JPH07320753A - Solid polymer electrolyte membrane type fuel cell - Google Patents
Solid polymer electrolyte membrane type fuel cellInfo
- Publication number
- JPH07320753A JPH07320753A JP6115139A JP11513994A JPH07320753A JP H07320753 A JPH07320753 A JP H07320753A JP 6115139 A JP6115139 A JP 6115139A JP 11513994 A JP11513994 A JP 11513994A JP H07320753 A JPH07320753 A JP H07320753A
- Authority
- JP
- Japan
- Prior art keywords
- water
- hydrogen
- electrolyte membrane
- pores
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電解質膜の湿潤化のた
めの燃料水素の加湿を必要とし、また内部の反応で発生
する水分を外部へ排出する必要のある固体高分子電解質
膜型燃料電池(以下、単に燃料電池という)に関する。BACKGROUND OF THE INVENTION The present invention relates to a solid polymer electrolyte membrane fuel which requires humidification of fuel hydrogen to moisten an electrolyte membrane, and must discharge moisture generated by an internal reaction to the outside. The present invention relates to a battery (hereinafter, simply referred to as a fuel cell).
【0002】[0002]
【従来の技術】燃料電池に使用される固体高分子の電解
質膜はカチオン交換膜で、飽和状態まで含水することで
最大のプロトン導電性を示すことが知られている。すな
わち、こおような電解質膜としては、スルホン酸基を有
するポリスチレン系の陽イオン交換膜、フロロカーボン
スルホン酸とポリビニリデンフロライドを混合した膜、
パーフロロカーボンスルホン酸膜などが知られている
が、これらの電解質膜はその分子構造中にプロトン交換
基があり、飽和状態までに水を湿潤させることによっ
て、良好なプロトン導電性(常温において比抵抗が略2
0Ω・cm以下)を示し、電解質膜としての作用をする。2. Description of the Related Art It is known that a solid polymer electrolyte membrane used in a fuel cell is a cation exchange membrane and exhibits maximum proton conductivity when it is saturated with water. That is, as such an electrolyte membrane, a polystyrene cation exchange membrane having a sulfonic acid group, a membrane in which fluorocarbon sulfonic acid and polyvinylidene fluoride are mixed,
Perfluorocarbon sulfonic acid membranes, etc. are known, but these electrolyte membranes have a proton exchange group in their molecular structure and have good proton conductivity (specific resistance at room temperature) by wetting water to saturation. Is about 2
0 Ω · cm or less) and acts as an electrolyte membrane.
【0003】この電解質膜を水で湿潤にさせるための加
湿方法、および燃料電池における水の管理方法として
は、次に示すような種々の方法が、従来から提案されて
いるが、それぞれに不具合がある。The following various methods have been conventionally proposed as a moisturizing method for wetting the electrolyte membrane with water and a water managing method in a fuel cell. is there.
【0004】(タイプI)直接水添加方式 この方式は、米国特許第3,061,658号に示され
ているように、燃料電池で反応させる、空気(酸素)お
よび燃料水素ガスにそれぞれ直接、液体状の水を添加す
るものである。(Type I) Direct Water Addition Method This method, as shown in US Pat. No. 3,061,658, directly reacts with air (oxygen) and fuel hydrogen gas to be reacted in a fuel cell, respectively. Liquid water is added.
【0005】しかし、この方式による加湿方法は、水素
極および空気極(酸素極)の両極部に、直接水を添加す
ることから、特に反応水を生成する空気極側において、
水の供給過剰となり、空気相(又は酸素ガス相)と空気
極との間に水膜を形成し、この水膜が酸素の拡散を妨害
して発電性能を低下させるという不具合がある。また、
最悪の場合は、液状水がガス流路を閉塞して、大きなガ
スの偏流が生じると共に、適当水量のコントロールが困
難であるという不具合もある。However, in the humidifying method of this system, water is added directly to both the hydrogen electrode and the air electrode (oxygen electrode).
There is a problem in that the water supply becomes excessive and a water film is formed between the air phase (or oxygen gas phase) and the air electrode, and this water film interferes with the diffusion of oxygen and deteriorates the power generation performance. Also,
In the worst case, there is a problem that liquid water blocks the gas flow path and a large gas drift occurs, and it is difficult to control an appropriate amount of water.
【0006】(タイプII)外部加湿器設置方式 この方式は、E. A. Ticianelli et al;J. Electroche
m. Soc., Vol.135.p.2209(1988)に示
されるように、燃料電池に空気および燃料水素を供給す
る前に、それぞれの供給ラインに加湿器を設けて、各ガ
スを加湿するものである。(Type II) External Humidifier Installation Method This method is based on EA Ticianelli et al; J. Electroche
m. Soc., Vol.135. p. As shown in 2209 (1988), a humidifier is provided in each supply line to humidify each gas before supplying air and fuel hydrogen to the fuel cell.
【0007】この方式による加湿方法では、加湿器を燃
料電池の外部に別途必要とすること、各ガスを加湿して
いる蒸気状態の加湿水が、燃料電池に至る配管中で凝縮
しないようするため、配管の保温を必要とすること、お
よび水蒸気の形態で各ガスを加湿するため、これに要す
る熱的負担が大きく、このためシステムとしての熱効率
が悪くなる等の不具合がある。In the humidifying method according to this method, a humidifier is separately required outside the fuel cell, and the steam-state humidifying water that humidifies each gas is prevented from condensing in the pipe leading to the fuel cell. In addition, since it is necessary to keep the temperature of the pipes and humidify each gas in the form of steam, the thermal load required for this is large, and the thermal efficiency of the system deteriorates.
【0008】(タイプIII )撥水性多孔質利用方式 この方式は、特開平4−95357号に示されるよう
に、撥水性多孔質体に溝を凹状に設け、当該凹部の内部
空間を流水路とし、凹部上方の開口部は直接燃料電池を
構成するセルに接触するようにして、水をセルに供給す
るようにしたものである。(Type III) Water Repellent Porous Utilization Method In this method, as shown in JP-A-4-95357, a groove is formed in a water repellent porous body in a concave shape, and the inner space of the concave portion is used as a running water channel. The openings above the recesses are designed to directly contact the cells that make up the fuel cell and supply water to the cells.
【0009】この方式による加湿方法では、水素極側の
セパレータが、水供給用と水素供給用の2段構造となっ
て複雑になる不具合がある。また空気極側は特に工夫さ
れた点はなく、反応水の排出は、空気極側に供給され、
消費されずにセルから排出される空気に同伴して排出さ
せるだけであるので、水の排出性能が不足することが生
じる不具合がある。In the humidifying method by this method, there is a problem that the separator on the hydrogen electrode side has a two-stage structure for water supply and hydrogen supply and becomes complicated. Also, the air electrode side has not been specially devised, and the discharge of reaction water is supplied to the air electrode side.
Since the air is not consumed but is simply entrained in the air discharged from the cell and discharged, there is a problem that the water discharge performance becomes insufficient.
【0010】(タイプIV)親水性多孔質利用方式 この方式による加湿方法は、2つの方法が考えられてい
る。 (1)1つは、特開平1−309263号に示されるよ
うに、親水性多孔体の断面を凹凸状にしたプレートを形
成し、当該プレートの凸部の先端を水素極に接触させ、
また当該凹部の空間部は、水素の流路とし、当該プレー
トに水を供給することによって、電解質膜の湿潤状態を
保持する。一方、空気極でも同様に親水性多孔体の断面
を凹凸状にしたプレートを形成し、その凹凸面と空気極
面と接触させ、凹部の空間を空気の流路とし、凸部の先
端を通じて、空気極に生成する反応水を毛管作用によっ
て空気極から除去し、かつ凹部の中央部内表面まで輸送
し、さらに当該内表面から前述の空気中に蒸発してセル
外に排出するようにしたものである。(Type IV) Hydrophilic Porous Utilization Method Two humidification methods based on this method are considered. (1) One is to form a plate in which the cross section of a hydrophilic porous body is uneven as shown in JP-A-1-309263, and the tip of the convex part of the plate is brought into contact with a hydrogen electrode,
Further, the space of the recess is used as a hydrogen flow path, and water is supplied to the plate to maintain the wet state of the electrolyte membrane. On the other hand, also in the air electrode, similarly, a plate having an uneven cross-section of the hydrophilic porous body is formed, and the uneven surface and the air electrode surface are brought into contact with each other, and the space of the concave portion serves as an air flow path, and the tip of the convex portion, The reaction water generated in the air electrode is removed from the air electrode by a capillary action, and is transported to the inner surface of the central portion of the recess, and further evaporated from the inner surface into the air and discharged to the outside of the cell. is there.
【0011】この方式による加湿方法では、水素極側で
の水の供給をポンプの水圧調整で制御するようにしてい
るが、負荷に追従して、過不足なく、水の供給量を制御
するのは困難であること、また空気極側での水の排出
を、空気に同伴させて排出するのみであるから、タイプ
III と同様に、特に高負荷時に水の排出性能が不足する
不具合がある。In the humidifying method based on this method, the water supply on the hydrogen electrode side is controlled by adjusting the water pressure of the pump. However, the water supply amount is controlled by following the load without excess or deficiency. Is difficult, and the discharge of water at the cathode side is carried out by entraining it in the air.
Similar to III, there is a problem that water discharge performance is insufficient especially under high load.
【0012】(2)他の1つは、特開平4−12462
号に示されるように、セルの外部に水の供給ポットおよ
び水の排出トラップをそれぞれ設置し、親水性多孔質の
プレートを用いて、前記の水供給ポットから水素極への
水の供給、ならびに空気極から前記の水トラップまでの
反応生成水の排出を行なうようにしたものである。(2) Another one is JP-A-4-12462.
As shown in No. 3, a water supply pot and a water discharge trap are respectively installed outside the cell, and a hydrophilic porous plate is used to supply water from the water supply pot to the hydrogen electrode, and The reaction product water is discharged from the air electrode to the water trap.
【0013】この方式による加湿方法では、供給ポット
からセルの水素極に至る距離が長いことから、水の供給
量に分布がつくこと、さらに空気極から水トラップに至
る距離が長いことから、水の排出量にも分布がつく不具
合がある。In the humidifying method according to this method, since the distance from the supply pot to the hydrogen electrode of the cell is long, the amount of water supplied is distributed, and the distance from the air electrode to the water trap is long. There is also a problem that the emission amount of is distributed.
【0014】以上、従来の燃料電池における電解質膜の
湿潤と水の管理について述べたが、これらに付随する問
題点をまとめて見ると次のようになる。So far, the wetness of the electrolyte membrane and the control of water in the conventional fuel cell have been described. The problems associated with these are summarized below.
【0015】電解質膜の湿潤化のための水素極側への水
の供給過程において、 (1)水の供給量がセル内で不均一になること。 (2)セルの負荷に応じて、最適な水供給量をコントロ
ールすることが困難であること。 (3)水をスチームの形態で供給する時は熱経済性が不
良となること、また水供給量の制御機器を高度化するこ
とで設備費が高価になること。In the process of supplying water to the hydrogen electrode side for wetting the electrolyte membrane, (1) the amount of water supplied is not uniform in the cell. (2) It is difficult to control the optimum amount of water supply according to the cell load. (3) When supplying water in the form of steam, the thermo-economic efficiency is poor, and the equipment cost is high due to the sophisticated control equipment for the water supply.
【0016】また、空気極側からの反応水の排出過程に
おいて、 (4)水の排出速度が、空気入口近傍、セル中央部、空
気出口近傍の順で小さくなるため、電解質膜は空気入口
近傍で乾き気味、空気出口近傍では水没気味となり、セ
ル全面が有効に発電に寄与できないこと。 (5)空気入口近傍においても、所定の発電密度に見合
う水の排出速度を得ようとすると、空気流量を増大させ
ることが必要となるが、これは同時に、空気利用率の低
下、空気供給動力費の増大を招くこと。 (6)セルの大型化に伴って、益々反応水の排水能力に
分布が形成されるため、セルのスケールアップに限界が
あること。In addition, in the process of discharging the reaction water from the air electrode side, (4) the discharging speed of water decreases in the order of the vicinity of the air inlet, the center of the cell and the vicinity of the air outlet, so that the electrolyte membrane is close to the air inlet. It will tend to be dry and submerged near the air outlet, and the entire surface of the cell cannot effectively contribute to power generation. (5) Even in the vicinity of the air inlet, it is necessary to increase the air flow rate in order to obtain the discharge speed of water corresponding to the predetermined power generation density. Increasing costs. (6) There is a limit to the scale-up of the cell, because the drainage capacity of the reaction water becomes more and more distributed as the cell becomes larger.
【0017】[0017]
【発明が解決しようとする課題】本発明は上述のような
従来技術の欠点を解消し、セルの発電密度に追従して適
度な水の供給、排出が可能な自己制御性を備え、直接に
水を均一に供給でき、また反応水を均一に排出できる、
固体高分子電解質膜型燃料電池を提供することを課題と
する。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art, has a self-controllability capable of appropriately supplying and discharging water by following the power generation density of the cell, and directly Water can be supplied uniformly and reaction water can be discharged uniformly.
An object is to provide a solid polymer electrolyte membrane fuel cell.
【0018】[0018]
【課題を解決するための手段】このため、本発明の固体
高分子電解質膜型燃料電池は、従来法の欠点を解決する
ため次の手段とした。Therefore, the solid polymer electrolyte membrane fuel cell of the present invention has the following means to solve the drawbacks of the conventional method.
【0019】導電性のすぐれた親水性の多孔質体(たと
えば、親水性多孔質カーボン)が有する毛管作用(ウィ
ック作用)を利用して、水素極への水の供給を行ない、
また、冷却面への水蒸気の凝縮作用を利用して、空気極
からの反応水の排出を行なうようにした。すなわち、多
孔質体内に分布された細孔が水で濡れて細孔内に充満す
る場合、細孔半径rc と気相中の水蒸気の分圧PH20 と
の関係は、数1で与えられる。Water is supplied to the hydrogen electrode by utilizing the capillary action (wick action) of a hydrophilic porous body having excellent conductivity (for example, hydrophilic porous carbon),
Further, the reaction water is discharged from the air electrode by utilizing the condensation action of water vapor on the cooling surface. That is, when the pores distributed in the porous body are wet with water and fill the pores, the relationship between the pore radius r c and the partial pressure P H20 of water vapor in the gas phase is given by the formula 1. .
【0020】[0020]
【数1】 [Equation 1]
【0021】一例として、多孔質板を表面が良く濡れる
材質で形成し(cos θ≒1.0)、細孔径rc を10μ
mとした場合の80℃における水蒸気の分圧PH20 を求
めると、0.11atm となる。したがって、逆に、気相
中の水蒸気の分圧が0.11atm のとき、親水性多孔質
体中の細孔半径10μm以下の細孔内では、水蒸気の毛
細管凝縮が起って、細孔内に水が充満し、しかもこれら
の細孔は連通しているため、液状水は細孔半径10μm
以下の細孔を通じて多孔質体内を移動する。一方、細孔
半径が10μm以上の細孔内においては、水蒸気の毛細
管凝縮が生じず、水が不在であり、かつ連通しているの
で、細孔径の大きい領域においては、上述の液状水に妨
害されることなく、気体(水素、空気)の流動・拡散を
多孔質板内で自由に行なわせることができる。As an example, the porous plate is made of a material whose surface is well wetted (cos θ≈1.0), and the pore diameter r c is 10 μm.
When the partial pressure P H20 of water vapor at 80 ° C. when m is calculated, it becomes 0.11 atm. Therefore, conversely, when the partial pressure of water vapor in the gas phase is 0.11 atm, in the pores with a pore radius of 10 μm or less in the hydrophilic porous body, capillary condensation of water vapor occurs and Since the liquid water is filled with water and these pores communicate with each other, the liquid water has a pore radius of 10 μm.
It moves in the porous body through the following pores. On the other hand, in the pores having a pore radius of 10 μm or more, capillary condensation of water vapor does not occur, water is absent and communicates with each other. The flow and diffusion of gas (hydrogen, air) can be freely performed in the porous plate without being subject to the above.
【0022】[0022]
【作用】本発明の実施態様を示す図1および図2を用い
て、本発明の固体高分子電解質膜型燃料電池の作用を説
明する。The operation of the solid polymer electrolyte membrane fuel cell of the present invention will be described with reference to FIGS. 1 and 2 showing an embodiment of the present invention.
【0023】図1は本発明の第1実施態様を示す図であ
る。図において、中央部の2は詳述した固体高分子の電
解質膜であり、電解質膜2の左側には、触媒反応層4
A、電極拡散層3Aおよびガスセパレータ1Bから成る
水素極を構成する層が積層接合され、電解質膜2の右側
にも、同様に触媒反応層4B、電極拡散層3Bおよびガ
スセパレータ1Aから成る空気極(酸素極)を構成する
層が積層接合されている。FIG. 1 is a diagram showing a first embodiment of the present invention. In the figure, 2 in the central portion is a solid polymer electrolyte membrane described in detail, and on the left side of the electrolyte membrane 2 is a catalyst reaction layer 4
A layer comprising a hydrogen electrode composed of A, the electrode diffusion layer 3A and the gas separator 1B is laminated and joined, and an air electrode composed of the catalytic reaction layer 4B, the electrode diffusion layer 3B and the gas separator 1A is similarly formed on the right side of the electrolyte membrane 2. The layers forming the (oxygen electrode) are laminated and joined.
【0024】ガスセパレータ1は、導電性で、親水性の
多孔質材料で作られた空気極側のガスセパレータ1A
と、同様に導電性の親水性多孔質材料で作られた水素極
側のガスセパレータ1Bの両側を導電性でガス不透過性
の隔壁5を介して合体することで一組のセル7が構成さ
れる。なお、複数組のセル7が積層されて、一体の燃料
電池セルが形成される。The gas separator 1 is an air electrode side gas separator 1A made of a conductive and hydrophilic porous material.
Similarly, a pair of cells 7 is configured by combining both sides of the hydrogen electrode side gas separator 1B, which is also made of a conductive hydrophilic porous material, with conductive and gas impermeable partition walls 5 interposed therebetween. To be done. In addition, a plurality of sets of cells 7 are stacked to form an integral fuel cell.
【0025】ここで、燃料としての水素が加湿用の水
(気体状または液体状)と共に、ガスセパレータ1Bの
上部から供給される場合を考えると、親水性多孔質体の
ガスセパレータ1Bは、平均細孔径としては、10〜1
00μm程度の多孔質体であるが、細孔径分布として
は、これより小さい細孔(小孔径細孔)と、これより大
きい細孔(大孔径細孔)とを有しているため、供給され
た水は毛細管凝縮による液状水として、小孔径細孔内に
充満して、セル7の水素極側の電極拡散層3Aの全面
に、くまなく分配されて水素極を加湿することができ
る。一方、親水性多孔質体のガスセパレータ1B中の大
孔径細孔は、凝縮水が不在であること、また、連通性細
孔であることから、水素含有の湿潤気体は、この大孔径
細孔内を自由に流動・拡散することができるので、燃料
となる水素も、セル7の水素極側の電極拡散層3Aの全
面に分配することができる。Here, considering the case where hydrogen as fuel is supplied from the upper part of the gas separator 1B together with humidifying water (gaseous or liquid), the gas separator 1B of hydrophilic porous body has an average value. The pore size is 10 to 1
Although it is a porous body having a size of about 00 μm, it has pores with a smaller pore size distribution (small pore size pores) and larger pore size distribution (large pore size pores). The water, which is liquid water obtained by capillary condensation, fills the small pores and is distributed throughout the entire surface of the electrode diffusion layer 3A on the hydrogen electrode side of the cell 7 to humidify the hydrogen electrode. On the other hand, since the large pores of the hydrophilic porous body in the gas separator 1B have no condensed water and are the continuous pores, the wet gas containing hydrogen has the large pores. Since it can freely flow and diffuse inside, hydrogen as fuel can also be distributed over the entire surface of the electrode diffusion layer 3A on the hydrogen electrode side of the cell 7.
【0026】このようにして、燃料水素と加湿水の混合
体を、ガスセパレータ1Bの上部から供給すると、ガス
セパレータ1Bの小孔径細孔の毛細管作用によって、多
孔質体中を右側に輸送されて、当該セパレータ1Bの右
側外表面に到達し、その間に一部は大孔径細孔内を流れ
る水素気流中に蒸発し、流通している水素を加湿したの
ち、また残りの部分は直接に、電極拡散層3A、続いて
触媒反応層4Aを経由して流動・拡散し、固体高分子の
電解質膜2の左面に到達して、当該電解質膜2を湿潤状
態に保つ。セル7が発電状態にあるときは、水素は触媒
反応層4Aの触媒作用で解離したのち、プロトン状態
(H+ )で、当該電解質膜2の中を前述の水を配位して
移動し、右側の空気極側の触媒反応層4Bに到達し、こ
こで外部電気回路を通じて流入する電子(e- )、なら
びにガスセパレータ1Aの大孔径細孔内の空気(又は酸
素)の流路を通じて、拡散によって流入してくる酸素
(O2)と反応して水を生成する。In this way, when the mixture of fuel hydrogen and humidifying water is supplied from the upper part of the gas separator 1B, it is transported to the right in the porous body by the capillary action of the small pores of the gas separator 1B. After reaching the right outer surface of the separator 1B, a part of which evaporates in a hydrogen gas stream flowing in the large-pores during that time to humidify the flowing hydrogen, and the remaining part directly It flows and diffuses through the diffusion layer 3A and then the catalytic reaction layer 4A, reaches the left surface of the solid polymer electrolyte membrane 2, and keeps the electrolyte membrane 2 in a wet state. When the cell 7 is in a power generation state, hydrogen dissociates by the catalytic action of the catalytic reaction layer 4A, and then moves in the proton state (H + ) in the electrolyte membrane 2 by coordinating the water described above. The electrons (e − ) that reach the catalyst reaction layer 4B on the air electrode side on the right side and flow therein through an external electric circuit, and diffuse through the flow path of air (or oxygen) in the large pores of the gas separator 1A. Reacts with inflowing oxygen (O 2 ) to produce water.
【0027】すなわち、上述の電極部での反応をまとめ
ると、つぎのようになる。 ・水素極側の触媒反応層4Aにおいて、That is, the reactions at the above electrode part are summarized as follows. -In the catalytic reaction layer 4A on the hydrogen electrode side,
【0028】[0028]
【数2】 [Equation 2]
【0029】・空気極側の触媒反応層4Bにおいて、In the catalytic reaction layer 4B on the air electrode side,
【0030】[0030]
【数3】 [Equation 3]
【0031】上述の過程で生成した水と、前述の電解質
膜2中をプロトンと共に移動した透過水の一部が、空気
極側の触媒反応層4Bにとり込まれることになるが、連
続的に発電状態を継続するためには、これら反応生成水
と透過水を当該触媒反応層4Bから排出してやる必要が
ある。The water generated in the above process and a part of the permeated water that has moved with the protons in the electrolyte membrane 2 are taken into the catalytic reaction layer 4B on the air electrode side, but the power is continuously generated. In order to continue the state, it is necessary to discharge the reaction product water and the permeated water from the catalytic reaction layer 4B.
【0032】再び、図1において説明すると、当該触媒
反応層4Bの内部に存在する水は、右方向に拡散したの
ち、空気極側の電極拡散層3Bを経由して、導電性の親
水性多孔質板のガスセパレータ(空気極側)1Aの左側
表面に到達する。ここで、当該ガスセパレータ1Aも、
ガスセパレータ1Bと同様に平均細孔径としては、10
〜100μm程度の多孔質体であり、また、細孔径分布
としては、これより小さい小径孔細孔と、これより大き
い大径孔細孔とからなっている。このため、水は毛細管
凝縮による液状水として、小孔径細孔を通じて移動し、
水蒸気は空気(又は酸素)と共に、大孔径細孔を流動・
拡散して、当該ガスセパレータ1Aの下流側に運ばれ、
セル7外に排出される。このような水の移動メカニズム
により、連続的、かつ自己制御的に水の供給・排出が可
能となるため、安定したセルの発電状態を得ることがで
きる。Referring again to FIG. 1, the water existing inside the catalytic reaction layer 4B diffuses to the right, and then passes through the electrode diffusion layer 3B on the air electrode side to form a conductive hydrophilic porous layer. The left side surface of the gas separator (air electrode side) 1A of the quality plate is reached. Here, the gas separator 1A is also
As with the gas separator 1B, the average pore diameter is 10
It is a porous body having a size of about 100 μm, and the pore size distribution is made up of small pores smaller than this and large pores larger than this. Therefore, the water moves as liquid water due to capillary condensation through the small pores,
Water vapor flows through large pores with air (or oxygen)
It diffuses and is carried to the downstream side of the gas separator 1A,
It is discharged outside the cell 7. With such a water movement mechanism, water can be continuously supplied and discharged in a self-controlled manner, so that a stable power generation state of the cell can be obtained.
【0033】このように、図1に示した実施態様では、
セル7内の発電時に発生する熱を除去するために、液状
で供給した加湿用水の蒸発による冷却、供給した空気が
顕熱上昇として持ち去る冷却効果、および外部への放熱
効果を利用したケースである。しかしながら、セル面積
が大きくなり積層数が増え、単位面積当りのセル発電密
度が大きくなると、セルの冷却能力が不足することが考
えられる。Thus, in the embodiment shown in FIG.
In this case, in order to remove heat generated during power generation in the cell 7, cooling is performed by evaporation of humidifying water supplied in a liquid state, cooling effect that the supplied air carries away as sensible heat rise, and heat dissipation effect to the outside. . However, if the cell area increases, the number of layers increases, and the cell power generation density per unit area increases, the cooling capacity of the cell may be insufficient.
【0034】そこで、かかる場合にも、適用可能な第2
の実施態様を図2に示す。本実施態様においては、ガス
セパレータ1Aと1Bの間に、ガスが透過しない導電性
の隔壁5を介装し、当該隔壁5の内部に冷却水を流通さ
せる水の流路6を設けたほかは、第1の実施態様と同様
にしている。また、水の流路6はガスセパレータ1Aに
接触して設けられており、ガスセパレータ1A中を流動
・拡散して冷却水通路6に流入した水をセル7外へ排出
する。Therefore, even in such a case, the second applicable
An embodiment of is shown in FIG. In the present embodiment, a gas-permeable conductive partition wall 5 is interposed between the gas separators 1A and 1B, and a water channel 6 for circulating cooling water is provided inside the partition wall 5. The same as in the first embodiment. The water flow path 6 is provided in contact with the gas separator 1A, and the water flowing / diffusing in the gas separator 1A and flowing into the cooling water passage 6 is discharged to the outside of the cell 7.
【0035】[0035]
【実施例】図1に示した、本発明の第1の実施態様に基
づく実施例を、表1に示す。本実施例においては、電極
拡散層の材質は軽量で、導電性で、耐食性のある材質で
あることから、ガスセパレータと同じ多孔質カーボン材
を使用した。しかし、この材質は、必ずしもガスセパレ
ータの材質と全く同じものである必要はない。EXAMPLE An example based on the first embodiment of the present invention shown in FIG. 1 is shown in Table 1. In this example, the electrode diffusion layer was made of the same material as the gas separator because it was lightweight, electrically conductive, and corrosion resistant. However, this material does not necessarily have to be exactly the same as the material of the gas separator.
【0036】また、ガスセパレータを構成する多孔質体
中に形成される、細孔径は、一般的には、製作の過程
で、平均細孔径と細孔径分布の所定の値が得られるよう
に、例えば焼結前の粉体粒子径の分布、焼結時のプレス
荷重、焼結温度、焼結時間などの諸条件を適当に選定す
ることによって得られる。本実施例のものでは、平均粒
子径は所定の値となるように調整したが、細孔径分布は
特に調整の対象とするような製法とはしていない。Further, the pore diameter formed in the porous body constituting the gas separator is generally such that predetermined values of the average pore diameter and the pore diameter distribution are obtained in the manufacturing process. For example, it can be obtained by appropriately selecting various conditions such as distribution of powder particle diameter before sintering, press load at the time of sintering, sintering temperature, and sintering time. In the present example, the average particle size was adjusted to a predetermined value, but the pore size distribution is not a manufacturing method targeted for adjustment.
【0037】また、加湿用の水は、水素極側から、電解
質膜を透過して空気極側に移動し、空気中に逃散してい
く水分流量に見合う分の水を、水素極側の入口部に供給
するようにした。Further, the humidifying water permeates the electrolyte membrane from the hydrogen electrode side to the air electrode side, and the amount of water commensurate with the flow rate of water escaping into the air is supplied to the hydrogen electrode side inlet. To be supplied to the department.
【0038】本実施例では、水素の利用率をほぼ80
%、空気の利用率はほぼ25%となるように、それぞれ
の供給量を設定してセルの発電性能を測定した結果、 ・水素反応量=2.25×0.8(水素利用率)=1.
8mol /h ・空気中の酸素反応量=17.1×0.21×0.25
(空気利用率)=0.898mol /h となり、燃料電池における総括の反応式、 ・H2 +1/2 O2 →H2 O における、水素1モルに対し酸素1/2 モルが反応する。
ほぼ理論通りの反応量比となり、ほぼ狙い通りの発電性
能が確認された。これにより、本発明で提案した水の供
給・排出が有効であることが判った。In this embodiment, the hydrogen utilization rate is almost 80%.
%, The power utilization performance of the cell was measured by setting the respective supply amounts so that the air utilization rate was approximately 25%. Hydrogen reaction amount = 2.25 × 0.8 (hydrogen utilization ratio) = 1.
8 mol / h-Amount of oxygen reaction in air = 17.1 x 0.21 x 0.25
(Air utilization rate) = 0.898 mol / h, and in the general reaction formula in the fuel cell, H 2 +1/2 O 2 → H 2 O, 1/2 mol of oxygen reacts with 1 mol of hydrogen.
It was confirmed that the reaction amount ratio was almost in line with the theory, and that almost the desired power generation performance was achieved. This proves that the supply and discharge of water proposed by the present invention is effective.
【0039】また、水素の燃焼熱は1モル当り、57.
8kcalであるから、 ・反応水素の燃焼熱(HHVベース)=1.8×57.
8=104kcal/h ・発電量=0.75V×0.2A/cm2 ×400cm2 =
60W=51.6kcal/h したがって、発電効率ηは、 ・η=51.6/104×100=49.6% となった。The heat of combustion of hydrogen is 57.
Since it is 8 kcal, combustion heat of reaction hydrogen (HHV base) = 1.8 × 57.
8 = 104 kcal / h ・ Power generation amount = 0.75 V × 0.2 A / cm 2 × 400 cm 2 =
60 W = 51.6 kcal / h Therefore, the power generation efficiency η was: η = 51.6 / 104 × 100 = 49.6%.
【0040】また、図2に示した本発明の第2の実施態
様に基づき、冷却水1.02l/min (80℃、常圧で
供給)を流路6に流し、他の条件は表1とほぼ同じに設
定し、発電を行ったところ、表1の発電性能とほぼ同様
の結果が得られた。 表1 具体的実施例 (1)セルの構造条件 ・セルの有効発電面積:20cm×20cm×1セル ・電解質膜(材質):パーフルオロスルホン酸型イオン
交換膜 (膜厚):125μm (イオン交換容量):1.1meq /g−resin ・触媒反応層(材質):Pt 担持カーボン粒子層(両極
側とも) (反応層厚さ):0.12mm (Pt 担持量):1mg/cm2 ・電極拡散層(材質):多孔質カーボンシート (厚さ):0.4mm ・水素極側ガスセパレータ(材質):多孔質カーボン材 (平均細孔径):平均径55μm (気孔率):65% ・空気極側ガスセパレータ:多孔質カーボン材(水素極
側に同じ) (2)操作条件 ・セル温度:85℃ ・水素極側(圧力):1.5atg (水素流量):2.25mol /h ・酸素極側(圧力):1.45atg (空気流量):17.1mol /h (3)発電性能 ・電圧:0.75V ・電流密度:0.2A/cm2 Further, based on the second embodiment of the present invention shown in FIG. 2, 1.02 l / min of cooling water (80 ° C., supplied at normal pressure) is caused to flow through the channel 6, and other conditions are shown in Table 1. When power generation was performed with the same setting as above, results similar to the power generation performance in Table 1 were obtained. Table 1 Specific Examples (1) Structural conditions of cell-Effective power generation area of cell: 20 cm x 20 cm x 1 cell-Electrolyte membrane (material): Perfluorosulfonic acid type ion exchange membrane (film thickness): 125 μm (ion exchange) capacity): 1.1meq / g-resin · catalysis layer (material): P t carrying carbon particle layer (bipolar side both) (reaction layer thickness): 0.12 mm (P t supported amount): 1 mg / cm 2・ Electrode diffusion layer (material): Porous carbon sheet (thickness): 0.4 mm ・ Hydrogen electrode side gas separator (material): Porous carbon material (average pore diameter): Average diameter 55 μm (porosity): 65%・ Air electrode side gas separator: Porous carbon material (same as hydrogen electrode side) (2) Operating conditions ・ Cell temperature: 85 ° C ・ Hydrogen electrode side (pressure): 1.5 atg (hydrogen flow rate): 2.25 mol / h Oxygen electrode side (pressure): 1.45 atg (air flow rate): 17. mol / h (3) power generation performance, voltage: 0.75 V, current density: 0.2 A / cm 2
【0041】[0041]
【発明の効果】以上、詳述したように、本発明の固体高
分子電解質膜型燃料電池によれば、特許請求の範囲請求
項1に示す構成により、次の効果が得られる。 (1)水素極側での加湿過程で、水素の流路にドレン
(水)が混在しないため、気液混相とならず、水素ガス
と加湿水それぞれの均一の分配が可能である。つまり、
親水性連通多孔質体内で、液状水と気体混合物の移動流
路が、自動的に区分される。 (2)空気極側では、水素極側から透過してくる水分と
空気極側の反応で生成する水分を排除するため、液状水
の移動と空気中に含有される気体状水分の移動とをそれ
ぞれ個別に行なうので、気体流路の閉塞が起らず、空気
の均一分配と水の迅速排除が可能となる。 (3)さらに、両極側とも雰囲気は、飽和に近い状態
で、水蒸気が充満しているので電解質膜が常に湿潤状態
に保たれ、セルの発電能力が十分に発揮できる。As described above in detail, according to the solid polymer electrolyte membrane fuel cell of the present invention, the following effects can be obtained with the structure shown in claim 1. (1) Since the drain (water) is not mixed in the hydrogen flow path during the humidification process on the hydrogen electrode side, a gas-liquid mixed phase does not occur and hydrogen gas and humidification water can be uniformly distributed. That is,
In the hydrophilic communicating porous body, the moving flow paths of the liquid water and the gas mixture are automatically divided. (2) On the air electrode side, in order to remove water that has permeated from the hydrogen electrode side and water that is generated by the reaction on the air electrode side, movement of liquid water and movement of gaseous water contained in the air are performed. Since they are carried out individually, blockage of the gas flow path does not occur, and it becomes possible to uniformly distribute air and quickly remove water. (3) Furthermore, since the atmosphere on both sides of the electrodes is close to saturation and filled with water vapor, the electrolyte membrane is always kept in a wet state, and the power generation capacity of the cell can be sufficiently exhibited.
【0042】また、特許請求の範囲請求項2に示す構成
により、次の効果が得られる。Further, the following effects can be obtained by the structure according to claim 2.
【0043】セルの大型化に伴う反応水の排水が冷却水
通路によって行われるため、セルのスケールアップが容
易となり、セルの大きさの限界がなくなる。Since the reaction water is drained by the cooling water passage due to the increase in size of the cell, the cell can be easily scaled up and the cell size is not limited.
【図1】本発明の固体高分子電解質膜型燃料電池の第1
の実施態様としての、燃料電池セルの構成を示す部分
図、FIG. 1 is a first solid polymer electrolyte membrane fuel cell of the present invention.
Is a partial view showing a configuration of a fuel cell as an embodiment of
【図2】本発明の第2の実施態様としての、燃料電池セ
ルの構成を示す部分図である。FIG. 2 is a partial view showing a configuration of a fuel cell as a second embodiment of the present invention.
1 ガスセパレータ 1A ガスセパレータ(空気極側) 1B ガスセパレータ(水素極側) 2 電解質膜 3A (水素極側)電極拡散層 3B (空気極側)電極拡散層 4A (水素極側)触媒反応層 4B (空気極側)触媒反応層 5 隔壁 6 冷却水通路 7 燃料電池セル DESCRIPTION OF SYMBOLS 1 Gas separator 1A Gas separator (air electrode side) 1B Gas separator (hydrogen electrode side) 2 Electrolyte membrane 3A (hydrogen electrode side) electrode diffusion layer 3B (air electrode side) electrode diffusion layer 4A (hydrogen electrode side) catalytic reaction layer 4B (Air electrode side) Catalytic reaction layer 5 Partition wall 6 Cooling water passage 7 Fuel cell
Claims (2)
層、電極拡散層およびガスセパレータをそれぞれ積層し
て水素極および空気極を形成し、水素極に供給される水
素と空気極に供給される空気中の酸素を反応させて発電
を行うようにした固体高分子電解質膜型燃料電池におい
て、前記ガスセパレータが互いに連通する毛細管凝縮作
用による水の輸送特性を持つ小孔径細孔と気体流動特性
を持つ大孔径細孔とからなる細孔径分布にされ、導電性
で、かつ親水性の多孔質体で形成されていることを特徴
とする固体高分子電解質膜型燃料電池。1. A hydrogen electrode and an air electrode are formed by laminating a catalytic reaction layer, an electrode diffusion layer, and a gas separator on both sides of a solid polymer electrolyte membrane, and are supplied to the hydrogen electrode and the air electrode. In a solid polymer electrolyte membrane fuel cell adapted to generate oxygen by reacting oxygen in the air, the gas separator has a small pore size and a gas flow having a water transport characteristic by a capillary condensation action in which the gas separators communicate with each other. A solid polymer electrolyte membrane fuel cell characterized by having a pore size distribution composed of large pores having characteristics and being formed of a conductive and hydrophilic porous body.
質体の側面に接触して冷却水通路が形成されていること
を特徴とする請求項1の固体高分子電解質膜型燃料電
池。2. The solid polymer electrolyte membrane fuel cell according to claim 1, wherein a cooling water passage is formed in contact with the inside of the porous body or the side surface of the porous body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6115139A JPH07320753A (en) | 1994-05-27 | 1994-05-27 | Solid polymer electrolyte membrane type fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6115139A JPH07320753A (en) | 1994-05-27 | 1994-05-27 | Solid polymer electrolyte membrane type fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07320753A true JPH07320753A (en) | 1995-12-08 |
Family
ID=14655259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6115139A Withdrawn JPH07320753A (en) | 1994-05-27 | 1994-05-27 | Solid polymer electrolyte membrane type fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07320753A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11317238A (en) * | 1997-12-22 | 1999-11-16 | Aqueous Reserch:Kk | Fuel cell system for vehicle |
US6117579A (en) * | 1997-03-25 | 2000-09-12 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
JP2001052717A (en) * | 1999-08-03 | 2001-02-23 | Equos Research Co Ltd | Air electrode for fuel cell |
JP2002015760A (en) * | 1997-12-22 | 2002-01-18 | Equos Research Co Ltd | Fuel cell device |
JP2002270197A (en) * | 2001-03-08 | 2002-09-20 | Matsushita Electric Ind Co Ltd | High molecular electrolyte type fuel cull |
KR20020076653A (en) * | 2001-03-29 | 2002-10-11 | 홍병선 | A PEMFC(Proton Exchange Membrane Fuel Cells) having efficient water-balance properties |
JP2003508885A (en) * | 1999-09-02 | 2003-03-04 | インターナショナル フュエル セルズ,エルエルシー | Porous carbon body with improved wettability to water |
JP2006004803A (en) * | 2004-06-18 | 2006-01-05 | Toyota Motor Corp | Fuel cell |
JP2008084703A (en) * | 2006-09-28 | 2008-04-10 | Hitachi Ltd | Fuel cells |
JP2008159444A (en) * | 2006-12-25 | 2008-07-10 | Toshiba Fuel Cell Power Systems Corp | Fuel cell stack and separator for fuel cell |
WO2008096780A1 (en) | 2007-02-09 | 2008-08-14 | Toyota Jidosha Kabushiki Kaisha | Fuel cell |
US7745032B2 (en) * | 2002-10-18 | 2010-06-29 | Hitachi, Ltd. | Fuel cell with humidifier |
JP2010170725A (en) * | 2009-01-20 | 2010-08-05 | Sanyo Special Steel Co Ltd | Fuel cell separator |
JP2013543224A (en) * | 2010-10-06 | 2013-11-28 | ユーティーシー パワー コーポレイション | Evaporative cooling fuel cell with water passage improved by wick |
-
1994
- 1994-05-27 JP JP6115139A patent/JPH07320753A/en not_active Withdrawn
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6117579A (en) * | 1997-03-25 | 2000-09-12 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
JPH11317238A (en) * | 1997-12-22 | 1999-11-16 | Aqueous Reserch:Kk | Fuel cell system for vehicle |
JP2002015760A (en) * | 1997-12-22 | 2002-01-18 | Equos Research Co Ltd | Fuel cell device |
JP2001052717A (en) * | 1999-08-03 | 2001-02-23 | Equos Research Co Ltd | Air electrode for fuel cell |
JP2003508885A (en) * | 1999-09-02 | 2003-03-04 | インターナショナル フュエル セルズ,エルエルシー | Porous carbon body with improved wettability to water |
JP2002270197A (en) * | 2001-03-08 | 2002-09-20 | Matsushita Electric Ind Co Ltd | High molecular electrolyte type fuel cull |
KR20020076653A (en) * | 2001-03-29 | 2002-10-11 | 홍병선 | A PEMFC(Proton Exchange Membrane Fuel Cells) having efficient water-balance properties |
US7745032B2 (en) * | 2002-10-18 | 2010-06-29 | Hitachi, Ltd. | Fuel cell with humidifier |
JP2006004803A (en) * | 2004-06-18 | 2006-01-05 | Toyota Motor Corp | Fuel cell |
JP2008084703A (en) * | 2006-09-28 | 2008-04-10 | Hitachi Ltd | Fuel cells |
JP2008159444A (en) * | 2006-12-25 | 2008-07-10 | Toshiba Fuel Cell Power Systems Corp | Fuel cell stack and separator for fuel cell |
WO2008096780A1 (en) | 2007-02-09 | 2008-08-14 | Toyota Jidosha Kabushiki Kaisha | Fuel cell |
US8557465B2 (en) | 2007-02-09 | 2013-10-15 | Toyota Jidosha Kabushiki Kaisha | Fuel cell including a liquid discharge mechanism |
JP2010170725A (en) * | 2009-01-20 | 2010-08-05 | Sanyo Special Steel Co Ltd | Fuel cell separator |
JP2013543224A (en) * | 2010-10-06 | 2013-11-28 | ユーティーシー パワー コーポレイション | Evaporative cooling fuel cell with water passage improved by wick |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3596332B2 (en) | Operating method of stacked fuel cell, stacked fuel cell, and stacked fuel cell system | |
JPH06275284A (en) | Solid polymer electrolyte film type fuel cell | |
JP4922933B2 (en) | Fuel cell with electroosmotic pump | |
JP3610892B2 (en) | Fuel cell | |
JPH06231793A (en) | Solid high polymer electrolytic type fuel cell | |
JPH07320753A (en) | Solid polymer electrolyte membrane type fuel cell | |
US7820334B2 (en) | Fuel cell and oxidant distribution plate for fuel cell | |
JPH06325780A (en) | Fuel cell system | |
JPH10284096A (en) | Solid high polymer electrolyte fuel cell | |
US7744070B2 (en) | External gas humidifier for fuel cell | |
JPH09283162A (en) | Solid high molecular fuel cell | |
JPH11135132A (en) | Solid polymer electrolyte fuel cell | |
JP3111682B2 (en) | Solid polymer electrolyte fuel cell system | |
JP3106554B2 (en) | Solid polymer electrolyte fuel cell and method for supplying water and gas contained in the membrane | |
JP2000277128A (en) | Solid polymer type fuel cell | |
JPH05251097A (en) | Solid high polymer electrolyte type fuel cell | |
JP2001176529A (en) | Solid high molecular fuel cell body and solid high molecular fuel cell power generating system | |
JP2012532426A (en) | Reduction of liquid electrolyte loss in high temperature polymer electrolyte membrane fuel cells | |
JPH0689730A (en) | Fuel cell with high polymer solid electrolyte | |
JP4672120B2 (en) | Fuel cell device and method of operating fuel cell device. | |
JPWO2002103829A1 (en) | Solid polymer fuel cell and solid polymer fuel cell power generation system | |
JP2008243540A (en) | Polymer electrolyte fuel cell power-generating device | |
JPH0668886A (en) | Cell structure of solid polymer electrolytic fuel cell | |
JP2004529458A (en) | Method for improving the moisture balance of a fuel cell | |
JPH06267562A (en) | Solid high polymer electrolyte fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010731 |