JPS58164156A - Reaction fluid feed passage structure of fuel cell - Google Patents

Reaction fluid feed passage structure of fuel cell

Info

Publication number
JPS58164156A
JPS58164156A JP57047999A JP4799982A JPS58164156A JP S58164156 A JPS58164156 A JP S58164156A JP 57047999 A JP57047999 A JP 57047999A JP 4799982 A JP4799982 A JP 4799982A JP S58164156 A JPS58164156 A JP S58164156A
Authority
JP
Japan
Prior art keywords
fuel
reaction
cross
section
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57047999A
Other languages
Japanese (ja)
Inventor
Yasuo Takeuchi
靖雄 竹内
Tetsuo Kobayashi
哲夫 小林
Kazuo Kondo
近藤 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP57047999A priority Critical patent/JPS58164156A/en
Publication of JPS58164156A publication Critical patent/JPS58164156A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To unify a reaction speed regardless of a gradual decrease of the effective component ratio toward the outlet from the inlet by shrinking the cross section of a groove formed by a bipolar plate or porous plate with rib and an electrode or airtight plate at a larger rate than the volume decreasing rate due to the reaction of the reaction fluid. CONSTITUTION:The cross section of a fuel passage is shrunk toward the plane direction of a bipolar plate. The decreasing rate of the passage cross section is made larger than that of a partition 16a according to the conventional design concept that the cross section of the fuel passage 4 is reduced in proportion to a decrease of the fuel volume so as to keep the fuel flow speed contant and a partition 16b is provided to gradually increase the flow speed, thereby the reaction speed is unified. Inlet manifolds 17a, 17c and outlet manifolds 17b, 17d are provided in a pair respectively. Since the fuel flow speed is gradually increased toward the outlet from the inlet, the boundary membrane near the electrode surface is made thin, and the average distance between the gas and electrode becomes smaller, thus a decrease of the reaction speed due to the reduction of the hydrogen partial pressure is compensated and a unified reaction is attained.

Description

【発明の詳細な説明】 この発明は、燃料電池の反応流体の供給路構造に関する
。燃料電池においては、反応流体である酸化剤空気、過
酸化水素などや燃料体IA、ヒドラジンなど)を反応慣
域に導くために、一方の肉に燃料が、他方の向4こ酸化
剤が供給され両者間のセパレータとしても役立つ気密な
バイポーラプレート。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reactant fluid supply path structure for a fuel cell. In a fuel cell, in order to guide the reaction fluid (oxidant air, hydrogen peroxide, etc., fuel body IA, hydrazine, etc.) into the reaction zone, fuel is supplied to one side and the oxidizer is supplied to the other side. An airtight bipolar plate that also serves as a separator between the two.

あるいは一方のtJ4こ燃料または酸化剤が供給される
多孔質のリプ付多孔板が用いられる。燃料電池の燃料に
は、天然ガスなどを数置した混合気(たとえばHa 8
0 % 、 00g 2011 )が用いられる。
Alternatively, a porous perforated plate with a lip to which fuel or oxidizing agent is supplied is used. The fuel for the fuel cell is a mixture containing several natural gases (for example, Ha 8
0%, 00g 2011) is used.

この内、消費されるのは水素のみであるため、電池の人
口から出口才で移動していくにつれ、燃料中の水素ガス
分圧は漸減する。一方電池反応は、燃料中の水素分圧か
高いほど、あるいはm料の流量が多いほど速度か大きく
なる。従って、人口と出口の間で電池反応を均一に進行
させるため憂トは、燃料中の水素分圧や燃料の流量を補
正するなどの処置をとる必賛がある。
Since only hydrogen is consumed, the partial pressure of hydrogen gas in the fuel gradually decreases as it is transferred from the battery to the outlet. On the other hand, the speed of the cell reaction increases as the partial pressure of hydrogen in the fuel increases or as the flow rate of the m-fuel increases. Therefore, it is necessary to take measures such as correcting the hydrogen partial pressure in the fuel and the fuel flow rate in order to ensure that the cell reaction progresses uniformly between the population and the outlet.

従来のバイポーラプレート湿り燃料電池では、1g1図
およびllI2#Aに示すように燃料電極11空気電極
2、バイポーラプレート3を積電ねた#I造が採用され
、燃料通路4を仕切り6にて仕切り、燃料が人ロマニホ
ル)’7M、中間マニホルt゛7−へ出口vニホルド7
cの順に通過する−ようにして燃料の通路4をUターン
構造とし、復路を往路よりも挾くすることにより人口か
ら出口に向かって燃料通路のlllIr面積を小さくシ
、反応ガスの流速を均一にすることが試みられている。
In the conventional bipolar plate wet fuel cell, as shown in Fig. 1g1 and llI2#A, #I structure is adopted in which a fuel electrode 11 air electrode 2 and a bipolar plate 3 are stacked, and the fuel passage 4 is separated by a partition 6. , the fuel is in the Roman manifold) '7M, the outlet v Nifold 7 to the intermediate manifold T'7-
By making the fuel passage 4 have a U-turn structure and making the return passage more sandwiched than the outgoing passage, the area of the fuel passage from the population to the exit can be made smaller, and the flow rate of the reactant gas can be made uniform. Attempts are being made to make this possible.

この場合の萌−横の減少度は、燃料の反応による体積減
少に見合うように設計されている。ところがこのll[
では水素100チの細砕燃料を使用する場合は均一な反
応を得られるが、非反応気体たとえば辰はガスを成分に
持つ改質燃料などを使用する場合lこは、燃料中の水素
分圧が人口から出口旙こ向かつて減少していく分だけ反
応速度か低下していく。このことは燃料に限らず酸化剤
の場合についても同様である。
In this case, the degree of reduction of the height and width is designed to correspond to the volume reduction due to the reaction of the fuel. However, this ll [
If a pulverized fuel containing 100 g of hydrogen is used, a uniform reaction can be obtained, but if a reformed fuel containing a non-reactive gas, such as a gas, is used, the partial pressure of hydrogen in the fuel will increase. As the population decreases, the reaction speed decreases as the population decreases. This is true not only for fuel but also for oxidizers.

そこで、本発明は、非反応成分を持つ反応流体を燃料や
酸化剤として用いる燃料電池において、人口から出口に
向かって有効成分の割合が*I滅する4こもかかわらず
反応速度を均一にすることのできる反応流体供給路構造
を提供することを目的とするものである。この目的は、
本発明によれば、−成される縛の断面積を、入口から出
口にかけて反応流体の反応による体積減少率よりも大き
な本で縮少することにより達成される。
Therefore, the present invention aims to make the reaction rate uniform despite the fact that the ratio of active ingredients decreases from the population to the outlet in a fuel cell that uses a reactive fluid containing non-reactive components as a fuel or oxidizer. The purpose of this invention is to provide a reaction fluid supply channel structure that can be used. This purpose is
According to the invention, this is achieved by reducing the cross-sectional area of the confines created from the inlet to the outlet by a factor greater than the rate of volume reduction due to reaction of the reactant fluid.

本発明によれば、有効成分比率の低下による反応速If
低下分が流速の増大により補われ、リーな反応を実現す
ることができるとともに、流路抵抗の増大により特別の
部品なしに水頭が形成され、反応流体の均一分布、ひい
ては均iな反応−こ効果がある。
According to the present invention, the reaction rate If due to a decrease in the ratio of active ingredients
The decrease is compensated for by the increase in flow velocity, making it possible to achieve a more efficient reaction, and the increase in flow path resistance allows a water head to be formed without special parts, resulting in uniform distribution of the reaction fluid and a uniform reaction. effective.

以下に図面を#照して、本発明を燃料通路に実施した場
合につき説明する。
Below, with reference to the drawings, a case where the present invention is implemented in a fuel passage will be described.

第3図および第4図は、パイポー2プレー)3bの平向
方向に燃料通路の1rrlfi積を纏小した本発明の実
施例である。燃料体積の減少分に見合う分だけ燃料通路
4の#rkJ451を減少させ、fB科の流速牽一定番
こするという従来の設計思想による仕切りン16蟲より
も通路断面積減少率を大きくシ、流速を漸増させる仕切
り16bを設けることにより、反応速度の均一化を実現
するものである。この場合人口!ニホルド17a @ 
170 @出ロ!ニホルド17b。
FIGS. 3 and 4 show an embodiment of the present invention in which the product of the fuel passages is reduced by 1rrlfi in the horizontal direction of the pipe 3b. #rkJ451 of the fuel passage 4 is reduced by an amount commensurate with the decrease in fuel volume, and the reduction rate of the passage cross-sectional area is made larger than that of the partition 16, which is based on the conventional design concept of keeping the flow velocity constant in the fB class. By providing the partition 16b that gradually increases the reaction rate, the reaction rate can be made uniform. In this case population! Nifold 17a @
170 @ Out! Nihold 17b.

17dは各二つ設けられる。Two 17d are provided each.

纂5図および第6図はバイポーラプレート3の厚さ方向
に燃料通路4の断面積を幅小した、本発明の実施例であ
る。この場合も14mが従来の設計思想による傾斜を持
つ通路で、14bが本発明による傾斜を持つ通路である
。燃料は人口から出口番こ向かつて次gtこ流速を増し
てゆくため電極面近傍の境膜をうす<シ、またガスと電
極の平均的な距離が小さくなるために、水素分圧の低下
による反応速度の低下分を補い、均一な反応を実現する
5 and 6 show embodiments of the present invention in which the cross-sectional area of the fuel passage 4 is reduced in the thickness direction of the bipolar plate 3. In this case as well, 14 m is a passage with an inclination according to the conventional design concept, and 14 b is a passage with an inclination according to the present invention. As the fuel increases in flow velocity from the population to the exit point, the boundary film near the electrode surface becomes thinner, and as the average distance between the gas and the electrode becomes smaller, the hydrogen partial pressure decreases. Compensates for the decrease in reaction rate and achieves a uniform reaction.

第7図は、本発明を、リプ付多孔板を用いた燃料電池に
:5I!施した例である。すなわち、燃料貴リプ付多孔
& 10aのリプ高さを、人口から出口醗こ力1つ燃料
通路を−敗し、燃料速縦を壇IJOさせて、均一な反応
を実現するものである。砿@9は燃料体積減少率と同率
でリプ高さを減少させた場合のリプ形状である。10b
は空気関すプ付多孔嶺である。
Figure 7 shows the present invention applied to a fuel cell using a perforated plate with lips: 5I! This is an example. In other words, a uniform reaction is achieved by reducing the fuel flow through the holes and the height of 10a by removing one outlet from the fuel passage, and increasing the fuel velocity vertically.砿@9 is the lip shape when the lip height is reduced at the same rate as the fuel volume reduction rate. 10b
is a porous ridge with an air connection.

以上、83図から第7図まで、燃料の通路411ijL
のみを示したが、酸化剤の通路構造6ごついても−じこ
とが適用できることは、当業省にとっては自明であるの
で割愛する。
Above, from Fig. 83 to Fig. 7, the fuel passage 411ijL
However, it is obvious to those skilled in the art that the same can be applied to the oxidizing agent passage structure 6, so the explanation will be omitted.

第8図は水素ガス80−からなる改質ガスを用いたりん
gl1m燃料電池において、本発明を実施した場合にお
ける燃料の人口から出口への流れと各パラメータの変化
量とを図示したもので、燃料体積の減少率111mAよ
りも通路断面積減少重重1IiIBの方の減少率を高め
ることにより、水素分圧が0のように低下しても燃料流
速がDのように増大し、紬果として反応速[gが入口か
ら出口にかけて一定となることを概略的に示している。
FIG. 8 illustrates the flow of fuel from the population to the outlet and the amount of change in each parameter when the present invention is implemented in a 1m fuel cell using a reformed gas consisting of hydrogen gas. By increasing the reduction rate of passage cross-sectional area weight 1IiIB than the reduction rate of fuel volume 111mA, even if the hydrogen partial pressure decreases to 0, the fuel flow rate increases as D and reacts as a result. It is schematically shown that the velocity [g is constant from the inlet to the outlet.

なお、すべての実施例において、理解を容易にするため
に燃料通路を細分割する溝を大きく図示したが、実機(
こおいては数ミリピッチの多数の溝により燃料ガスは#
1ItIL化される。
In all examples, the grooves that subdivide the fuel passages are shown in a large size for easy understanding;
In this case, the fuel gas is distributed by a large number of grooves with a pitch of several millimeters.
1ItIL is made.

【図面の簡単な説明】 Jl1図は従来装置の略本展開tP+伊図、第2図は第
1図におけるバイポーラプレートの平面図、第3図は本
lA明の実施例の略本展囲料視図、第4図は第3図にお
けるバイポーラプレートの平面図、纂5図は本発明の他
の実施例の略本展開斜視図、第6図はlX5図における
バイポーラプレートの断面図、il 7図は本@嘴のさ
らに他の実施例の略本展開斜視図、#!8図は本発明の
詳細な説明するたの特性機図である。すべての図につい
て同一もしくは対応する部分には同一の符号を付しであ
る。 1:燃料電極、2:9気電極、3:バイポーラプレート
、4:燃料通路、5:#化剤通路、10a。 tob:リブ付き多孔板、12:セパレータ、16b:
仕切り。
[Brief explanation of the drawings] Figure J1 is a schematic diagram of the conventional device, Figure 2 is a plan view of the bipolar plate in Figure 1, and Figure 3 is a schematic diagram of the embodiment of the present invention. 4 is a plan view of the bipolar plate in FIG. 3, FIG. 5 is a schematic exploded perspective view of another embodiment of the present invention, and FIG. 6 is a sectional view of the bipolar plate in FIG. The figure is a schematic exploded perspective view of yet another embodiment of the book@beak, #! FIG. 8 is a characteristic diagram for explaining the present invention in detail. Identical or corresponding parts in all figures are given the same reference numerals. 1: fuel electrode, 2: 9 gas electrode, 3: bipolar plate, 4: fuel passage, 5: #forming agent passage, 10a. tob: ribbed perforated plate, 12: separator, 16b:
partition.

Claims (1)

【特許請求の範囲】[Claims] 1)非反応成分を持つ反応流体を使用する燃料電池にお
いて、バイボー2プレートあるいはリプ付多孔板と電極
とによって画成される反応流体通路の断面積を、人口−
から出口匈に向かって反応流体の反応による体積減少率
よりも大きな率で縮小したことを特徴とする反応流体供
給路構造。
1) In a fuel cell that uses a reactant fluid with non-reactive components, the cross-sectional area of the reactant fluid passage defined by the biborder plate or the perforated plate with lip and the electrode is defined as the population -
A reactant fluid supply channel structure characterized in that the reactant fluid supply channel is reduced in volume from the reactor toward the outlet at a rate greater than the volume reduction rate due to reaction of the reactant fluid.
JP57047999A 1982-03-25 1982-03-25 Reaction fluid feed passage structure of fuel cell Pending JPS58164156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047999A JPS58164156A (en) 1982-03-25 1982-03-25 Reaction fluid feed passage structure of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047999A JPS58164156A (en) 1982-03-25 1982-03-25 Reaction fluid feed passage structure of fuel cell

Publications (1)

Publication Number Publication Date
JPS58164156A true JPS58164156A (en) 1983-09-29

Family

ID=12791010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047999A Pending JPS58164156A (en) 1982-03-25 1982-03-25 Reaction fluid feed passage structure of fuel cell

Country Status (1)

Country Link
JP (1) JPS58164156A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981175A3 (en) * 1998-08-20 2000-07-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
WO2001041239A1 (en) 1999-12-06 2001-06-07 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
JP2001250569A (en) * 2000-03-06 2001-09-14 Toyota Motor Corp Fuel cell and collector panel thereof
JP2001291522A (en) * 2000-04-10 2001-10-19 Araco Corp Fuel cell
WO2002037592A1 (en) * 2000-10-30 2002-05-10 Teledyne Energy Systems, Inc. Fuel cell collector plates with improved mass transfer channels
EP1575108A1 (en) * 2003-04-30 2005-09-14 Hewlett-Packard Development Company, L.P. Fuel cell assembly and method for controlling reaction equilibrium
US7067213B2 (en) 2001-02-12 2006-06-27 The Morgan Crucible Company Plc Flow field plate geometries
US7138200B1 (en) 1997-12-18 2006-11-21 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
WO2009123638A1 (en) * 2008-04-04 2009-10-08 Utc Power Corporation Fuel cell plate having multi-directional flow field
WO2010083788A1 (en) * 2009-01-26 2010-07-29 Staxera Gmbh Repeating unit for a fuel cell stack
US7838139B2 (en) 2002-06-24 2010-11-23 The Morgan Crucible Company Plc Flow field plate geometries
JP2010282975A (en) * 2003-11-20 2010-12-16 General Motors Corp <Gm> Fuel cell and method of manufacturing fuel cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138200B1 (en) 1997-12-18 2006-11-21 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
US7572537B2 (en) 1997-12-18 2009-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
US6329093B1 (en) 1998-08-20 2001-12-11 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
EP0981175A3 (en) * 1998-08-20 2000-07-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
EP1249048A4 (en) * 1999-12-06 2006-06-28 Technology Man Inc Electrochemical apparatus with reactant micro-channels
US6361892B1 (en) * 1999-12-06 2002-03-26 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
EP1249048A1 (en) * 1999-12-06 2002-10-16 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
US6878480B2 (en) 1999-12-06 2005-04-12 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
WO2001041239A1 (en) 1999-12-06 2001-06-07 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
JP2001250569A (en) * 2000-03-06 2001-09-14 Toyota Motor Corp Fuel cell and collector panel thereof
JP2001291522A (en) * 2000-04-10 2001-10-19 Araco Corp Fuel cell
WO2002037592A1 (en) * 2000-10-30 2002-05-10 Teledyne Energy Systems, Inc. Fuel cell collector plates with improved mass transfer channels
US7067213B2 (en) 2001-02-12 2006-06-27 The Morgan Crucible Company Plc Flow field plate geometries
US7838139B2 (en) 2002-06-24 2010-11-23 The Morgan Crucible Company Plc Flow field plate geometries
EP1575108A1 (en) * 2003-04-30 2005-09-14 Hewlett-Packard Development Company, L.P. Fuel cell assembly and method for controlling reaction equilibrium
JP2010282975A (en) * 2003-11-20 2010-12-16 General Motors Corp <Gm> Fuel cell and method of manufacturing fuel cell
WO2009123638A1 (en) * 2008-04-04 2009-10-08 Utc Power Corporation Fuel cell plate having multi-directional flow field
WO2010083788A1 (en) * 2009-01-26 2010-07-29 Staxera Gmbh Repeating unit for a fuel cell stack

Similar Documents

Publication Publication Date Title
US5998055A (en) Gas-passage plates of a fuel cell
US4615955A (en) Fuel cell
JPS5822866B2 (en) stacked fuel cell
US6794077B2 (en) Passive water management fuel cell
JPH06267564A (en) Solid high polymer electrolyte fuel cell
JPS58164156A (en) Reaction fluid feed passage structure of fuel cell
JPH04355061A (en) Fuel cell
EP1301956B1 (en) Polymer fuel cell structure
JPH03276569A (en) Fuel cell
JP3509180B2 (en) Fuel cell
JP2007299537A (en) Fuel cell
JP2510676B2 (en) Fuel cell
JP3519840B2 (en) Polymer electrolyte fuel cell
JPH0147863B2 (en)
JP2008021518A (en) Separator structure of fuel cell
JP4601893B2 (en) Fuel cell separator
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JPS5830074A (en) Fuel cell
JPH01151163A (en) Fuel cell
JPH1021944A (en) Solid polymer electrolyte fuel cell
JPH0650639B2 (en) Fuel cell
JPH11111311A (en) Solid polymer type fuel cell
JPS61128470A (en) Fuel cell separator
JP2604393B2 (en) Internal reforming molten carbonate fuel cell
JP2773134B2 (en) Fuel cell