JPH06325780A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JPH06325780A
JPH06325780A JP5108115A JP10811593A JPH06325780A JP H06325780 A JPH06325780 A JP H06325780A JP 5108115 A JP5108115 A JP 5108115A JP 10811593 A JP10811593 A JP 10811593A JP H06325780 A JPH06325780 A JP H06325780A
Authority
JP
Japan
Prior art keywords
water
hydrogen
gas
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5108115A
Other languages
Japanese (ja)
Inventor
Hiroshi Makihara
洋 牧原
Kazuto Kobayashi
一登 小林
Hiroyuki Ozora
弘幸 大空
Kennosuke Kuroda
健之助 黒田
Toshiyuki Uchida
敏之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5108115A priority Critical patent/JPH06325780A/en
Publication of JPH06325780A publication Critical patent/JPH06325780A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To let generating capacity be exhibited with the system kept wet at all times, and thereby keep system operations stable by providing each circulating line for the fuel gas system connected to a fuel cell main body, a humidifying and cooling water system and an air system respectively. CONSTITUTION:Hydrogen contained gas leaving a hydrogen electrode 13 as a stream 19, is taken out of a cell main body in a state of a mixed phase with water, and is introduced into a water separator and storage tank 51 so as to be separated into a gas phase and a liquid phase. Let a part of hydrogen contained gas 52 from which water has been separated, flow out of the system as a purge stream 53, it is sucked in by an ejector 55 as circulating hydrogen contained gas 54 thereafter, and subsequently it is mixed with hydrogen contained gas 16 which is newly charged from the outside of the system, so that it is then supplied to the hydrogen electrode 13 side as hydrogen contained gas. Next, water separated at the tank 51 is taken out as circulating water 56 by way of a pump 57 so as to be forwarded to a radiator 58. After water 56 has been cooled down to a specified temperature at the radiator 58, it is returned back as circulating water 59 to be supplied to the electrode 13, to a groove acting as a water channel which is formed in a porous carbon material provided for the hydrogen electrode side of a gas separator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質膜を
用いる固定高分子電解質膜型燃料電池において、当該電
解質膜を湿潤化するために必要な水素極側における燃料
水素の加湿と空気極(又は酸素極)側からの除湿、水素
の利用率の向上、空気極側生成水の再利用及び電池操作
温度の調整を容易とする新規な燃料電池システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fixed polymer electrolyte membrane fuel cell using a solid polymer electrolyte membrane, humidification of fuel hydrogen on the hydrogen electrode side and an air electrode necessary for wetting the electrolyte membrane. The present invention relates to a novel fuel cell system that facilitates dehumidification from the (or oxygen electrode) side, improvement of hydrogen utilization rate, reuse of water produced on the air electrode side, and adjustment of cell operating temperature.

【0002】[0002]

【従来の技術】従来の固体高分子電解質膜を有する燃料
電池においては、固体高分子電解質膜をカチオン交換膜
としており、飽和状態まで含水することで最大のプロト
ン導電性を示すことが知られている。すなわち、当該電
解質膜としては、例えばスルホン酸基を有するポリスチ
レン系の陽イオン交換膜、フロロカーボンスルホン酸と
ポリビニリデンフロライドとを混合した膜、パーフロロ
カーボンスルホン酸膜などが知られているが、これらの
電解質膜はその分子構造中にプロトン交換基があり、飽
和状態までに水を湿潤させることによって、良好なプロ
トン導電性(常温において比抵抗が略20Ω・cm以下)
を示し、電解質膜として作用する。
2. Description of the Related Art In a conventional fuel cell having a solid polymer electrolyte membrane, the solid polymer electrolyte membrane is used as a cation exchange membrane, and it is known that it exhibits maximum proton conductivity when it is saturated with water. There is. That is, as the electrolyte membrane, for example, a polystyrene cation exchange membrane having a sulfonic acid group, a membrane in which a fluorocarbon sulfonic acid and polyvinylidene fluoride are mixed, a perfluorocarbon sulfonic acid membrane, etc. are known. The electrolyte membrane has a proton exchange group in its molecular structure, and has good proton conductivity by moistening water until saturation (specific resistance at room temperature is approximately 20 Ω · cm or less).
And acts as an electrolyte membrane.

【0003】当該電解質膜を使用する燃料電池として、
従来より提案されているシステムの一例を図3に示す。
同図において、固体高分子電解質膜11の両面に白金触
媒を担持した多孔質カーボン層(反応層)を介在させて
多孔質カーボン電極(拡散層)を接合してなる単位セル
を構成し、当該セルの複数枚をセルとガスセパレータを
交互に積層することによって燃料電池本体12を構成す
る。
As a fuel cell using the electrolyte membrane,
An example of a conventionally proposed system is shown in FIG.
In the figure, a unit cell is formed by joining porous carbon electrodes (diffusion layers) with a porous carbon layer (reaction layer) carrying a platinum catalyst on both sides of the solid polymer electrolyte membrane 11. The fuel cell main body 12 is configured by alternately stacking a plurality of cells and cells and gas separators.

【0004】当該燃料電池12の電解質膜11を湿潤状
態に保つために、水素極13には水分を含んだ水素含有
ガス14を供給する必要がある。このため、加湿器15
を設置し、燃料としての水素含有ガス16と共に加湿水
17を供給し、さらに適当な加熱媒体18によって加熱
しつつ、加湿水17と水素含有ガス16とを接触させる
ことによって、加湿された水素含有ガス14を得る。
In order to keep the electrolyte membrane 11 of the fuel cell 12 in a wet state, it is necessary to supply the hydrogen-containing gas 14 containing water to the hydrogen electrode 13. Therefore, the humidifier 15
Is installed, the humidifying water 17 is supplied together with the hydrogen-containing gas 16 as a fuel, and the humidifying water 17 and the hydrogen-containing gas 16 are brought into contact with each other while being heated by an appropriate heating medium 18. Gas 14 is obtained.

【0005】前述の水素極13に流入した水素含有ガス
14は、セルに水素と水分を分配供給しつつ、水素極の
出口に到達し、ストリーム19として外部に取り出され
る。
The hydrogen-containing gas 14 flowing into the hydrogen electrode 13 reaches the outlet of the hydrogen electrode while distributing and supplying hydrogen and water to the cell, and is taken out as a stream 19 to the outside.

【0006】次に、空気(又は酸素含有ガス)20をブ
ロワー21を介して昇圧後、ストリーム22として空気
極23側に送入することによって、セルに酸素を分配・
供給すると共に、生成した水分を空気に同伴させて排空
気24として外部に取り出す。
Next, the air (or oxygen-containing gas) 20 is pressurized through a blower 21 and then fed as a stream 22 to the air electrode 23 side to distribute oxygen to the cells.
At the same time as the supply, the produced water is entrained in the air and taken out as exhaust air 24.

【0007】この時、燃料電池の操作温度は、供給する
水素含有ガス14および空気22の温度,圧力,供給
量,セルの発電効率で決まり、セルで発生する発熱量分
は電池を去るストリーム(水素含有ガス)19および排
空気24によって外部に持ち去られる。尚、必要に応じ
て所定の値に操作温度を下げたい場合には、冷却媒体2
5によって電池本体の電極部分を冷却する操作が行なわ
れる。
At this time, the operating temperature of the fuel cell is determined by the temperature, the pressure, the supply amount of the hydrogen-containing gas 14 and the air 22 supplied, and the power generation efficiency of the cell, and the heat generation amount generated in the cell leaves the stream ( It is carried away to the outside by the hydrogen-containing gas) 19 and the exhaust air 24. If it is desired to lower the operating temperature to a predetermined value, the cooling medium 2
An operation of cooling the electrode portion of the battery body is performed by 5.

【0008】[0008]

【発明が解決しようとする課題】前述した図3に示す従
来技術のシステムでは、下記のような欠点がある。
The above-mentioned prior art system shown in FIG. 3 has the following drawbacks.

【0009】(1)水素含有ガス16を加湿するために
専用の加湿器15が必要となり、当該加湿器において水
の蒸発潜熱分に相当する熱量を供給するための加熱媒体
(加熱源)18が必要である。このとき、燃料電池本体
で必要となる加湿用水分を量的に十分供給するために
は、電池本体の運転温度よりも高温の加熱源が不可欠で
あるが、電池の排熱以外の熱源を使用するのであれば、
熱経済性の低下を招くこととなる。
(1) A dedicated humidifier 15 is required to humidify the hydrogen-containing gas 16, and a heating medium (heating source) 18 for supplying a heat amount corresponding to the latent heat of vaporization of water is provided in the humidifier. is necessary. At this time, in order to supply a sufficient amount of humidifying water required for the fuel cell main body, a heating source higher than the operating temperature of the cell main body is indispensable, but a heat source other than the exhaust heat of the cell is used. If you do
This leads to a decrease in heat economy.

【0010】(2)水素含有ガス16は、燃料電池にお
いて入口から出口まで一方的に流通するため、水素の利
用率を大きくとり難い。水素利用率を上げるために、水
素極13側出口を閉鎖し、封じ込め運転をするならば、
出口近傍では不活性ガスの蓄積が生じ、その結果、水素
分圧の低下、従って電池の発電能力の低下を招くことと
なる。
(2) Since the hydrogen-containing gas 16 unidirectionally flows from the inlet to the outlet in the fuel cell, it is difficult to obtain a large hydrogen utilization rate. If the hydrogen electrode 13 side outlet is closed and the containment operation is performed in order to increase the hydrogen utilization rate,
Accumulation of an inert gas occurs near the outlet, which results in a decrease in hydrogen partial pressure and therefore a decrease in the power generation capacity of the battery.

【0011】(3)次に、空気極23側に注目すると、
空気は外気を導入することから、一般に入口空気は乾燥
状態もしくは低温度状態にある。このため、当該空気が
空気極23に導入されると、空気極の入口近傍は低湿度
雰囲気となり、固体高分子電解質膜を十分な湿潤状態に
維持することができなくなり、発電能力の低下を来た
す。また、電池の操作温度(一般に80〜90℃)より
も低い温度の外気を直接空気極に取り入れるため、空気
極の入口近傍は低温度で操作されることとなり、この点
も発電能力を低下させる一因となる。
(3) Next, focusing on the air electrode 23 side,
Since the air introduces the outside air, the inlet air is generally in a dry state or a low temperature state. Therefore, when the air is introduced into the air electrode 23, a low-humidity atmosphere is created in the vicinity of the inlet of the air electrode, and the solid polymer electrolyte membrane cannot be maintained in a sufficiently wet state, resulting in a decrease in power generation capacity. . Further, since the outside air having a temperature lower than the operating temperature of the battery (generally 80 to 90 ° C.) is directly introduced into the air electrode, the vicinity of the inlet of the air electrode is operated at a low temperature, which also lowers the power generation capacity. Contribute.

【0012】本発明は、前述のような従来技術の欠点を
解消するためになされたもので、燃料電池の排熱を有効
に利用して、固体高分子電解質膜を常に湿潤状態に保っ
て発電能力を発揮させると共に、燃料水素含有ガスの利
用率を向上させ、安定した運転状態を維持する簡素な燃
料電池システムを提案するものである。
The present invention has been made in order to solve the above-mentioned drawbacks of the prior art, and effectively utilizes the exhaust heat of the fuel cell to generate electricity by keeping the solid polymer electrolyte membrane in a wet state at all times. The present invention proposes a simple fuel cell system capable of exhibiting its capability, improving the utilization rate of fuel-hydrogen-containing gas, and maintaining a stable operating state.

【0013】[0013]

【課題を解決するための手段】前記課題を解決する本発
明に係る燃料電池システムは、固体高分子電解質膜を使
用してなる燃料電池において、ガスセパレータの水素極
側に水素含有ガスと水とを供給し、該水素含有ガスの加
温とセルの冷却とを行うと共に、上記水素極から放出さ
れる未利用の水素含有ガスと水とを各々電池本体の水素
極に循環することを特徴とする。
A fuel cell system according to the present invention for solving the above-mentioned problems is a fuel cell using a solid polymer electrolyte membrane, wherein a hydrogen-containing gas and water are provided on the hydrogen electrode side of a gas separator. And heating the hydrogen-containing gas and cooling the cell, and circulating the unused hydrogen-containing gas and water released from the hydrogen electrode to the hydrogen electrode of the battery body, respectively. To do.

【0014】すなわち、燃料電池本体に連結された燃料
ガス系,加湿兼冷却水系および空気系のそれぞれに循環
(リサイクル)ラインを設けることである。以下に技術
的手段の概要を列記する。 (1)水素極を去る水素含有ガスは、液相水分と分離後
エゼクターなどのポンピング作用を利用して、再び水素
極にリサイクルする。 (2)上記水素含有ガスと共に水素極を去る液相水分
は、水素含有ガスから分離したのち、放熱器などを利用
して冷却、所定温度としたのち水素極側にリサイクル
し、水素含有ガスの加湿と電池の冷却に用いる。 (3)空気極を去る排空気を気液分離して凝縮水と湿潤
排空気に分け、凝縮水の一部は、上記(2)のプロセス
における加湿兼冷却水として使用、湿潤排空気の一部
は、空気極にリサイクルする。
That is, a circulation (recycling) line is provided for each of the fuel gas system, the humidifying / cooling water system and the air system connected to the fuel cell body. The outline of technical means is listed below. (1) The hydrogen-containing gas leaving the hydrogen electrode is recycled to the hydrogen electrode again by utilizing the pumping action of the ejector or the like after separating from the liquid phase water. (2) The liquid phase moisture that leaves the hydrogen electrode together with the hydrogen-containing gas is separated from the hydrogen-containing gas, cooled using a radiator or the like, and cooled to a predetermined temperature, and then recycled to the hydrogen-electrode side. Used for humidification and battery cooling. (3) Exhaust air that leaves the air electrode is separated into condensed water and wet exhaust air by using gas-liquid separation, and a part of the condensed water is used as humidifying and cooling water in the above process (2). Department is recycled to the cathode.

【0015】[0015]

【実施例】以下、本発明の好適な一実施例を図面を参照
して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the drawings.

【0016】図1は本実施例に係る固体高分子電解質膜
型燃料電池システムの概略を示し、図2は本システムで
使用するガスセパレータの一例を示す。尚前述した図3
に示すシステムと同一部材については同符号を付して重
複した説明は省略する。
FIG. 1 shows an outline of a solid polymer electrolyte membrane fuel cell system according to this embodiment, and FIG. 2 shows an example of a gas separator used in this system. The above-mentioned FIG.
The same members as those of the system shown in FIG.

【0017】図1に示すように、固体高分子電解質膜型
燃料電池本体12は、固体高分子電解質膜の両面に白金
を担持した多孔質カーボン層よりなるいわゆる反応層を
介して導電性とガス拡散性を備えた多孔質カーボン電極
を接合してなる単セルを基本単位として、これらセルの
複数枚を中間にガスセパレータと呼ばれるデバイスを介
在させて多段に直列に積層することで構成される。但
し、図1においては、簡単のため単セルの構成のみ模式
的に表示し、ガスセパレータについては表示を省略して
いる。
As shown in FIG. 1, the solid polymer electrolyte membrane fuel cell main body 12 has conductivity and gas through a so-called reaction layer composed of a porous carbon layer carrying platinum on both sides of the solid polymer electrolyte membrane. A single cell formed by joining porous carbon electrodes having diffusivity is used as a basic unit, and a plurality of these cells are laminated in series in multiple stages with a device called a gas separator interposed therebetween. However, in FIG. 1, for simplicity, only the structure of the single cell is schematically shown, and the gas separator is not shown.

【0018】次に、本発明による燃料電池システムを有
効ならしめるガスセパレータの構成の例を図2を用いて
説明する。図2に示す例では、空気極側に接する材料を
緻密質カーボン材30とし、水素極側に接する材料を多
孔質カーボン材31でガスセパレータ32を構成する。
当該カーボン材30の空気極側ならびに当該カーボン材
31の水素極側に、それぞれ溝を各々形成し、凹部は空
気流路33と水素含有ガス流路34とし、凸部35,3
6はそれぞれセルの空気極と水素極に接触させて電気的
に導通させる。
Next, an example of the structure of the gas separator which makes the fuel cell system according to the present invention effective will be described with reference to FIG. In the example shown in FIG. 2, the material contacting the air electrode side is the dense carbon material 30, and the material contacting the hydrogen electrode side is the porous carbon material 31 to form the gas separator 32.
Grooves are formed on the air electrode side of the carbon material 30 and on the hydrogen electrode side of the carbon material 31, respectively, and the concave portions are the air flow passage 33 and the hydrogen-containing gas flow passage 34, and the convex portions 35, 3
6 is brought into electrical contact with the air electrode and the hydrogen electrode of the cell, respectively.

【0019】さらに、当該カーボン材31の上部に刻ま
れた溝37は、水の流路として使用する。すなわち、当
該ガスセパレータ32には、水素含有ガス、空気(又は
酸素含有ガス)および水の三流体が供給できる構造とな
っており、水素含有ガスと空気は直接混合しないが、水
はセルの排熱によって加熱されつつ、当該多孔質カーボ
ン材31中を拡散輸送されて流路34を流れる水素含有
ガス中に蒸散する。すなわち、水素含有ガスを加湿する
ことができる。
Further, the groove 37 carved in the upper portion of the carbon material 31 is used as a flow path for water. That is, the gas separator 32 has a structure capable of supplying a hydrogen-containing gas, air (or oxygen-containing gas) and water, and the hydrogen-containing gas and air are not directly mixed, but the water is discharged from the cell. While being heated by heat, they are diffused and transported through the porous carbon material 31 and evaporated into the hydrogen-containing gas flowing through the flow path 34. That is, the hydrogen-containing gas can be humidified.

【0020】水素極において水素ガスの大部分は発電燃
料として消費され、水の一部は加湿用として消費され、
余剰の水素と水は、そのままガスセパレータの出口から
燃料電池本体の外部に取り出す。上述のような構造と作
用を有するガスセパレータを燃料電池本体に採用するこ
とで、本発明のシステムが、有効に機能することとな
る。
At the hydrogen electrode, most of hydrogen gas is consumed as fuel for power generation, and part of water is consumed for humidification.
Excess hydrogen and water are taken out of the fuel cell main body as they are from the outlet of the gas separator. By adopting the gas separator having the above-described structure and action in the fuel cell main body, the system of the present invention can effectively function.

【0021】そこで、再び図1を参照して本実施例の構
成と作用とを説明する。
Therefore, the configuration and operation of this embodiment will be described with reference to FIG. 1 again.

【0022】ストリーム19として水素極を去る水素含
有ガスは、水と混相で電池本体から取り出され、気水分
離器兼貯水槽51に導入され、ここで気相と液相が分離
される。水を分離後の水素含有ガス52は、その一部を
パージ流53として系外に流出させたのち、循環水素含
有ガス54としてエジェクタ55で吸引後、新規に系外
から投入される水素含有ガス16に混合し、水分を含ん
だ水素含有ガス14として水素極13側に供給する。つ
ぎに、前記の槽51で分離された水は、循環水56とし
てポンプ57を経由して取り出し、放熱器58に送入す
る。
The hydrogen-containing gas leaving the hydrogen electrode as the stream 19 is taken out from the battery main body in a mixed phase with water and introduced into the steam / water separator / water storage tank 51, where the gas phase and the liquid phase are separated. A part of the hydrogen-containing gas 52 after separating the water is made to flow out of the system as a purge flow 53, then sucked as a circulating hydrogen-containing gas 54 by the ejector 55, and then newly introduced from the outside of the system. 16 is mixed and supplied as hydrogen-containing gas 14 containing water to the hydrogen electrode 13 side. Next, the water separated in the tank 51 is taken out as circulating water 56 via the pump 57 and fed into the radiator 58.

【0023】当該放熱器58では、循環水56を所定の
温度まで冷却したのち、水素極13に供給する循環水5
9として、前述した図2に示すガスセパレータ32の水
素極側に設けた多孔質カーボン材31に形成された水流
路としての溝37に戻す。図1の例では、水素含有ガス
のリサイクルにエジェクタを使用しているが、ブロワー
などの回転流体機器を用いても良い。また、循環水55
の温度調整には、図1の例では、空冷ファン付きの放熱
器58を使用して、空冷ファンのオン−オフ運転により
実施しているが、本発明はこれに限定されず、例えば冷
却水を流してこれと熱交換させても良い。
In the radiator 58, the circulating water 56 is cooled to a predetermined temperature and then the circulating water 5 supplied to the hydrogen electrode 13 is cooled.
As shown in FIG. 9, it is returned to the groove 37 as a water channel formed in the porous carbon material 31 provided on the hydrogen electrode side of the gas separator 32 shown in FIG. In the example of FIG. 1, the ejector is used for recycling the hydrogen-containing gas, but a rotating fluid device such as a blower may be used. Also, circulating water 55
In the example of FIG. 1, the radiator 58 with an air-cooling fan is used for the temperature adjustment of the air-cooling fan by the on-off operation of the air-cooling fan, but the present invention is not limited to this and, for example, cooling water You may make it flow and heat-exchange with this.

【0024】次に、空気極側の構成・作用を説明する。
空気極23を去る排空気24は、一般に水と混相状態で
電池本体12から排出されるので、これを気水分離器6
1に送入して気液分離する。水を分離後の排空気62
は、一部をストリーム63として系外に排出したのち、
残りの部分は循環流64として、新規に送入される空気
(又は酸素含有ガス)20に混合後、ブロワー21を経
由してストリーム22として空気極23に供給される。
Next, the structure and operation of the air electrode will be described.
Exhaust air 24 leaving the air electrode 23 is generally discharged from the battery body 12 in a mixed phase with water.
It is fed into 1 and separated into gas and liquid. Exhaust air 62 after separating water
After discharging a part of it as stream 63 out of the system,
The remaining portion is mixed as a circulation stream 64 with the air (or oxygen-containing gas) 20 that is newly fed, and then supplied as a stream 22 to the air electrode 23 via the blower 21.

【0025】さらに、前記の気水分離器61で分離され
た水相は、空気極23からの凝縮水65として取り出
し、脱気器66に送り、ここで水に溶解している気体を
脱気してパージガス67として系外に取り出し、脱気後
の凝縮水68は、一部を排水69として系外に排出する
と共に、残りの部分は循環水70として、前記の気水分
離器兼貯水槽51に戻す。
Further, the water phase separated by the steam separator 61 is taken out as condensed water 65 from the air electrode 23 and sent to a deaerator 66, where the gas dissolved in water is degassed. Then, a part of the degassed condensed water 68 is discharged to the outside of the system as drainage 69, and the remaining part is circulated water 70. Return to 51.

【0026】ここで、空気極からの凝縮水65の脱気処
理を行う理由は、二つある。第一の理由は、当該凝縮水
65には、空気中の成分である酸素と窒素が溶解してい
ることから、水素極13側に導入する循環水55に当該
凝縮水65を混合する際に溶存酸素が液相より気相に放
散して水素と酸素から成る爆発性の混合気を形成する可
能性があるため、これを回避するためである。また、第
二の理由は、当該凝縮水65に溶解している窒素等が、
凝縮水に同伴されて水素極13に移動した場合に、窒素
等は水素極では不活性であることから、これらのガスが
水素極側に蓄積されて水素分圧が低下し、発電能力が落
ちることを避けるためである。
There are two reasons why the condensed water 65 is degassed from the air electrode. The first reason is that oxygen and nitrogen, which are components in the air, are dissolved in the condensed water 65. Therefore, when the condensed water 65 is mixed with the circulating water 55 introduced to the hydrogen electrode 13 side. This is because dissolved oxygen may be diffused from the liquid phase to the gas phase to form an explosive mixture of hydrogen and oxygen, and this is to be avoided. The second reason is that nitrogen or the like dissolved in the condensed water 65 is
When nitrogen and the like are inactive in the hydrogen electrode when entrained in the condensed water and moved to the hydrogen electrode 13, these gases are accumulated on the hydrogen electrode side, the hydrogen partial pressure is reduced, and the power generation capability is reduced. This is to avoid that.

【0027】また、空気極からの凝縮水を上述のように
リサイクルしない場合には、水素極側での循環水の不足
が生じるため、新規な水を気水分離器兼貯水槽12に補
給する必要が生じる。この新規補給水の必要性を避ける
ためにも、空気極側で生成する凝縮水を再利用する意義
は大である。
If the condensed water from the air electrode is not recycled as described above, a shortage of circulating water occurs on the hydrogen electrode side, so that new water is replenished to the steam separator / water storage tank 12. The need arises. In order to avoid the need for this new makeup water, it is significant to reuse the condensed water generated on the air electrode side.

【0028】次に、気液分離器12から出てくる水を分
離後の排空気62の温度は、電池本体の操作温度(80
〜90℃程度)にほぼ近く、その相対湿度はほぼ100
%に近く、酸素濃度も10〜15%以上と比較的高い。
そこで、当該排空気の一部を循環流64として空気極2
3にリサイクルすることによって、当該排空気が保有す
る顕熱と水蒸気が保有する蒸発潜熱の一部を回収しつ
つ、固体高分子電解質膜11の湿潤状態を保ち、発電能
力の低下を防止している。
Next, the temperature of the exhaust air 62 after separating the water coming out from the gas-liquid separator 12 is the operating temperature of the battery body (80
~ 90 ° C) and its relative humidity is almost 100
%, And the oxygen concentration is relatively high at 10 to 15% or more.
Therefore, a part of the exhaust air is used as the circulation flow 64 and the air electrode 2
By recycling to 3, the sensible heat of the exhaust air and part of the latent heat of vaporization of water vapor are recovered, the wet state of the solid polymer electrolyte membrane 11 is maintained, and the power generation capacity is prevented from decreasing. There is.

【0029】(試験例)図1に示した本発明の実施態様
に基づく試験例を、表1に示す。
(Test Example) Table 1 shows a test example based on the embodiment of the present invention shown in FIG.

【0030】[0030]

【表1】 [Table 1]

【0031】表1の例は、燃料電池本体での未利用水素
のほぼ全量をリサイクル、電池本体からの排空気の約1
/3をリサイクルするように、それぞれの供給量を設定
してセルの発電性能を測定したもので、ほぼ狙い通りの
発電性能が確認されていることから、本発明で提案した
水と熱の管理システムが有効であることが判った。
In the example of Table 1, almost all of the unused hydrogen in the fuel cell body is recycled, and about 1% of the exhaust air from the cell body is recycled.
The power generation performance of the cell was measured by setting each supply amount so as to recycle / 3, and the power generation performance almost as intended was confirmed. Therefore, the management of water and heat proposed by the present invention The system proved to be effective.

【0032】[0032]

【発明の効果】本発明は、固体高分子電解質膜を用いる
燃料電池において、ガスセパレータの水素極側に水素含
有ガスと水を供給して、セルの冷却と同時に当該ガス流
路中の水素含有ガスを加湿させるようにし、水素極を去
る水素含有ガスと水を、それぞれ電池本体にリサイクル
すること、さらに好ましくは空気極側の排空気を一部リ
サイクルすることによって、当該タイプの燃料電池に不
可欠な水と熱の管理が容易に実施できるようにしたもの
であり、以下の効果を奏する。 (1)水素極側での加湿過程で、水の流路と水素ガスの
流路が区別されているため、水素含有ガス流路が気液混
相とならず、均一な水素含有ガスの分配が可能となる。 (2)セパレータに供給する水は、セルの冷却用と加湿
用の二つの役目を同時に果しており、この点でシステム
が簡略化されている。 (3)水素含有ガスを循環使用することで、水素極側全
体での水素分圧低下防止と、システムでの水素利用率の
向上が計られている。 (4)両極側とも雰囲気は、水蒸気で充満されているた
め、固体高分子電解質膜が常に湿潤状態に保たれるの
で、セルの発電能力を十分に発揮させることができる。 (5)電池本体での排熱と排水を有効利用しており、し
たがって外部からの別途の熱源、給水を不要としたた
め、熱経済性が向上する。
INDUSTRIAL APPLICABILITY The present invention is a fuel cell using a solid polymer electrolyte membrane, in which a hydrogen-containing gas and water are supplied to the hydrogen electrode side of a gas separator to cool the cell and simultaneously contain hydrogen in the gas passage. Essential for fuel cells of this type by humidifying the gas and recycling the hydrogen-containing gas and water leaving the hydrogen electrode to the cell body, more preferably by partially recycling the exhaust air on the air electrode side. The water and heat can be easily managed, and the following effects are achieved. (1) Since the water flow path and the hydrogen gas flow path are distinguished in the humidification process on the hydrogen electrode side, the hydrogen-containing gas flow path does not become a gas-liquid mixed phase, and a uniform hydrogen-containing gas distribution is achieved. It will be possible. (2) The water supplied to the separator simultaneously fulfills the two functions of cooling the cell and humidifying the cell, and the system is simplified in this respect. (3) By using the hydrogen-containing gas in a circulating manner, it is possible to prevent the hydrogen partial pressure from decreasing on the entire hydrogen electrode side and to improve the hydrogen utilization rate in the system. (4) Since the atmosphere is filled with water vapor on both electrode sides, the solid polymer electrolyte membrane is always kept in a wet state, so that the power generation capacity of the cell can be fully exhibited. (5) The waste heat and drainage of the battery main body are effectively used, so that a separate heat source and water supply from the outside are not required, so that the thermal economy is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る固体高分子電解質膜
型燃料電池システムの構成図。
FIG. 1 is a configuration diagram of a solid polymer electrolyte membrane fuel cell system according to a first embodiment of the present invention.

【図2】本発明のシステムで使用するガスセパレータの
一例の構成を示す図。
FIG. 2 is a diagram showing a configuration of an example of a gas separator used in the system of the present invention.

【図3】従来の固体高分子電解質膜型燃料電池の構成を
示す図である。
FIG. 3 is a diagram showing a configuration of a conventional solid polymer electrolyte membrane fuel cell.

【符号の説明】[Explanation of symbols]

11 固体高分子電解質膜 12 燃料電池 13 水素極 14 水素を含んだ水素含有ガス 15 加湿器 16 水素含有ガス 17 加湿水 18 熱媒体 19,22 ストリーム 20 空気 21 ブロワー 23 空気極 24 排空気 31 多孔質カーボン材 32 ガスセパレータ 33 空気流路 34 水素含有ガス流路 35,36 凸部 37 溝 51 気水分離器兼貯水槽 52 水素含有ガス 53 パージ流 54 循環水素含有ガス 55 エジェッタ 56,70 循環水 57 ポンプ 58 放熱器 59 水素極に供給する循環水 61 気水分離器 62 排空気 63 ストリーム 64 循環流 65,68 凝縮水 66 脱気器 67 パージガス 69 排水 11 Solid Polymer Electrolyte Membrane 12 Fuel Cell 13 Hydrogen Electrode 14 Hydrogen-Containing Gas Containing Hydrogen 15 Humidifier 16 Hydrogen-Containing Gas 17 Humidifying Water 18 Heat Carrier 19,22 Stream 20 Air 21 Blower 23 Air Electrode 24 Exhaust Air 31 Porous Carbon material 32 Gas separator 33 Air flow path 34 Hydrogen-containing gas flow path 35,36 Convex portion 37 Groove 51 Water-vapor separator / water tank 52 Hydrogen-containing gas 53 Purge flow 54 Circulating hydrogen-containing gas 55 Ejector 56,70 Circulating water 57 Pump 58 Radiator 59 Circulating water supplied to hydrogen electrode 61 Steam-water separator 62 Exhaust air 63 Stream 64 Circulating flow 65,68 Condensed water 66 Deaerator 67 Purge gas 69 Drainage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒田 健之助 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 内田 敏之 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kennosuke Kuroda Inventor, Kennosuke Kuroda 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Within Sanryo Heavy Industries Co., Ltd. Mitsubishi Heavy Industries Ltd. Hiroshima Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を使用してなる燃料
電池において、ガスセパレータの水素極側に水素含有ガ
スと水とを供給し、該水素含有ガスの加温とセルの冷却
とを行うと共に、上記水素極から放出される未利用の水
素含有ガスと水とを各々電池本体の水素極に循環するこ
とを特徴とする燃料電池システム。
1. In a fuel cell using a solid polymer electrolyte membrane, a hydrogen-containing gas and water are supplied to the hydrogen electrode side of a gas separator to heat the hydrogen-containing gas and cool the cell. At the same time, an unused hydrogen-containing gas released from the hydrogen electrode and water are circulated to the hydrogen electrode of the cell body, respectively.
【請求項2】 請求項1記載の燃料電池システムにおい
て、上記ガスセパレータには水素極側に水素含有ガスの
流路と水の流路とを区別して設けると共に、当該流路壁
を多孔質材料で形成し、水路中の水が拡散移動して水素
含有ガスを加湿させるようにしたことを特徴とする燃料
電池システム。
2. The fuel cell system according to claim 1, wherein the gas separator is provided with a hydrogen-containing gas passage and a water passage separately on the hydrogen electrode side, and the passage wall is made of a porous material. The fuel cell system is characterized in that the water in the water channel diffuses and moves to humidify the hydrogen-containing gas.
【請求項3】 請求項1又は2において、上記水素極へ
の水の循環路に、水の冷却装置を設置して、水素極に供
給する水の温度を調整することを特徴とする燃料電池シ
ステム。
3. The fuel cell according to claim 1, wherein a water cooling device is installed in the water circulation path to the hydrogen electrode to adjust the temperature of water supplied to the hydrogen electrode. system.
【請求項4】 請求項1〜3において、空気極からの排
空気の一部を再び空気極に循環することを特徴とする燃
料電池システム。
4. The fuel cell system according to claim 1, wherein a part of the exhaust air from the air electrode is circulated to the air electrode again.
【請求項5】 請求項1〜4において、空気極から排出
される凝縮水を、前記セパレータの水素極側に供給する
水に合流させることを特徴とする燃料電池システム。
5. The fuel cell system according to claim 1, wherein the condensed water discharged from the air electrode is combined with the water supplied to the hydrogen electrode side of the separator.
JP5108115A 1993-05-10 1993-05-10 Fuel cell system Withdrawn JPH06325780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5108115A JPH06325780A (en) 1993-05-10 1993-05-10 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5108115A JPH06325780A (en) 1993-05-10 1993-05-10 Fuel cell system

Publications (1)

Publication Number Publication Date
JPH06325780A true JPH06325780A (en) 1994-11-25

Family

ID=14476293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5108115A Withdrawn JPH06325780A (en) 1993-05-10 1993-05-10 Fuel cell system

Country Status (1)

Country Link
JP (1) JPH06325780A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020508A1 (en) * 1994-12-23 1996-07-04 Ballard Power Systems Inc. Electrochemical fuel cell system with a regulated vacuum ejector for recirculation of the fluid fuel stream
WO1999057778A3 (en) * 1998-04-30 2000-03-02 Emitec Emissionstechnologie Method for wetting at least one of the surfaces of an electrolyte in a fuel cell
EP1025602A1 (en) * 1997-07-25 2000-08-09 Emprise Corporation Fuel cell gas management system
WO2001041243A1 (en) * 1999-11-29 2001-06-07 Forschungszentrum Jülich GmbH Fuel cell with oxidising agent circuit
US6379829B1 (en) 1998-12-18 2002-04-30 Aisin Seiki Kabushiki Kaisha Fuel cell system
WO2002095854A1 (en) * 2001-05-23 2002-11-28 Matsushita Electric Industrial Co., Ltd. Fuel cell power generating device
KR20030018079A (en) * 2001-08-27 2003-03-06 현대자동차주식회사 Apparatus for humidifying hydrogen in fuel cell stack
KR100464051B1 (en) * 2002-07-13 2005-01-03 엘지전자 주식회사 Fuel cell system
JP2005507542A (en) * 2001-02-26 2005-03-17 ユーティーシー フューエル セルズ,エルエルシー High fuel utilization in the fuel cell
JP2005268117A (en) * 2004-03-19 2005-09-29 Aisin Seiki Co Ltd Fuel cell power generation system
JP2007305390A (en) * 2006-05-10 2007-11-22 Toyota Motor Corp Fuel cell system and its circulation ratio calculating method
CN100399615C (en) * 2003-06-17 2008-07-02 乐金电子(天津)电器有限公司 Cooling-humidifying device for fuel cell
JP2008525166A (en) * 2004-12-23 2008-07-17 ジ・オーストラリアン・ナショナル・ユニバーシティー Increased conductivity and improved electrolysis and electrochemical processes
JP2009004120A (en) * 2007-06-19 2009-01-08 Toyota Motor Corp Fuel cell system
EP2017915A1 (en) * 2007-07-09 2009-01-21 Electro Power Systems S.p.A. Self-humidifying PEM-fuel-cell-based back-up electric generator
JP2009136851A (en) * 2007-12-11 2009-06-25 Mitsubishi Heavy Ind Ltd Apparatus for removing water and fuel cell power generation system utilizing the same
JP2010287541A (en) * 2009-06-15 2010-12-24 Honda Motor Co Ltd Fuel cell system
JP2012174396A (en) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell power generating system
JP2012232297A (en) * 2012-06-15 2012-11-29 Mitsubishi Heavy Ind Ltd Water removing apparatus and fuel cell power generation system using the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020508A1 (en) * 1994-12-23 1996-07-04 Ballard Power Systems Inc. Electrochemical fuel cell system with a regulated vacuum ejector for recirculation of the fluid fuel stream
EP1025602A4 (en) * 1997-07-25 2009-11-25 Emprise Corp Fuel cell gas management system
EP1025602A1 (en) * 1997-07-25 2000-08-09 Emprise Corporation Fuel cell gas management system
WO1999057778A3 (en) * 1998-04-30 2000-03-02 Emitec Emissionstechnologie Method for wetting at least one of the surfaces of an electrolyte in a fuel cell
US6630258B1 (en) 1998-04-30 2003-10-07 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Process for wetting at least one of the surfaces of an electrolyte in a fuel cell
US6379829B1 (en) 1998-12-18 2002-04-30 Aisin Seiki Kabushiki Kaisha Fuel cell system
WO2001041243A1 (en) * 1999-11-29 2001-06-07 Forschungszentrum Jülich GmbH Fuel cell with oxidising agent circuit
JP2005507542A (en) * 2001-02-26 2005-03-17 ユーティーシー フューエル セルズ,エルエルシー High fuel utilization in the fuel cell
WO2002095854A1 (en) * 2001-05-23 2002-11-28 Matsushita Electric Industrial Co., Ltd. Fuel cell power generating device
US7816048B2 (en) 2001-05-23 2010-10-19 Panasonic Corporation Fuel-cell power-generation system and method
US7691512B2 (en) 2001-05-23 2010-04-06 Panasonic Corporation Fuel-cell power-generation system and method
KR20030018079A (en) * 2001-08-27 2003-03-06 현대자동차주식회사 Apparatus for humidifying hydrogen in fuel cell stack
KR100464051B1 (en) * 2002-07-13 2005-01-03 엘지전자 주식회사 Fuel cell system
CN100399615C (en) * 2003-06-17 2008-07-02 乐金电子(天津)电器有限公司 Cooling-humidifying device for fuel cell
JP2005268117A (en) * 2004-03-19 2005-09-29 Aisin Seiki Co Ltd Fuel cell power generation system
JP2008525166A (en) * 2004-12-23 2008-07-17 ジ・オーストラリアン・ナショナル・ユニバーシティー Increased conductivity and improved electrolysis and electrochemical processes
JP2007305390A (en) * 2006-05-10 2007-11-22 Toyota Motor Corp Fuel cell system and its circulation ratio calculating method
US8383279B2 (en) 2006-05-10 2013-02-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for calculating circulation ratio in the same
JP2009004120A (en) * 2007-06-19 2009-01-08 Toyota Motor Corp Fuel cell system
EP2017915A1 (en) * 2007-07-09 2009-01-21 Electro Power Systems S.p.A. Self-humidifying PEM-fuel-cell-based back-up electric generator
JP2009136851A (en) * 2007-12-11 2009-06-25 Mitsubishi Heavy Ind Ltd Apparatus for removing water and fuel cell power generation system utilizing the same
JP2010287541A (en) * 2009-06-15 2010-12-24 Honda Motor Co Ltd Fuel cell system
JP2012174396A (en) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell power generating system
JP2012232297A (en) * 2012-06-15 2012-11-29 Mitsubishi Heavy Ind Ltd Water removing apparatus and fuel cell power generation system using the same

Similar Documents

Publication Publication Date Title
US6045934A (en) Solid polymer electrolyte fuel cell
JP3203150B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell system
JPH06325780A (en) Fuel cell system
JP3530793B2 (en) Fuel cell and operating method thereof
JP3610892B2 (en) Fuel cell
US6779351B2 (en) Fuel cell systems with evaporative cooling and methods for humidifying and adjusting the temperature of the reactant streams
US20080160363A1 (en) Control of the Polymer Humidifying Membrane of a Fuel Cell
JP2004178818A (en) Fuel cell system
JPH06275284A (en) Solid polymer electrolyte film type fuel cell
US6871844B2 (en) Humidifier
US20090053568A1 (en) Evaporative Cooling of Fuel Cells Employing Antifreeze Solution
JPH09283162A (en) Solid high molecular fuel cell
JPH10284096A (en) Solid high polymer electrolyte fuel cell
JP2002158023A (en) Fuel cell system
JPH07320753A (en) Solid polymer electrolyte membrane type fuel cell
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
JPH11242962A (en) Fuel cell device
US7090941B2 (en) Fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP4552236B2 (en) Fuel cell device
JP3276175B2 (en) Solid polymer electrolyte fuel cell
JP2000277128A (en) Solid polymer type fuel cell
JPH05144451A (en) Reaction gas/cooling medium flowing structure of fuel cell with solid highpolymer electrolyte
JPH11214022A (en) Fuel cell power generating device
JP2004529458A (en) Method for improving the moisture balance of a fuel cell
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801