JP3276175B2 - Solid polymer electrolyte fuel cell - Google Patents

Solid polymer electrolyte fuel cell

Info

Publication number
JP3276175B2
JP3276175B2 JP26476092A JP26476092A JP3276175B2 JP 3276175 B2 JP3276175 B2 JP 3276175B2 JP 26476092 A JP26476092 A JP 26476092A JP 26476092 A JP26476092 A JP 26476092A JP 3276175 B2 JP3276175 B2 JP 3276175B2
Authority
JP
Japan
Prior art keywords
fuel cell
hydrogen
stack
solid polymer
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26476092A
Other languages
Japanese (ja)
Other versions
JPH06119931A (en
Inventor
克雄 橋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26476092A priority Critical patent/JP3276175B2/en
Publication of JPH06119931A publication Critical patent/JPH06119931A/en
Application granted granted Critical
Publication of JP3276175B2 publication Critical patent/JP3276175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質燃料
電池スタックと加湿装置とからなる固体高分子電解質燃
料電池に関する。
The present invention relates to a solid polymer electrolyte fuel
Solid polymer electrolyte fuel consisting of battery stack and humidifier
Related to fuel cells .

【0002】[0002]

【従来の技術】周知の如く、固体高分子電解質燃料電池
の発電原理は図1に示す通りである。電極接合体1は、
電解質(高分子イオン交換膜)2としてフッ素樹脂系の
高分子イオン交換膜(例えば、スルホン酸基を持つフッ
素樹脂系イオン交換膜)を用い、これを中央にして両面
に例えば白金からなる触媒電極(負極)3,触媒電極
(陽極)4を付着させ、更にその両面をポーラスなカー
ボン電極(負極)5,カーボン電極(陽極)6でサンド
イッチ状に挟み重ねた構成となっている。
2. Description of the Related Art As is well known, the principle of power generation of a solid polymer electrolyte fuel cell is as shown in FIG. The electrode assembly 1 is
As the electrolyte (polymer ion exchange membrane) 2, a fluororesin polymer ion exchange membrane (for example, a fluororesin ion exchange membrane having a sulfonic acid group) is used, and a catalyst electrode made of, for example, platinum is formed on both sides with the center as the center A negative electrode 3 and a catalyst electrode (anode) 4 are attached, and both surfaces thereof are sandwiched and sandwiched between a porous carbon electrode (negative electrode) 5 and a carbon electrode (anode) 6.

【0003】セパレータ7の流通溝により燃料電池本体
内に導入される水素は、電解質2である高分子イオン交
換膜の水素イオン透過性を持たせるために、通常、導入
前に燃料電池の運転温度付近における飽和水蒸気分圧相
当の水蒸気を含有させ、即ち加湿させて導入される。酸
素又は空気についても、同様の理由から加湿させること
がある。
The hydrogen introduced into the fuel cell main body through the flow channel of the separator 7 usually has an operating temperature of the fuel cell before the introduction, in order to impart hydrogen ion permeability to the polymer ion exchange membrane as the electrolyte 2. Water vapor equivalent to the saturated water vapor partial pressure in the vicinity is contained, that is, humidified and introduced. Oxygen or air may be humidified for the same reason.

【0004】電極接合体1に供給された水素は、触媒電
極(負極)3上で水素イオン化され、水素イオンは電解
質2中でH+ ・xH2 Oとして触媒電極(陽極)4側へ
向って移動する。この時、水素イオンはx個のH2 Oを
伴って負極から陽極へ移動するため、水素と共に導入さ
れた水蒸気は水素の流路方向に沿って徐々に陽極側へ透
過し乾きガスに近づいていくことになる。
[0004] Hydrogen supplied to the electrode assembly 1 is hydrogen-ionized on the catalyst electrode (negative electrode) 3, and hydrogen ions are converted into H + in the electrolyte 2. Move as xH 2 O toward the catalyst electrode (anode) 4 side. At this time, since the hydrogen ions move from the negative electrode to the anode with x H 2 O, the water vapor introduced together with the hydrogen gradually permeates to the anode side along the flow direction of the hydrogen and approaches the dry gas. Will go.

【0005】カーボン電極(陽極)6へ達した水素イオ
ンは、酸化剤として同じく電池本体内に導入された酸素
と反応して水を生成し、未反応酸素と共に排出される。
同様に、水素イオン化されなかった未反応水素も燃料電
池本体から排出される。
The hydrogen ions reaching the carbon electrode (anode) 6 react with oxygen introduced into the battery body as an oxidizing agent to produce water, and are discharged together with unreacted oxygen.
Similarly, unreacted hydrogen that has not been hydrogen ionized is also discharged from the fuel cell body.

【0006】また、従来の固体高分子電解質燃料電池の
加湿システム装置は、図2に示す通りである。同図は、
燃料である水素、酸化剤である酸素(又は空気)、両者
を加湿して燃料電池へ導入した例を示す。ここで、加湿
水源としては、燃料電池の排熱を回収し、温水となった
冷却水を用いている。燃料電池スタック11へ導入される
水素、酸素(又は空気)は加湿装置12で燃料電池運転温
度付近の飽和水蒸気分圧相当の水蒸気を含有、即ち加湿
させられる。加湿させられた水素、酸素(又は空気)
は、燃料電池スタック11内のすべての電極接合体挿入面
13へセパレータ14の流路溝を通じて分配されるようにな
っている。なお、図中の15は、冷却水面を示す。
A conventional humidification system for a solid polymer electrolyte fuel cell is as shown in FIG. The figure shows
An example is shown in which hydrogen as a fuel and oxygen (or air) as an oxidant and both are humidified and introduced into a fuel cell. Here, as the humidifying water source, cooling water that has recovered the exhaust heat of the fuel cell and turned into hot water is used. Hydrogen and oxygen (or air) introduced into the fuel cell stack 11 contain water vapor corresponding to a saturated water vapor partial pressure near the fuel cell operation temperature, that is, is humidified by the humidifier 12. Humidified hydrogen, oxygen (or air)
Are all electrode assembly insertion surfaces in the fuel cell stack 11.
13 is distributed through the flow channel of the separator 14. In addition, 15 in a figure shows a cooling water surface.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
加湿システム装置は以下の課題を有する。
However, the conventional humidification system has the following problems.

【0008】(1) 燃料となる水素の加湿を燃料電池へ導
入する入口でのみ行なうため、燃料電池内へ導入される
水蒸気量が、加湿温度における飽和水蒸気分圧相当の水
蒸気量に限定されてしまう。従って、電解質面積あるい
は電極接合体面積を大きくしようとする場合、水素を加
湿していた水蒸気はH+ ・xH2 Oの形で徐々に酸素又
は空気側に透過し、水素の流路溝終末近傍では水蒸気圧
が低くなって乾きガスに近づき、電解質である高分子イ
オン交換膜の保水状態を維持できなくなる。
(1) Since the humidification of hydrogen as fuel is performed only at the inlet for introducing the fuel cell, the amount of steam introduced into the fuel cell is limited to the amount of steam equivalent to the saturated steam partial pressure at the humidifying temperature. I will. Therefore, when the area of the electrolyte or the area of the electrode assembly is to be increased, the water vapor humidified by hydrogen is H + ・ Slowly permeates to the oxygen or air side in the form of xH 2 O, and near the end of the hydrogen flow channel, the water vapor pressure decreases and approaches the dry gas, and the water retention state of the polymer ion exchange membrane as the electrolyte can be maintained. Disappears.

【0009】(2) 燃料である水素が一度に全電極接合体
に分配供給されるため、電極接合体へ供給される水素の
ガス流速が極めて小さくなり、電極接合体面数が多い場
合、流量分配を均等にすることが極めて困難である。
(2) Since hydrogen as a fuel is distributed and supplied to all the electrode assemblies at once, the gas flow velocity of hydrogen supplied to the electrode assemblies becomes extremely small. Is extremely difficult to equalize.

【0010】この発明はこうした事情を考慮してなされ
たもので、電解質である高分子イオン交換膜の保水状態
を維持できるとともに、電極接合体へ供給される水素の
ガス流速を大きくして水素の各スタックでの均等分配を
容易に行なえる固体高分子電解質燃料電池を提供するこ
とを目的とする。
The present invention has been made in view of such circumstances, and can maintain the water retention state of a polymer ion exchange membrane as an electrolyte and increase the gas flow rate of hydrogen supplied to an electrode assembly to increase the hydrogen flow rate. It is an object of the present invention to provide a solid polymer electrolyte fuel cell capable of easily performing equal distribution in each stack.

【0011】[0011]

【課題を解決するための手段】この発明は、複数に分割
された固体高分子電解質燃料電池スタックと、前記各ス
タックの上流側に夫々設けられた、燃料を加湿する加湿
装置とを有し、前記各スタックと複数の加湿装置とを交
互に接続して燃料が消費されていく過程の中で各スタッ
クへ供給される燃料を逐次加湿していくことを特徴とす
固体高分子電解質燃料電池である。
The present invention comprises a solid polymer electrolyte fuel cell stack divided into a plurality of parts, and a humidifier for humidifying the fuel, which is provided upstream of each of the stacks. A solid polymer electrolyte fuel cell characterized by sequentially humidifying the fuel supplied to each stack in the process of fuel consumption by alternately connecting the stacks and a plurality of humidifiers. is there.

【0012】図3は、この発明に係る燃料電池の加湿シ
ステム装置の概略構成図を示す。図中の21,22,23は複
数に分割された燃料電池スタックであり、これらの燃料
電池スタック21〜23の上流側には各スタック21〜23へ導
入される燃料水素を逐次加湿できるよう加湿装置24,加
湿装置(中間)25,26が夫々配置されている。なお、酸
化剤である酸素又は空気も必要に応じ加湿することもあ
る。ここで、加湿装置24〜26の湿水源としては、各スタ
ックの排冷却水を逐次利用する全スタックを冷却し終っ
た排冷却水を利用することが考えられる。
FIG. 3 is a schematic configuration diagram of a humidification system device for a fuel cell according to the present invention. Numerals 21, 22, and 23 in the drawing denote a plurality of divided fuel cell stacks, and humidification is provided upstream of these fuel cell stacks 21 to 23 so that the fuel hydrogen introduced into each of the stacks 21 to 23 can be sequentially humidified. The apparatus 24 and the humidifiers (intermediate) 25 and 26 are arranged respectively. In addition, oxygen or air which is an oxidizing agent may be humidified as needed. Here, as the wet water source of the humidifiers 24 to 26, it is conceivable to use the exhaust cooling water that has cooled all the stacks that sequentially use the exhaust cooling water of each stack.

【0013】[0013]

【作用】上記の構成において、固体高分子電解質燃料電
池のスタックを分割し、あるいは直列に接続し、各スタ
ックへ燃料を水素を逐次加湿しながら導入することによ
り、
In the above construction, the stack of the solid polymer electrolyte fuel cell is divided or connected in series, and the fuel is introduced into each stack while sequentially humidifying hydrogen.

【0014】(1) 電解質である高分子イオン膜をH+
xH2 Oの形で透過する水蒸気分を常に補うことが可能
となり、水素のセパレータ上の流路溝終末近傍で水蒸気
圧が確保できる。即ち、電解質である高分子イオン交換
膜の保水状態を維持できるようになる。
[0014]: (1) a polymer ion membrane is an electrolyte H +
It is possible to always compensate for the water vapor passing through in the form of xH 2 O, and a water vapor pressure can be secured near the end of the flow channel on the hydrogen separator. That is, the water-retained state of the polymer ion exchange membrane as the electrolyte can be maintained.

【0015】(2) 各電極接合体に分配供給されるガス流
速を分配数が少なくことで大きく採ることが可能とな
り、水素の各スタックでの均等分配が容易に行なえるよ
うになる。
(2) The flow rate of the gas to be distributed and supplied to each electrode assembly can be made large by reducing the number of distributions, so that the hydrogen can be easily distributed uniformly in each stack.

【0016】[0016]

【実施例】以下、この発明の一実施例を図面を参照して
説明する。いずれの実施例の場合も、固体高分子電解質
燃料電池スタックを分割あるいは直列に燃料である水素
ラインを接続し、各スタック上流に加湿装置を設けた例
を示す。 (実施例1)
An embodiment of the present invention will be described below with reference to the drawings. In each case, the solid polymer electrolyte fuel cell stack is divided or connected in series with a hydrogen line as a fuel, and a humidifier is provided upstream of each stack. (Example 1)

【0017】図4を参照する。図中の31は第1の燃料電
池スタックを示し、32は第2の燃料電池スタックを示
す。これら燃料電池スタックは積層された複数のセパレ
ータ33を有し、34は電極接合体挿入面を示し、35は冷却
水面を示す。前記第1の燃料電池スタック31の上流側に
は加湿装置36が配置され、第2の燃料電池スタック32の
上流側には中間加湿装置37が配置されている。
Referring to FIG. In the figure, 31 indicates the first fuel cell stack, and 32 indicates the second fuel cell stack. These fuel cell stacks have a plurality of stacked separators 33, 34 indicates an electrode assembly insertion surface, and 35 indicates a cooling water surface. A humidifier 36 is disposed upstream of the first fuel cell stack 31, and an intermediate humidifier 37 is disposed upstream of the second fuel cell stack 32.

【0018】こうした構成の燃料電池の加湿システム装
置において、第1の燃料電池スタック31に供給される水
素及び酸素(又は空気)は、第2の燃料電池スタック32
より排出される湿水となった冷却水により加湿され、第
1の燃料電池スタック31に導入される。更に、第1の燃
料電池スタック31より排出される残った水素及び酸素
(又は空気)は、第1の燃料電池スタック31より排出さ
れる湿水となった冷却水により加湿され、第2の燃料電
池スタック32に導入される。 (実施例2)図5を参照する。但し、図4と同部材は同
符号を付して説明を省略する。
In the humidification system for a fuel cell having such a configuration, hydrogen and oxygen (or air) supplied to the first fuel cell stack 31 are supplied to the second fuel cell stack 32.
The water is humidified by the discharged cooling water, and is introduced into the first fuel cell stack 31. Further, the remaining hydrogen and oxygen (or air) discharged from the first fuel cell stack 31 are humidified by the cooling water that has been discharged from the first fuel cell stack 31, and the second fuel It is introduced into the battery stack 32. Embodiment 2 Referring to FIG. However, the same members as those in FIG.

【0019】第1の燃料電池スタック31に供給される水
素及び酸素(又は空気)は、第1の燃料電池スタック31
及び第2の燃料電池スタック32を冷却し排出される湿水
となった冷却水により加湿され、第1の燃料電池スタッ
ク31に導入される。更に、第1の燃料電池スタック31よ
り排出される残った水素及び酸素(又は空気)は、第1
の燃料電池スタック31及び第2の燃料電池スタック32を
冷却し排出される湿水となった冷却水により加湿され、
第2の燃料電池スタック32に導入される。 (実施例3)図6を参照する。但し、図4と同部材は同
符号を付して説明を省略する。この実施例3は、図4に
おいて酸化剤である酸素又は空気を各スタックに初めか
ら分岐して供給するようにしたことを要旨とする。 (実施例4)図7を参照する。但し、図4と同部材は同
符号を付して説明を省略する。この実施例4は、図5に
おいて酸化剤である酸素又は空気を各スタックに初めか
ら分岐して供給するようにしたことを要旨とする。
The hydrogen and oxygen (or air) supplied to the first fuel cell stack 31 are supplied to the first fuel cell stack 31.
Then, the second fuel cell stack 32 is cooled and humidified by the cooling water that has been discharged and discharged into the first fuel cell stack 31. Furthermore, the remaining hydrogen and oxygen (or air) discharged from the first fuel cell stack 31
The fuel cell stack 31 and the second fuel cell stack 32 are cooled and humidified by the cooling water that has become the discharged wet water,
It is introduced into the second fuel cell stack 32. (Embodiment 3) Referring to FIG. However, the same members as those in FIG. The gist of the third embodiment is that oxygen or air, which is an oxidizing agent, is branched and supplied to each stack from the beginning in FIG. Embodiment 4 Referring to FIG. However, the same members as those in FIG. The gist of the fourth embodiment is that oxygen or air as an oxidizing agent is branched and supplied to each stack from the beginning in FIG.

【0020】このように、上記実施例によれば、第1燃
料電池スタック31,第2の燃料電池スタック32を分割、
あるいは直列に接続し、燃料である水素のラインの各ス
タックの上流側に加湿装置36,中間加湿装置37を設ける
ことにより、以下に述べる利点を有する。
As described above, according to the above embodiment, the first fuel cell stack 31 and the second fuel cell stack 32 are divided.
Alternatively, by connecting the humidifier 36 and the intermediate humidifier 37 upstream of each stack of the fuel hydrogen line in series, the following advantages can be obtained.

【0021】(1) 電解質である高分子イオン交換膜を透
過して酸素又は空気側へ移動してしまう水蒸気を、各加
湿装置36で補うことが可能となる。従って、高分子イオ
ン交換膜をセパレータ上の水素流路溝に沿って全域にわ
たり十分なる保水状態に維持することができる。
(1) The humidifiers 36 can compensate for the water vapor that permeates through the polymer ion exchange membrane as the electrolyte and moves to the oxygen or air side. Therefore, the polymer ion exchange membrane can be maintained in a sufficiently water-retaining state over the entire area along the hydrogen flow channel groove on the separator.

【0022】(2) 各電極接合体への分配数が少なくなる
ため、セパレータ上の水素流路溝内の水素ガス流束を大
きく取ることが可能となる。従って、水素の各スタック
内における電極接合体への均等分配を行ないやすくな
る。
(2) Since the number of distributions to each electrode assembly is reduced, the hydrogen gas flux in the hydrogen flow channel groove on the separator can be increased. Therefore, it becomes easy to evenly distribute hydrogen to the electrode assembly in each stack.

【0023】[0023]

【発明の効果】以上詳述したようにこの発明によれば、
電解質である高分子イオン交換膜の保水状態を維持でき
るとともに、電極接合体へ供給される水素のガス流速を
大きくして水素の各スタックでの均等分配を容易に行な
える固体高分子電解質燃料電池を提供できる。
As described in detail above, according to the present invention,
A solid polymer electrolyte fuel cell that can maintain the water retention state of the polymer ion exchange membrane that is the electrolyte and increase the gas flow rate of hydrogen supplied to the electrode assembly to facilitate uniform distribution of hydrogen in each stack Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体高分子電解質燃料電池の発電原理を示す説
明図。
FIG. 1 is an explanatory diagram showing the power generation principle of a solid polymer electrolyte fuel cell.

【図2】従来の燃料電池の加湿システム装置の説明図。FIG. 2 is an explanatory view of a conventional humidification system device for a fuel cell.

【図3】この発明に係る燃料電池の加湿システム装置の
概略構成図。
FIG. 3 is a schematic configuration diagram of a humidification system device for a fuel cell according to the present invention.

【図4】この発明の実施例1に係る燃料電池の加湿シス
テム装置の説明図。
FIG. 4 is an explanatory diagram of a humidification system device for a fuel cell according to the first embodiment of the present invention.

【図5】この発明の実施例2に係る燃料電池の加湿シス
テム装置の説明図。
FIG. 5 is an explanatory diagram of a humidification system device for a fuel cell according to Embodiment 2 of the present invention.

【図6】この発明の実施例3に係る燃料電池の加湿シス
テム装置の説明図。
FIG. 6 is an explanatory diagram of a humidification system device for a fuel cell according to Embodiment 3 of the present invention.

【図7】この発明の実施例4に係る燃料電池の加湿シス
テム装置の説明図。
FIG. 7 is an explanatory view of a humidification system device for a fuel cell according to Embodiment 4 of the present invention.

【符号の説明】[Explanation of symbols]

31…第1の燃料電池スタック、 32…第2の燃
料電池スタック、33…セパレータ、
36…加湿装置、37…中間加湿装置。
31 ... first fuel cell stack, 32 ... second fuel cell stack, 33 ... separator,
36: Humidifier, 37: Intermediate humidifier.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数に分割された固体高分子電解質燃料
電池スタックと、前記各スタックの上流側に夫々設けら
れた、燃料を加湿する加湿装置とを有し、前記各スタッ
クと複数の加湿装置とを交互に接続して燃料が消費され
ていく過程の中で各スタックへ供給される燃料を逐次加
湿していくことを特徴とする固体高分子電解質燃料電
1. A fuel cell system comprising: a plurality of divided solid polymer electrolyte fuel cell stacks; and a humidifier for humidifying a fuel provided upstream of each of the stacks, wherein each of the stacks and a plurality of humidifiers are provided. Solid polymer electrolyte fuel cell characterized by sequentially humidifying the fuel supplied to each stack in the process of fuel consumption by alternately connecting
Pond .
JP26476092A 1992-10-02 1992-10-02 Solid polymer electrolyte fuel cell Expired - Lifetime JP3276175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26476092A JP3276175B2 (en) 1992-10-02 1992-10-02 Solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26476092A JP3276175B2 (en) 1992-10-02 1992-10-02 Solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH06119931A JPH06119931A (en) 1994-04-28
JP3276175B2 true JP3276175B2 (en) 2002-04-22

Family

ID=17407810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26476092A Expired - Lifetime JP3276175B2 (en) 1992-10-02 1992-10-02 Solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3276175B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821324B1 (en) 2007-05-15 2008-04-11 한국에너지기술연구원 System for humidifying in fuel cell stack

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812920B2 (en) * 2000-02-22 2011-11-09 本田技研工業株式会社 Fuel cell stack
JP4996005B2 (en) * 2000-09-01 2012-08-08 本田技研工業株式会社 Humidifier for fuel cell
JP3963716B2 (en) * 2001-12-13 2007-08-22 本田技研工業株式会社 Fuel cell stack
KR20030081943A (en) * 2002-04-15 2003-10-22 현대자동차주식회사 System for humidifying in fuel cell stack
JP3699063B2 (en) 2002-06-26 2005-09-28 本田技研工業株式会社 Fuel cell and control method thereof
DE10232871A1 (en) 2002-07-19 2004-02-05 Daimlerchrysler Ag Fuel cell with internal gas regulation has distributor structure for feed channels for reagents of anode and/or cathode divided into at least two fields, each with input and output ports for reagents
AU2003289262A1 (en) * 2002-12-26 2004-07-29 Sony Corporation Hydrogen gas humidity controller, fuel cell, hydrogen gas humidity controlling method, and humidity controlling method of fuel cell
JP5148258B2 (en) * 2007-12-14 2013-02-20 三菱重工業株式会社 Polymer electrolyte fuel cell
CN105375048B (en) * 2015-12-07 2018-11-06 中国东方电气集团有限公司 Fuel cell system and the method using its power supply
JP7110913B2 (en) * 2018-10-30 2022-08-02 トヨタ自動車株式会社 fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821324B1 (en) 2007-05-15 2008-04-11 한국에너지기술연구원 System for humidifying in fuel cell stack

Also Published As

Publication number Publication date
JPH06119931A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
US5382478A (en) Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section
JP3530793B2 (en) Fuel cell and operating method thereof
JP4037698B2 (en) Solid polymer cell assembly
JP3382708B2 (en) Gas separator for solid polymer electrolyte fuel cells
JPH08273687A (en) Supply gas humidifier of fuel cell
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
JP3276175B2 (en) Solid polymer electrolyte fuel cell
JP3249282B2 (en) Solid polymer electrolyte fuel cell
JP3559693B2 (en) Solid polymer electrolyte fuel cell
JPH09283162A (en) Solid high molecular fuel cell
JP3141619B2 (en) Solid polymer electrolyte fuel cell power generator
JP2002170584A (en) Solid polymer type fuel battery
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
JPH11312531A (en) Fuel cell system
JP4621370B2 (en) Fuel cell stack structure
JP4612977B2 (en) Fuel cell stack and reaction gas supply method thereof
JP2000277128A (en) Solid polymer type fuel cell
JPH06124722A (en) Heating and humidifying device and fuel cell
JPH0992310A (en) Solid polymer type fuel cell system
JP2004363027A (en) Humidifying method of fuel cell and fuel cell system
JPH11214022A (en) Fuel cell power generating device
JPH02825B2 (en)
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
JP3963368B2 (en) Humidifier for fuel cell and heating method thereof
JPH0412465A (en) Cell structure for solid polymer electrolyte type fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11