JPH06267564A - Solid high polymer electrolyte fuel cell - Google Patents

Solid high polymer electrolyte fuel cell

Info

Publication number
JPH06267564A
JPH06267564A JP5053679A JP5367993A JPH06267564A JP H06267564 A JPH06267564 A JP H06267564A JP 5053679 A JP5053679 A JP 5053679A JP 5367993 A JP5367993 A JP 5367993A JP H06267564 A JPH06267564 A JP H06267564A
Authority
JP
Japan
Prior art keywords
oxidant
cathode
water
fuel
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5053679A
Other languages
Japanese (ja)
Other versions
JP3553101B2 (en
Inventor
Katsuo Hashizaki
克雄 橋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP05367993A priority Critical patent/JP3553101B2/en
Publication of JPH06267564A publication Critical patent/JPH06267564A/en
Application granted granted Critical
Publication of JP3553101B2 publication Critical patent/JP3553101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enable cell reaction to be stably kept on by facilitating exhaust of generated water and moving water at the side of a cathode, and also facilitating dispersion of oxygen gas within oxidant. CONSTITUTION:The cell is equipped with a laminated body 31 where an anode 33 and a cathode 34 are provided for both the surfaces of an electrolyte 32 respectively, a fuel distributing plate 37 which is provided for the anode 33 side of the aforesaid laminated body 31 while being provided with a fuel flow path 36 feeding fuel to the anode 33, and with an oxidant distributing plate 40 which is provided for the cathode side of the aforesaid laminated body 31 while being provided with an oxidant flow path 39 feeding oxidant to the aforesaid cathode 34. And at least either of the depth or the width of the oxidant flow path 39 of the aforesaid oxidant distributing plate 40 is made gradually small along the flow path area of oxidant from the upstream area to the downstream area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸化剤配流板の酸化
剤流路に改良を施した固体高分子電解質燃料電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell in which an oxidant flow path of an oxidant distribution plate is improved.

【0002】[0002]

【従来の技術】固体高分子電解質燃料電池は、図3に示
すように、電解質1に高分子イオン交換膜(例えば、ス
ルホン酸基を持つフッ素樹脂系イオン交換膜)を用い、
両側に触媒電極層(例えば白金)2,3及び多孔質カー
ボン電極4,5を備えた電極接合体6構造をしている。
アノード極側に供給された加湿燃料中の水素は、触媒電
極(アノード極)2上で水素イオン化され、水素イオン
は電解質1中を水の介在もとH+ ・xH2 Oとして、カ
ソード極側へ水と共に移動する。
2. Description of the Related Art A solid polymer electrolyte fuel cell uses a polymer ion exchange membrane (for example, a fluororesin ion exchange membrane having a sulfonic acid group) as an electrolyte 1 as shown in FIG.
It has an electrode assembly 6 structure provided with catalyst electrode layers (for example, platinum) 2, 3 and porous carbon electrodes 4, 5 on both sides.
Hydrogen in the humidified fuel supplied to the anode electrode side is hydrogen-ionized on the catalyst electrode (anode electrode) 2, and the hydrogen ions pass through the electrolyte 1 in the presence of water to form H +. As xH 2 O, it moves to the cathode side together with water.

【0003】移動した水素イオンは、触媒電極(カソー
ド電極)3上で酸化剤中の酸素及び外部回路7を流通し
てきた電子と反応して水を生成し、その生成水はカソー
ド極3より燃料電池外へ排出されることになる。この
時、外部回路7を流通した電子流れを直流の電気エネル
ギーとして利用できる。なお、電解質1となる高分子イ
オン交換膜において、前述のような水素イオン透過性を
実現させるためには、この膜を常に充分なる保水状態に
保持しておく必要があり、通常、燃料又は酸化剤に電池
の運転温度近辺相当の飽和水蒸気を含ませて、すなわち
加湿して燃料及び酸化剤を電極接合体6に供給し、膜の
保水状態を保つようにしている。以下に、上記固体高分
子電解質燃料電池における反応式を示す。 アノード側:H2 →2H+ +2e- カソード側:(1/2)O2 +2H+ +2e- →H2 O 全反応:H2 +(1/2)O2 →H2 O 図2(A),(B),(C)は、従来の固体高分子電解
質燃料電池の構成の一例を示す。
The transferred hydrogen ions are transferred to the catalyst electrode (cassette).
Oxygen in the oxidizer and the external circuit 7
Reacts with the incoming electrons to produce water, and the produced water is caustic.
It is discharged from the cathode 3 to the outside of the fuel cell. this
At this time, the electric current flowing through the external circuit 7 is converted into a direct current energy
Available as a ghee. It should be noted that the polymer 1 that serves as the electrolyte 1
In the on-exchange membrane, hydrogen ion permeability as described above
In order to achieve this, keep this membrane in a state of sufficient water retention.
It must be kept in the fuel or oxidizer
Including saturated steam equivalent to the operating temperature of
Humidifying and supplying the fuel and the oxidant to the electrode assembly 6,
I try to keep water retention. Below, the high solid content
The reaction formula in the child electrolyte fuel cell is shown. Anode side: H2→ 2H+ + 2e-  Cathode side: (1/2) O2+ 2H+ + 2e- → H2O Total reaction: H2+ (1/2) O2→ H2O FIGS. 2 (A), (B), and (C) show conventional solid polymer electrolysis.
1 shows an example of the structure of a high quality fuel cell.

【0004】図中の11は、電解質12の上下に第1触媒電
極(アノード極)13,第2触媒電極(カソード極)14を
積層した積層体である。この積層体11の上側には、多孔
質な第1カーボン電極(アノード極)15を介して燃料流
路16を有した燃料配流板17が設けられている。前記積層
体11の下側には、多孔質な第2カーボン電極(カソード
電極)18を介して酸化剤流路19を有した酸化剤配流板20
が夫々設けられている。ここで、酸化剤流路19は、溝幅
が一定で、かつ溝深さも一定(d1 =d2 )で一定の断
面積をもつ。なお、d1 は酸化剤入口側の溝の深さ、d
2 は酸化剤出口側の深さを示す。
Reference numeral 11 in the figure is a laminate in which a first catalyst electrode (anode electrode) 13 and a second catalyst electrode (cathode electrode) 14 are laminated on and under an electrolyte 12. A fuel distribution plate 17 having a fuel flow path 16 is provided on the upper side of the laminated body 11 via a porous first carbon electrode (anode electrode) 15. An oxidant distribution plate 20 having an oxidant flow channel 19 under the laminated body 11 via a porous second carbon electrode (cathode electrode) 18
Are provided respectively. Here, the oxidant channel 19 has a constant groove width and a constant groove depth (d 1 = d 2 ) and a constant cross-sectional area. Note that d 1 is the depth of the groove on the oxidant inlet side, d
2 shows the depth on the oxidant outlet side.

【0005】かかる構成の燃料電池において、燃料流路
16を流れてきた燃料水素は第1カーボン電極15を通過
し、第1触媒電極13上で水素イオン化され、水素イオン
は電解質12中を水の介在のもとH+ ・xH2 Oとして、
カソード極側へ水と共に移動する。この水素イオンによ
り第2触媒電極14上で生成された水と、水素イオンと共
にアノード極側より電解質12中を移動してきた水は、蒸
気あるいは、一部は液体のまま、第2カーボン電極18を
通過し、上流流路域から下流流路域に向かって断面積が
一定な酸化剤流路19を流れる酸化剤中に排出されるよう
になっている。
In the fuel cell having such a structure,
The fuel hydrogen flowing through 16 passes through the first carbon electrode 15 and is hydrogen-ionized on the first catalyst electrode 13, and the hydrogen ions are H + in the electrolyte 12 with the interposition of water. ・ As xH 2 O,
It moves to the cathode side together with water. The water generated on the second catalyst electrode 14 by the hydrogen ions and the water that has moved in the electrolyte 12 from the anode side together with the hydrogen ions are vapor or partly in the liquid state and the second carbon electrode 18 is discharged. It is configured to pass through and be discharged into the oxidant flowing in the oxidant channel 19 having a constant cross-sectional area from the upstream channel region to the downstream channel region.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図2に
示すように上流流路域から下流流路域に向かってその流
路溝幅一定、かつ溝深さ一定(d1 =d2 )の断面積が
均一な流路をもつ酸化剤配流板20を持つ固体高分子電解
質燃料電池においては、電池反応に伴って発生する生成
水、及び水素イオンと共にアノード電極よりカソード電
極へ移動してきた移動水より、酸化剤流路19の下流域へ
向かうほど、その酸化剤雰囲気中の水蒸気分圧が上昇す
るため、蒸気となってガス拡散排出されにくくなる。そ
のため、その蒸気の一部液体化、液滴化した生成水や移
動水が、カソード極側の多孔質な第2カーボン電極18中
に詰まり、多孔質な第2カーボン電極18中での酸化剤の
ガス拡散が阻止されやすい状況に陥りやすい構造となっ
ていた。
However, as shown in FIG. 2, when the flow channel width is constant and the groove depth is constant (d 1 = d 2 ) from the upstream flow channel region toward the downstream flow channel region. In the solid polymer electrolyte fuel cell having the oxidizer distribution plate 20 having a uniform area flow path, the generated water generated by the cell reaction and the moving water moving from the anode electrode to the cathode electrode along with hydrogen ions Since the partial pressure of water vapor in the oxidant atmosphere increases toward the downstream region of the oxidant flow path 19, it becomes difficult for the gas to be diffused and discharged as vapor. Therefore, part of the vapor that is liquefied or formed into liquid drops is clogged in the porous second carbon electrode 18 on the cathode side, and the generated water or moving water is oxidized in the porous second carbon electrode 18. The structure was such that the gas diffusion of was likely to be blocked.

【0007】この発明はこうした事情に考慮してなされ
たもので、酸化剤配流板の酸化剤流路の深さあるいは幅
の少なくともいずれかを酸化剤の上流流路域から下流流
路域に沿って徐々に小さくすることにより、酸化剤流路
の下流流路域での流速が早くなり、蒸気となった生成水
や移動水がガス拡散排出されやすく、あるいは一部液体
化や液滴化して多孔質なカーボン電極中に存在する生成
水や移動水を吹き飛ばすことができ、もってカソード極
側での生成水や移動水の排出が良好になるとともに、酸
化剤中の酸素のガス拡散も良好となり、安定した電池反
応を継続して行なうことができる固体高分子電解質燃料
電池を提供することを目的とする。
The present invention has been made in consideration of such circumstances, and at least one of the depth and the width of the oxidant flow passage of the oxidant distribution plate is set from the upstream flow passage region to the downstream flow passage region of the oxidant. By gradually decreasing it, the flow velocity in the downstream flow passage area of the oxidizer flow passage becomes faster, and the generated water and vaporized water that have become vapor are easily diffused and discharged into the gas, or partly liquefied or liquefied. It is possible to blow off the generated water and the moving water existing in the porous carbon electrode, which makes it possible to discharge the generated water and the moving water on the cathode side, and at the same time, the gas diffusion of oxygen in the oxidant becomes good. An object of the present invention is to provide a solid polymer electrolyte fuel cell capable of continuously performing a stable cell reaction.

【0008】[0008]

【課題を解決するための手段】この発明は、電解質の両
面側にアノード極、カソード極を夫々配置した積層体
と、前記積層体のアノード極側に設けられ、前記アノー
ド極に燃料を供給する燃料流路を有した燃料配流板と、
前記積層体のカソード極側に設けられ、前記カソード極
に酸化剤を供給する酸化剤流路を有した酸化剤配流板と
を具備し、前記酸化剤配流板の酸化剤流路の深さあるい
は幅の少なくともいずれかを酸化剤の上流流路域から下
流流路域に沿って徐々に小さくしたことを特徴とする固
体高分子電解質燃料電池である。
According to the present invention, there is provided a laminated body in which an anode electrode and a cathode electrode are arranged on both surface sides of an electrolyte, and an anode electrode side of the laminated body, and fuel is supplied to the anode electrode. A fuel distribution plate having a fuel flow path,
An oxidant distribution plate having an oxidant flow channel that is provided on the cathode side of the laminate and supplies an oxidant to the cathode electrode, and the depth of the oxidant flow channel of the oxidant flow distribution plate or The solid polymer electrolyte fuel cell is characterized in that at least one of the widths is gradually reduced from the upstream flow passage region of the oxidant along the downstream flow passage region.

【0009】[0009]

【作用】固体高分子電解質燃料電池において、酸化剤が
供給される酸化剤配流板の酸化剤流路の断面積を、上流
流路域から下流流路域に向かって小さくすることによ
り、酸化剤の下流流路域での流速が早くなり、酸化剤雰
囲気中の水蒸気分圧が上昇しても、蒸気となった生成水
や移動水がガス拡散排出されやすく、あるいはその早い
酸化剤ガス流速により、一部液体化や液滴化して多孔質
なカーボン電極中に存在する生成水や移動水を吹き飛ば
すことができるようになる。これらの佐用により、電池
カソード極側での生成水や移動水の排出が良好になり、
さらに酸化剤中の酸素のガス拡散も良好となり、安定し
た電池反応を維持できる。
In the solid polymer electrolyte fuel cell, the oxidizer is reduced by reducing the cross-sectional area of the oxidizer flow passage of the oxidizer distribution plate to which the oxidizer is supplied from the upstream flow passage region toward the downstream flow passage region. Even if the flow velocity in the downstream flow path area of the gas becomes faster and the partial pressure of water vapor in the oxidant atmosphere rises, the generated water that became vapor and the moving water are easily diffused and discharged. It becomes possible to blow off the generated water and the moving water existing in the porous carbon electrode by partially liquefying or liquefying. With these aids, discharge of generated water and moving water on the cathode side of the battery is improved,
Further, the gas diffusion of oxygen in the oxidant becomes good, and a stable battery reaction can be maintained.

【0010】[0010]

【実施例】以下、本発明の一実施例を図1(A),
(B),(C)を参照して説明する。ここで、図1
(A)は固体高分子電解質燃料電池の正面図、図1
(B)は酸化剤入口側から見た同燃料電池の側面図、図
1(C)は酸化剤出口から見た同燃料電池の側面図を示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will now be described with reference to FIG.
This will be described with reference to (B) and (C). Here, FIG.
(A) is a front view of a solid polymer electrolyte fuel cell, FIG.
FIG. 1B is a side view of the fuel cell viewed from the oxidant inlet side, and FIG. 1C is a side view of the fuel cell viewed from the oxidant outlet.

【0011】図中の31は、電解質32の上下に第1触媒電
極(アノード極)33,第2触媒電極(カソード極)34を
積層した積層体である。この積層体31の上側には、多孔
質な第1カーボン電極(アノード極)35を介して燃料流
路36を有した燃料配流板37が設けられている。前記積層
体31の下側には、多孔質な第2カーボン電極(カソード
電極)38を介して酸化剤流路39を有した酸化剤配流板40
が夫々設けられている。ここで、酸化剤流路39の深さ
は、酸化剤入口側で深さd1 で酸化剤出口側で深さd2
でd1 >d2 となり、酸化剤入口側から酸化剤出口側に
沿って徐々に小さくなっている。
Reference numeral 31 in the drawing is a laminate in which a first catalyst electrode (anode electrode) 33 and a second catalyst electrode (cathode electrode) 34 are laminated on and under an electrolyte 32. A fuel distribution plate 37 having a fuel flow path 36 is provided on the upper side of the laminated body 31 via a porous first carbon electrode (anode electrode) 35. An oxidant distribution plate 40 having an oxidant flow path 39 through a porous second carbon electrode (cathode electrode) 38 is provided below the laminated body 31.
Are provided respectively. Here, the depth of the oxidant channel 39 is a depth d 1 on the oxidant inlet side and a depth d 2 on the oxidant outlet side.
Then, d 1 > d 2 , and the diameter gradually decreases from the oxidant inlet side to the oxidant outlet side.

【0012】こうした構成の燃料電池において、燃料流
路36を流れてきた燃料水素は第1カーボン電極35を通過
し、第1触媒電極33上で水素イオン化され、水素イオン
は電解質32中を水の介在のもとH+ ・xH2 Oとして、
カソード極側へ水と共に移動する。この水素イオンによ
り第2触媒電極34上で生成された水と、水素イオンと共
にアノード極側より電解質32中を移動してきた水は、酸
化剤雰囲気中の水蒸気分圧が高くても、酸化剤の早いガ
ス流速により、蒸気あるいは、一部は液体のまま、第2
カーボン電極38を通過し、酸化剤流路39中を流れる酸化
剤中に排出されるようになっている。
In the fuel cell having such a structure, the fuel hydrogen flowing through the fuel flow path 36 passes through the first carbon electrode 35 and is hydrogen-ionized on the first catalyst electrode 33. Under intervention H + ・ As xH 2 O,
It moves to the cathode side together with water. The water generated by the hydrogen ions on the second catalyst electrode 34 and the water that has moved in the electrolyte 32 together with the hydrogen ions from the anode side are the same as those of the oxidizing agent even if the water vapor partial pressure in the oxidizing agent atmosphere is high. Due to the high gas flow rate, vapor or part of it remains liquid
It is designed to be discharged into the oxidant that has passed through the carbon electrode 38 and flown in the oxidant channel 39.

【0013】上記実施例によれば、酸化剤流路39の深さ
が、酸化剤入口側(深さd1 )から酸化剤出口側(深さ
2 )に沿って徐々に小さくなる構造になっているた
め、酸化剤流路39の断面積は上流流路域から下流流路域
に向かって小さくなる。従って、酸化剤流路39の上流流
路域で排出された生成水や移動水により、酸化剤流路39
の下流流路域では、その酸化剤雰囲気中の水蒸気分圧が
上昇するが、酸化剤の下流流路域での流速が速くなり、
蒸気となった生成水や移動水がガス拡散排出されやす
く、あるいは、その速い酸化剤ガス流速により、一部液
体化や液滴化して多孔質なカーボン電極中に存在する生
成水や移動水を吹き飛ばすことができるようになる。こ
れらの佐用により、電池のカソード極側での生成水や移
動水の排出が良好になり、さらに酸化剤中の酸素のガス
拡散も良好となり、安定した電池反応を継続して行なう
ことが可能である。
According to the above embodiment, the depth of the oxidant flow channel 39 is gradually reduced from the oxidant inlet side (depth d 1 ) to the oxidant outlet side (depth d 2 ). Therefore, the cross-sectional area of the oxidant flow channel 39 decreases from the upstream flow channel region toward the downstream flow channel region. Therefore, due to the generated water or the moving water discharged in the upstream flow channel area of the oxidant flow channel 39, the oxidant flow channel 39
In the downstream flow passage region of, the water vapor partial pressure in the oxidant atmosphere increases, but the flow velocity of the oxidant in the downstream flow passage region becomes faster,
The generated water or mobile water that has become vapor is easily diffused and discharged, or due to the high flow rate of the oxidant gas, the generated water or mobile water partially liquefied or formed into droplets and present in the porous carbon electrode is removed. You will be able to blow it away. Due to these aids, the generated water and mobile water on the cathode side of the battery are discharged well, and the gas diffusion of oxygen in the oxidant is also improved, enabling a stable battery reaction to continue. is there.

【0014】なお、上記実施例では、酸化剤流路の深さ
を酸化剤入口側から酸化剤出口側に沿って徐々に小さく
なる構成にした場合について述べたが、これに限らず、
例えば酸化剤流路の幅を酸化剤入口側から酸化剤出口側
に沿って徐々に小さくしたり、あるいは酸化剤流路の深
さ及び幅を同時に酸化剤入口側から酸化剤出口側に沿っ
て徐々に小さくする構成にしてもよい。
In the above embodiment, the depth of the oxidant flow path is set to gradually decrease from the oxidant inlet side to the oxidant outlet side, but the present invention is not limited to this.
For example, the width of the oxidant channel is gradually reduced from the oxidant inlet side to the oxidant outlet side, or the depth and width of the oxidant channel are simultaneously reduced from the oxidant inlet side to the oxidant outlet side. The configuration may be gradually reduced.

【0015】[0015]

【発明の効果】以上詳述した如くこの発明によれば、酸
化剤配流板の酸化剤流路の深さあるいは幅の少なくとも
いずれかを酸化剤の上流流路域から下流流路域に沿って
徐々に小さくすることにより、酸化剤流路の下流流路域
での流速が早くなり、蒸気となった生成水や移動水がガ
ス拡散排出されやすく、あるいは一部液体化や液滴化し
て多孔質なカーボン電極中に存在する生成水や移動水を
吹き飛ばすことができ、もってカソード極側での生成水
や移動水の排出が良好になるとともに、酸化剤中の酸素
のガス拡散も良好となり、安定した電池反応を継続して
行なうことができる固体高分子電解質燃料電池を提供で
きる。
As described above in detail, according to the present invention, at least one of the depth and the width of the oxidant flow passage of the oxidant flow distribution plate is set from the upstream flow passage region to the downstream flow passage region of the oxidant. By gradually decreasing the flow velocity in the downstream flow passage of the oxidizer flow passage, the generated water and vaporized water that have become vapor are easily diffused and discharged, or partly liquefied or formed into droplets and become porous. It is possible to blow off the generated water and the moving water existing in the high quality carbon electrode, and thus the discharge of the generated water and the moving water on the cathode side is good, and the gas diffusion of oxygen in the oxidant is also good, A solid polymer electrolyte fuel cell capable of continuously performing stable cell reaction can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る固体高分子電解質燃
料電池の説明図であり、図1(A)は正面図、図1
(B)は酸化剤入口側から見た側面図、図1(C)は酸
化剤出口から見た側面図を示す。
1 is an explanatory view of a solid polymer electrolyte fuel cell according to an embodiment of the present invention, FIG. 1 (A) is a front view, and FIG.
1B is a side view seen from the oxidant inlet side, and FIG. 1C is a side view seen from the oxidant outlet.

【図2】従来の固体高分子電解質燃料電池の説明図であ
り、図2(A)は正面図、図2(B)は酸化剤入口側か
ら見た側面図、図2(C)は酸化剤出口から見た側面図
を示す。
FIG. 2 is an explanatory view of a conventional solid polymer electrolyte fuel cell, FIG. 2 (A) is a front view, FIG. 2 (B) is a side view seen from the oxidant inlet side, and FIG. 2 (C) is oxidation. The side view seen from the agent outlet is shown.

【図3】固体高分子電解質燃料電池の機能を説明するた
めの図。
FIG. 3 is a diagram for explaining the function of a solid polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

31…積層体、 32…電解質、 33
…第1触媒電極、34…第2触媒電極、 35…第1カー
ボン電極、 36…燃料流路、37…燃料配流板、
38…第2カーボン電極、 39…酸化剤流路、40…酸化
剤配流板。
31 ... Laminate, 32 ... Electrolyte, 33
... first catalyst electrode, 34 ... second catalyst electrode, 35 ... first carbon electrode, 36 ... fuel flow path, 37 ... fuel distribution plate,
38 ... 2nd carbon electrode, 39 ... Oxidizing agent flow path, 40 ... Oxidizing agent distribution plate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解質の両面側にアノード極、カソード
極を夫々配置した積層体と、前記積層体のアノード極側
に設けられ、前記アノード極に燃料を供給する燃料流路
を有した燃料配流板と、前記積層体のカソード極側に設
けられ、前記カソード極に酸化剤を供給する酸化剤流路
を有した酸化剤配流板とを具備し、前記酸化剤配流板の
酸化剤流路の深さあるいは幅の少なくともいずれかを酸
化剤の上流流路域から下流流路域に沿って徐々に小さく
したことを特徴とする固体高分子電解質燃料電池。
1. A fuel distribution system having a laminate in which an anode electrode and a cathode electrode are arranged on both sides of an electrolyte, and a fuel flow path which is provided on the anode electrode side of the laminate and which supplies fuel to the anode electrode. A plate and an oxidant distribution plate provided on the cathode side of the laminate and having an oxidant flow channel for supplying an oxidant to the cathode electrode, wherein the oxidant flow channel of the oxidant flow distribution plate is A solid polymer electrolyte fuel cell, characterized in that at least one of depth and width is gradually reduced from an upstream channel region of an oxidant along a downstream channel region.
JP05367993A 1993-03-15 1993-03-15 Solid polymer electrolyte fuel cell Expired - Lifetime JP3553101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05367993A JP3553101B2 (en) 1993-03-15 1993-03-15 Solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05367993A JP3553101B2 (en) 1993-03-15 1993-03-15 Solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH06267564A true JPH06267564A (en) 1994-09-22
JP3553101B2 JP3553101B2 (en) 2004-08-11

Family

ID=12949512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05367993A Expired - Lifetime JP3553101B2 (en) 1993-03-15 1993-03-15 Solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3553101B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048633A (en) * 1998-03-02 2000-04-11 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
FR2786027A1 (en) * 1998-11-12 2000-05-19 Commissariat Energie Atomique BIPOLAR PLATES FOR FUEL CELL AND FUEL CELL COMPRISING SUCH PLATES
US6255011B1 (en) 1998-03-02 2001-07-03 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
WO2001073877A3 (en) * 2000-03-28 2002-03-28 Manhattan Scientifics Inc Method of operating a fuel cell system, and fuel cell system operable accordingly
WO2002037592A1 (en) * 2000-10-30 2002-05-10 Teledyne Energy Systems, Inc. Fuel cell collector plates with improved mass transfer channels
JP2002260710A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JP2002260709A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
JP2003092121A (en) * 2001-09-14 2003-03-28 Toyota Motor Corp Fuel cell
WO2003094269A3 (en) * 2002-05-03 2004-04-29 Powerdisc Dev Corp Ltd Fuel cell plates and assemblies
US6756149B2 (en) * 2001-10-23 2004-06-29 Ballard Power Systems Inc. Electrochemical fuel cell with non-uniform fluid flow design
EP1439593A2 (en) * 2003-01-20 2004-07-21 Matsushita Electric Industrial Co., Ltd. Fuel cell having a plurality of independently controllable gas flow channels for varying loads
JP2004356100A (en) * 2003-05-26 2004-12-16 Daimler Chrysler Ag Conformity of gas flow of pem fuel cell having characteristics on local area
JP2006134582A (en) * 2004-11-02 2006-05-25 Toyota Motor Corp Fuel cell and manufacturing method of the same
WO2006056165A2 (en) * 2004-11-23 2006-06-01 Forschungszentrum Jülich GmbH Cathode diffusion layer for a fuel cell
US7067213B2 (en) 2001-02-12 2006-06-27 The Morgan Crucible Company Plc Flow field plate geometries
WO2006072165A1 (en) * 2005-01-05 2006-07-13 Powerdisc Development Corporation Limited Improved fuel cell cathode flow field
JP2006302914A (en) * 2006-07-31 2006-11-02 Kyocera Corp Wiring board
US7138200B1 (en) 1997-12-18 2006-11-21 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
CN1330029C (en) * 2004-02-25 2007-08-01 三星Sdi株式会社 Fuel cell system and stack used therein
JP2007317674A (en) * 2007-08-03 2007-12-06 Sony Corp Fuel cell and electronic equipment mounted therewith
US7314680B2 (en) 2004-09-24 2008-01-01 Hyteon Inc Integrated fuel cell power module
WO2008126358A1 (en) 2007-03-15 2008-10-23 Panasonic Corporation Polymer electrolyte fuel cell and fuel cell stack having the same
US7479333B2 (en) 2004-12-13 2009-01-20 Hyteon, Inc. Fuel cell stack with multiple groups of cells and flow passes
JP2009054597A (en) * 2008-10-30 2009-03-12 Honda Motor Co Ltd Fuel cell stack and reaction gas supply method of fuel cell stack
JP2009054601A (en) * 2008-11-06 2009-03-12 Honda Motor Co Ltd Fuel cell stack and operation method of fuel cell stack
US7524575B2 (en) 2004-06-07 2009-04-28 Hyteon Inc. Flow field plate for use in fuel cells
US7531264B2 (en) 2004-06-07 2009-05-12 Hyteon Inc. Fuel cell stack with even distributing gas manifolds
US7531265B2 (en) 2004-02-19 2009-05-12 Honda Motor Co., Ltd. Fuel cell
US7638227B2 (en) 2003-11-06 2009-12-29 Toyota Jidosha Kabushiki Kaisha Fuel cell having stack structure
JP2010165692A (en) * 2010-03-25 2010-07-29 Honda Motor Co Ltd Solid polymer cell assembly
CN101807679A (en) * 2009-02-12 2010-08-18 巴莱诺斯清洁能源控股公司 Fuel cell structure and the demarcation strip that uses therein
US7838139B2 (en) 2002-06-24 2010-11-23 The Morgan Crucible Company Plc Flow field plate geometries
JP2011113785A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Fuel cell
US7960066B2 (en) 2006-01-25 2011-06-14 Canon Kabushiki Kaisha Fuel cell system
US8101311B2 (en) 2002-12-12 2012-01-24 Sony Corporation Fuel cell and electronic apparatus with the same mounted thereon
US8835070B2 (en) 2010-05-11 2014-09-16 Ford Motor Company Fuel cell header wedge
US9644277B2 (en) 2012-08-14 2017-05-09 Loop Energy Inc. Reactant flow channels for electrolyzer applications
US10062913B2 (en) 2012-08-14 2018-08-28 Loop Energy Inc. Fuel cell components, stacks and modular fuel cell systems
US10553881B2 (en) 2011-07-05 2020-02-04 Toyota Jidosha Kabushiki Kaisha Fuel cell
US10686199B2 (en) 2012-08-14 2020-06-16 Loop Energy Inc. Fuel cell flow channels and flow fields
US10930942B2 (en) 2016-03-22 2021-02-23 Loop Energy Inc. Fuel cell flow field design for thermal management

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572537B2 (en) 1997-12-18 2009-08-11 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
US7138200B1 (en) 1997-12-18 2006-11-21 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
US6048633A (en) * 1998-03-02 2000-04-11 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
US6255011B1 (en) 1998-03-02 2001-07-03 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
FR2786027A1 (en) * 1998-11-12 2000-05-19 Commissariat Energie Atomique BIPOLAR PLATES FOR FUEL CELL AND FUEL CELL COMPRISING SUCH PLATES
WO2000030199A1 (en) * 1998-11-12 2000-05-25 Commissariat A L'energie Atomique Bipolar plates for fuel cell and fuel cell comprising same
WO2001073877A3 (en) * 2000-03-28 2002-03-28 Manhattan Scientifics Inc Method of operating a fuel cell system, and fuel cell system operable accordingly
WO2002037592A1 (en) * 2000-10-30 2002-05-10 Teledyne Energy Systems, Inc. Fuel cell collector plates with improved mass transfer channels
US6551736B1 (en) * 2000-10-30 2003-04-22 Teledyne Energy Systems, Inc. Fuel cell collector plates with improved mass transfer channels
US7067213B2 (en) 2001-02-12 2006-06-27 The Morgan Crucible Company Plc Flow field plate geometries
JP2002260709A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
JP4516229B2 (en) * 2001-03-06 2010-08-04 本田技研工業株式会社 Solid polymer cell assembly
JP2002260710A (en) * 2001-03-06 2002-09-13 Honda Motor Co Ltd Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
US7465515B2 (en) 2001-03-06 2008-12-16 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly
US7687165B2 (en) 2001-03-06 2010-03-30 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly
JP4598287B2 (en) * 2001-03-06 2010-12-15 本田技研工業株式会社 FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
JP2003092121A (en) * 2001-09-14 2003-03-28 Toyota Motor Corp Fuel cell
US6756149B2 (en) * 2001-10-23 2004-06-29 Ballard Power Systems Inc. Electrochemical fuel cell with non-uniform fluid flow design
WO2003094269A3 (en) * 2002-05-03 2004-04-29 Powerdisc Dev Corp Ltd Fuel cell plates and assemblies
US7838139B2 (en) 2002-06-24 2010-11-23 The Morgan Crucible Company Plc Flow field plate geometries
US8101311B2 (en) 2002-12-12 2012-01-24 Sony Corporation Fuel cell and electronic apparatus with the same mounted thereon
EP1439593A3 (en) * 2003-01-20 2011-11-23 Panasonic Corporation Fuel cell having a plurality of independently controllable gas flow channels for varying loads
EP1439593A2 (en) * 2003-01-20 2004-07-21 Matsushita Electric Industrial Co., Ltd. Fuel cell having a plurality of independently controllable gas flow channels for varying loads
JP2004356100A (en) * 2003-05-26 2004-12-16 Daimler Chrysler Ag Conformity of gas flow of pem fuel cell having characteristics on local area
US7638227B2 (en) 2003-11-06 2009-12-29 Toyota Jidosha Kabushiki Kaisha Fuel cell having stack structure
US7531265B2 (en) 2004-02-19 2009-05-12 Honda Motor Co., Ltd. Fuel cell
CN1330029C (en) * 2004-02-25 2007-08-01 三星Sdi株式会社 Fuel cell system and stack used therein
US7531264B2 (en) 2004-06-07 2009-05-12 Hyteon Inc. Fuel cell stack with even distributing gas manifolds
US7524575B2 (en) 2004-06-07 2009-04-28 Hyteon Inc. Flow field plate for use in fuel cells
US7314680B2 (en) 2004-09-24 2008-01-01 Hyteon Inc Integrated fuel cell power module
JP2006134582A (en) * 2004-11-02 2006-05-25 Toyota Motor Corp Fuel cell and manufacturing method of the same
JP4507833B2 (en) * 2004-11-02 2010-07-21 トヨタ自動車株式会社 Fuel cell and manufacturing method thereof
WO2006056165A3 (en) * 2004-11-23 2006-08-03 Forschungszentrum Juelich Gmbh Cathode diffusion layer for a fuel cell
WO2006056165A2 (en) * 2004-11-23 2006-06-01 Forschungszentrum Jülich GmbH Cathode diffusion layer for a fuel cell
US7479333B2 (en) 2004-12-13 2009-01-20 Hyteon, Inc. Fuel cell stack with multiple groups of cells and flow passes
US7838169B2 (en) 2005-01-05 2010-11-23 Power Disc Development Corporation Ltd. Fuel cell cathode flow field
WO2006072165A1 (en) * 2005-01-05 2006-07-13 Powerdisc Development Corporation Limited Improved fuel cell cathode flow field
US7960066B2 (en) 2006-01-25 2011-06-14 Canon Kabushiki Kaisha Fuel cell system
JP4531019B2 (en) * 2006-07-31 2010-08-25 京セラ株式会社 Fuel cell
JP2006302914A (en) * 2006-07-31 2006-11-02 Kyocera Corp Wiring board
US8309273B2 (en) 2007-03-15 2012-11-13 Panasonic Corporation Polymer electrolyte fuel cell and fuel cell stack including the same
WO2008126358A1 (en) 2007-03-15 2008-10-23 Panasonic Corporation Polymer electrolyte fuel cell and fuel cell stack having the same
JP2007317674A (en) * 2007-08-03 2007-12-06 Sony Corp Fuel cell and electronic equipment mounted therewith
JP4572252B2 (en) * 2008-10-30 2010-11-04 本田技研工業株式会社 Fuel cell stack
JP2009054597A (en) * 2008-10-30 2009-03-12 Honda Motor Co Ltd Fuel cell stack and reaction gas supply method of fuel cell stack
JP2009054601A (en) * 2008-11-06 2009-03-12 Honda Motor Co Ltd Fuel cell stack and operation method of fuel cell stack
CN101807679A (en) * 2009-02-12 2010-08-18 巴莱诺斯清洁能源控股公司 Fuel cell structure and the demarcation strip that uses therein
EP2224524A1 (en) * 2009-02-12 2010-09-01 Belenos Clean Power Holding AG Fuel cell structure and separator plate for use therein
US8268506B2 (en) 2009-02-12 2012-09-18 Belenos Clean Power Holding Ag Fuel cell structure and separator plate for use therein
JP2011113785A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Fuel cell
JP4516630B2 (en) * 2010-03-25 2010-08-04 本田技研工業株式会社 Solid polymer cell assembly
JP2010165692A (en) * 2010-03-25 2010-07-29 Honda Motor Co Ltd Solid polymer cell assembly
US8835070B2 (en) 2010-05-11 2014-09-16 Ford Motor Company Fuel cell header wedge
US9484590B2 (en) 2010-05-11 2016-11-01 Ford Motor Company Fuel cell header wedge
US10553881B2 (en) 2011-07-05 2020-02-04 Toyota Jidosha Kabushiki Kaisha Fuel cell
US10062913B2 (en) 2012-08-14 2018-08-28 Loop Energy Inc. Fuel cell components, stacks and modular fuel cell systems
US9644277B2 (en) 2012-08-14 2017-05-09 Loop Energy Inc. Reactant flow channels for electrolyzer applications
US10686199B2 (en) 2012-08-14 2020-06-16 Loop Energy Inc. Fuel cell flow channels and flow fields
US10734661B2 (en) 2012-08-14 2020-08-04 Loop Energy Inc. Fuel cell components, stacks and modular fuel cell systems
US11060195B2 (en) 2012-08-14 2021-07-13 Loop Energy Inc. Reactant flow channels for electrolyzer applications
US11489175B2 (en) 2012-08-14 2022-11-01 Loop Energy Inc. Fuel cell flow channels and flow fields
US10930942B2 (en) 2016-03-22 2021-02-23 Loop Energy Inc. Fuel cell flow field design for thermal management
US11901591B2 (en) 2016-03-22 2024-02-13 Loop Energy Inc. Fuel cell flow field design for thermal management

Also Published As

Publication number Publication date
JP3553101B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
JPH06267564A (en) Solid high polymer electrolyte fuel cell
EP1517392B1 (en) Solid high polymer type cell assembly
JP3530793B2 (en) Fuel cell and operating method thereof
JP3382708B2 (en) Gas separator for solid polymer electrolyte fuel cells
JPH06231793A (en) Solid high polymer electrolytic type fuel cell
JP2003346869A (en) Fuel cell stack
US11108059B2 (en) Bipolar plate having a variable width of the reaction gas channels in the inlet region of the active region, fuel-cell stack and fuel-cell system having bipolar plates of this type, as well as a vehicle
US7163760B2 (en) Fuel cell stack having a bypass flow passage
JP3559693B2 (en) Solid polymer electrolyte fuel cell
JP5245315B2 (en) Fuel cell
JP3447875B2 (en) Direct methanol fuel cell
JP2008171608A (en) Fuel cell
CN101005136B (en) Structure of cathode electrode for fuel cell
JP2005327726A (en) Fuel cell
JP4612977B2 (en) Fuel cell stack and reaction gas supply method thereof
JP4723374B2 (en) Liquid fuel mixing apparatus and direct liquid fuel cell system
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JP3509180B2 (en) Fuel cell
JP2001135326A (en) Solid high molecular electrolyte fuel cell and stack of the same
JP3342079B2 (en) Solid polymer electrolyte fuel cell
JPH0668886A (en) Cell structure of solid polymer electrolytic fuel cell
JP3423241B2 (en) Cell unit for fuel cell and fuel cell
JP2003249243A (en) Fuel cell
JPH11111311A (en) Solid polymer type fuel cell
JP2003187838A (en) Fuel cell stack

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9