JPH06231793A - Solid high polymer electrolytic type fuel cell - Google Patents

Solid high polymer electrolytic type fuel cell

Info

Publication number
JPH06231793A
JPH06231793A JP5017317A JP1731793A JPH06231793A JP H06231793 A JPH06231793 A JP H06231793A JP 5017317 A JP5017317 A JP 5017317A JP 1731793 A JP1731793 A JP 1731793A JP H06231793 A JPH06231793 A JP H06231793A
Authority
JP
Japan
Prior art keywords
water
air
hydrogen
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5017317A
Other languages
Japanese (ja)
Inventor
Hiroshi Makihara
洋 牧原
Kazuto Kobayashi
一登 小林
Yoshiyuki Takeuchi
竹内  善幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5017317A priority Critical patent/JPH06231793A/en
Publication of JPH06231793A publication Critical patent/JPH06231793A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To provide an effective method of humidification of fuel hydrogen on the side of a hydrogen electrode for wetting an electrolytic film, and of humidification of air or oxygen on the side of an air electrode or oxygen electrode. CONSTITUTION:In a fuel cell provided with a solid high polymer electrolytic film 2, a gas separator 1 is a hydrophilic porous material having conductivity. A cooling water channel 6 is formed in the gas separator 1, and water is fed to a hydrogen electrode by utilizing the transportation characteristic or capillary effect of the hydrophilic porous material, and the water from an air electrode is thus drained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質膜を
用いる固体高分子電解質膜型燃料電池に関し、特に当該
電解質膜を湿潤化するために必要な水素極側における燃
料水素の加湿方法および空気極(又は酸素極)側におけ
る空気(又は酸素)の加湿方法として有効な新しい方法
を提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte membrane fuel cell using a solid polymer electrolyte membrane, and in particular to a method for humidifying fuel hydrogen on the hydrogen electrode side necessary for wetting the electrolyte membrane. It proposes a new effective method for humidifying air (or oxygen) on the air electrode (or oxygen electrode) side.

【0002】[0002]

【従来の技術】従来の固体高分子電解質膜を有する燃料
電池においては、固体高分子電解質膜はカチオン交換膜
で、飽和状態まで含水することで最大のプロトン導電性
を示すことが知られている。すなわち、当該電解質膜と
しては、例えば、スルホン酸基を有するポリスチレン系
の陽イオン交換膜、フロロカーボンスルホン酸とポリビ
ニリデンフロライドを混合した膜、パーフロロカーボン
スルホン酸膜などが知られているが、これらの電解質膜
はその分子構造中にプロトン交換基があり、飽和状態ま
でに水を湿潤させることによって、良好なプロトン導電
性(常温において比抵抗が略20Ω・cm以下)を示し、
電解質膜として作用する。
2. Description of the Related Art In a conventional fuel cell having a solid polymer electrolyte membrane, it is known that the solid polymer electrolyte membrane is a cation exchange membrane and exhibits maximum proton conductivity by containing water to a saturated state. . That is, as the electrolyte membrane, for example, a polystyrene-based cation exchange membrane having a sulfonic acid group, a membrane in which fluorocarbon sulfonic acid and polyvinylidene fluoride are mixed, a perfluorocarbon sulfonate membrane, etc. are known. The electrolyte membrane of has a proton exchange group in its molecular structure, and shows good proton conductivity (specific resistance at room temperature is about 20 Ω · cm or less) by wetting water to saturation.
Acts as an electrolyte membrane.

【0003】このための加湿方法として文献等に示され
ている方式の例を以下に列挙する。
As a humidifying method for this purpose, examples of methods shown in literatures are listed below.

【0004】(タイプI) 直接水添加方式(US−Pa
t. No.3061658 ) 空気および燃料水素ガスにそれぞれ直接液体状の水を添
加する。
(Type I) Direct water addition method (US-Pa
t. No.3061658) Add liquid water directly to air and fuel hydrogen gas respectively.

【0005】(タイプII) 外部加湿器設置方式(E.A.
Ticianelli et al:J.Electrochem;Soc.,Vol.135.P.220
9(1988)参照) 燃料電池に空気および燃料水素を供給する前に、それぞ
れの供給ラインに加湿器を設けて、各ガスを加湿する。
(Type II) External humidifier installation method (EA
Ticianelli et al: J. Electrochem; Soc., Vol.135.P.220
9 (1988)) Before supplying air and fuel hydrogen to the fuel cell, each supply line is equipped with a humidifier to humidify each gas.

【0006】(タイプIII) 撥水性多孔質利用方式(特
開平4−95357号公報) 撥水性多孔質体に溝を凹状に設け、当該凹部を流水路と
し、上の開口部は直接セルに接触するようにして、水を
セルに供給する。
(Type III) Water-Repellent Porous Utilization Method (Japanese Patent Laid-Open No. 4-95357) A groove is formed in a water-repellent porous body in a concave shape, and the concave portion serves as a flowing water channel, and the upper opening directly contacts the cell. As described above, water is supplied to the cell.

【0007】(タイプIV) 親水性多孔質利用方式(特
開平1−309263号公報,特開平4−12462号
公報) (1)親水性多孔体の断面を凸凹状としたプレートを形
成し、当該プレートの凸部の先端をアノード部に接触さ
せ、また当該凹部の空間部は、水素の流路とし、当該プ
レートに水を供給することによって、電解質膜の湿潤状
態を保持する。一方、カソード部でも同様に断面が凸凹
状の親水性多孔体プレートを、次の凸凹面とカソード電
極面と接触させ、凹部の空間を空気の流路とし、凸部の
先端を通じて、電極部に生成する反応水を毛管作用によ
って電極部から除去しかつ凹部の中央部内表面まで輸
送、さらに当該内表面から前述の空気中に蒸発してセル
外に排出する。(特開平1−309263号公報参
照)。
(Type IV) Hydrophilic Porous Utilization Method (JP-A-1-309263, JP-A-4-12462) (1) Forming a plate in which the cross section of the hydrophilic porous body is uneven, The wet state of the electrolyte membrane is maintained by bringing the tip of the convex portion of the plate into contact with the anode portion, and the space of the concave portion serving as a hydrogen flow path, and supplying water to the plate. On the other hand, in the cathode part, similarly, a hydrophilic porous plate with an uneven cross section is brought into contact with the next uneven surface and the cathode electrode surface, and the space of the recess is used as an air flow path, and the electrode part is passed through the tip of the projection to the electrode part. The generated reaction water is removed from the electrode portion by a capillary action and is transported to the inner surface of the central portion of the recess, and further evaporated from the inner surface into the air and discharged out of the cell. (See Japanese Patent Laid-Open No. 1-309263).

【0008】(2)次に、特開平4−12462号公報
で提示されている例は、セルの外部に水の供給ポットお
よび水のトラップをそれぞれ設置し、親水性多孔質のプ
レートを用いて、前記の水供給ポットからアノード電極
への水の供給ならびにカソード電極から前記の水トラッ
プまでの反応生成水を排出する方式である。
(2) Next, in the example presented in Japanese Patent Laid-Open No. 12462/1992, a water supply pot and a water trap are installed outside the cell, and a hydrophilic porous plate is used. In this system, water is supplied from the water supply pot to the anode electrode and reaction product water from the cathode electrode to the water trap is discharged.

【0009】上述のように、固体高分子型燃料電池にお
ける水の管理方式には、種々の方法が提案されている
が、それぞれに一長一短があることを以下に述べる。
As described above, various methods for managing water in the polymer electrolyte fuel cell have been proposed, but it will be described below that each method has advantages and disadvantages.

【0010】タイプIは、電極部に直接水を添加するこ
とから、特に反応水が生成するカソード側において、水
の供給過剰となり、空気相(又は酸素ガス相)とカソー
ドとの間に水膜を形成し、酸素の拡散を妨害して性能が
低下すると共に、適当水量のコントロールが困難であ
る。
In the type I, since water is directly added to the electrode portion, the water is excessively supplied especially on the cathode side where reaction water is generated, and a water film is formed between the air phase (or oxygen gas phase) and the cathode. , Which impedes the diffusion of oxygen and reduces the performance, and it is difficult to control an appropriate amount of water.

【0011】タイプIIは、加湿器がセル外に別途必要で
あること、加湿水がセルに至る配管中で凝縮しないよう
配管の保温が必要であること、水蒸気の形態で加湿する
ため、これに要する熱的負担が大きいことなどが問題で
ある。
Type II requires a humidifier separately outside the cell, keeps the pipe warm so that the humidifying water does not condense in the pipe leading to the cell, and humidifies in the form of water vapor. The problem is that the required thermal load is large.

【0012】タイプIII は、アノード側のセパレータが
水供給用と水素供給用の2段構造となって複雑であるこ
と、またカソード側は特に工夫された点はなく、反応水
の排出を空気に同伴するのみであるから、水の排出性能
が不足することが懸念される。
Type III is complicated because the anode side separator has a two-stage structure for water supply and hydrogen supply, and the cathode side is not specially devised. Since they are only accompanied, it is feared that the water discharge performance will be insufficient.

【0013】タイプIVの(1)は、アノード側での水の
供給をポンプの水圧調整で制御するとしているが、負荷
に追従して過不足なく水の供給量を制御するのは困難で
あること、またカソード側での水の排出を空気に同伴す
るのみであるから、タイプIII と同様に特に高負荷時に
水の排出性能が不足することが考えられる。
In the type IV (1), the water supply on the anode side is controlled by adjusting the water pressure of the pump, but it is difficult to control the water supply amount without excess or deficiency by following the load. In addition, since the discharge of water on the cathode side is only accompanied by air, it is conceivable that the discharge performance of water will be insufficient especially under high load as in Type III.

【0014】[0014]

【発明が解決しようとする課題】前述したような従来技
術では、水の供給過程および水の排出過程において、次
のような問題点を有している。
The above-mentioned prior art has the following problems in the water supply process and the water discharge process.

【0015】まず、アノード側への水の供給過程におい
ては、以下(1)〜(3)の問題がある。 (1)水の供給量がセル内で不均一となること。たとえ
ば、タイプIVの(2)の例でも供給ポットから、セルの
アノード電極部に至る距離が長いことから、水の供給量
に分布がつく。 (2)セルの負荷に応じて、最適な水供給量をコントロ
ールすることが困難であること。 (3)水をスチームの形態で供給する時は熱経済性が不
良となること、また水供給量の制御機器を高度化するこ
とで設備費が高価になること。などが挙げられる。
First, in the process of supplying water to the anode side, there are the following problems (1) to (3). (1) The amount of water supplied is not uniform in the cell. For example, also in the case of type IV (2), since the distance from the supply pot to the anode electrode portion of the cell is long, the water supply amount is distributed. (2) It is difficult to control the optimum amount of water supply according to the cell load. (3) When supplying water in the form of steam, the thermo-economic efficiency is poor, and the equipment cost is high due to the sophisticated control equipment for the water supply. And so on.

【0016】次に、カソード側での反応水の排出過程に
おいては、以下(4)〜(6)の問題がある。 (4)水の排出速度が、空気入口近傍、セル中央部、空
気出口近傍の順で小さくなるため、電解質膜は空気入口
近傍で乾き気味、空気出口近傍では水没気味となり、セ
ル全面が有効に発電に寄与できないこと。 (5)空気出口近傍においても、所定の発電密度に見合
う水の排出速度を得ようとすると、空気流量を増大させ
ることが必要となるが、これは同時に空気利用率の低
下、空気供給動力費の増大を招くこと。 (6)セルの大型化に伴なって、益々反応水の排水能力
に分布が形成されるため、セルのスケールアップに限界
があること。などが挙げられる
Next, in the process of discharging the reaction water on the cathode side, there are the following problems (4) to (6). (4) Since the discharge speed of water decreases in the order of near the air inlet, in the center of the cell, and near the air outlet, the electrolyte membrane tends to be dry near the air inlet and submerged near the air outlet, making the entire cell surface effective. Not be able to contribute to power generation. (5) Even in the vicinity of the air outlet, it is necessary to increase the air flow rate in order to obtain a water discharge rate that matches a predetermined power generation density. To increase. (6) There is a limit to the scale-up of the cell, because the drainage capacity of the reaction water becomes more distributed as the cell becomes larger. And so on

【0017】そこで、本発明は、上述のような従来技術
の欠点を解消することであり、セルの発電密度に追従し
て適度な水の供給、排出が可能な自己制御性を備え、直
接に水を均一に供給でき、また反応水を均一に排出でき
る、固体電解質型燃料電池を提供することを目的とす
る。
Therefore, the present invention is to eliminate the above-mentioned drawbacks of the prior art, and has a self-controllability capable of appropriately supplying and discharging water in accordance with the power generation density of the cell, and directly. An object of the present invention is to provide a solid oxide fuel cell capable of supplying water uniformly and discharging reaction water uniformly.

【0018】[0018]

【課題を解決するための手段】前記目的を達成する本発
明に係る固体高分子電解質型燃料電池の構成は、固体高
分子電解質膜を配した燃料電池において、ガスセパレー
タが導電性を有する親水性多孔質体とすると共に、当該
ガスセパレータの内部に冷却水流路を形成したことを特
徴とする。
Means for Solving the Problems The constitution of a solid polymer electrolyte fuel cell according to the present invention which achieves the above object is a fuel cell in which a solid polymer electrolyte membrane is arranged, in which a gas separator is hydrophilic and has conductivity. The gas separator is characterized in that it is made of a porous material and a cooling water channel is formed inside the gas separator.

【0019】すなわち導電性のすぐれた親水性多孔体
(たとえば、親水性多孔質カーボン)が有する毛管作用
(ウィック作用)を利用して、アノード電極への水の供
給、カソード電極からの反応水の排出を行なうものであ
る。すなわち、多孔体の細孔が水で濡れて細孔内に充満
する場合に、当該水が多孔体を抜け出さないための、多
孔体の両端にかかる最大の差圧ΔP(保水圧)は下記
「数1」のようになる。
That is, by utilizing the capillary action (wick action) of a hydrophilic porous body having excellent conductivity (for example, hydrophilic porous carbon), water is supplied to the anode electrode and reaction water from the cathode electrode is used. It discharges. That is, when the pores of the porous body are wet with water and fill the inside of the pores, the maximum differential pressure ΔP (water retention pressure) applied to both ends of the porous body in order to prevent the water from leaving the porous body is as follows. It becomes like "number 1."

【0020】[0020]

【数1】 [Equation 1]

【0021】一例として、表面が良く濡れるとし(co
sθ≒1.0)、rc =1μmとし、100℃におけ
る、上記の保水圧を求めてみるとΔP=1.14atm
となる。すなわち、細孔径1μmの親水性多孔体は、一
端が水中に接触しているときは、その毛管作用でヘッド
差1.14atmの所までは、当該多孔体の他端まで水
を輸送できる能力を有することになる。ただし、水源か
ら輸送先までの距離は短かい方が良いのは、当然であ
る。このため当該多孔体の内部に冷却水の流路を設け、
冷却と同時に水の供給又は水の排出を可能としたもので
ある。
As an example, if the surface is well wetted (co
sθ≈1.0), r c = 1 μm, and the above water retention pressure at 100 ° C. is calculated, ΔP = 1.14 atm
Becomes That is, a hydrophilic porous body having a pore diameter of 1 μm has an ability to transport water to the other end of the porous body up to a head difference of 1.14 atm by its capillary action when one end is in contact with water. Will have. However, it is natural that the distance from the water source to the destination should be short. For this reason, a cooling water channel is provided inside the porous body,
It is possible to supply or discharge water at the same time as cooling.

【0022】[0022]

【実施例】本発明の実施態様を示す図1および図2を用
いて、本発明の内容を説明する。図1,2において、中
央部の2は固体高分子電解質膜であり、当該膜の左側に
は、反応層4Aと拡散層3Aから成る水素側電極が接合
され、当該膜の右側も同様に反応層4Bと拡散層3Bか
ら成る空気側電極が接合されている。次に、これらの両
電極の外側には、いわゆるガスセパレータというデバイ
ス1を、前記の両電極に接触して配置する。
The contents of the present invention will be described with reference to FIGS. 1 and 2 showing an embodiment of the present invention. In FIGS. 1 and 2, the central part 2 is a solid polymer electrolyte membrane, the hydrogen side electrode consisting of the reaction layer 4A and the diffusion layer 3A is joined to the left side of the membrane, and the right side of the membrane also undergoes the reaction. The air side electrode composed of the layer 4B and the diffusion layer 3B is joined. Next, a device 1, which is a so-called gas separator, is arranged outside both of these electrodes in contact with both of the electrodes.

【0023】図1において、ガスセパレータ1は、導電
性の親水性多孔質で作られた空気極側構成要素1Aと水
素極側構成要素1Bとを導電性の接合層5を介して合体
することで構成し、当該セパレータ1の中央部空間は、
水の流路6となし、また当該セパレータの図中右側凸部
9Aは水素極側の拡散層3Aに接触させ、同様に左側凸
部9Bは、空気極側の拡散層3Bに接触させることによ
ってセパレータ1と前記セルとの間に形成される空間7
および8を、それぞれ水素の流路7、空気(又は酸素)
の流路8となす。
In FIG. 1, the gas separator 1 comprises an air electrode side constituent element 1A and a hydrogen electrode side constituent element 1B, which are made of a conductive hydrophilic porous material, and are joined together via a conductive bonding layer 5. And the central space of the separator 1 is
By forming the water flow path 6 and bringing the separator 9A on the right side in the figure into contact with the diffusion layer 3A on the hydrogen electrode side, and similarly, the protrusion 9B on the left side in contact with the diffusion layer 3B on the air electrode side. Space 7 formed between the separator 1 and the cell
And 8 are the hydrogen flow path 7, air (or oxygen), respectively.
And the channel 8.

【0024】図1において、所定温度の冷却水を前記の
水の流路6に流すと、水は親水性多孔体であるガスセパ
レータ構成要素1Bの毛管作用によって多孔体中を右側
に輸送されて当該セパレータ構成要素1Bの右側外表面
に到達し、一部は水素の流路壁にて蒸発し、流通してい
る水素を加湿したのち、また残りの部分は直接に、拡散
層3A続いて反応層4Aを経由して拡散し、前述の固体
高分子電解質膜2の左面に到達して、当該電解質膜2を
湿潤状態に保つ。
In FIG. 1, when cooling water having a predetermined temperature is flown through the water passage 6, the water is transported to the right in the porous body by the capillary action of the gas separator component 1B which is a hydrophilic porous body. After reaching the right outer surface of the separator component 1B, a part of it evaporates in the hydrogen flow channel wall to humidify the flowing hydrogen, and the remaining part directly reacts with the diffusion layer 3A and then the reaction. It diffuses through the layer 4A, reaches the left surface of the solid polymer electrolyte membrane 2 described above, and keeps the electrolyte membrane 2 in a wet state.

【0025】セルが発電状態にあるときは、水素は当該
反応層4Aの触媒作用で解離したのち、プロトン状態
(H+ )で当該電解質膜2の中を前述の水を配位して移
動し、右側の空気極側反応層4Bに到達し、ここで外部
電気回路を通じて流入する電子(e- )、ならびに空気
(又は酸素)の流路8から拡散によって流入してくる酸
素(O2 )と反応することによって水を生成する。すな
わち、上述の電極部での反応をまとめると、次のように
なる。
When the cell is in a power generation state, hydrogen dissociates by the catalytic action of the reaction layer 4A, and then moves in the proton state (H + ) in the electrolyte membrane 2 by coordinating the water. , Electrons (e ) that reach the air cathode side reaction layer 4B on the right side and flow in through the external electric circuit, and oxygen (O 2 ) that flows in by diffusion from the air (or oxygen) flow path 8. The reaction produces water. That is, the reactions in the electrode section described above are summarized as follows.

【0026】・水素極側反応層4Aにおいて、 H2 → 2H+ +2e- ・空気極側反応層4Bにおいて、 2H+ +2e- +1/2O2 → H2 O 上述の過程で生成した水と前述の電解質膜中をプロトン
と共に移動した透過水の一部が、空気極側反応層4Bに
とり込まれることになるが、連続的に発電状態を継続す
るためには、これら反応生成水と透過水を当該反応層4
Bから排出する必要がある。
H 2 → 2H + + 2e − in the hydrogen electrode side reaction layer 4 A, 2H + + 2e + 1 / 2O 2 → H 2 O in the air electrode side reaction layer 4 B and the water produced in the above process Part of the permeated water that has moved along with the protons in the electrolyte membrane will be taken into the air electrode side reaction layer 4B, but in order to continuously maintain the power generation state, these reaction product water and permeated water are Reaction layer 4
It is necessary to discharge from B.

【0027】再び図1において、当該反応層4Bの内部
に存在する水は、右方向に拡散の上、空気側拡散層3B
を経由して、親水性多孔体であるガスセパレータ構成要
素(空気極側)1Aの左側表面に到達する。ここで、再
びガスセパレータ構成要素1Aの毛管作用(ウイック作
用)によって水は1A内を移動し、流路6の中を流れる
冷却水に合流して、セル外に排出される。前述のような
水の移動メカニズムにより、連続的かつ自己制御的に水
の供給排出が可能となるため、安定したセルの発電状態
を得ることができる。
Referring again to FIG. 1, the water existing inside the reaction layer 4B is diffused rightward, and then the air side diffusion layer 3B is formed.
To reach the left side surface of the gas separator component (air electrode side) 1A which is a hydrophilic porous body. Here, water moves again in 1A by the capillary action (wick action) of the gas separator component 1A, merges with the cooling water flowing in the flow path 6, and is discharged to the outside of the cell. Since the water movement mechanism as described above enables continuous and self-controlled water supply and discharge, a stable power generation state of the cell can be obtained.

【0028】次に、図1に示した例では、水の流路6に
水が流通していない万一の場合を想定すると、ガスセパ
レータの水素極側と空気極側が、ガスセパレータ1の細
孔を通じて連通し、その結果水素と空気との混合により
爆発性混合気を形成する恐れがある。この問題を解消す
るためには、水が流通していることを確認後、ガスを流
通させるような手順を厳守するか、もしくは図2に示す
ように、ガスセパレータ構成要素1Aと1Bの間に、ガ
スが透過しない導電性の隔壁10を介入させてガスセパ
レータ1を構成するのが確実な対策となる。図2の例で
は、水の流路6A,6B内に、それぞれ冷却水を流すこ
ととなる。
Next, in the example shown in FIG. 1, assuming that water does not flow through the water flow path 6, the hydrogen electrode side and the air electrode side of the gas separator are separated from each other by a thin gas separator 1. Communication through the holes can result in the formation of an explosive mixture by mixing hydrogen with air. In order to solve this problem, after confirming that water is flowing, the procedure of passing gas is strictly adhered to, or, as shown in FIG. 2, between the gas separator components 1A and 1B. A reliable countermeasure is to construct the gas separator 1 by interposing a conductive partition wall 10 that does not allow gas to pass therethrough. In the example of FIG. 2, cooling water will flow in the water channels 6A and 6B, respectively.

【0029】[試験例]図1に示した本発明の実施態様
に基づく試験例を、表1に示す。
[Test Example] Table 1 shows a test example based on the embodiment of the present invention shown in FIG.

【0030】[0030]

【表1】 [Table 1]

【0031】表1の例は、水素の利用率をほぼ75%、
空気の利用率はほぼ50%となるように、それぞれの供
給量を設定してセルの発電性能を測定したもので、ほぼ
狙い通りの発電性能が確認されていることから、本発明
で提案した水の供給・排出法が有効であることが判っ
た。
In the example of Table 1, the utilization rate of hydrogen is approximately 75%,
The power generation performance of the cell was measured by setting each supply amount so that the utilization rate of air would be approximately 50%. Since the power generation performance almost as intended was confirmed, the present invention has proposed. It was found that the Water Supply and Discharge Law was effective.

【0032】[0032]

【発明の効果】以上実施例と共に説明したように、本発
明は、導電性を有する親水性多孔質体を材料としてガス
セパレータを構成し、当該セパレータの内部に冷却水用
の流路を設けることによって、水素極側での加湿、また
空気極側からの水の排出を連続的かつ自動的に実施でき
るようにしたものである。特に、下記の効果が特徴的で
ある。 (1)水素極側での加湿過程で、水素の流路にドレン
(水)が混在しないため、気液混相とならず、均一な水
素ガスの分配が可能である。 (2)同様に空気極側にも、水はガスセパレータの毛管
作用で排出されるので、気液混相とならず、均一な空気
の分配が可能である。 (3)さらに、両極側とも雰囲気は水の飽和蒸気で充満
されているため、電解質膜が常に湿潤状態に保たれるた
め、セルの発電能力が十分に発揮できる。
As described above in connection with the embodiments, the present invention forms a gas separator using a conductive hydrophilic porous material as a material, and provides a flow path for cooling water inside the separator. This makes it possible to continuously and automatically perform humidification on the hydrogen electrode side and discharge of water from the air electrode side. In particular, the following effects are characteristic. (1) Since the drain (water) is not mixed in the hydrogen flow path during the humidification process on the hydrogen electrode side, a gas-liquid mixed phase does not occur, and uniform hydrogen gas distribution is possible. (2) Similarly, since water is discharged to the air electrode side by the capillary action of the gas separator, a gas-liquid mixed phase does not occur and uniform air distribution is possible. (3) Furthermore, since the atmosphere is filled with saturated steam of water on both electrode sides, the electrolyte membrane is always kept in a wet state, so that the power generation capacity of the cell can be sufficiently exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る固体高分子電解質膜
型燃料電池の構成図である。
FIG. 1 is a configuration diagram of a solid polymer electrolyte membrane fuel cell according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る燃料電池の構成図で
ある。
FIG. 2 is a configuration diagram of a fuel cell according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガスセパレータ 1A ガスセパレータ構成要素(空気極側) 1B ガスセパレータ構成要素(水素極側) 2 固体高分子電解質膜 3A 水素極側拡散層(アノード側拡散層) 3B 空気極側拡散層(カソード側拡散層) 4A 水素極側反応層(アノード触媒層) 4B 空気極側反応層(カソード触媒層) 5 上記1Aと1Bの接合層(導電性) 6,6A,6B 水の流路 7 水素の流路 8 空気(又は酸素)の流路 9A 水素極側凸部(アノード側凸部) 9B 空気極側凸部(カソード側凸部) 10 導電性の隔壁 DESCRIPTION OF SYMBOLS 1 gas separator 1A gas separator constituent element (air electrode side) 1B gas separator constituent element (hydrogen electrode side) 2 solid polymer electrolyte membrane 3A hydrogen electrode side diffusion layer (anode side diffusion layer) 3B air electrode side diffusion layer (cathode side) Diffusion layer) 4A Hydrogen electrode side reaction layer (anode catalyst layer) 4B Air electrode side reaction layer (cathode catalyst layer) 5 Joining layer (conductivity) of the above 1A and 1B 6,6A, 6B Water flow path 7 Hydrogen flow Channel 8 Air (or oxygen) channel 9A Hydrogen electrode side convex portion (anode side convex portion) 9B Air electrode side convex portion (cathode side convex portion) 10 Conductive partition wall

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を配した燃料電池に
おいて、ガスセパレータが導電性を有する親水性多孔質
体とすると共に、当該ガスセパレータの内部に冷却水流
路を形成したことを特徴とする固体高分子電解質膜型燃
料電池。
1. A fuel cell having a solid polymer electrolyte membrane, wherein the gas separator is a hydrophilic hydrophilic porous body, and a cooling water channel is formed inside the gas separator. Solid polymer electrolyte membrane fuel cell.
JP5017317A 1993-02-04 1993-02-04 Solid high polymer electrolytic type fuel cell Withdrawn JPH06231793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5017317A JPH06231793A (en) 1993-02-04 1993-02-04 Solid high polymer electrolytic type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5017317A JPH06231793A (en) 1993-02-04 1993-02-04 Solid high polymer electrolytic type fuel cell

Publications (1)

Publication Number Publication Date
JPH06231793A true JPH06231793A (en) 1994-08-19

Family

ID=11940647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5017317A Withdrawn JPH06231793A (en) 1993-02-04 1993-02-04 Solid high polymer electrolytic type fuel cell

Country Status (1)

Country Link
JP (1) JPH06231793A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057778A3 (en) * 1998-04-30 2000-03-02 Emitec Emissionstechnologie Method for wetting at least one of the surfaces of an electrolyte in a fuel cell
US6042955A (en) * 1995-05-25 2000-03-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method of controlling same
WO2001024295A1 (en) * 1999-09-30 2001-04-05 Sorapec Bipolar collectors for pem-effect fuel cells
JP2002533904A (en) * 1998-12-23 2002-10-08 インターナショナル フュエル セルズ,エルエルシー Use of a thermoplastic film to form a seal and bond PEM-type battery components
JP2003501785A (en) * 1999-05-28 2003-01-14 インターナショナル フュエル セルズ,エルエルシー Apparatus and method for thermal management for fuel cell devices
JP2003517187A (en) * 1999-12-17 2003-05-20 ユーティーシー フューエル セルズ,エルエルシー Fuel cell having hydrophilic substrate layer
WO2004107486A1 (en) * 2003-05-26 2004-12-09 Siemens Aktiengesellschaft Fuel cell and heating device for a fuel cell
JP2005501374A (en) * 2001-04-05 2005-01-13 ユーティーシー フューエル セルズ,エルエルシー Method and apparatus for operation of a battery stack assembly at sub-freezing temperatures
JP2005119923A (en) * 2003-10-17 2005-05-12 Ibiden Co Ltd Hydrophilic porous carbon material, humidifying member for polymer electrolyte type fuel cell and separator for polymer electrolyte type fuel cell
JP2005514745A (en) * 2001-12-27 2005-05-19 ユーティーシー フューエル セルズ,エルエルシー Porous carbon body for fuel cell having electrically conductive hydrophilic agent
JP2005129431A (en) * 2003-10-27 2005-05-19 Toyota Motor Corp Fuel cell and gas separator for fuel cell
US6921598B2 (en) 2000-03-07 2005-07-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
EP1580827A2 (en) * 2004-03-23 2005-09-28 Nissan Motor Co., Ltd. Solid polymer fuel cell
JP2005310510A (en) * 2004-04-21 2005-11-04 Nippon Soken Inc Fuel cell
JP2005322538A (en) * 2004-05-10 2005-11-17 Nippon Soken Inc Humidifier and method, and fuel cell system
JP2005327655A (en) * 2004-05-17 2005-11-24 Nissan Motor Co Ltd Fuel cell system
JP2006004803A (en) * 2004-06-18 2006-01-05 Toyota Motor Corp Fuel cell
JP2007087677A (en) * 2005-09-21 2007-04-05 Hitachi Ltd Fuel cell
WO2007125751A1 (en) 2006-04-24 2007-11-08 Panasonic Corporation Mea member, and polyelectrolyte fuel cell
JP2008016453A (en) * 2006-07-05 2008-01-24 Samsung Sdi Co Ltd Planar fuel cell
JP2008078147A (en) * 2007-10-22 2008-04-03 Honda Motor Co Ltd Attaching structure of cell voltage detecting terminal for fuel cell
US7361425B2 (en) 2002-04-12 2008-04-22 Nissan Motor Co., Ltd. Fuel cell
JP2008536287A (en) * 2005-04-15 2008-09-04 ユーティーシー パワー コーポレイション Water retention in a fuel cell stack for cooling and humidification during start-up below freezing
JP2008243696A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Fuel cell module
JP2009176490A (en) * 2008-01-23 2009-08-06 Toshiba Corp Fuel cell and fuel cell separator
JP2011082126A (en) * 2009-10-09 2011-04-21 Chung-Hsin Electric & Machinery Manufacturing Corp Fuel cell structure with porous metal plate
KR101033885B1 (en) * 2008-12-05 2011-05-11 더 펜실바니아 스테이트 유니버시티 Separating Plate for preventing flooding in Fuel Cell
JP2013543224A (en) * 2010-10-06 2013-11-28 ユーティーシー パワー コーポレイション Evaporative cooling fuel cell with water passage improved by wick
WO2014013747A1 (en) * 2012-07-17 2014-01-23 トヨタ車体 株式会社 Fuel cell
CN105264706A (en) * 2012-10-19 2016-01-20 奥迪股份公司 Low cost fuel cell components

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042955A (en) * 1995-05-25 2000-03-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method of controlling same
US6214486B1 (en) 1995-05-25 2001-04-10 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method of controlling same
WO1999057778A3 (en) * 1998-04-30 2000-03-02 Emitec Emissionstechnologie Method for wetting at least one of the surfaces of an electrolyte in a fuel cell
US6630258B1 (en) * 1998-04-30 2003-10-07 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Process for wetting at least one of the surfaces of an electrolyte in a fuel cell
JP2002533904A (en) * 1998-12-23 2002-10-08 インターナショナル フュエル セルズ,エルエルシー Use of a thermoplastic film to form a seal and bond PEM-type battery components
DE19983846B3 (en) * 1998-12-23 2017-05-18 Audi Ag Proton exchange membrane fuel cell assembly with thermoplastic films to form seals and interconnect cell components
JP2003501785A (en) * 1999-05-28 2003-01-14 インターナショナル フュエル セルズ,エルエルシー Apparatus and method for thermal management for fuel cell devices
WO2001024295A1 (en) * 1999-09-30 2001-04-05 Sorapec Bipolar collectors for pem-effect fuel cells
FR2799308A1 (en) * 1999-09-30 2001-04-06 Sorapec IMPROVEMENTS ON BIPOLAR COLLECTORS FOR PEM-TYPE FUEL CELLS
JP2003517187A (en) * 1999-12-17 2003-05-20 ユーティーシー フューエル セルズ,エルエルシー Fuel cell having hydrophilic substrate layer
US6921598B2 (en) 2000-03-07 2005-07-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
JP2005501374A (en) * 2001-04-05 2005-01-13 ユーティーシー フューエル セルズ,エルエルシー Method and apparatus for operation of a battery stack assembly at sub-freezing temperatures
JP4663960B2 (en) * 2001-04-05 2011-04-06 ユーティーシー パワー コーポレイション Method and apparatus for operation of a battery stack assembly at sub-freezing temperatures
JP2005514745A (en) * 2001-12-27 2005-05-19 ユーティーシー フューエル セルズ,エルエルシー Porous carbon body for fuel cell having electrically conductive hydrophilic agent
JP4916088B2 (en) * 2001-12-27 2012-04-11 ユーティーシー パワー コーポレイション Porous carbon body for fuel cell having electrically conductive hydrophilic agent
US7361425B2 (en) 2002-04-12 2008-04-22 Nissan Motor Co., Ltd. Fuel cell
US8617755B2 (en) 2003-05-26 2013-12-31 Siemens Aktiengesellschaft Fuel cell and heating device of a fuel cell
WO2004107486A1 (en) * 2003-05-26 2004-12-09 Siemens Aktiengesellschaft Fuel cell and heating device for a fuel cell
JP2005119923A (en) * 2003-10-17 2005-05-12 Ibiden Co Ltd Hydrophilic porous carbon material, humidifying member for polymer electrolyte type fuel cell and separator for polymer electrolyte type fuel cell
JP2005129431A (en) * 2003-10-27 2005-05-19 Toyota Motor Corp Fuel cell and gas separator for fuel cell
EP1580827A2 (en) * 2004-03-23 2005-09-28 Nissan Motor Co., Ltd. Solid polymer fuel cell
EP1580827A3 (en) * 2004-03-23 2006-08-16 Nissan Motor Co., Ltd. Solid polymer fuel cell
JP4546757B2 (en) * 2004-04-21 2010-09-15 株式会社日本自動車部品総合研究所 Fuel cell
JP2005310510A (en) * 2004-04-21 2005-11-04 Nippon Soken Inc Fuel cell
JP2005322538A (en) * 2004-05-10 2005-11-17 Nippon Soken Inc Humidifier and method, and fuel cell system
JP4500584B2 (en) * 2004-05-10 2010-07-14 株式会社日本自動車部品総合研究所 Humidification device and method, and fuel cell system
JP2005327655A (en) * 2004-05-17 2005-11-24 Nissan Motor Co Ltd Fuel cell system
JP4645063B2 (en) * 2004-05-17 2011-03-09 日産自動車株式会社 Fuel cell system
JP2006004803A (en) * 2004-06-18 2006-01-05 Toyota Motor Corp Fuel cell
JP2008536287A (en) * 2005-04-15 2008-09-04 ユーティーシー パワー コーポレイション Water retention in a fuel cell stack for cooling and humidification during start-up below freezing
JP2007087677A (en) * 2005-09-21 2007-04-05 Hitachi Ltd Fuel cell
WO2007125751A1 (en) 2006-04-24 2007-11-08 Panasonic Corporation Mea member, and polyelectrolyte fuel cell
JP2008016453A (en) * 2006-07-05 2008-01-24 Samsung Sdi Co Ltd Planar fuel cell
JP4746013B2 (en) * 2006-07-05 2011-08-10 三星エスディアイ株式会社 Planar fuel cell
JP2008243696A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Fuel cell module
US8795911B2 (en) 2007-03-28 2014-08-05 Jx Nippon Oil & Energy Corporation Fuel cell module with a water reservoir including a water storing portion expanding from a cell unit to an anode side
JP2008078147A (en) * 2007-10-22 2008-04-03 Honda Motor Co Ltd Attaching structure of cell voltage detecting terminal for fuel cell
JP2009176490A (en) * 2008-01-23 2009-08-06 Toshiba Corp Fuel cell and fuel cell separator
KR101033885B1 (en) * 2008-12-05 2011-05-11 더 펜실바니아 스테이트 유니버시티 Separating Plate for preventing flooding in Fuel Cell
JP2011082126A (en) * 2009-10-09 2011-04-21 Chung-Hsin Electric & Machinery Manufacturing Corp Fuel cell structure with porous metal plate
JP2013543224A (en) * 2010-10-06 2013-11-28 ユーティーシー パワー コーポレイション Evaporative cooling fuel cell with water passage improved by wick
WO2014013747A1 (en) * 2012-07-17 2014-01-23 トヨタ車体 株式会社 Fuel cell
US10727511B2 (en) 2012-07-17 2020-07-28 Toyota Shatai Kabushiki Kaisha Fuel cell
CN105264706A (en) * 2012-10-19 2016-01-20 奥迪股份公司 Low cost fuel cell components
US10651484B2 (en) 2012-10-19 2020-05-12 Audi Ag Extruded carbon fuel cell components

Similar Documents

Publication Publication Date Title
JPH06231793A (en) Solid high polymer electrolytic type fuel cell
JPH06275284A (en) Solid polymer electrolyte film type fuel cell
JP4922933B2 (en) Fuel cell with electroosmotic pump
JP3596332B2 (en) Operating method of stacked fuel cell, stacked fuel cell, and stacked fuel cell system
JP3382708B2 (en) Gas separator for solid polymer electrolyte fuel cells
KR100539649B1 (en) Separator for fuel cell and fuel cell using the same
JPH06267564A (en) Solid high polymer electrolyte fuel cell
KR100528340B1 (en) Liguid fuel mixing apparatus and fuel cell apparatus adopting the same
JPH05283094A (en) Fuel cell
JP2000090954A (en) Fuel cell stack
JP2001519081A (en) Method for controlling membrane moisture of polymer electrolyte fuel cell and polymer electrolyte fuel cell
US7820334B2 (en) Fuel cell and oxidant distribution plate for fuel cell
JPH10284096A (en) Solid high polymer electrolyte fuel cell
JPH07320753A (en) Solid polymer electrolyte membrane type fuel cell
JPH09283162A (en) Solid high molecular fuel cell
JP3106554B2 (en) Solid polymer electrolyte fuel cell and method for supplying water and gas contained in the membrane
JP2002373677A (en) Fuel cell
JPH11135133A (en) Solid polymer electrolyte fuel cell
JP2001176529A (en) Solid high molecular fuel cell body and solid high molecular fuel cell power generating system
JPH0689730A (en) Fuel cell with high polymer solid electrolyte
JP2012532426A (en) Reduction of liquid electrolyte loss in high temperature polymer electrolyte membrane fuel cells
JPWO2002103829A1 (en) Solid polymer fuel cell and solid polymer fuel cell power generation system
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JP2814716B2 (en) Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas
JP2004529458A (en) Method for improving the moisture balance of a fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404