JPH06338338A - Humidification of high polymer ion exchange film of fuel cell - Google Patents

Humidification of high polymer ion exchange film of fuel cell

Info

Publication number
JPH06338338A
JPH06338338A JP5126751A JP12675193A JPH06338338A JP H06338338 A JPH06338338 A JP H06338338A JP 5126751 A JP5126751 A JP 5126751A JP 12675193 A JP12675193 A JP 12675193A JP H06338338 A JPH06338338 A JP H06338338A
Authority
JP
Japan
Prior art keywords
cooling water
fuel
oxidant
ion exchange
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5126751A
Other languages
Japanese (ja)
Inventor
Katsuo Hashizaki
克雄 橋▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5126751A priority Critical patent/JPH06338338A/en
Publication of JPH06338338A publication Critical patent/JPH06338338A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To transmitting part of cooling water evaporated by cell heat through a distribution current plate to enable humidification of a high polymer ion exchange film by forming the distribution current plate having a channel groove, in which a fuel and an oxidant flow, of a porous substance, and by letting the cooling water run on the back surface. CONSTITUTION:Cell heat is absorbed by the cooling water flowing in cooling water channel grooves 39, 41, and part of the cooling water is evaporated and passes through porous distribution current plates 32 and 36 for fuel and oxidant, at steam, and pure hydrogen and the oxidant flowing in the fuel and oxidant channel grooves 38, 40 are humidified. Part of the cooling water is infiltrated into the distribution current plates 32, 36 in a liquid form and reaches an anode pole 33 and a cathode pole 35, to humidify an electrolyte 34 which is a high polymer ion exchange film of fluororesin. The thermal energy absorbed by the cooling water can be utilized for humidification as it is, and the thermal energy is utilized effectively, while a humidification device is omitted, and the size of the system can thus be drastically reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池の高分子イオ
ン交換膜の加湿方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for humidifying a polymer ion exchange membrane of a fuel cell.

【0002】[0002]

【従来の技術】 (1)固体高分子電解質燃料電池の発電原理 図3に固体高分子電解質燃料電池の一例を示す。電解質
01としてフッ素樹脂系の高分子イオン交換膜(例えば
スルホン酸基を持つフッ素樹脂系イオン交換膜)を用
い、これを中央にして両面に触媒電極(例えば白金)0
2,03を付着させ、さらにその両面を多孔質カーボン
電極04,05でサンドウィッチ状にはさみ重ねて電極
接合体06を構成している。ここで、アノード極側に供
給された燃料中の水素(H2 )は、触媒電極(アノード
極)02上で水素イオン化され、水素イオンは電解質0
1中を水の介在のもと、H+ ・xH2 Oとしてカソード
極側へ移動する。触媒電極(カソード極)03上で酸化
剤中の酸素(O2 )及び外部回路07を流通してきた電
子(e- )と反応し水を生成し、燃料電池外へ排出され
る。この時、外部回路07を流通した電子(e- )の流
れが直流の電気エネルギーとして利用できる。この反応
を下記「化1」に示す。
2. Description of the Related Art (1) Power Generation Principle of Solid Polymer Electrolyte Fuel Cell FIG. 3 shows an example of a solid polymer electrolyte fuel cell. As the electrolyte 01, a fluororesin-based polymer ion-exchange membrane (for example, a fluororesin-based ion-exchange membrane having a sulfonic acid group) is used, and a catalyst electrode (for example, platinum) 0 is formed on both sides with this center
2, 03 are adhered, and the both surfaces thereof are sandwiched by the porous carbon electrodes 04, 05 so as to be sandwiched to form an electrode assembly 06. Here, hydrogen (H 2 ) in the fuel supplied to the anode electrode side is hydrogen-ionized on the catalyst electrode (anode electrode) 02, and the hydrogen ion is converted into the electrolyte 0.
Under the presence of water, 1 moves as H + · xH 2 O to the cathode side. On the catalyst electrode (cathode electrode) 03, it reacts with oxygen (O 2 ) in the oxidant and electrons (e ) flowing through the external circuit 07 to generate water, which is discharged to the outside of the fuel cell. At this time, the flow of the electrons (e ) flowing through the external circuit 07 can be used as DC electric energy. This reaction is shown in "Chemical Formula 1" below.

【0003】[0003]

【化1】 [Chemical 1]

【0004】ところで、電解質01となる高分子イオン
交換膜において、前述のような水素イオン透過性を実現
させるためには、この膜を常に充分なる保水状態に保持
しておく必要があり、通常、燃料、又は酸化剤に電池の
運転温度(常温〜100℃程度)近傍の飽和水蒸気を含
ませて、すなわち加湿して燃料及び酸化剤を電極接合体
06に供給し、膜の保水状態を保つようにしている。
By the way, in order to realize the above-mentioned hydrogen ion permeability in the polymer ion exchange membrane as the electrolyte 01, it is necessary to always keep the membrane in a sufficiently water-retaining state. The fuel or the oxidant is mixed with saturated steam near the operating temperature of the battery (normal temperature to about 100 ° C.), that is, humidified to supply the fuel and the oxidant to the electrode assembly 06 to keep the membrane water-retaining state. I have to.

【0005】(2)従来の固体高分子電解質燃料電池の
運転システム 図4に従来の固体高分子電解質燃料電池の運転システム
の一例を示す。純水素燃料011及び酸化剤012は、
電気ヒータ013,014で所定の温度に温められた加
湿装置015,016中の純水017中を通過させるこ
とにより、その飽和水蒸気分圧相当の湿分を含むことに
なる。この加湿された純水素燃料011、又は酸化剤0
12を燃料電池本体018に送気する。燃料電池本体0
18で使用されなかった純水素燃料011、又は酸化剤
012は、残存した純水素燃料011の場合は残存加湿
水蒸気と共に、又残存した酸化剤012の場合は残存加
湿水蒸気と電池反応生成水と共に燃料電池本体018外
に排出される。ここで、排出された純水素燃料011
は、燃料利用率向上のためリサイクルポンプ019によ
りリサイクルされ再び燃料電池本体018に再導入され
るような運転システム構成をとっている。
(2) Conventional Solid Polymer Electrolyte Fuel Cell Operating System FIG. 4 shows an example of a conventional solid polymer electrolyte fuel cell operating system. Pure hydrogen fuel 011 and oxidant 012 are
By passing through the pure water 017 in the humidifiers 015, 016 heated to a predetermined temperature by the electric heaters 013, 014, the moisture equivalent to the saturated steam partial pressure is contained. This humidified pure hydrogen fuel 011 or oxidizer 0
12 is fed to the fuel cell main body 018. Fuel cell body 0
The pure hydrogen fuel 011 or the oxidant 012 not used in 18 is used as a fuel together with the residual humidified steam in the case of the remaining pure hydrogen fuel 011 and the residual humidified steam and the water generated by the cell reaction in the case of the remaining oxidant 012. It is discharged to the outside of the battery body 018. Here, the discharged pure hydrogen fuel 011
Has an operating system configuration in which it is recycled by the recycle pump 019 to improve the fuel utilization rate and is reintroduced into the fuel cell main body 018.

【0006】(3)従来の固体高分子電解質燃料電池の
ガスセパレータの構成 図5に、従来の内部マニホールド型、または内部ヘッダ
型の固体高分子電解質燃料電池のガスセパレータの外観
を示す。同図に示すように、ガスセパレータ020には
燃料電池に導入される流体021、すなわち燃料、又は
酸化剤、又は冷却水を流入する流体導入孔022が形成
されており、該流体021は当該流体導入孔022より
燃料電池本体内に導入され、入口側流体ヘッダ023を
通じて流体流路溝024に分配供給され、燃料電池の電
池反応や冷却に寄与する。その後、残存した燃料、又は
酸化剤、あるいは発電時の発熱を吸収し温水となった冷
却水は、出口側流体ヘッダ025に集められ、流体排出
孔026を通じて燃料電池本体外に排出されるようにな
っている。
(3) Configuration of Gas Separator of Conventional Solid Polymer Electrolyte Fuel Cell FIG. 5 shows the appearance of a gas separator of a conventional internal manifold type or internal header type solid polymer electrolyte fuel cell. As shown in the drawing, the gas separator 020 is provided with a fluid 021 introduced into the fuel cell, that is, a fluid introduction hole 022 into which a fuel, an oxidant, or cooling water is introduced, and the fluid 021 is the fluid. It is introduced into the fuel cell main body through the introduction hole 022, is distributed and supplied to the fluid flow path groove 024 through the inlet side fluid header 023, and contributes to the cell reaction and cooling of the fuel cell. After that, the remaining fuel or oxidant, or the cooling water that has absorbed the heat generated during power generation and becomes hot water is collected in the outlet side fluid header 025 and discharged to the outside of the fuel cell main body through the fluid discharge hole 026. Has become.

【0007】(4)従来の固体高分子電解質燃料電池の
構成 図6に、従来の内部マニホールド型、または内部ヘッダ
型の固体高分子電解質燃料電池の構成例を示す。燃料電
池に導入される純水素燃料、又は酸化剤は、図4に示さ
れるような外部に備えられた加湿装置015,016に
より一旦加湿され、加湿された純水素燃料、又は酸化剤
として燃料電池に供給される。燃料電池本体は、図5に
示したような内部マニホールド型、または内部ヘッダ型
のセパレータに電極接合体を挟み、その背後に冷却水を
導くための冷却水セパレータを配した構成となってい
る。加湿された純水素燃料021A、又は加湿された酸
化剤021Bは、各々純水素燃料ガスセパレータ020
A、または酸化剤ガスセパレータ020Bに設けられた
純水素燃料流路溝024A、酸化剤流路溝024Bを通
じて各々電極接合体031の表面に設けられたアノード
極032、カソード極033に各々分配、供給され電池
反応に寄与する。電池発熱は、純水素燃料ガスセパレー
タ020Aの背後に配された冷却水セパレータ034の
冷却水導入孔035から導入される冷却水流路溝036
を流れる冷却水037に吸収され燃料電池本体の冷却に
寄与するようになっている。その後、残存した純水素燃
料021A、又は酸化剤021B、あるいは発電時の電
池発熱を吸収し温水となった冷却水037は、各々、各
排出孔026A、026B、038を通じて燃料電池本
体外に排出されるようになっている。
(4) Configuration of Conventional Solid Polymer Electrolyte Fuel Cell FIG. 6 shows a configuration example of a conventional internal manifold type or internal header type solid polymer electrolyte fuel cell. The pure hydrogen fuel or the oxidant introduced into the fuel cell is once humidified by the humidifiers 015, 016 provided outside as shown in FIG. 4, and the pure hydrogen fuel or the oxidant is used as the fuel cell. Is supplied to. The fuel cell body has a structure in which an electrode assembly is sandwiched between internal manifold type or internal header type separators as shown in FIG. 5, and a cooling water separator for guiding cooling water is arranged behind the electrode assembly. The humidified pure hydrogen fuel 021A or the humidified oxidant 021B is the pure hydrogen fuel gas separator 020, respectively.
A or distribution and supply to the anode electrode 032 and the cathode electrode 033 provided on the surface of the electrode assembly 031 through the pure hydrogen fuel flow channel 024A and the oxidant flow channel 024B provided in the oxidant gas separator 020B, respectively. And contributes to the battery reaction. The heat generated in the cell is caused by the cooling water passage groove 036 introduced through the cooling water introduction hole 035 of the cooling water separator 034 arranged behind the pure hydrogen fuel gas separator 020A.
It is absorbed by the cooling water 037 flowing through the fuel cell and contributes to the cooling of the fuel cell body. After that, the remaining pure hydrogen fuel 021A, the oxidant 021B, or the cooling water 037 that absorbs the heat generated by the battery during power generation and becomes hot water is discharged to the outside of the fuel cell body through the discharge holes 026A, 026B, and 038, respectively. It has become so.

【0008】[0008]

【発明が解決しようとする課題】このような従来の固体
高分子電解質燃料電池では、図4に示したように、純水
素燃料011及び酸化剤012を加湿するために、燃料
電池本体外に電気ヒータ013,014を備えた加湿装
置015,016を設けなければならず、システム全体
が非常に大規模なものになってしまっている。また、燃
料電池系内へ熱エネルギーを加えていながらも、燃料電
池系内から熱エネルギーが排出されるシステムになって
おり、エネルギーの利用効率に大きな問題がある。
In such a conventional solid polymer electrolyte fuel cell, as shown in FIG. 4, in order to humidify the pure hydrogen fuel 011 and the oxidant 012, an electric power is provided outside the fuel cell main body. The humidifiers 015 and 016 equipped with the heaters 013 and 014 must be provided, and the entire system has become very large. Further, although the heat energy is applied to the inside of the fuel cell system, the heat energy is discharged from the inside of the fuel cell system, and there is a big problem in energy utilization efficiency.

【0009】[0009]

【課題を解決するための手段】前述した課題を解決する
ため、本発明は、高分子イオン交換膜を両側から電極で
挟んでなる電極接合体を前記電極側から挟むと共に燃料
もしくは酸化剤が流れる流路溝を前記電極側に形成した
配流板を多孔性体で構成し、前記配流板の外側となる背
面に冷却水を流すことにより、電池発熱で気化した一部
の前記冷却水を前記配流板を通り抜けさせて、前記流路
溝を流れる前記燃料もしくは前記酸化剤を加湿して前記
高分子イオン交換膜を加湿、あるいは、前記冷却水の一
部を液体のまま前記配流板を通り抜けさせて、前記電極
接合体に加水して前記高分子イオン交換膜を加湿するこ
とで、燃料電池の高分子イオン交換膜の加湿方法を構成
したのである。
In order to solve the above problems, the present invention sandwiches an electrode assembly formed by sandwiching a polymer ion-exchange membrane between electrodes from both sides, and at the same time sandwiching the electrode assembly from the electrode side, fuel or an oxidant flows. The distribution plate having the flow path groove formed on the electrode side is made of a porous body, and the cooling water is flowed to the outer surface of the distribution plate so that a part of the cooling water vaporized by the heat generation of the battery is distributed. After passing through the plate, the fuel or the oxidant flowing in the flow channel is humidified to humidify the polymer ion exchange membrane, or a part of the cooling water is passed through the distribution plate as a liquid. The method for humidifying the polymer ion exchange membrane of the fuel cell is configured by adding water to the electrode assembly to humidify the polymer ion exchange membrane.

【0010】[0010]

【作用】前述した構成による燃料電池の高分子イオン交
換膜の加湿方法では、冷却水が電池の発熱を吸収してそ
の一部が気化すると、多孔性の配流板を通り抜けるの
で、流路溝を流れる燃料もしくは酸化剤が加湿されて、
高分子イオン交換膜は加湿される。また、冷却水の一部
が液体のまま多孔性の配流板を通り抜けると、この通り
抜けた冷却水は、電極接合体を加水するので、高分子イ
オン交換膜は加湿される。
In the method of humidifying the polymer ion-exchange membrane of the fuel cell having the above-described structure, when the cooling water absorbs the heat generated by the cell and a part of it vaporizes, it passes through the porous flow distribution plate, so The flowing fuel or oxidant is humidified,
The polymer ion exchange membrane is humidified. Further, when a part of the cooling water passes through the porous flow distribution plate as a liquid, the cooling water that has passed through water hydrates the electrode assembly, so that the polymer ion exchange membrane is humidified.

【0011】[0011]

【実施例】本発明による燃料電池の高分子イオン交換膜
の加湿方法の一実施例を図面に基づいて説明する。な
お、図1には、その主要部の概略構成を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for humidifying a polymer ion exchange membrane of a fuel cell according to the present invention will be described with reference to the drawings. Note that FIG. 1 shows a schematic configuration of the main part.

【0012】図1に示すように、フッ素樹脂系の高分子
イオン交換膜である電解質34の図中、右側には、アノ
ード極33が設けられ、電解質34の図中、左側には、
カソード極35が設けられており、これら電解質34、
アノード極33、カソード極35などで電極接合体が構
成されている。
As shown in FIG. 1, an anode 33 is provided on the right side of the electrolyte 34, which is a fluororesin-based polymer ion-exchange membrane, and an electrolyte electrode 34 is provided on the left side of the electrolyte 34.
A cathode electrode 35 is provided, and these electrolytes 34,
The anode electrode 33, the cathode electrode 35, and the like form an electrode assembly.

【0013】アノード極33の図中、右側には、導電性
を有する多孔性の燃料配流板32が設けられ、カソード
極35の図中、左側には、導電性を有する多孔性の酸化
剤配流板36が設けられている。燃料配流板32のアノ
ード極33との対向面には、燃料である純水素が流れる
燃料流路溝38が複数形成され、酸化剤配流板36のカ
ソード極35との対向面には、酸化剤が流れる酸化剤流
路溝40が複数形成されている。
A conductive porous fuel distribution plate 32 is provided on the right side of the anode 33 in the figure, and a conductive porous oxidant distribution is provided on the left side of the cathode 35 in the figure. A plate 36 is provided. A plurality of fuel flow passage grooves 38, through which pure hydrogen as a fuel flows, are formed on the surface of the fuel distribution plate 32 facing the anode 33, and the oxidizer distribution plate 36 is formed on the surface facing the cathode 35 of the oxidizer distribution plate 36. A plurality of oxidant flow channel grooves 40 through which the oxygen flows are formed.

【0014】燃料配流板32の図中、右側には、導電性
を有する冷却水セパレータ31が設けられ、酸化剤配流
板37の図中、左側にも、導電性を有する冷却水セパレ
ータ37が設けられている。冷却水セパレータ31の燃
料配流板32との対向面には、冷却水が流れる冷却水流
路溝39が複数形成され、冷却水セパレータ37の酸化
剤配流板36との対向面にも、冷却水が流れる冷却水流
路溝41が複数形成されている。
A conductive cooling water separator 31 is provided on the right side of the fuel distribution plate 32 in the drawing, and a conductive cooling water separator 37 is also provided on the left side of the oxidizer distribution plate 37 in the drawing. Has been. A plurality of cooling water flow channels 39 through which cooling water flows are formed on the surface of the cooling water separator 31 facing the fuel distribution plate 32, and the cooling water also flows on the surface of the cooling water separator 37 facing the oxidant distribution plate 36. A plurality of flowing cooling water flow passage grooves 41 are formed.

【0015】このような燃料電池では、冷却水流路溝3
9を流れる冷却水は、電池発熱を吸収して、その一部が
蒸気となって多孔性の燃料配流板32を通り抜け、燃料
流路溝38を流れる純水素を加湿し、アノード極33を
介して電解質34を加湿する。また、冷却水の一部は、
液状のまま多孔性の燃料配流板32に浸透し、アノード
極33まで到達し、電解質34を加湿する。
In such a fuel cell, the cooling water passage groove 3
The cooling water flowing through 9 absorbs the heat generated by the cell, and a part of it becomes vapor to pass through the porous fuel distribution plate 32, humidify the pure hydrogen flowing through the fuel flow channel 38, and pass through the anode 33. The electrolyte 34 is humidified. Also, part of the cooling water
It permeates the porous fuel distribution plate 32 in a liquid state, reaches the anode 33, and humidifies the electrolyte 34.

【0016】これと同様に、冷却水流路溝41を流れる
冷却水は、電池発熱を吸収して、その一部が蒸気となっ
て多孔性の酸化剤配流板36を通り抜け、酸化剤流路溝
40を流れる酸化剤を加湿し、カソード極35を介して
電解質を加湿する。また、冷却水の一部は、液状のまま
多孔性の酸化剤配流板36に浸透し、カソード極35ま
で到達し、電解質34を加湿する。
Similarly, the cooling water flowing through the cooling water flow channel 41 absorbs heat generated by the battery, and a part of the cooling water passes through the porous oxidant flow distribution plate 36 to form the oxidant flow channel groove. The oxidant flowing through 40 is humidified, and the electrolyte is humidified through the cathode electrode 35. In addition, a part of the cooling water permeates the porous oxidant distribution plate 36 in a liquid state, reaches the cathode electrode 35, and humidifies the electrolyte 34.

【0017】前述した実施例では、冷却水セパレータ3
1,37に冷却水流路溝39,41を形成したが、配流
板に冷却水流路溝を形成しても良い。このような他の実
施例を図2に基づいて説明する。なお、図2には、その
概略構成を示す。但し、前述した実施例と同様な部分に
ついては、同一の符号を付けて説明を省略する。
In the embodiment described above, the cooling water separator 3
Although the cooling water flow passage grooves 39 and 41 are formed in the wirings 1 and 37, the cooling water flow passage grooves may be formed in the flow distribution plate. Such another embodiment will be described with reference to FIG. Note that FIG. 2 shows a schematic configuration thereof. However, the same parts as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0018】図2に示すように、平板状の冷却水セパレ
ータ42と対向する燃料配流板43の対向面には、冷却
水流路溝46が複数形成され、平板状の冷却水セパレー
タ45と対向する酸化剤配流板44の対向面にも、冷却
水流路溝47が複数形成されている。
As shown in FIG. 2, a plurality of cooling water flow passage grooves 46 are formed on the facing surface of the fuel distribution plate 43 facing the flat cooling water separator 42, and the cooling water passage grooves 46 face the flat cooling water separator 45. A plurality of cooling water flow channel grooves 47 are also formed on the opposing surface of the oxidizer flow distribution plate 44.

【0019】従って、前述した実施例と同様に、冷却水
流路溝46,47を流れる冷却水は、多孔性のこれら配
流板43,44を通り抜けて、純水素及び酸化剤を加湿
すると共に、電解質34を加湿する。
Therefore, as in the above-described embodiment, the cooling water flowing through the cooling water flow channels 46 and 47 passes through these porous flow distribution plates 43 and 44 to humidify pure hydrogen and the oxidizer, and at the same time, the electrolyte Humidify 34.

【0020】[0020]

【発明の効果】前述したように本発明による燃料電池の
高分子イオン交換膜の加湿方法では、気化した冷却水を
多孔性の配流板を通り抜けさせて、燃料もしくは酸化剤
を加湿して、高分子イオン交換膜を加湿、あるいは、冷
却水の一部を液体のまま多孔性の配流板を通り抜けさせ
て、電極接合体に加水して、高分子イオン交換膜を加湿
するので、冷却水が吸収した熱エネルギーをそのまま加
湿に用いることができ、熱エネルギーを有効利用するこ
とができる。また、加湿装置や電気ヒータが不要とな
り、システム全体を大幅に小型化することができる。
As described above, in the method for humidifying a polymer ion exchange membrane of a fuel cell according to the present invention, vaporized cooling water is passed through a porous flow distribution plate to humidify a fuel or an oxidizer, thereby increasing the temperature. The molecular ion exchange membrane is humidified, or a part of the cooling water is passed through the porous flow distribution plate as a liquid to add water to the electrode assembly to humidify the polymer ion exchange membrane, so the cooling water is absorbed. The heat energy can be used for humidification as it is, and the heat energy can be effectively used. Further, the humidifying device and the electric heater are not required, and the entire system can be significantly downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料電池の高分子イオン交換膜の
加湿方法を応用した一実施例の主要部概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of a main part of an embodiment to which a method for humidifying a polymer ion exchange membrane of a fuel cell according to the present invention is applied.

【図2】その他の実施例の主要部概略構成図である。FIG. 2 is a schematic configuration diagram of a main part of another embodiment.

【図3】固体高分子電解質燃料電池の発電原理を示す概
略図である。
FIG. 3 is a schematic diagram showing a power generation principle of a solid polymer electrolyte fuel cell.

【図4】従来の固体高分子電解質燃料電池の運転システ
ムを示す概略図である。
FIG. 4 is a schematic diagram showing an operating system of a conventional solid polymer electrolyte fuel cell.

【図5】従来の内部マニホールド型または内部ヘッダ型
の固体高分子電解質燃料電池のガスセパレータの外観図
である。
FIG. 5 is an external view of a gas separator of a conventional internal manifold type or internal header type solid polymer electrolyte fuel cell.

【図6】従来の内部マニホールド型または内部ヘッダ型
の固体高分子電解質燃料電池の構成を表す分解斜視図で
ある。
FIG. 6 is an exploded perspective view showing the configuration of a conventional internal manifold type or internal header type solid polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

31 冷却水セパレータ 32 燃料配流板 33 アノード極 34 電解質 35 カソード極 36 酸化剤配流板 37 冷却水セパレータ 38 燃料流路溝 39 冷却水流路溝 40 酸化剤流路溝 41 冷却水流路溝 31 Cooling Water Separator 32 Fuel Distribution Plate 33 Anode Electrode 34 Electrolyte 35 Cathode Electrode 36 Oxidizer Distribution Plate 37 Cooling Water Separator 38 Fuel Flow Groove 39 Cooling Water Flow Groove 40 Oxidant Flow Groove 41 Cooling Water Flow Groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高分子イオン交換膜を両側から電極で挟
んでなる電極接合体を前記電極側から挟むと共に燃料も
しくは酸化剤が流れる流路溝を前記電極側に形成した配
流板を多孔性体で構成し、前記配流板の外側となる背面
に冷却水を流すことにより、電池発熱で気化した一部の
前記冷却水を前記配流板を通り抜けさせて、前記流路溝
を流れる前記燃料もしくは前記酸化剤を加湿して前記高
分子イオン交換膜を加湿、あるいは、前記冷却水の一部
を液体のまま前記配流板を通り抜けさせて、前記電極接
合体に加水して前記高分子イオン交換膜を加湿すること
を特徴とする燃料電池の高分子イオン交換膜の加湿方
法。
1. A flow distribution plate having a flow path groove formed on the electrode side and having a channel groove through which a fuel or an oxidant flows and an electrode assembly formed by sandwiching a polymer ion exchange membrane between electrodes on both sides from the electrode side. By flowing cooling water to the outer surface of the flow distribution plate, a portion of the cooling water vaporized by the heat generation of the battery is passed through the flow distribution plate, and the fuel flowing through the flow channel or the The polymer ion exchange membrane is humidified by oxidizing an oxidant, or a part of the cooling water is allowed to pass through the flow distribution plate as a liquid and water is added to the electrode assembly to form the polymer ion exchange membrane. A method for humidifying a polymer ion exchange membrane of a fuel cell, which comprises humidifying.
JP5126751A 1993-05-28 1993-05-28 Humidification of high polymer ion exchange film of fuel cell Withdrawn JPH06338338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5126751A JPH06338338A (en) 1993-05-28 1993-05-28 Humidification of high polymer ion exchange film of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5126751A JPH06338338A (en) 1993-05-28 1993-05-28 Humidification of high polymer ion exchange film of fuel cell

Publications (1)

Publication Number Publication Date
JPH06338338A true JPH06338338A (en) 1994-12-06

Family

ID=14943017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5126751A Withdrawn JPH06338338A (en) 1993-05-28 1993-05-28 Humidification of high polymer ion exchange film of fuel cell

Country Status (1)

Country Link
JP (1) JPH06338338A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037920A1 (en) * 1995-05-25 1996-11-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method for its control
EP0788172A1 (en) 1996-02-05 1997-08-06 Matsushita Electric Industrial Co., Ltd. Fuel cell for mounting on equipment
JPH11317238A (en) * 1997-12-22 1999-11-16 Aqueous Reserch:Kk Fuel cell system for vehicle
WO1999057778A3 (en) * 1998-04-30 2000-03-02 Emitec Emissionstechnologie Method for wetting at least one of the surfaces of an electrolyte in a fuel cell
US6238814B1 (en) 1997-12-22 2001-05-29 Kabushikikaisha Equos Research Fuel cell system
JP2002015760A (en) * 1997-12-22 2002-01-18 Equos Research Co Ltd Fuel cell device
US6511765B2 (en) 1997-12-22 2003-01-28 Kabusikikaisha Equos Research Fuel cell system
EP1286404A2 (en) * 2001-08-21 2003-02-26 Kabushiki Kaisha Equos Research Fuel cell
JP2003059513A (en) * 2002-02-12 2003-02-28 Equos Research Co Ltd Separator for fuel cell
KR20030018078A (en) * 2001-08-27 2003-03-06 현대자동차주식회사 Structure for humidifying hydrogen in fuel cell stack
US6537692B1 (en) 1999-11-17 2003-03-25 Kabushikikaisha Equos Research Fuel cell apparatus
JP2004503068A (en) * 2000-07-07 2004-01-29 アーベー ボルボ Solid polymer fuel cell structure
JP2005501374A (en) * 2001-04-05 2005-01-13 ユーティーシー フューエル セルズ,エルエルシー Method and apparatus for operation of a battery stack assembly at sub-freezing temperatures
JP2005129431A (en) * 2003-10-27 2005-05-19 Toyota Motor Corp Fuel cell and gas separator for fuel cell
EP1612875A1 (en) * 2003-03-05 2006-01-04 Toyota Jidosha Kabushiki Kaisha Fuel cell and oxidant distribution plate for fuel cell
JP2007504623A (en) * 2003-09-05 2007-03-01 ユーティーシー フューエル セルズ,エルエルシー Method for operating a fuel cell system under freezing conditions
JP2007123123A (en) * 2005-10-28 2007-05-17 Toshiba Fuel Cell Power Systems Corp Solid polymer type fuel cell stack
JP2007524961A (en) * 2003-06-19 2007-08-30 ユーティーシー フューエル セルズ,エルエルシー PEM fuel cell passive water management
JP2009522731A (en) * 2005-12-30 2009-06-11 ユーティーシー パワー コーポレイション Bubble control of fuel cell refrigerant
US7776491B2 (en) 2005-03-11 2010-08-17 Kabushikaisha Equos Research Separator unit and fuel cell stack
US7794863B2 (en) 2004-01-22 2010-09-14 Kabushikikaisha Equos Research Fuel cell
JP2011192617A (en) * 2010-03-17 2011-09-29 Hitachi Ltd Solid polymer fuel cell
US8039163B2 (en) 2004-03-30 2011-10-18 Kabushikikaisha Equos Research Separator and fuel cell using that separator
US8129062B2 (en) 2002-04-15 2012-03-06 Panasonic Corporation Fuel cell system operation method
US8367269B2 (en) 2005-03-11 2013-02-05 Kabushikikaisha Equos Research Separator unit

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037920A1 (en) * 1995-05-25 1996-11-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method for its control
EP0788172A1 (en) 1996-02-05 1997-08-06 Matsushita Electric Industrial Co., Ltd. Fuel cell for mounting on equipment
US6057051A (en) * 1996-02-05 2000-05-02 Matsushita Electric Industrial Co., Ltd. Miniaturized fuel cell assembly
JP4552236B2 (en) * 1997-12-22 2010-09-29 株式会社エクォス・リサーチ Fuel cell device
JPH11317238A (en) * 1997-12-22 1999-11-16 Aqueous Reserch:Kk Fuel cell system for vehicle
JP4501165B2 (en) * 1997-12-22 2010-07-14 株式会社エクォス・リサーチ Fuel cell system for vehicles
US6238814B1 (en) 1997-12-22 2001-05-29 Kabushikikaisha Equos Research Fuel cell system
JP2002015760A (en) * 1997-12-22 2002-01-18 Equos Research Co Ltd Fuel cell device
US6511765B2 (en) 1997-12-22 2003-01-28 Kabusikikaisha Equos Research Fuel cell system
WO1999057778A3 (en) * 1998-04-30 2000-03-02 Emitec Emissionstechnologie Method for wetting at least one of the surfaces of an electrolyte in a fuel cell
US6630258B1 (en) 1998-04-30 2003-10-07 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Process for wetting at least one of the surfaces of an electrolyte in a fuel cell
US6537692B1 (en) 1999-11-17 2003-03-25 Kabushikikaisha Equos Research Fuel cell apparatus
JP2004503068A (en) * 2000-07-07 2004-01-29 アーベー ボルボ Solid polymer fuel cell structure
JP4663960B2 (en) * 2001-04-05 2011-04-06 ユーティーシー パワー コーポレイション Method and apparatus for operation of a battery stack assembly at sub-freezing temperatures
JP2005501374A (en) * 2001-04-05 2005-01-13 ユーティーシー フューエル セルズ,エルエルシー Method and apparatus for operation of a battery stack assembly at sub-freezing temperatures
EP1286404A2 (en) * 2001-08-21 2003-02-26 Kabushiki Kaisha Equos Research Fuel cell
EP1286404A3 (en) * 2001-08-21 2006-11-15 Kabushiki Kaisha Equos Research Fuel cell
US7153605B2 (en) 2001-08-21 2006-12-26 Kabushikikaisha Equos Research Fuel cell cooled by latent heat of water evaporation
KR20030018078A (en) * 2001-08-27 2003-03-06 현대자동차주식회사 Structure for humidifying hydrogen in fuel cell stack
JP2003059513A (en) * 2002-02-12 2003-02-28 Equos Research Co Ltd Separator for fuel cell
US8129062B2 (en) 2002-04-15 2012-03-06 Panasonic Corporation Fuel cell system operation method
EP1612875A4 (en) * 2003-03-05 2008-05-28 Toyota Motor Co Ltd Fuel cell and oxidant distribution plate for fuel cell
EP1612875A1 (en) * 2003-03-05 2006-01-04 Toyota Jidosha Kabushiki Kaisha Fuel cell and oxidant distribution plate for fuel cell
US7820334B2 (en) 2003-03-05 2010-10-26 Aisin Seiki Kabushiki Kaisha Fuel cell and oxidant distribution plate for fuel cell
JP2007524961A (en) * 2003-06-19 2007-08-30 ユーティーシー フューエル セルズ,エルエルシー PEM fuel cell passive water management
JP2007504623A (en) * 2003-09-05 2007-03-01 ユーティーシー フューエル セルズ,エルエルシー Method for operating a fuel cell system under freezing conditions
JP2005129431A (en) * 2003-10-27 2005-05-19 Toyota Motor Corp Fuel cell and gas separator for fuel cell
US7794863B2 (en) 2004-01-22 2010-09-14 Kabushikikaisha Equos Research Fuel cell
US8039163B2 (en) 2004-03-30 2011-10-18 Kabushikikaisha Equos Research Separator and fuel cell using that separator
US7776491B2 (en) 2005-03-11 2010-08-17 Kabushikaisha Equos Research Separator unit and fuel cell stack
US8367269B2 (en) 2005-03-11 2013-02-05 Kabushikikaisha Equos Research Separator unit
JP2007123123A (en) * 2005-10-28 2007-05-17 Toshiba Fuel Cell Power Systems Corp Solid polymer type fuel cell stack
JP2009522731A (en) * 2005-12-30 2009-06-11 ユーティーシー パワー コーポレイション Bubble control of fuel cell refrigerant
JP2011192617A (en) * 2010-03-17 2011-09-29 Hitachi Ltd Solid polymer fuel cell

Similar Documents

Publication Publication Date Title
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
US6045934A (en) Solid polymer electrolyte fuel cell
JP3203150B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell system
JPH08273687A (en) Supply gas humidifier of fuel cell
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
JP3249282B2 (en) Solid polymer electrolyte fuel cell
JPH10284096A (en) Solid high polymer electrolyte fuel cell
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
JP3147518B2 (en) Cell structure of solid polymer electrolyte fuel cell
JP2002170584A (en) Solid polymer type fuel battery
EP1935046B1 (en) Modified fuel cells with internal humidification and/or temperature control systems
JP3839978B2 (en) Polymer electrolyte fuel cell system
CA2403156C (en) A fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP2000277128A (en) Solid polymer type fuel cell
JPH06124722A (en) Heating and humidifying device and fuel cell
JPH06231788A (en) Solid high polymer type fuel cell
JPH06119931A (en) Device of humidifying system for fuel cell
JP2002260708A (en) Stackes structure of fuel cell
JP4739880B2 (en) Polymer electrolyte fuel cell
JPH0935737A (en) Solid polymer electrolyte fuel cell
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
JPH06338332A (en) Gas separator for solid high molecular electrolytic fuel cell
JP3736475B2 (en) Fuel cell
JPH11111311A (en) Solid polymer type fuel cell
JP3981476B2 (en) Fuel cell stack

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801