JP2002170584A - Solid polymer type fuel battery - Google Patents

Solid polymer type fuel battery

Info

Publication number
JP2002170584A
JP2002170584A JP2000363278A JP2000363278A JP2002170584A JP 2002170584 A JP2002170584 A JP 2002170584A JP 2000363278 A JP2000363278 A JP 2000363278A JP 2000363278 A JP2000363278 A JP 2000363278A JP 2002170584 A JP2002170584 A JP 2002170584A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
humidification
reaction
humidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000363278A
Other languages
Japanese (ja)
Other versions
JP4453192B2 (en
Inventor
Yoshiaki Enami
義晶 榎並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000363278A priority Critical patent/JP4453192B2/en
Publication of JP2002170584A publication Critical patent/JP2002170584A/en
Application granted granted Critical
Publication of JP4453192B2 publication Critical patent/JP4453192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an off-gas heating device excellent in humidification performance. SOLUTION: A humidifier comprising first and second humidification blocks 4 and 5 is connected to a fuel battery main body 7 through a spacer 6. The air, which is a reactive gas, is allowed to flow from a reactive gas 11 to the first humidification block 4 and further to the second humidification block 5, thus it is supplied to an air pole of the fuel battery main body. The off gas containing moisture discharged from the air pole is guided into the humidifier for flowing in the direction opposite to the reactive gas, then exhausted outside through a off gas outlet 14. The cooling water which becomes hot after passing a cooling mechanism of the fuel battery main body 7 is guided into the second humidification block 5, for heating the humidifier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体高分子形燃料電
池に係わり、特に燃料電池本体に供給する反応ガスの加
湿装置の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell, and more particularly to a structure of a humidifier for a reaction gas supplied to a fuel cell body.

【0002】[0002]

【従来の技術】固体高分子形燃料電池の燃料電池本体に
使用される電解質膜(イオン交換膜)は乾燥すると導電
性が低下し電解質としての機能を失う。したがって、固
体高分子形燃料電池においては電解質膜を一定の含水状
態に保つ必要がある。このため燃料電池本体に加湿装置
を付設し、この加湿装置によって加湿した反応ガスを燃
料電池本体へ供給して電解質膜を湿潤に保持する方法が
一般に採られている。
2. Description of the Related Art When an electrolyte membrane (ion exchange membrane) used in a fuel cell body of a polymer electrolyte fuel cell is dried, its conductivity is reduced and the function as an electrolyte is lost. Therefore, in the polymer electrolyte fuel cell, it is necessary to keep the electrolyte membrane in a certain water-containing state. For this reason, a method is generally adopted in which a humidifier is attached to the fuel cell main body, and the reaction gas humidified by the humidifier is supplied to the fuel cell main body to keep the electrolyte membrane wet.

【0003】反応ガスの加湿方法には、加湿タンクに保
持した温水中に反応ガスを通し、バブリングさせること
により加湿するバブリング法、水蒸気透過膜を介して反
応ガスと温水、例えば燃料電池本体の冷却に用いられた
冷却水を接触させて加湿する膜加湿法、さらには、特開
平6−132038号に開示されているごとく、燃料電池本体
を通流する前の反応ガスと燃料電池本体を通流した反応
後のガス、すなわちオフガスを水蒸気透過膜を介して接
触させて反応ガスを加湿するオフガス加湿法等がある。
これらのうち膜加湿法およびオフガス加湿法において
は、燃料電池本体と加湿装置を一体に形成して構成する
ことも可能であり、また分離して構成することも可能で
あるが、分離するとその間の接続部を別途保温する必要
が生じるため、通常、一体に形成して構成されている。
The humidifying method of the reaction gas includes a bubbling method in which the reaction gas is humidified by passing the reaction gas through hot water held in a humidification tank and bubbling the reaction gas. The membrane humidification method of contacting and humidifying the cooling water used in the method, and further, as disclosed in JP-A-6-132038, the reaction gas before flowing through the fuel cell main body and the fuel gas flowing through the fuel cell main body. There is an off-gas humidification method of humidifying the reaction gas by bringing the reacted gas, that is, the off-gas, into contact via a water vapor permeable membrane.
Of these, in the membrane humidification method and the off-gas humidification method, the fuel cell main body and the humidifier can be formed integrally, and can be configured separately. Since it is necessary to separately keep the connection portion warm, the connection portion is usually formed integrally.

【0004】燃料電池本体と加湿装置を一体化してオフ
ガス加湿法を適用すれば、オフガスに含まれる電池反応
に伴う生成水と反応熱を、燃料電池本体へ供給する反応
ガスへとリサイクルすることができる。したがって、加
湿用の水を外部より供給する必要がなく、また加湿時に
多量の気化熱を奪われることがないので熱効率良く利用
されることとなる。すなわち、オフガス加湿器は、熱と
水蒸気を同時に移動させる熱交換器の一種とみることが
でき、燃料電池本体へ供給する反応ガスと反応後のオフ
ガスがガス加湿器の内部を対向流として流れるよう構成
すれば、加湿効率をより高めることができる。
If the off-gas humidification method is applied by integrating the fuel cell body and the humidifier, the water produced by the cell reaction contained in the off-gas and the reaction heat can be recycled into the reaction gas supplied to the fuel cell body. it can. Therefore, it is not necessary to supply water for humidification from the outside, and a large amount of heat of vaporization is not deprived during humidification. In other words, the off-gas humidifier can be regarded as a type of heat exchanger that transfers heat and water vapor at the same time, and the reaction gas supplied to the fuel cell body and the off-gas after the reaction flow inside the gas humidifier as a counter flow. If it comprises, humidification efficiency can be raised more.

【0005】図3は、上記のごときオフガス加湿法に用
いられる加湿器の加湿セルの基本構成例を示す分解斜視
図である。図に見られるように、加湿セルは、両面に拡
散層3を配した水蒸気透過膜1をセパレータ2で挟持す
る構造よりなり、この構造の加湿セルを複数個積層する
ことにより加湿器が構成される。セパレータ2の一方の
主面には燃料電池本体へ供給する反応ガスを通流させる
流路が、またもう一方の主面には反応後のオフガスを通
流させる流路が形成されており、セパレータ2および水
蒸気透過膜1の周縁部には、反応ガス、オフガス、なら
びに温度制御用の冷却水を導入、排出するための三組の
導入用通流孔、排出用通流孔が備えられている。本構成
において、水蒸気透過膜1を挟む一対のセパレータ2の
水蒸気透過膜1側に形成された流路の一方に反応ガスを
通流させ、もう一方に反応後のオフガスを通流させるこ
とによって、反応ガスの加湿処理が行われる。
FIG. 3 is an exploded perspective view showing a basic configuration example of a humidifying cell of a humidifier used in the above-described off-gas humidifying method. As shown in the figure, the humidifying cell has a structure in which a water vapor permeable membrane 1 having diffusion layers 3 disposed on both sides thereof is sandwiched between separators 2, and a humidifier is formed by stacking a plurality of humidifying cells having this structure. You. A flow path through which a reaction gas supplied to the fuel cell body flows is formed on one main surface of the separator 2, and a flow path through which an off-gas after the reaction flows is formed on the other main surface. 2 and a peripheral portion of the water vapor permeable membrane 1 are provided with three sets of introduction flow holes and discharge flow holes for introducing and discharging a reaction gas, an off gas, and cooling water for temperature control. . In this configuration, the reaction gas flows through one of the flow paths formed on the water vapor permeable membrane 1 side of the pair of separators 2 sandwiching the water vapor permeable membrane 1, and the reacted off gas flows through the other, The humidification of the reaction gas is performed.

【0006】[0006]

【発明が解決しようとする課題】上記のように、従来の
固体高分子形燃料電池においては、燃料電池本体へ供給
する反応ガスをオフガス加湿法を用いて加湿することに
よって燃料電池本体に使用する電解質膜を湿潤に保持
し、導電性を維持している。このようにオフガス加湿法
を用いれば、膜加湿法のように外部から冷却水を導入す
る必要がないので構成が簡単化であり、熱利用の面から
も効率的であるが、なお、以下のごとき問題点が残存す
る。
As described above, in the conventional polymer electrolyte fuel cell, the reaction gas supplied to the fuel cell body is humidified by an off-gas humidification method to be used in the fuel cell body. The electrolyte membrane is kept moist and conductive. The use of the off-gas humidification method does not require the introduction of cooling water from the outside as in the case of the film humidification method, so that the configuration is simplified and efficient in terms of heat utilization. The problem remains.

【0007】すなわち、オフガス加湿法で加湿源として
用いられるオフガス中に含まれる水蒸気量ならびに熱量
は、膜加湿法で用いられる冷却水に比べて少量であるた
め、オフガス加湿法の加湿能力は膜加湿法に比べて低
い。したがって、膜加湿法と同等の加湿性能を得るため
には、水蒸気透過膜の面積を大きくする必要があり、装
置が大型になるという難点がある。
That is, since the amount of water vapor and the amount of heat contained in the off-gas used as a humidifying source in the off-gas humidification method are smaller than the cooling water used in the film humidification method, the humidification capacity of the off-gas humidification method is film humidification. Lower than the law. Therefore, in order to obtain humidification performance equivalent to that of the membrane humidification method, it is necessary to increase the area of the water vapor permeable membrane, and there is a disadvantage that the apparatus becomes large.

【0008】本発明はこのような技術の現状を考慮して
なされたもので、本発明の目的は、オフガス加湿法によ
る反応ガスの加湿がより効果的に行われ、燃料電池本体
の電解質膜が湿潤に保持されて、加湿装置を大型化しな
くとも所定の加湿性能が得られる固体高分子形燃料電池
を提供することにある。
The present invention has been made in consideration of the current state of the art, and an object of the present invention is to more effectively humidify a reaction gas by an off-gas humidification method so that an electrolyte membrane of a fuel cell main body is formed. An object of the present invention is to provide a polymer electrolyte fuel cell which is kept wet and can obtain a predetermined humidifying performance without increasing the size of a humidifying device.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、水素を含んだ燃料と空気を導
入して電気化学反応により発電する燃料電池本体と、燃
料電池本体に供給する上記の燃料と空気のうち少なくと
もいずれか一方の反応ガスと燃料電池本体を通流した反
応後のガスを水蒸気透過膜を介して接触させて、反応ガ
スを加湿する加湿装置を備える固体高分子形燃料電池に
おいて、(1)上記の加湿装置の少なくとも一部が燃料
電池本体に組み込まれた冷却機構を通流後の冷媒により
加熱されるように構成することとし、(2)例えば、こ
の加湿装置を複数の加湿ブロックの積層体から構成し、
反応ガスをこの積層体の一端から導入して相対する他端
へと複数の加湿ブロックを順次通流させるとともに、反
応後のガスを反応ガスと逆方向に複数の加湿ブロックを
順次通流させ、かつ、冷却機構を通流後の冷媒を、前記
の反応後のガスの通流方向と同一方向に、少なくとも一
つの加湿ブロックを通流させることとする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a fuel cell main body for generating electricity by an electrochemical reaction by introducing a fuel containing hydrogen and air, and supplying the fuel cell main body with the fuel cell main body. A solid polymer having a humidifier for humidifying the reaction gas by contacting at least one of the above-mentioned fuel and air with a reaction gas flowing through the fuel cell body through a water vapor permeable membrane; In the fuel cell, (1) at least a part of the humidifying device is configured to be heated by a refrigerant flowing through a cooling mechanism incorporated in the fuel cell main body. The device is composed of a laminate of a plurality of humidifying blocks,
A reaction gas is introduced from one end of this laminate and a plurality of humidification blocks are sequentially flowed to the other end opposite thereto, and the reacted gas is sequentially flowed through the plurality of humidification blocks in a direction opposite to the reaction gas, In addition, the refrigerant that has flowed through the cooling mechanism flows through at least one humidification block in the same direction as the flow direction of the gas after the reaction.

【0010】(3)さらに、この加湿装置を、反応後の
ガスおよび冷却機構を通流後の冷媒が導入される加湿ブ
ロックを燃料電池本体側に配して、燃料電池本体と一体
に形成することとする。燃料電池本体を通流する前の反
応ガスと燃料電池本体を通流した後の反応後のガスを水
蒸気透過膜を介して接触させて反応ガスを加湿する、い
わゆるオフガス加湿装置の水蒸気透過膜を透過する水分
量は、膜の両側の水蒸気分圧差に比例し、被加湿側のガ
スに含まれる水蒸気量が飽和状態に近づくと透過量が低
下する。また、加湿装置の温度が低いほど飽和水蒸気量
が小さくなるので、温度が低すぎると、加湿側のガスが
凝縮を生じるほどの多量の水分を含んでいても水蒸気透
過膜を通しての水分の透過は生じなくなる。したがっ
て、加湿性能を高めるためには加湿装置の温度を高くす
る必要がある。一方、燃料電池本体においては、組み込
んだ冷却機構に冷媒を供給して電気化学反応に伴う発熱
を除去して所定の運転温度に保持しており、熱を吸収し
て高温となった冷媒が排出される。したがって、上記の
(1)のごとく、燃料電池本体の冷却機構を通流後の冷
媒によりオフガス加湿装置を加熱するように構成すれ
ば、他の加熱手段を導入することなくオフガス加湿装置
が高温に保持され、高い加湿性能が得られることとな
る。
(3) Further, this humidifier is formed integrally with the fuel cell main body by disposing a humidifying block into which the gas after the reaction and the refrigerant flowing through the cooling mechanism are introduced, on the fuel cell main body side. It shall be. The reaction gas before flowing through the fuel cell body and the gas after reaction after flowing through the fuel cell body are brought into contact via a water vapor permeable membrane to humidify the reaction gas. The amount of water that permeates is proportional to the difference between the partial pressures of water vapor on both sides of the membrane, and decreases as the amount of water vapor contained in the gas on the humidification side approaches a saturated state. In addition, since the saturated steam amount decreases as the temperature of the humidifier decreases, if the temperature is too low, even if the gas on the humidifying side contains a large amount of moisture that causes condensation, the permeation of moisture through the steam permeable membrane will not increase. No longer occurs. Therefore, it is necessary to increase the temperature of the humidifier in order to enhance the humidification performance. On the other hand, in the fuel cell main body, the coolant is supplied to the built-in cooling mechanism to remove the heat generated by the electrochemical reaction and to maintain the operating temperature at a predetermined operating temperature. Is done. Therefore, if the off-gas humidifier is heated by the refrigerant flowing through the cooling mechanism of the fuel cell main body as in the above (1), the off-gas humidifier can be heated to a high temperature without introducing another heating means. It will be retained and high humidification performance will be obtained.

【0011】また、オフガス加湿装置は一般に複数の加
湿ブロックの積層体から構成されるが、このとき、上記
の(2)のごとく、被加湿用の反応ガスを積層体の一端
から導入して相対する他端へと通流させ、加湿用の反応
後のガスを反応ガスと逆方向に複数の加湿ブロックを順
次通流させ、かつ、冷却機構を通流後の冷媒を、少なく
とも一つの加湿ブロックを反応後のガスの通流方向と同
一方向に通流させることとすれば、加湿用の反応後のガ
スに含まれる水分量は被加湿用の反応ガスの上流側ほど
が少なく、下流側ほど多くなる。また同時に、被加湿用
の反応ガスの上流側ほど加湿ブロックの温度が低くな
り、下流側ほど温度が高くなる。したがって、加湿用の
ガスに含まれる水分量においても、また温度において
も、下流側ほどより効果的に加湿されることとなる。本
構成のオフガス加湿装置においては、被加湿用の反応ガ
スの上流側は下流側に比べて加湿性能が低いが、上流側
は乾燥した反応ガスの導入口に近いので、被加湿用の反
応ガスに含まれる水分量が少なく、水蒸気分圧が低い。
したがって、加湿性能が低くとも反応ガスは効果的に加
湿される。なお、水蒸気透過膜には、燃料電池本体の電
解質膜と同様のイオン交換膜が通常用いられるが、この
イオン交換膜の水蒸気透過係数は含水量が小さいほど低
下するので、温度が低いほど加湿量の低下が抑えられ
る。また、加湿が進み、含まれる水分量が増加して水蒸
気分圧が上昇した反応ガスの下流側では、高い加湿性能
によって加湿される。本構成のオフガス加湿装置では、
このように反応ガスの上流側から下流側まで効果的に加
湿が行われるので、装置を大型化しなくとも所要の加湿
性能が得られることとなる。
The off-gas humidifier generally comprises a laminated body of a plurality of humidifying blocks. At this time, as described in (2) above, the reaction gas for humidification is introduced from one end of the laminated body to form a relative gas. To the other end to be passed, the gas after the reaction for humidification is sequentially passed through a plurality of humidification blocks in a direction opposite to the reaction gas, and the refrigerant after flowing through the cooling mechanism is at least one humidification block. If it is made to flow in the same direction as the flow direction of the gas after the reaction, the amount of moisture contained in the gas after the reaction for humidification is smaller on the upstream side of the reaction gas for humidification, and is smaller on the downstream side. More. At the same time, the temperature of the humidification block is lower on the upstream side of the reaction gas for humidification, and higher on the downstream side. Therefore, the more downstream, the more effective the humidification, both in the amount of water contained in the humidification gas and in the temperature. In the off-gas humidifier of this configuration, the humidification performance is lower on the upstream side of the reaction gas for humidification than on the downstream side, but the reaction gas for humidification is closer on the upstream side to the inlet of the dried reaction gas. Contains a small amount of water and has a low partial pressure of steam.
Therefore, the reaction gas is effectively humidified even if the humidification performance is low. As the water vapor permeable membrane, an ion exchange membrane similar to the electrolyte membrane of the fuel cell body is usually used, but the water vapor permeability coefficient of this ion exchange membrane decreases as the water content decreases, and the humidification rate decreases as the temperature decreases. Is suppressed. Further, the humidification proceeds, the downstream side of the reaction gas, in which the amount of water contained increases and the partial pressure of water vapor increases, is humidified by high humidification performance. In the off-gas humidifier of this configuration,
As described above, since the humidification is effectively performed from the upstream side to the downstream side of the reaction gas, required humidification performance can be obtained without increasing the size of the apparatus.

【0012】さらに、この加湿装置を、上記(3)のご
とく燃料電池本体と一体に形成すれば、燃料電池本体か
らの冷媒の熱量の損失が微量に抑制されるのみならず、
高温の燃料電池本体からの熱伝導によって加湿装置が加
熱されるので熱効率のよい装置が得られ、さらには、コ
ンパクトに構成されることとなる。
Further, if the humidifier is formed integrally with the fuel cell main body as described in the above (3), not only loss of heat of the refrigerant from the fuel cell main body is suppressed to a very small amount, but also
Since the humidifying device is heated by heat conduction from the high temperature fuel cell main body, a device with high thermal efficiency can be obtained, and furthermore, the device can be made compact.

【0013】[0013]

【発明の実施の形態】図1は、本発明の固体高分子形燃
料電池の実施例における燃料電池本体と加湿装置の反応
ガス系統と水系統を示すフロー図である。本実施例にお
いては、加湿装置は第1加湿ブロック4と第2加湿ブロ
ック5の二つのブロックの積層体として構成されてお
り、複数の電池セルの積層体よりなる燃料電池本体7に
スペーサー6を介して連結されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flow chart showing a fuel cell body and a reaction gas system and a water system of a humidifier in an embodiment of a polymer electrolyte fuel cell according to the present invention. In this embodiment, the humidifying device is configured as a laminate of two blocks, a first humidifier block 4 and a second humidifier block 5, and a spacer 6 is provided on a fuel cell body 7 composed of a laminate of a plurality of battery cells. Are connected via

【0014】本実施例の固体高分子形燃料電池において
は、反応ガスとして供給する空気を空気極からのオフガ
スを用いて加湿し、もう一方の燃料は加湿しないで供給
する方式が採られている。すなわち、反応ガスとしての
空気は、反応ガス入口11より第1加湿ブロック4、さ
らに第2加湿ブロック5へと導入され、それぞれの被加
湿ガス流路を通流したのち空気供給口12より燃料電池
本体7に送られる。反応空気は燃料電池本体7の各電池
セルの空気極へと送られ、燃料極へ送られた燃料ととも
に電気化学反応を起こして発電に寄与する。空気極より
排出される空気極オフガスは、発電に伴って生じた反応
生成水を含んでおり、空気オフガス排出口13を通して
燃料電池本体7より第2加湿ブロック5、さらに第1加
湿ブロック4の加湿ガス流路へと送られ、水蒸気透過膜
1を介して相対する被加湿ガス流路を逆方向に通流する
空気の加湿に用いられたのち、オフガス出口14より排
出される。これに対して、燃料極に送られる燃料は、燃
料供給口15より燃料電池本体7に導入され、各電池セ
ルを通流したのち燃料オフガス排出口16を通して燃料
電池本体7の外部に取出される。
In the polymer electrolyte fuel cell of this embodiment, a method is adopted in which air supplied as a reaction gas is humidified by using off-gas from an air electrode, and the other fuel is supplied without humidification. . That is, air as a reaction gas is introduced from the reaction gas inlet 11 to the first humidification block 4 and further to the second humidification block 5, flows through the respective humidified gas flow paths, and then flows from the air supply port 12 to the fuel cell 12. It is sent to the main body 7. The reaction air is sent to the air electrode of each battery cell of the fuel cell body 7 and causes an electrochemical reaction together with the fuel sent to the fuel electrode to contribute to power generation. The air electrode off-gas discharged from the air electrode contains reaction product water generated during power generation, and the humidification of the second humidification block 5 and the first humidification block 4 from the fuel cell body 7 through the air off-gas discharge port 13. After being sent to the gas flow path and used to humidify the air flowing in the opposite direction through the humidification target gas flow path through the water vapor permeable membrane 1, the air is discharged from the off gas outlet 14. On the other hand, the fuel sent to the fuel electrode is introduced into the fuel cell main body 7 through the fuel supply port 15, flows through each battery cell, and is taken out of the fuel cell main body 7 through the fuel off-gas outlet 16. .

【0015】また、本実施例の構成では、燃料電池本体
7より排出された冷却水が加湿装置の第2加湿ブロック
5へ送られ、加熱に用いられている。すなわち、冷却水
導入口17より燃料電池本体7の内部の冷却機構を流
れ、電気化学反応に伴う発熱を吸収して高温に加熱され
た冷却水は、冷却水排出口18を通して加湿装置の第2
加湿ブロック5へと供給され、第2加湿ブロック5の加
熱に寄与したのち、第2加湿ブロック5に隣接する第1
加湿ブロック4の周縁部の流路を流れて冷却水出口19
より外部に排出される。したがって、燃料電池本体7よ
り排出された冷却水は第2加湿ブロック5の加熱にのみ
用いられ、第1加湿ブロック4の加熱には直接用いられ
ていない。
Further, in the configuration of the present embodiment, the cooling water discharged from the fuel cell main body 7 is sent to the second humidifying block 5 of the humidifying device and used for heating. That is, the cooling water that flows through the cooling mechanism inside the fuel cell body 7 from the cooling water inlet 17 and absorbs the heat generated by the electrochemical reaction and is heated to a high temperature passes through the cooling water outlet 18 to the second humidifier.
After being supplied to the humidification block 5 and contributing to the heating of the second humidification block 5, the first humidification block 5
The cooling water outlet 19 flows through the flow path in the peripheral portion of the humidifying block 4.
It is discharged to the outside. Therefore, the cooling water discharged from the fuel cell main body 7 is used only for heating the second humidification block 5 and is not directly used for heating the first humidification block 4.

【0016】図2は、図1に示した実施例の加湿装置の
基本構成を示す分解断面図で、図中には同時に反応ガス
系統および水系統が示されている。なお、第1加湿ブロ
ック4および第2加湿ブロック5を構成する加湿セルの
構造は前述の図3に示したものと同一であり、図2で
は、水蒸気透過膜1とセパレータ2との間に挿入される
拡散層3が省略されている。水蒸気透過膜1は既に述べ
たように燃料電池本体の電解質膜と同様のイオン交換膜
である。また、セパレータ2は熱伝導性のよいカーボン
により形成されており、拡散層3もカーボンペーパーよ
りなる。さらに、加湿装置の第2加湿ブロック5と燃料
電池本体7の間に配されたスペーサー6も、セパレータ
2と同様のカーボンにより形成されている。
FIG. 2 is an exploded cross-sectional view showing the basic structure of the humidifier of the embodiment shown in FIG. 1. FIG. 2 shows a reaction gas system and a water system at the same time. The structure of the humidifying cells constituting the first humidifying block 4 and the second humidifying block 5 is the same as that shown in FIG. 3 described above. The diffusion layer 3 to be formed is omitted. As described above, the water vapor permeable membrane 1 is an ion exchange membrane similar to the electrolyte membrane of the fuel cell body. The separator 2 is made of carbon having good thermal conductivity, and the diffusion layer 3 is also made of carbon paper. Further, the spacer 6 disposed between the second humidification block 5 of the humidifier and the fuel cell main body 7 is also formed of the same carbon as the separator 2.

【0017】図2の構成では、第1加湿ブロック4と第
2加湿ブロック5がともに2枚の加湿セルよりなり、そ
の間はセパレータ2により連結されている。また、第1
加湿ブロック4では水蒸気透過膜1とセパレータ2が交
互に配置されているのに対して、第2加湿ブロック5で
は2枚のセパレータ2が隣接して配され、その間に燃料
電池本体7より排出された高温の冷却水を通流させるた
めの流路が形成されており、これによって第2加湿ブロ
ック5の加熱が行われる。
In the configuration shown in FIG. 2, the first humidifying block 4 and the second humidifying block 5 each comprise two humidifying cells, and are connected by the separator 2 therebetween. Also, the first
In the humidification block 4, the water vapor permeable membranes 1 and the separators 2 are alternately arranged, whereas in the second humidification block 5, two separators 2 are arranged adjacent to each other and discharged from the fuel cell body 7 therebetween. A flow path for flowing the high-temperature cooling water is formed, and thereby the second humidification block 5 is heated.

【0018】なお、本実施例では、ともに2枚の加湿セ
ルよりなる二つの加湿ブロックにより加湿装置を構成し
ているが、加湿装置を構成する加湿ブロックの数、およ
び各加湿ブロックを形成する加湿セルの数は限定される
ものではなく、その固体高分子形燃料電池の運転条件に
対応して選定されるものである。また、本実施例では加
湿ガスを空気極オフガス、被加湿ガスを反応空気として
いるが、本発明はこれに限定されず、加湿ガスを空気極
オフガスと燃料極オフガスのいずれか、被加湿ガスを反
応空気と燃料ガスのいずれかから選択し任意の組み合わ
せで実施することが可能である。
In this embodiment, the humidifying device is constituted by two humidifying blocks each comprising two humidifying cells. However, the number of humidifying blocks constituting the humidifying device, and the humidifying units forming the respective humidifying blocks. The number of cells is not limited, and is selected according to the operating conditions of the polymer electrolyte fuel cell. In this embodiment, the humidifying gas is the air electrode off-gas, and the humidified gas is the reaction air.However, the present invention is not limited to this. It is possible to select any one of the reaction air and the fuel gas and to carry out in any combination.

【0019】[0019]

【発明の効果】上述のように、本発明においては、水素
を含んだ燃料と空気を導入して電気化学反応により発電
する燃料電池本体で、かつ、反応に伴う発熱を冷媒を通
流して除去する冷却機構を有する燃料電池本体と、前記
の燃料と空気のうち少なくともいずれか一方の反応ガス
の燃料電池本体を通流する前の未反応のガスと燃料電池
本体を通流した後の反応後のガスを水蒸気透過膜を介し
て接触させて、未反応のガスを加湿する加湿装置を備え
る固体高分子形燃料電池を、請求項1、さらには、請求
項2、3のごとく構成することとしたので、加湿装置に
水蒸気透過量の不充分な部位が発生することがなくな
り、反応ガスの加湿がより効果的に行われて燃料電池本
体の電解質膜が湿潤に保持されることとなったので、加
湿装置を大型化しなくとも所定の加湿性能が得られる固
体高分子形燃料電池が得られることとなった。
As described above, according to the present invention, a fuel cell main body that generates a fuel by an electrochemical reaction by introducing a fuel containing hydrogen and air, and removes heat generated by the reaction by flowing a refrigerant. A fuel cell body having a cooling mechanism, and an unreacted gas of at least one of the fuel and air before flowing through the fuel cell body and after a reaction after flowing through the fuel cell body. A solid polymer electrolyte fuel cell comprising a humidifier for humidifying unreacted gas by contacting said gas through a water vapor permeable membrane, as claimed in claim 1 or claim 2 or claim 3; As a result, the humidifier did not generate a portion having an insufficient amount of water vapor permeation, and the humidification of the reaction gas was performed more effectively, so that the electrolyte membrane of the fuel cell body was kept moist. Do not increase the size of the humidifier Both became the predetermined humidifying performance can be obtained a polymer electrolyte fuel cell obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体高分子形燃料電池の実施例におけ
る燃料電池本体と加湿装置の反応ガス系統と水系統を示
すフロー図
FIG. 1 is a flow chart showing a reaction gas system and a water system of a fuel cell main body and a humidifier in an embodiment of a polymer electrolyte fuel cell of the present invention.

【図2】図1に示した実施例の加湿装置の基本構成を示
す分解断面図
FIG. 2 is an exploded cross-sectional view showing a basic configuration of the humidifier of the embodiment shown in FIG.

【図3】オフガス加湿法による加湿器の加湿セルの基本
構成例を示す分解斜視図
FIG. 3 is an exploded perspective view showing a basic configuration example of a humidifying cell of a humidifier using an off-gas humidification method.

【符号の説明】[Explanation of symbols]

1 水蒸気透過膜 2 セパレータ 3 拡散層 4 第1加湿ブロック 5 第2加湿ブロック 6 スペーサー 7 燃料電池本体 11 反応ガス入口 12 空気供給口 13 空気オフガス排出口 14 オフガス出口 15 燃料供給口 16 燃料オフガス排出口 17 冷却水導入口 18 冷却水排出口 19 冷却水出口 DESCRIPTION OF SYMBOLS 1 Water vapor permeable membrane 2 Separator 3 Diffusion layer 4 1st humidification block 5 2nd humidification block 6 Spacer 7 Fuel cell main body 11 Reactive gas inlet 12 Air supply port 13 Air off gas outlet 14 Off gas outlet 15 Fuel supply port 16 Fuel off gas outlet 17 Cooling water inlet 18 Cooling water outlet 19 Cooling water outlet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水素を含んだ燃料と空気を導入して電気化
学反応により発電する燃料電池本体と、 燃料電池本体に供給する前記の燃料と空気のうち少なく
ともいずれか一方の反応ガスと燃料電池本体を通流した
反応後のガスを水蒸気透過膜を介して接触させて、反応
ガスを加湿する加湿装置を備える固体高分子形燃料電池
において、 前記の加湿装置の少なくとも一部が、燃料電池本体に組
み込まれた冷却機構を通流後の冷媒により加熱されるよ
う構成されていることを特徴とする固体高分子形燃料電
池。
1. A fuel cell body for generating electricity by an electrochemical reaction by introducing a fuel containing hydrogen and air, a reaction gas of at least one of the fuel and air supplied to the fuel cell body, and a fuel cell In a polymer electrolyte fuel cell comprising a humidifier for humidifying the reaction gas by contacting the gas after the reaction flowing through the main body through a water vapor permeable membrane, at least a part of the humidifier is a fuel cell main body. A polymer electrolyte fuel cell characterized by being configured to be heated by a refrigerant flowing through a cooling mechanism incorporated in the fuel cell.
【請求項2】前記の加湿装置が、複数の加湿ブロックの
積層体からなり、前記の反応ガスが該積層体の一端から
導入されて相対する他端へと複数の加湿ブロックを順次
通流し、前記の反応後のガスが反応ガスと逆方向に複数
の加湿ブロックを順次通流し、かつ、冷却機構を通流後
の前記の冷媒が、少なくとも一つの加湿ブロックを前記
の反応後のガスの通流方向に通流するよう構成されてい
ることを特徴とする請求項1に記載の固体高分子形燃料
電池。
2. The humidifier comprises a laminated body of a plurality of humidifying blocks, wherein the reaction gas is introduced from one end of the laminated body and flows through the plurality of humidifying blocks sequentially to the other end. The gas after the reaction flows sequentially through the plurality of humidification blocks in a direction opposite to the reaction gas, and the refrigerant after flowing through the cooling mechanism passes at least one humidification block through the gas after the reaction. The polymer electrolyte fuel cell according to claim 1, wherein the fuel cell is configured to flow in the flow direction.
【請求項3】前記の加湿装置が、反応後のガスおよび冷
却機構を通流後の冷媒が導入される加湿ブロックを燃料
電池本体側に配して、燃料電池本体と一体に形成されて
いることを特徴とする請求項2に記載の固体高分子形燃
料電池。
3. The humidifying device according to claim 1, wherein the humidifying block into which the gas after the reaction and the refrigerant after flowing through the cooling mechanism is introduced is disposed on the fuel cell main body side, and is formed integrally with the fuel cell main body. The polymer electrolyte fuel cell according to claim 2, wherein:
JP2000363278A 2000-11-29 2000-11-29 Polymer electrolyte fuel cell Expired - Fee Related JP4453192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363278A JP4453192B2 (en) 2000-11-29 2000-11-29 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363278A JP4453192B2 (en) 2000-11-29 2000-11-29 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002170584A true JP2002170584A (en) 2002-06-14
JP4453192B2 JP4453192B2 (en) 2010-04-21

Family

ID=18834411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363278A Expired - Fee Related JP4453192B2 (en) 2000-11-29 2000-11-29 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4453192B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031254A (en) * 2001-07-16 2003-01-31 Fuji Electric Co Ltd Solid polymer electrolyte type fuel cell power generation device and its operating method
JP2004206951A (en) * 2002-12-24 2004-07-22 Honda Motor Co Ltd Fuel cell with dehumidification/humidification device
WO2004062016A1 (en) * 2002-12-26 2004-07-22 Sony Corporation Hydrogen gas humidity controller, fuel cell, hydrogen gas humidity controlling method, and humidity controlling method of fuel cell
JP2005085753A (en) * 2003-09-05 2005-03-31 Asia Pacific Fuel Cell Technology Ltd Reactant gas temperature/humidity control device of fuel cell set
JP2005226945A (en) * 2004-02-13 2005-08-25 Mitsubishi Electric Corp Temperature-humidity exchanger
JP2006196249A (en) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006210151A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006210149A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Fuel cell system
CN100439849C (en) * 2004-02-10 2008-12-03 三菱电机株式会社 Temperature/humidity exchanger
JP2009301723A (en) * 2008-06-10 2009-12-24 Panasonic Corp Humidifier device of fuel cell gas
JP2009301722A (en) * 2008-06-10 2009-12-24 Panasonic Corp Fuel cell system
KR101299624B1 (en) * 2012-01-12 2013-08-23 지에스칼텍스 주식회사 Separator for humidifier and stack united humidifier fuel cell system using the same
JP2014505336A (en) * 2011-01-13 2014-02-27 デーナ、カナダ、コーパレイシャン Humidifier for fuel cell system
JP2016022999A (en) * 2014-07-16 2016-02-08 八千代工業株式会社 Product management device
US9735438B2 (en) 2011-01-13 2017-08-15 Dana Canada Corporation Humidifier for fuel cell systems

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031254A (en) * 2001-07-16 2003-01-31 Fuji Electric Co Ltd Solid polymer electrolyte type fuel cell power generation device and its operating method
JP4665353B2 (en) * 2001-07-16 2011-04-06 富士電機ホールディングス株式会社 Solid polymer electrolyte fuel cell power generator and its operation method
JP2004206951A (en) * 2002-12-24 2004-07-22 Honda Motor Co Ltd Fuel cell with dehumidification/humidification device
WO2004062016A1 (en) * 2002-12-26 2004-07-22 Sony Corporation Hydrogen gas humidity controller, fuel cell, hydrogen gas humidity controlling method, and humidity controlling method of fuel cell
JP2005085753A (en) * 2003-09-05 2005-03-31 Asia Pacific Fuel Cell Technology Ltd Reactant gas temperature/humidity control device of fuel cell set
CN100439849C (en) * 2004-02-10 2008-12-03 三菱电机株式会社 Temperature/humidity exchanger
US7585355B2 (en) 2004-02-10 2009-09-08 Mitsubishi Denki Kabushiki Kaisha Temperature/humidity exchanger
JP2005226945A (en) * 2004-02-13 2005-08-25 Mitsubishi Electric Corp Temperature-humidity exchanger
JP2006196249A (en) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006210151A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006210149A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Fuel cell system
JP2009301723A (en) * 2008-06-10 2009-12-24 Panasonic Corp Humidifier device of fuel cell gas
JP2009301722A (en) * 2008-06-10 2009-12-24 Panasonic Corp Fuel cell system
JP2014505336A (en) * 2011-01-13 2014-02-27 デーナ、カナダ、コーパレイシャン Humidifier for fuel cell system
US9735438B2 (en) 2011-01-13 2017-08-15 Dana Canada Corporation Humidifier for fuel cell systems
US10418651B2 (en) 2011-01-13 2019-09-17 Dana Canada Corporation Humidifier for fuel cell systems
KR101299624B1 (en) * 2012-01-12 2013-08-23 지에스칼텍스 주식회사 Separator for humidifier and stack united humidifier fuel cell system using the same
JP2016022999A (en) * 2014-07-16 2016-02-08 八千代工業株式会社 Product management device

Also Published As

Publication number Publication date
JP4453192B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP3077618B2 (en) Solid polymer electrolyte fuel cell
US6783878B2 (en) Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
US6106964A (en) Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
JP4074061B2 (en) Polymer electrolyte fuel cell system
JPH08273687A (en) Supply gas humidifier of fuel cell
WO1995025357A1 (en) Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section
JP4453192B2 (en) Polymer electrolyte fuel cell
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
JP4632917B2 (en) Polymer electrolyte fuel cell
JP4621370B2 (en) Fuel cell stack structure
JP4464066B2 (en) Fuel cell system
JP3839978B2 (en) Polymer electrolyte fuel cell system
JP3276175B2 (en) Solid polymer electrolyte fuel cell
JP2000277128A (en) Solid polymer type fuel cell
JPH06124722A (en) Heating and humidifying device and fuel cell
JP2004363027A (en) Humidifying method of fuel cell and fuel cell system
JP2007234314A (en) Fuel cell system
JPH0935737A (en) Solid polymer electrolyte fuel cell
JP4085668B2 (en) Fuel cell
JPH08306375A (en) Solid polymer type fuel sell
JP4085669B2 (en) Fuel cell
JPH11111311A (en) Solid polymer type fuel cell
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
JP2004281245A (en) Supply gas humidifier for fuel cell
JP5117173B2 (en) Polymer electrolyte fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees