above-mentioned Utility Model Application No. Shoin-87218 also has a problem of increasing the number of parts, which are fillers.

本発明は、前述のような点に鑑み簡単な構造により電池
積層体における燃料ガスの流量を積層方向に均一化して
供給できる燃料電池を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned points, an object of the present invention is to provide a fuel cell that can uniformly supply a fuel gas flow rate in a stacked cell stack direction with a simple structure.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明によれば、単電
池とセパレータとを交互に積層し、前記単電池の電極基
材あるいは前記単電池と接するセパノー夕に複数のガス
通流ダクトを形成してなる電池積層体を備えた燃料電池
において、前記ガス通流ダクトの断面積を積層高さの下
方より上方に向って、段階的に小さくするものとする。
In order to solve the above problems, according to the present invention, unit cells and separators are alternately stacked, and a plurality of gas flow ducts are formed in the electrode base material of the unit cell or the separator in contact with the unit cell. In a fuel cell equipped with a cell stack formed by the above, the cross-sectional area of the gas flow duct is gradually reduced from the bottom to the top of the stack height.

〔作用〕[Effect]

本発明にしたがい、電池積層体において、燃料ガスのガ
ス通流ダクトの断面積を、積層方向上部にいくに従い小
さくすると、流路抵抗を積層体の上方で大きく、下部で
小さくすることができて、電池積層体の積層方向におけ
る気柱高さの差を補償することができる。すなわち、電
池積層体の上部にかかるガス圧の一部が積層体の下部に
分配され、燃料ガスの密度差に基因する積層体の上部の
気柱高さ低下を補なうことができる。  、このように
して、積層方向に、プロ、りごと段階的にガス通流ダク
トの断面積を小さくして流路抵抗を増加させることによ
り、電池積層体下部での燃料ガスの供給を増加させ、所
要の燃料ガスの流量がすべての単電池に均一に流れるよ
うにすることができる。
According to the present invention, in the battery stack, if the cross-sectional area of the gas flow duct for fuel gas is made smaller toward the top in the stacking direction, the flow path resistance can be increased at the top of the stack and reduced at the bottom. , it is possible to compensate for the difference in air column height in the stacking direction of the battery stack. That is, a part of the gas pressure applied to the upper part of the battery stack is distributed to the lower part of the stack, and it is possible to compensate for the decrease in the height of the air column in the upper part of the stack due to the difference in fuel gas density. In this way, the cross-sectional area of the gas flow duct is gradually reduced in the stacking direction to increase the flow resistance, thereby increasing the supply of fuel gas at the bottom of the battery stack. , it is possible to ensure that the required flow rate of fuel gas flows uniformly to all the single cells.

〔実施例〕〔Example〕

以下図面に基づいて本発明の詳細な説明する。 The present invention will be described in detail below based on the drawings.

第1図は本発明の実施例による燃料電池の燃料ガスの流
路部の断面図である。なお第1図および第2図は、第6
図、第7図および第8図の従来例と同一部品には同じ符
号を付している。第1図においてセパレータとしてのセ
パレート板7の燃料電極触媒層に開口する第2のガスダ
クト16.供給マニホールド10.排出マニホールド1
1などの構成。
FIG. 1 is a sectional view of a fuel gas flow path portion of a fuel cell according to an embodiment of the present invention. Note that Figures 1 and 2 are from Figure 6.
Components that are the same as those in the conventional example shown in FIGS. 7 and 8 are given the same reference numerals. In FIG. 1, a second gas duct 16 opens into the fuel electrode catalyst layer of the separation plate 7 as a separator. Supply manifold 10. Discharge manifold 1
1 etc. configuration.

作用は従来技術と同じなので説明を省略する。本実施例
では第1図において、ガス通流ダクト(第1のガスダク
ト)17の中寸法を小さくすると共にガス通流ダクトの
壁を形成している凸部の巾を広くすることにより、ガス
流路全体の断面積は小さくなり、流路抵抗は大きくなる
。これにより電池積層体9の積層方向における気柱高さ
の差により、積層上方では燃料ガスが流れすぎる現象を
防ぐことができる。
Since the operation is the same as that of the prior art, the explanation will be omitted. In this embodiment, as shown in FIG. 1, the middle dimension of the gas flow duct (first gas duct) 17 is reduced and the width of the convex portion forming the wall of the gas flow duct is widened. The cross-sectional area of the entire channel becomes smaller and the flow resistance becomes larger. This can prevent the fuel gas from flowing too much above the stack due to the difference in air column height in the stacking direction of the battery stack 9.

積層体の積層中位置では、ガス通流ダクト17の巾寸法
を前記積層上方のダクト、巾寸法より大きくして流路抵
抗を少し小さくする。
At the mid-stack position of the laminate, the width of the gas flow duct 17 is made larger than the width of the duct above the laminate to slightly reduce flow path resistance.

積層体の積層下方では、ガス通流ダクト17の巾寸法を
前記積層中位置のダクト巾寸法よりさらに大きくして流
路抵抗をさらに小さくする。
At the bottom of the stack, the width of the gas flow duct 17 is made larger than the width of the duct at the middle of the stack to further reduce the flow path resistance.

かくのごとくガスダクトの巾寸法を積層上方にいくに従
い小さくすることによりその断面積を小さくし、ガス通
路の流路抵抗を積層体の上方で大きく、段階的に下方で
小さくすることができて、電池積層体の積層方向におけ
る気柱高さの差を補償することができる。なおガス通流
ダクトの断面積を小さくするには電極基材あるいはセパ
レータに設けた溝の高さを変えることもできるが、その
場合電極基材或いはセパレータの厚さに影響を与えるの
で好ましくない。
In this way, by decreasing the width of the gas duct toward the top of the stack, its cross-sectional area can be reduced, and the flow resistance of the gas passage can be increased at the top of the stack and gradually reduced below. Differences in air column height in the stacking direction of the battery stack can be compensated for. Note that in order to reduce the cross-sectional area of the gas flow duct, it is possible to change the height of the grooves provided in the electrode base material or the separator, but in this case it is not preferable because it will affect the thickness of the electrode base material or separator.

第2図は第1図のガス通路をA−A断面で見たガス通流
ダクトの断面図を示し、ガス通流ダクトである第1のガ
スダクト17が、第7図に示す従来のガス通流ダクト1
5の断面よりも巾寸法が小さくなって、断面積が減少し
た状態を明示している。
FIG. 2 shows a cross-sectional view of the gas flow duct taken along the line A-A of the gas passage in FIG. flow duct 1
The width dimension is smaller than the cross section of No. 5, clearly indicating a state where the cross-sectional area is reduced.

第2のガスダク) 16の断面積は均一でよい。The cross-sectional area of the second gas duct) 16 may be uniform.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、燃料
のガス通路にあるガス通流ダクトの巾を。
As is clear from the above description, according to the present invention, the width of the gas flow duct in the fuel gas passage.

充填物を用いて部品点数を増加させることなく、電極基
材4、あるいはセパレータ7を製作するときにガス通流
ダクトの寸法を何段階か、異ったものを製作するという
簡単な手段によって、電池積層体の積層方向でガスの流
路抵抗を上方で大きく、下方で小さくなるごとく変化さ
せ、上方で流路抵抗が増加したことにより、電池積層体
の入口での燃料ガスの圧力が増大し、電池積層体の入口
と出口とにおける燃料ガスの密度差による気柱高さの差
を補償して所要の燃料ガスの流量を流すことができ、積
層方向に対し燃料ガスの流量が均一化されるという効果
がある。
By simply manufacturing the gas flow duct with several different dimensions when manufacturing the electrode base material 4 or the separator 7, without increasing the number of parts by using a filler, The gas flow resistance is changed in the stacking direction of the battery stack so that it increases at the top and decreases at the bottom, and as the flow resistance increases at the top, the pressure of the fuel gas at the inlet of the battery stack increases. , the required flow rate of fuel gas can be made to flow by compensating for the difference in air column height due to the difference in density of fuel gas at the inlet and outlet of the battery stack, and the flow rate of fuel gas can be made uniform in the stacking direction. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例による燃料電池の燃料ガスの
流路部の断面図、第2図はこの発明の実施例によるガス
通流ダクトの断面積が小さくなったことを示した断面図
、第3図はリプ付電極方式の単電池の分解斜視図、第4
図はリブ付セパレータ方式の単電池の分解斜視図、第5
図は燃料電池の分解斜視図、!6図は従来の燃料ガスの
流路を示す単電池の部分断面図、第7図は従来のガスダ
クトを示す断面図、第8図は従来の異なる燃料ガスの流
路を示す燃料電池の部分断面図である。 1.2.3,4,5・・・単電池、6,7・・・セパレ
ータ、9・・・電池積層体、15・・・従来のガス通流
ダクト、16・・・第2のガスダクト、17・・・本発
明になるガス通流ダクト。 第1図 A−Aj鉾面 第2図 第3図 第4図 第5図 第6図 第7図
FIG. 1 is a cross-sectional view of a fuel gas flow path portion of a fuel cell according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing that the cross-sectional area of a gas flow duct according to an embodiment of the present invention is reduced. , Figure 3 is an exploded perspective view of a unit cell with lip-attached electrodes, Figure 4
The figure is an exploded perspective view of a cell with a ribbed separator type.
The figure is an exploded perspective view of a fuel cell! Figure 6 is a partial cross-sectional view of a single cell showing a conventional fuel gas flow path, Figure 7 is a cross-sectional view of a conventional gas duct, and Figure 8 is a partial cross-section of a fuel cell showing different conventional fuel gas flow paths. It is a diagram. 1.2.3, 4, 5... Cell, 6, 7... Separator, 9... Battery stack, 15... Conventional gas flow duct, 16... Second gas duct , 17... Gas flow duct according to the present invention. Figure 1 A-Aj Hokomen Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1)単電池とセパレータとを交互に積層し、前記単電池
の電極基材あるいは前記単電池と接するセパレータに複
数のガス通流ダクトを形成してなる電池積層体を備えた
燃料電池において、前記ガス通流ダクトの断面積を積層
高さの下方より上方に向って、段階的に小さくすること
を特徴とする燃料電池。
1) A fuel cell comprising a battery stack in which unit cells and separators are alternately stacked and a plurality of gas flow ducts are formed on the electrode base material of the unit cells or the separator in contact with the unit cells, A fuel cell characterized in that the cross-sectional area of the gas flow duct is gradually reduced from the bottom to the top of the stack height.
JP62308967A 1987-12-07 1987-12-07 Fuel cell Pending JPH01151163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308967A JPH01151163A (en) 1987-12-07 1987-12-07 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308967A JPH01151163A (en) 1987-12-07 1987-12-07 Fuel cell

Publications (1)

Publication Number Publication Date
JPH01151163A true JPH01151163A (en) 1989-06-13

Family

ID=17987380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308967A Pending JPH01151163A (en) 1987-12-07 1987-12-07 Fuel cell

Country Status (1)

Country Link
JP (1) JPH01151163A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241726A2 (en) * 2001-03-06 2002-09-18 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly
EP1239530A3 (en) * 2001-03-06 2005-10-26 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in the fuel cell assembly
EP1722436A3 (en) * 1997-12-18 2009-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell and bipolar separator for the same
US7572537B2 (en) 1997-12-18 2009-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
US7638227B2 (en) 2003-11-06 2009-12-29 Toyota Jidosha Kabushiki Kaisha Fuel cell having stack structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722436A3 (en) * 1997-12-18 2009-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell and bipolar separator for the same
US7572537B2 (en) 1997-12-18 2009-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
EP1241726A2 (en) * 2001-03-06 2002-09-18 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly
EP1241726A3 (en) * 2001-03-06 2005-10-26 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly
EP1239530A3 (en) * 2001-03-06 2005-10-26 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in the fuel cell assembly
US7465515B2 (en) 2001-03-06 2008-12-16 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly
US7687165B2 (en) 2001-03-06 2010-03-30 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly
US7638227B2 (en) 2003-11-06 2009-12-29 Toyota Jidosha Kabushiki Kaisha Fuel cell having stack structure

Similar Documents

Publication Publication Date Title
US9905880B2 (en) Fuel cell stack
US8182956B2 (en) Fuel cell stack with internal fuel manifold configuration
EP0940868B1 (en) Fuel cell stack
US6350540B1 (en) Fuel cell with gas diffusion layer flow passage
US7645530B2 (en) Method and apparatus for humidification of the membrane of a fuel cell
US5541015A (en) Fuel cell using a separate gas cooling method
JPH0560235B2 (en)
JPH04355061A (en) Fuel cell
US20060003220A1 (en) Fuel cell
US20050069749A1 (en) Flow field plate arrangement
JPH01151163A (en) Fuel cell
JPS58164156A (en) Reaction fluid feed passage structure of fuel cell
JPS63119166A (en) Fuel battery
JPS6160548B2 (en)
JP4887285B2 (en) Fuel cell reactant flow area to maximize utilization of planar graphics
JP4185734B2 (en) Fuel cell stack
JP6739970B2 (en) Fuel cell stack
JP2555515B2 (en) Fuel cell
JP4886128B2 (en) Fuel cell stack
JP2002100380A (en) Fuel cell and fuel cell stack
CN102214833B (en) Moisture exchanger and fuel cell stack
JP2004172004A (en) Fuel cell
JPH05190186A (en) Lamination type fuel cell
JPH07192739A (en) Fuel cell
JPH11144746A (en) Phosphoric acid type fuel cell