JP4621370B2 - Fuel cell stack structure - Google Patents

Fuel cell stack structure Download PDF

Info

Publication number
JP4621370B2
JP4621370B2 JP2001055947A JP2001055947A JP4621370B2 JP 4621370 B2 JP4621370 B2 JP 4621370B2 JP 2001055947 A JP2001055947 A JP 2001055947A JP 2001055947 A JP2001055947 A JP 2001055947A JP 4621370 B2 JP4621370 B2 JP 4621370B2
Authority
JP
Japan
Prior art keywords
unit cell
cell stack
downstream
upstream
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001055947A
Other languages
Japanese (ja)
Other versions
JP2002260708A (en
Inventor
篤夫 宗内
宗一郎 霜鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001055947A priority Critical patent/JP4621370B2/en
Publication of JP2002260708A publication Critical patent/JP2002260708A/en
Application granted granted Critical
Publication of JP4621370B2 publication Critical patent/JP4621370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解質層を挟んで外側に燃料電極および酸化剤電極を配置するとともに、各電極の外側にセパレータを配置して単位セルを構成し、単位セルを軸方向に沿って列状に配置し、一つの列状体としてまとめたスタックとしての燃料電池積層構造体に関する。
【0002】
【従来の技術】
従来、燃料の持つエネルギを電気エネルギに変換する装置として燃料電池がよく知られている。燃料電池には、幾つかのタイプのものが稼動または開発中であるが、その中でも構造がコンパクトで高出力密度が得られ、かつ簡易な運転システムの固体高分子電解質型燃料電池が、最近、注目されている。
【0003】
固体高分子電解質型燃料電池は、固体高分子電解質層を挟み、それぞれに触媒を被着させた燃料電極および酸化剤電極を備え、燃料電極に水素を含む燃料ガスを、また、酸化剤電極に例えば空気等の酸化剤ガスをそれぞれ供給して発電を行う発電機である。
【0004】
その際、水素は、燃料電極で酸化され、また水素イオンは固体高分子電解質を通って酸化剤電極に移動する。そして、酸化剤電極は、供給された酸化剤ガスと移動してきた水素イオンが反応して水を生成する。
【0005】
また、その際に発生した電子は、外部回路を流れる間に電気エネルギとなって発電を行う。なお、固体高分子電解質型燃料電池では、燃料電極に燃料ガスを、また、酸化剤電極に酸化剤ガスをそれぞれ供給するとき、各ガスを電池の作動温度に近い露点に加湿し、固体高分子電解質の伝導性を高く維持させている。
【0006】
【発明が解決しようとする課題】
ところで、固体高分子電解質型燃料電池も含めて従来の燃料電池プラントでは、原燃料として、例えばクロルアルカリ製造や化学工業での副生物として生成される純水素の使用も検討されているが、長期供給の安定化、コストの低価格を維持することができないため、天然ガスやプロパンに専ら依存している。このため、燃料電池プラントでは、改質器や一酸化炭素変成器等を備え、燃料に含まれる水素をリッチに改質させて発電出力密度を高めるとともに、改質器の加熱源として電池内で未反応の水素ガスを利用している。
【0007】
しかし、未反応の水素ガスを改質器の加熱源に使用し、エネルギの有効活用を図るにしろ、本来、発電に直接寄与すべき水素ガスが利用されていないことを考えると水素ガスの利用率が悪く発電効率の低下の要因になっていた。
【0008】
また、未反応の水素ガスを電池に供給する際、例えば特開平9−259912号公報、特開平1−260386号公報等に示されたポンプ、コンプレッサ、エジェクタを用いてリサイクルを図っているように、一見みえるけれども、消費動力を考えると熱効率の向上に寄与していない。
【0009】
一方、反応ガスの利用率を向上させる技術として、例えば特公昭62−23434号公報等がある。この技術は、列状に配置した単位セルを一つにまとめた積層構造体を第1積層構造体と第2積層構造体とに区分けし、第1積層構造体の単位セルの数を第2積層構造体の単位セルの数よりも1つ以上多くする一方、各積層構造体の反応ガスの流路幅を、その入口側よりも出口側を狭くしたものである。
【0010】
この技術は、各積層構造体の出口側の流路幅を狭くし、反応ガスの濃度を高くしているので、反応ガスの利用率を向上させることができ、発電にとって好都合である。
【0011】
しかし、この構造の燃料電池では、積層構造体に反応ガスを供給するマニホールドの構造が複雑であり、また、反応ガス流路を形成するセパレータの構造も複雑になり、コスト高を招き、さらにマニホールドのシール性を充分に確保できない等の種々の問題があった。
【0012】
本発明は、このような背景技術に照らしてなされたものであり、構造をシンプルにして反応ガスの流れを単純化させ、かつ反応ガスの利用率をより一層向上させた燃料電池積層構造体を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明に係る燃料電池積層構造体は、上述の目的を達成するために、請求項1に記載したように、固体高分子電解質を挟んで一側に燃料電極を配置し、他側に酸化剤電極を配置するとともに、各電極の外側にセパレータを配置した単位セルを軸方向に沿って列状に配置して単位セル積層体に構成した燃料電池積層構造体において、前記単位セル積層体を上流側単位セル積層体と下流側単位セル積層体とに区分けし、区分けした前記上流側単位セル積層体と前記下流側単位セル積層体とのそれぞれを筒状のケーシングに収容して区画する隔離板を備えるとともに、前記上流側単位セル積層体および下流側単位セル積層体のそれぞれの縁端側の両側に前記ケーシングの軸線と平行に入口側マニホールドと出口側マニホールドとを備え、隔離板は、上流側単位セル積層体の出口側マニホールドと下流側単位セル積層体の入口側マニホールドとを連通させる通路孔を備え、カーボン材およびカーボン粉末に樹脂を加えた混合材のうち、いずれか一方で作製したものである。
【0016】
また、本発明に係る燃料電池積層構造体は、上述の目的を達成するために、請求項に記載したように、固体高分子電解質を挟んで一側に燃料電極を配置し、他側に酸化剤電極を配置するとともに、各電極の外側にセパレータを配置した単位セルを軸方向に沿って列状に配置して単位セル積層体に構成した燃料電池積層構造体において、前記単位セル積層体を上流側単位セル積層体と下流側単位セル積層体とに区分けし、区分けした前記上流側単位セル積層体と前記下流側単位セル積層体とのそれぞれを筒状のケーシングに収容して区画する隔離板を備えるとともに、前記上流側単位セル積層体および下流側単位セル積層体のそれぞれの縁端側の両側に前記ケーシングの軸線と平行に入口側マニホールドと出口側マニホールドとを備え、隔離板は、上流側単位セル積層体の出口側マニホールドと下流側単位セル積層体の入口側マニホールドとを連通させる通路孔を備え、上流側単位セル積層体の出口側マニホールド、隔離板の通路孔および下流側単位セル積層体の入口側マニホールドのうち、少なくとも一方には多孔質体を収容したものである。
【0017】
また、本発明に係る燃料電池積層構造体は、上述の目的を達成するために、請求項に記載したように、固体高分子電解質を挟んで一側に燃料電極を配置し、他側に酸化剤電極を配置するとともに、各電極の外側にセパレータを配置した単位セルを軸方向に沿って列状に配置して単位セル積層体に構成した燃料電池積層構造体において、前記単位セル積層体を上流側単位セル積層体と下流側単位セル積層体とに区分けし、区分けした前記上流側単位セル積層体と前記下流側単位セル積層体とのそれぞれを筒状のケーシングに収容して区画する隔離板を備えるとともに、前記上流側単位セル積層体および下流側単位セル積層体のそれぞれの縁端側の両側に前記ケーシングの軸線と平行に入口側マニホールドと出口側マニホールドとを備え、隔離板は、上流側単位セル積層体の出口側マニホールドと下流側単位セル積層体の入口側マニホールドとを連通させる通路孔を備え、下流側単位セル積層体の入口側マニホールドは、貯水タンクを備えたものである。
【0018】
また、本発明に係る燃料電池積層構造体は、上述の目的を達成するために、請求項に記載したように、上流側単位セル積層体は、下流側単位セル積層体に較べて単位セルの枚数を多くしたものである。
【0019】
また、本発明に係る燃料電池積層構造体は、上述の目的を達成するために、請求項に記載したように、固体高分子電解質を挟んで一側に燃料電極を配置し、他側に酸化剤電極を配置するとともに、各電極の外側にセパレータを配置した単位セルを軸方向に沿って列状に配置して単位セル積層体に構成した燃料電池積層構造体において、前記単位セル積層体を上流側単位セル積層体と下流側単位セル積層体とに区分けし、区分けした前記上流側単位セル積層体と前記下流側単位セル積層体とのそれぞれを筒状のケーシングに収容して区画する隔離板を備えるとともに、前記上流側単位セル積層体および下流側単位セル積層体のそれぞれの縁端側の両側に前記ケーシングの軸線と平行に入口側マニホールドと出口側マニホールドとを備える一方、前記上流側単位セル積層体の上流側に配置した反応ガス案内プレートの外側に反応ガス通路室と乾燥ガス通路室とを区画する水蒸気透過膜を備え、前記反応ガス通路室で反応ガスに含まれる水蒸気を少なくとも一部分以上を取り除いた後の反応ガスを前記隔離板を介して下流側単位セル積層体の入口側マニホールドに供給する連絡管を備えたものである。
【0020】
また、本発明に係る燃料電池積層構造体は、上述の目的を達成するために、請求項に記載したように、固体高分子電解質を挟んで一側に燃料電極を配置し、他側に酸化剤電極を配置するとともに、各電極の外側にセパレータを配置した単位セルを軸方向に沿って列状に配置して単位セル積層体に構成した燃料電池積層構造体において、前記単位セル積層体を上流側単位セル積層体と下流側単位セル積層体とに区分けし、区分けした前記上流側単位セル積層体と前記下流側単位セル積層体とのそれぞれを筒状のケーシングに収容して区画する隔離板を備えるとともに、前記上流側単位セル積層体および下流側単位セル積層体のそれぞれの縁端側の両側に前記ケーシングの軸線と平行に入口側マニホールドと出口側マニホールドとを備える一方、前記上流側単位セル積層体の上流側に配置した反応ガス案内プレートの外側に反応ガス通路室と温水通路室とを区画する伝熱プレートを備え、前記反応ガス通路室で反応ガスに含まれる水蒸気を少なくとも一部分以上を取り除いた後の反応ガスを前記隔離板を介して下流側単位セル積層体の入口側マニホールドに供給する連絡管を備えたものである。
【0021】
また、本発明に係る燃料電池積層構造体は、上述の目的を達成するために、請求項に記載したように、反応ガス案内プレートは、上流側単位セル積層体の入口側マニホールドに接続する供給口と、上流側単位セル積層体の出口側マニホールドと反応ガス通路室とを互いに連通させる連絡通路とを備えたものである。
【0022】
また、本発明に係る燃料電池積層構造体は、上述の目的を達成するために、請求項に記載したように、隔離板は、連絡管を下流側単位セル積層体の入口側マニホールドに接続させる通路を備えたものである。
【0025】
【発明の実施の形態】
以下、本発明に係る燃料電池積層構造体の実施形態を図面および図面に付した符号を引用して説明する。
【0026】
図1は、本発明に係る燃料電池積層構造体の第1実施形態を示す概念図である。
【0027】
本実施形態に係る燃料電池積層構造体は、両端を上流側エンドプレート1と下流側エンドプレート2とで塞ぐとともに、各エンドプレート1,2を例えばスプリング等の弾性体3を介装させてスタッドボルト4で固定保持する筒状のケーシング5と、この筒状のケーシング5に収容し、例えば水素ガス等の反応ガスを上流側エンドプレート1の入口6から下流側エンドプレート2の出口7に向って蛇行させながら直列に流す単位セル積層体8を備えた構成になっている。
【0028】
また、燃料電池積層構造体は、単位セル積層体8を上流側単位セル積層体8aと下流側単位セル積層体8bとに区分けするとともに、区分けした上流側単位セル積層体8aと下流側単位セル積層体8bとをケーシング5に収容して区画する隔離板9を備えた構成になっている。
【0029】
また、上流側単位セル積層体8aと下流側単位セル積層体8bとは、ともに単位セル10をケーシング5の軸CLに沿って列状に配置して一つのブロックとしてまとめたものである。
【0030】
また、上流側単位セル積層体8aと下流側単位セル積層体8bは、ともに縁端側の両側にケーシング5の軸線CLに沿って平行に入口側マニホールド11a,11bと出口側マニホールド12a,12bとを備えるとともに、隔離板9に設けた通路孔13を介して上流側単位セル積層体8aの出口側マニホールド12aと下流側単位セル積層体8bの入口側マニホールド11bとを互いに連通させる構成になっている。
【0031】
なお、上流側単位セル積層体8aは、下流側単位セル積層体8bに較べて単位セル10の枚数を多くしている。
【0032】
単位セル10は、固体高分子電解質層を挟んで両側に触媒を被覆する燃料電極および酸化剤電極をそれぞれ配置するとともに、各電極の外側に反応ガスを流す通路溝を形成するセパレータ(ともに図示せず)を備えた構成になっている。
【0033】
一方、上流側単位セル積層体8aと下流側単位セル積層体8bとをケーシング5内で区画する隔離板9は、カーボン粉末と樹脂との混合材、カーボン材単独、膨張黒鉛などの導電性材で作製するとともに、ケーシング5との間にOリング等のシール材を用いて反応ガスの漏洩を防止している。また、上流側単位セル積層体8aおよび下流側単位セル積層体8bのそれぞれを形成する単位セル18は、隣りの単位セル10との間に導電性のカーボン材を用いて反応ガスの漏洩を防止している。
【0034】
このような構成を備えた燃料電池積層構造体において、上流側エンドプレート1の入口6に供給された例えば水素ガス等の反応ガスは、上流側単位セル積層体8aの入口側マニホールド11aからケーシング5の軸線CLに交差して単位セル10に流れる間に化学反応して電気エネルギを発生させ、上流側単位セル積層体8aの出口側のマニホールド12aに集められる。
【0035】
出口側マニホールド12aに集められた反応ガスは、その濃度を比較的高く維持させ、隔離板9の通路孔13を介して下流側単位セル積層体8bの入口側マニホールド11bに供給され、ここから再びケーシング5の軸線CLに交差して単位セル10に流れる間に電気エネルギを発生させ、下流側単位セル積層体8bの出口側マニホールド12bに集められた後、下流側エンドプレート2の出口7から他の機器に供給される。
【0036】
なお、上流側単位セル積層体8aおよび下流側単位セル積層体8bは、単位セル10,10間にシール構造を備えるとともに、隔離板9や上流側、下流側各エンドプレート1,2との入出口の各マニホールド11a,11b,12a,12bの接続部分にシール構造を備えているので、反応ガスの漏洩を確実に防止することができる。
【0037】
このように、本実施形態は、単位セル積層体8を上流側単位セル積層体8aと下流側単位セル積層体8bとに区分けし、区分けした単位セル10の枚数の多い上流側単位セル積層体8aと単位セル10の枚数の少ない下流側単位セル積層体8bとのそれぞれを収容する室を区画する隔離板9をケーシング5に設けるとともに、各単位セル積層体8a,8bの縁端側の両側に入、出口側マニホールド11a,11b,12a,12bを備え、入口側マニホールド11a,11bのそれぞれから出口側マニホールド12a,12bのそれぞれに向って反応ガスを単純化して流す構成にしたので、隔離板9を介して上流側単位セル積層体8aおよび下流側単位セル積層体8bのそれぞれを流れる反応ガスの濃度をより一層高く維持させることができ、反応ガスの利用率をより一層高めて効果的な発電運転を行うことができる。
【0038】
また、本実施形態は、単位セル10,10間、各マニホールド11a,11b,12a,12bと隔離板9、各エンドプレート1,2との接続部分にシール構造を備えているので、反応ガスの漏洩を確実に防止して効果的な発電運転を行うことができる。
【0039】
図2は、本発明に係る燃料電池積層構造体の第2実施形態を示す概念図である。なお、第1実施形態の構成部分と同一部分には同一符号を付す。
【0040】
本実施形態に係る燃料電池積層構造体は、単位セル積層体8から区分けした上流側単位セル積層体8a、下流側単位セル積層体8bのうち、上流側単位セル積層体8aの出口側マニホールド12bおよび隔離板9の通路孔13等に孔径0.1μm〜100μmの多孔質体14を収容するとともに、下流側単位セル積層体8bの入口側マニホールド11bに接続させて貯水タンク15を設けたものである。なお、他の構成部分は、第1実施形態の構成部分と同一なので、その説明を省略する。
【0041】
このように、本実施形態は、上流側単位セル積層体8aの出口側マニホールド12aに多孔質体14を収容し、反応中、反応ガスから生成される凝縮水を吸収させる一方、下流側単位セル積層体8bの入口側マニホールド11bに貯水タンク15を接続させて残った凝縮水を吸収させるので、いわゆるフラッティングと称する凝縮水の滞留を少なくさせて反応ガスの流れを良好にさせることができ、反応ガス濃度を高く維持させて反応ガスの利用率をより一層高めることができる。
【0042】
図3は、本発明に係る燃料電池積層構造体の第3実施形態を示す概念図である。なお、第1実施形態の構成部分と同一部分には同一符号を付す。
【0043】
本実施形態に係る燃料電池積層構造体は、単位セル積層体8を上流側単位セル積層体8aと下流側単位セル積層体8bとに区分けし、区分けした上流側単位セル積層体8aと下流側単位セル積層体8bとを収容する室を区画する隔離板9をケーシング5に設けるとともに、上流側単位セル積層体8aの上流側に、例えば水素ガス等の反応ガスの供給口16を備えた反応ガス案内プレート17と、この反応ガス案内プレート17の外側に設けられた反応ガス通路室18と乾燥ガス通路室19とを区画する水蒸気透過膜20を備えたものである。なお、水蒸気透過膜20は、イオン交換膜または多孔質の高分子膜であってもよい。
【0044】
また、本実施形態に係る燃料電池積層構造体は、第1実施形態と同様に、上流側単位セル積層体8aおよび下流側単位セル積層体8bの縁端側の両側にケーシング5の軸線CLに沿って平行な入口側マニホールド11a,11bと出口側マニホールド12a,12bとをそれぞれ設けたものである。なお、他の構成部分は、第1実施形態の構成部分と同一なので、説明を省略する。
【0045】
このような構成を備えた燃料電池積層構造体において、供給口16を介して反応ガス案内プレート17に案内された例えば水素ガス等の反応ガスは、上流側単位セル積層体8aの入口側マニホールド11aからケーシング5の軸線CLに交差して単位セル10に流れる間に化学反応させて電気エネルギを発生させ、上流側単位セル積層体8aの出口側マニホールド12aに集められる。
【0046】
出口側マニホールド12aに集められた反応ガスは、反応ガス案内プレート17の連絡通路21を介して反応ガス通路室18に集められ、ここで水蒸気の一部ほ水蒸気透過膜20を介して乾燥ガス室19に供給し、例えば空気等の乾燥ガスに混合させ、系外ブローさせる。
【0047】
一部の水蒸気を分離させた反応ガスは、連絡管21aおよび隔離板9の通路22を介して下流側単位セル積層体8bの入口側マニホールド11bに集められた後、ここから再びケーシング5の軸線CLに交差して単位セル10に流れる間に電気エネルギを発生させ、下流側単位セル積層体8bの出口側マニホールド12bに集められた後、下流側エンドプレート2の出口7から他の機器に供給される。
【0048】
このように、本実施形態は、第1実施形態と同様に、単位セル積層体8を上流側単位セル積層体8aと下流側単位セル積層体8bとに区分けし、区分けした単位セル10の枚数の多い上流側単位セル積層体8aと単位セル10の枚数の少ない下流側単位セル積層体8bとのそれぞれを収容する室を区画する隔離板9をケーシング5に設けるとともに、各単位セル積層体8a,8bの縁端側の両側に入・出口側マニホールド11a,11b,12a,12bを備え、入口側マニホールド11a,11bのそれぞれから出口側マニホールド12a,12bのそれぞれに向って反応ガスを単純化して流す一方、上流側単位セル積層体8aの上流側に反応ガス案内プレート17を設け、この反応ガス案内プレート17の外側に反応ガス通路室18と乾燥ガス通路室19とを区画する水蒸気透過膜20を設け、乾燥ガス通路室19を流れる乾燥ガスで上流側単位セル積層体8aの出口側マニホールド12aからの反応ガス通路室18に流れる反応ガスを乾燥させ、反応ガスの含まれる水蒸気の一部を取り除くので、フラッティングを防止して反応ガスを良好に流すことができ、反応ガスの利用率をより一層高めて効果的な発電運転を行うことができる。
【0049】
なお、本実施形態は、上流側単位セル積層体8aの上流側に設けた反応ガス案内プレート17の外側に、水蒸気透過膜20を介装させて反応ガス通路室18と乾燥ガス通路室19とを設けたが、この例に限らず、例えば、図4に示すように、反応ガス案内プレート17の上流側に、伝熱プレート23を介装させて反応ガス通路室18と温水通路室24とを設け、温水通路室24を流れる温水で反応ガス通路室18を流れる反応ガスに含まれる水蒸気の一部を蒸発させてもよい。
【0050】
図5は、本発明に係る燃料電池積層構造体に適用する水供給装置の実施形態を示す概略系統図である。
【0051】
従来、燃料電池は、燃料電極に供給する燃料ガスと酸化剤電極に供給する酸化剤ガスとの両方を加湿させて化学反応を促進させていた。
【0052】
しかし、燃料ガスに含まれる水素ガスの利用率を高めると、燃料電極の出口側の水素ガス濃度が低くなり、いわゆるフラッティング現象が発生し、燃料電極に供給する燃料ガスの流れが悪くなり、発電効率を低下させる要因になっていた。
【0053】
本実施形態は、このような点を考慮してなされたもので、図5に示すように、固体高分子電解質25を挟んで両側に燃料電極26と酸化剤電極27とを配置するとともに、これらの外側にセパレータ(図示せず)を配置した単位セルを列状に配置した単位セル積層体8のうち、酸化剤用セパレータに供給する、例えば空気等の酸化剤ガスのみを加湿させる水循環系28を設けたものである。
【0054】
この水循環系28は、加湿水用タンク29、ポンプ30を備え、酸化剤電極27に供給する酸化剤ガスに水を加えて加湿させるようになっている。なお、燃料電極26には、燃料供給装置31から減圧弁32を介して燃料ガスが供給される。
【0055】
酸化剤ガスが加湿されると、酸素ガスは充分に湿分を含んだまま固体高分子電解質25を経て燃料電極26に移動し、ここで水素ガスと反応し、その際に生成した電子で発電を行う。
【0056】
このように、本実施形態は、酸化剤電極27に水循環系28からの水を供給して酸化剤ガスのみを加湿させ、燃料電極26側の燃料ガスと反応させて発電を行うので、フラッティングの発生を防止して燃料ガスに含まれる水素ガス濃度を高く維持することができ、水素ガスの利用率を高くした効率の高い発電を行うことができる。
【0057】
【発明の効果】
以上の説明のとおり、本発明に係る燃料電池積層構造体は、反応ガスの流れを単純化させる手段を設けるとともに、反応ガスに含まれる湿分を取り除いて反応ガス中に含まれる水素ガスの濃度を高く維持させる手段を備えたので、反応ガスの利用率をより一層向上させて効率のよい発電を行うことができる。
【0058】
また、本発明に係る燃料電池積層構造体は、酸化剤電極側に水供給手段を備え、酸化剤ガスにのみ加湿しているので、燃料ガスとの反応の際、生成する凝縮水を少なくしてフラッティングの発生を防止することができ、反応ガスの流れを良好にさせて効率のよい発電を行うことができる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池積層構造体の第1実施形態を示す概念図。
【図2】本発明に係る燃料電池積層構造体の第2実施形態を示す概念図。
【図3】本発明に係る燃料電池積層構造体の第3実施形態を示す概念図。
【図4】本発明に係る燃料電池積層構造体の第4実施形態を示す概念図。
【図5】本発明に係る燃料電池積層構造体に適用する水供給装置の実施形態を示す概略系統図。
【符号の説明】
1 上流側エンドプレート
2 下流側エンドプレート
3 弾性体
4 スタッドボルト
5 ケーシング
6 入口
7 出口
8 単位セル積層体
8a 上流側単位セル積層体
8b 下流側単位セル積層体
9 隔離板
10 単位セル
11a,11b 入口側マニホールド
12a,12b 出口側マニホールド
13 通路孔
14 多孔質体
15 貯水タンク
16 供給口
17 反応ガス案内プレート
18 反応ガス通路室
19 乾燥ガス通路室
20 水蒸気透過膜
21 連絡通路
21a 連絡管
22 通路
23 伝熱プレート
24 温水通路室
25 固体高分子電解質
26 燃料電極
27 酸化剤電極
28 水循環系
29 加湿用タンク
30 ポンプ
31 燃料供給装置
32 減圧弁
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a fuel electrode and an oxidant electrode are disposed outside the electrolyte layer, and a unit cell is configured by disposing a separator outside each electrode, and the unit cells are disposed in a row along the axial direction. In addition, the present invention relates to a fuel cell stack structure as a stack collected as a single row.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a fuel cell is well known as a device that converts energy of fuel into electric energy. Several types of fuel cells are in operation or development. Among them, solid polymer electrolyte fuel cells with a compact structure, high power density, and a simple operation system have recently been developed. Attention has been paid.
[0003]
A solid polymer electrolyte type fuel cell includes a fuel electrode and an oxidant electrode with a solid polymer electrolyte layer sandwiched between them and a catalyst attached thereto, a fuel gas containing hydrogen in the fuel electrode, and an oxidant electrode. For example, it is a generator that generates power by supplying an oxidant gas such as air.
[0004]
At that time, hydrogen is oxidized at the fuel electrode, and hydrogen ions move to the oxidant electrode through the solid polymer electrolyte. In the oxidant electrode, the supplied oxidant gas reacts with the moving hydrogen ions to generate water.
[0005]
Also, the electrons generated at that time generate electric power as electric energy while flowing through the external circuit. In the solid polymer electrolyte fuel cell, when supplying fuel gas to the fuel electrode and oxidant gas to the oxidant electrode, each gas is humidified to a dew point close to the operating temperature of the cell, The conductivity of the electrolyte is maintained high.
[0006]
[Problems to be solved by the invention]
By the way, in conventional fuel cell plants including solid polymer electrolyte fuel cells, the use of pure hydrogen produced as a by-product in the production of chloralkali or chemical industry as a raw fuel has been studied. Reliant on natural gas and propane because it cannot maintain stable supply and low cost. For this reason, the fuel cell plant is equipped with a reformer, a carbon monoxide converter, and the like to reform the hydrogen contained in the fuel richly to increase the power generation output density, and as a heating source for the reformer in the battery. Unreacted hydrogen gas is used.
[0007]
However, using unreacted hydrogen gas as a heating source for the reformer to make effective use of energy, considering that hydrogen gas that should contribute directly to power generation is not used, the use of hydrogen gas The rate was bad and it was the cause of the decrease in power generation efficiency.
[0008]
In addition, when unreacted hydrogen gas is supplied to the battery, for example, recycling is performed using a pump, a compressor, and an ejector disclosed in JP-A-9-259912, JP-A-1-260386, and the like. Although it looks at first glance, it does not contribute to the improvement of thermal efficiency considering the power consumption.
[0009]
On the other hand, as a technique for improving the utilization rate of the reaction gas, there is, for example, Japanese Patent Publication No. 62-23434. In this technique, a stacked structure in which unit cells arranged in a row are grouped into a first stacked structure and a second stacked structure, and the number of unit cells in the first stacked structure is set to a second number. One or more than the number of unit cells of the laminated structure is increased, and the flow width of the reaction gas of each laminated structure is made narrower on the outlet side than on the inlet side.
[0010]
Since this technique narrows the flow path width on the outlet side of each laminated structure and increases the concentration of the reaction gas, the utilization rate of the reaction gas can be improved, which is advantageous for power generation.
[0011]
However, in the fuel cell of this structure, the structure of the manifold that supplies the reaction gas to the laminated structure is complicated, and the structure of the separator that forms the reaction gas flow path is also complicated, resulting in an increase in cost. There were various problems such as not being able to ensure sufficient sealing performance.
[0012]
The present invention has been made in light of the background art as described above, and provides a fuel cell laminated structure that has a simple structure, simplifies the flow of the reaction gas, and further improves the utilization rate of the reaction gas. The purpose is to provide.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a fuel cell laminated structure according to the present invention has a fuel electrode disposed on one side with a solid polymer electrolyte sandwiched therebetween and an oxidant on the other side. In the fuel cell stack structure in which the unit cells having the electrodes and the separator cells arranged outside the electrodes are arranged in a line along the axial direction to form a unit cell stack, the unit cell stack is upstream Separating plate that divides into side unit cell laminate and downstream unit cell laminate and accommodates and divides each of the divided upstream unit cell laminate and downstream unit cell laminate in a cylindrical casing provided with a, and a respective parallel inlet side manifold to the axis of the casing on either side of the edge side and the outlet side manifold of said upstream unit cell laminate and the downstream unit cell stack, the separator, Providing passage holes that connect the outlet side manifold of the flow side unit cell laminate and the inlet side manifold of the downstream unit cell laminate, and producing either one of carbon material and carbon powder mixed resin one in which the.
[0016]
Further, in order to achieve the above-mentioned object, the fuel cell laminated structure according to the present invention has a fuel electrode disposed on one side with a solid polymer electrolyte sandwiched therebetween as described in claim 2 , and on the other side. In the fuel cell laminate structure in which unit cells having an oxidizer electrode arranged therein and separators arranged outside each electrode are arranged in a row along the axial direction to form a unit cell laminate, the unit cell laminate Are divided into upstream unit cell stacks and downstream unit cell stacks, and each of the divided upstream unit cell stacks and downstream unit cell stacks is accommodated and partitioned in a cylindrical casing. A separator plate, and an inlet side manifold and an outlet side manifold in parallel with the axis of the casing on both sides of each edge side of the upstream unit cell stack and the downstream unit cell stack, Is provided with a passage hole for communicating the inlet side manifold of the outlet-side manifold and a downstream unit cell stack upstream unit cell stack, the outlet side manifold of the upstream unit cell stack, the passage holes and a downstream separator At least one of the inlet side manifolds of the side unit cell stack includes a porous body.
[0017]
Further, in order to achieve the above-mentioned object, the fuel cell laminated structure according to the present invention has a fuel electrode disposed on one side with a solid polymer electrolyte sandwiched therebetween as described in claim 3 , and on the other side. In the fuel cell laminate structure in which unit cells having an oxidizer electrode arranged therein and separators arranged outside each electrode are arranged in a row along the axial direction to form a unit cell laminate, the unit cell laminate Are divided into upstream unit cell stacks and downstream unit cell stacks, and each of the divided upstream unit cell stacks and downstream unit cell stacks is accommodated and partitioned in a cylindrical casing. A separator plate, and an inlet side manifold and an outlet side manifold in parallel with the axis of the casing on both sides of each edge side of the upstream unit cell stack and the downstream unit cell stack, Ones, provided with a passage hole for communicating the inlet side manifold of the outlet-side manifold and a downstream unit cell stack upstream unit cell stack, the inlet side manifold of the downstream unit cell laminate, which includes a water storage tank It is.
[0018]
In order to achieve the above object, the fuel cell stack structure according to the present invention is characterized in that, as described in claim 4 , the upstream unit cell stack is a unit cell as compared with the downstream unit cell stack. The number of sheets is increased.
[0019]
Further, in order to achieve the above-mentioned object, the fuel cell laminated structure according to the present invention has a fuel electrode disposed on one side with a solid polymer electrolyte sandwiched therebetween as described in claim 5 and on the other side. In the fuel cell laminate structure in which unit cells having an oxidizer electrode arranged therein and separators arranged outside each electrode are arranged in a row along the axial direction to form a unit cell laminate, the unit cell laminate Are divided into upstream unit cell stacks and downstream unit cell stacks, and each of the divided upstream unit cell stacks and downstream unit cell stacks is accommodated and partitioned in a cylindrical casing. A separator is provided with an inlet side manifold and an outlet side manifold in parallel with the axis of the casing on both sides of the edge side of each of the upstream unit cell stack and the downstream unit cell stack. A water vapor permeable membrane that divides a reaction gas passage chamber and a dry gas passage chamber is provided outside a reaction gas guide plate disposed on the upstream side of the upstream unit cell stack, and is contained in the reaction gas in the reaction gas passage chamber. A communication pipe for supplying the reaction gas after removing at least a part of the water vapor to the inlet side manifold of the downstream unit cell stack through the separator is provided.
[0020]
Further, in order to achieve the above-mentioned object, the fuel cell laminated structure according to the present invention has a fuel electrode disposed on one side with a solid polymer electrolyte sandwiched therebetween as described in claim 6 , and on the other side. In the fuel cell laminate structure in which unit cells having an oxidizer electrode arranged therein and separators arranged outside each electrode are arranged in a row along the axial direction to form a unit cell laminate, the unit cell laminate Are divided into upstream unit cell stacks and downstream unit cell stacks, and each of the divided upstream unit cell stacks and downstream unit cell stacks is accommodated and partitioned in a cylindrical casing. A separator is provided with an inlet side manifold and an outlet side manifold in parallel with the axis of the casing on both sides of the edge side of each of the upstream unit cell stack and the downstream unit cell stack. A heat transfer plate that divides a reaction gas passage chamber and a hot water passage chamber is provided outside the reaction gas guide plate arranged on the upstream side of the upstream unit cell stack, and water vapor contained in the reaction gas in the reaction gas passage chamber And a communication pipe for supplying the reaction gas after removing at least a part of the gas to the inlet side manifold of the downstream unit cell stack through the separator.
[0021]
The fuel cell stack structure according to the present invention, in order to achieve the above object, as described in claim 7, the reaction gas guide plate is connected to the inlet side manifold of the upstream unit cell stack A supply port and a communication passage for communicating the outlet side manifold of the upstream unit cell stack and the reaction gas passage chamber with each other are provided.
[0022]
In order to achieve the above object, the fuel cell stack structure according to the present invention has a separator that connects the connecting pipe to the inlet side manifold of the downstream unit cell stack as described in claim 8. It is equipped with a passage to let you.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a fuel cell laminated structure according to the present invention will be described with reference to the drawings and the reference numerals attached to the drawings.
[0026]
FIG. 1 is a conceptual diagram showing a first embodiment of a fuel cell stack structure according to the present invention.
[0027]
The fuel cell stack structure according to the present embodiment closes both ends with an upstream end plate 1 and a downstream end plate 2, and each end plate 1 and 2 is inserted with an elastic body 3 such as a spring to be studded. A cylindrical casing 5 fixedly held by a bolt 4 and the cylindrical casing 5 are accommodated, and a reaction gas such as hydrogen gas is directed from the inlet 6 of the upstream end plate 1 to the outlet 7 of the downstream end plate 2. The unit cell stack 8 is configured to flow in series while meandering.
[0028]
Further, the fuel cell stack structure divides the unit cell stack 8 into an upstream unit cell stack 8a and a downstream unit cell stack 8b, and the divided upstream unit cell stack 8a and downstream unit cell. The separator 8 is provided with a separator 9 that accommodates and divides the laminate 8b in the casing 5.
[0029]
The upstream unit cell stack 8a and the downstream unit cell stack 8b are both unit cells 10 arranged in a row along the axis CL of the casing 5 and collected as one block.
[0030]
In addition, the upstream unit cell stack 8a and the downstream unit cell stack 8b are respectively connected to the inlet side manifolds 11a and 11b and the outlet side manifolds 12a and 12b in parallel along the axis CL of the casing 5 on both sides on the edge side. And the outlet side manifold 12a of the upstream unit cell stack 8a and the inlet side manifold 11b of the downstream unit cell stack 8b communicate with each other through a passage hole 13 provided in the separator plate 9. Yes.
[0031]
The upstream unit cell stack 8a has a larger number of unit cells 10 than the downstream unit cell stack 8b.
[0032]
The unit cell 10 is provided with a fuel electrode and an oxidant electrode covering the catalyst on both sides of the solid polymer electrolyte layer, and a separator (both not shown) that forms a passage groove for allowing a reaction gas to flow outside each electrode. )).
[0033]
On the other hand, the separator 9 that partitions the upstream unit cell laminate 8a and the downstream unit cell laminate 8b in the casing 5 is a conductive material such as a mixture of carbon powder and resin, a carbon material alone, or expanded graphite. In addition, a sealing material such as an O-ring is used between the casing 5 and the casing 5 to prevent leakage of the reaction gas. Further, the unit cell 18 forming each of the upstream unit cell stack 8a and the downstream unit cell stack 8b uses a conductive carbon material between the adjacent unit cells 10 to prevent leakage of reaction gas. is doing.
[0034]
In the fuel cell stack structure having such a configuration, the reaction gas such as hydrogen gas supplied to the inlet 6 of the upstream end plate 1 is supplied from the inlet manifold 11a of the upstream unit cell stack 8a to the casing 5. The electric energy is generated by chemical reaction while flowing into the unit cell 10 across the axis CL, and is collected in the manifold 12a on the outlet side of the upstream unit cell stack 8a.
[0035]
The concentration of the reaction gas collected in the outlet side manifold 12a is maintained at a relatively high level, and is supplied to the inlet side manifold 11b of the downstream unit cell stack 8b via the passage hole 13 of the separator plate 9, and again from here. Electric energy is generated while flowing in the unit cell 10 across the axis CL of the casing 5 and collected in the outlet side manifold 12b of the downstream unit cell stack 8b, and then the other from the outlet 7 of the downstream end plate 2 Supplied to equipment.
[0036]
The upstream unit cell stack 8a and the downstream unit cell stack 8b are provided with a seal structure between the unit cells 10 and 10, and are inserted into the separator plate 9 and the upstream and downstream end plates 1 and 2, respectively. Since a seal structure is provided at the connection portion of each of the manifolds 11a, 11b, 12a, and 12b at the outlet, leakage of the reaction gas can be reliably prevented.
[0037]
As described above, in the present embodiment, the unit cell stack 8 is divided into the upstream unit cell stack 8a and the downstream unit cell stack 8b, and the upstream unit cell stack having a large number of the divided unit cells 10 is provided. A separator 5 is provided in the casing 5 for partitioning a chamber for accommodating the downstream unit cell stack 8b having a small number of unit cells 10 and the downstream side unit cell stack 8b, and both sides on the edge side of the unit cell stacks 8a and 8b. Since the outlet side manifolds 11a, 11b, 12a and 12b are provided and the reaction gas is made to flow from the inlet side manifolds 11a and 11b to the outlet side manifolds 12a and 12b in a simplified manner, the separator 9, the concentration of the reaction gas flowing through each of the upstream unit cell stack 8 a and the downstream unit cell stack 8 b can be maintained even higher. Utilization of the reaction gas can be carried out effectively power generating operation further enhanced.
[0038]
Further, in the present embodiment, since the sealing structure is provided at the connecting portion between the unit cells 10 and 10, the manifolds 11 a, 11 b, 12 a and 12 b and the separator plate 9 and the end plates 1 and 2, Leakage can be reliably prevented and effective power generation operation can be performed.
[0039]
FIG. 2 is a conceptual diagram showing a second embodiment of the fuel cell stack structure according to the present invention. In addition, the same code | symbol is attached | subjected to the same part as the component of 1st Embodiment.
[0040]
The fuel cell stack structure according to this embodiment includes an outlet side manifold 12b of the upstream unit cell stack 8a among the upstream unit cell stack 8a and the downstream unit cell stack 8b separated from the unit cell stack 8. In addition, the porous body 14 having a pore diameter of 0.1 μm to 100 μm is accommodated in the passage hole 13 or the like of the separator plate 9 and provided with a water storage tank 15 connected to the inlet side manifold 11b of the downstream unit cell laminate 8b. is there. Since the other constituent parts are the same as those of the first embodiment, the description thereof is omitted.
[0041]
As described above, in the present embodiment, the porous body 14 is accommodated in the outlet side manifold 12a of the upstream unit cell stack 8a and the condensed water generated from the reaction gas is absorbed during the reaction, while the downstream unit cell. Since the water storage tank 15 is connected to the inlet side manifold 11b of the stacked body 8b and the remaining condensed water is absorbed, the retention of condensed water called so-called flatting can be reduced, and the flow of the reaction gas can be improved. The utilization rate of the reaction gas can be further increased by maintaining the reaction gas concentration high.
[0042]
FIG. 3 is a conceptual diagram showing a third embodiment of the fuel cell stack structure according to the present invention. In addition, the same code | symbol is attached | subjected to the same part as the component of 1st Embodiment.
[0043]
In the fuel cell stack structure according to this embodiment, the unit cell stack 8 is divided into an upstream unit cell stack 8a and a downstream unit cell stack 8b, and the divided upstream unit cell stack 8a and downstream are divided. A separator 9 that divides a chamber for accommodating the unit cell stack 8b is provided in the casing 5, and a reaction gas supply port 16 such as hydrogen gas is provided upstream of the upstream unit cell stack 8a. A gas guide plate 17 and a water vapor permeable membrane 20 that partitions a reaction gas passage chamber 18 and a dry gas passage chamber 19 provided outside the reaction gas guide plate 17 are provided. The water vapor permeable membrane 20 may be an ion exchange membrane or a porous polymer membrane.
[0044]
In addition, the fuel cell stack structure according to the present embodiment has an axis CL of the casing 5 on both sides on the edge side of the upstream unit cell stack 8a and the downstream unit cell stack 8b, as in the first embodiment. The inlet side manifolds 11a and 11b and the outlet side manifolds 12a and 12b that are parallel to each other are provided. The other components are the same as those in the first embodiment, and thus the description thereof is omitted.
[0045]
In the fuel cell stack structure having such a configuration, the reaction gas such as hydrogen gas guided to the reaction gas guide plate 17 through the supply port 16 is supplied to the inlet side manifold 11a of the upstream unit cell stack 8a. The electric energy is generated by chemical reaction while flowing into the unit cell 10 across the axis CL of the casing 5 and collected in the outlet side manifold 12a of the upstream unit cell stack 8a.
[0046]
The reaction gas collected in the outlet side manifold 12 a is collected in the reaction gas passage chamber 18 via the communication passage 21 of the reaction gas guide plate 17, where a part of the water vapor passes through the water vapor permeable membrane 20 and the drying gas chamber. 19 is mixed with a dry gas such as air and blown out of the system.
[0047]
A part of the reaction gas from which the water vapor has been separated is collected in the inlet side manifold 11b of the downstream unit cell stack 8b via the communication pipe 21a and the passage 22 of the separator plate 9, and from there again the axis of the casing 5 Electric energy is generated while crossing CL and flowing to the unit cell 10, collected in the outlet side manifold 12 b of the downstream side unit cell stack 8 b, and then supplied to other devices from the outlet 7 of the downstream end plate 2. Is done.
[0048]
As described above, in the present embodiment, similarly to the first embodiment, the unit cell stack 8 is divided into the upstream unit cell stack 8a and the downstream unit cell stack 8b, and the number of divided unit cells 10 is determined. A separator plate 9 is provided in the casing 5 for partitioning a chamber for accommodating the upstream unit cell stack 8a having a large amount of the upstream unit cell stack 8a and the downstream unit cell stack 8b having a small number of unit cells 10, and each unit cell stack 8a. , 8b are provided with inlet / outlet manifolds 11a, 11b, 12a, 12b on both sides of the edge side, and the reaction gas is simplified from the inlet manifolds 11a, 11b to the outlet manifolds 12a, 12b, respectively. On the other hand, a reaction gas guide plate 17 is provided on the upstream side of the upstream unit cell stack 8 a, and the reaction gas passage chamber 18 and the dry air are provided outside the reaction gas guide plate 17. A water vapor permeable membrane 20 is provided to partition the gas passage chamber 19, and the reaction gas flowing from the outlet side manifold 12 a of the upstream unit cell stack 8 a to the reaction gas passage chamber 18 is dried with the drying gas flowing through the drying gas passage chamber 19. And removing a part of the water vapor contained in the reaction gas, it is possible to flow the reaction gas satisfactorily by preventing flatting, and to further increase the utilization rate of the reaction gas and perform an effective power generation operation. it can.
[0049]
In the present embodiment, a reaction gas passage chamber 18 and a dry gas passage chamber 19 are provided by interposing a water vapor permeable film 20 outside the reaction gas guide plate 17 provided on the upstream side of the upstream unit cell stack 8a. However, the present invention is not limited to this example. For example, as shown in FIG. 4, a reaction gas passage chamber 18 and a hot water passage chamber 24 are provided upstream of the reaction gas guide plate 17 with a heat transfer plate 23 interposed therebetween. A part of the water vapor contained in the reaction gas flowing through the reaction gas passage chamber 18 may be evaporated by the hot water flowing through the hot water passage chamber 24.
[0050]
FIG. 5 is a schematic system diagram showing an embodiment of a water supply device applied to the fuel cell stack structure according to the present invention.
[0051]
Conventionally, in a fuel cell, both the fuel gas supplied to the fuel electrode and the oxidant gas supplied to the oxidant electrode are humidified to promote the chemical reaction.
[0052]
However, when the utilization rate of the hydrogen gas contained in the fuel gas is increased, the hydrogen gas concentration on the outlet side of the fuel electrode is lowered, so-called flatting phenomenon occurs, and the flow of the fuel gas supplied to the fuel electrode becomes worse, It was a factor that reduced power generation efficiency.
[0053]
The present embodiment has been made in consideration of such points, and as shown in FIG. 5, a fuel electrode 26 and an oxidant electrode 27 are arranged on both sides of the solid polymer electrolyte 25, and these are provided. A water circulation system 28 for humidifying only an oxidant gas such as air supplied to the oxidant separator in the unit cell laminate 8 in which unit cells having separators (not shown) arranged in a row are arranged in a row. Is provided.
[0054]
The water circulation system 28 includes a humidified water tank 29 and a pump 30, and is humidified by adding water to the oxidant gas supplied to the oxidant electrode 27. The fuel electrode 26 is supplied with fuel gas from the fuel supply device 31 via the pressure reducing valve 32.
[0055]
When the oxidant gas is humidified, the oxygen gas moves to the fuel electrode 26 through the solid polymer electrolyte 25 while sufficiently containing moisture, where it reacts with the hydrogen gas and generates electricity with the generated electrons. I do.
[0056]
As described above, in this embodiment, power is generated by supplying water from the water circulation system 28 to the oxidant electrode 27 to humidify only the oxidant gas and reacting with the fuel gas on the fuel electrode 26 side. Generation can be prevented, the hydrogen gas concentration contained in the fuel gas can be kept high, and high-efficiency power generation with a high utilization rate of hydrogen gas can be performed.
[0057]
【The invention's effect】
As described above, the fuel cell stack structure according to the present invention provides means for simplifying the flow of the reaction gas, removes moisture contained in the reaction gas, and concentration of hydrogen gas contained in the reaction gas. Therefore, it is possible to further improve the utilization rate of the reaction gas and perform efficient power generation.
[0058]
Further, the fuel cell laminate structure according to the present invention has water supply means on the oxidant electrode side and humidifies only the oxidant gas, so that the amount of condensed water generated during the reaction with the fuel gas is reduced. Thus, the occurrence of flatting can be prevented, and the flow of the reaction gas can be made favorable to perform efficient power generation.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a first embodiment of a fuel cell stack structure according to the present invention.
FIG. 2 is a conceptual diagram showing a second embodiment of a fuel cell stack structure according to the present invention.
FIG. 3 is a conceptual diagram showing a third embodiment of a fuel cell stack structure according to the present invention.
FIG. 4 is a conceptual diagram showing a fourth embodiment of a fuel cell stack structure according to the present invention.
FIG. 5 is a schematic system diagram showing an embodiment of a water supply device applied to a fuel cell stack structure according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Upstream side end plate 2 Downstream side end plate 3 Elastic body 4 Stud bolt 5 Casing 6 Inlet 7 Outlet 8 Unit cell laminated body 8a Upstream side unit cell laminated body 8b Downstream side unit cell laminated body 9 Separation plate 10 Unit cell 11a, 11b Inlet side manifolds 12a, 12b Outlet side manifold 13 Passage hole 14 Porous body 15 Reservoir tank 16 Supply port 17 Reactive gas guide plate 18 Reactive gas passage chamber 19 Drying gas passage chamber 20 Water vapor permeable membrane 21 Connecting passage 21a Connecting pipe 22 Passage 23 Heat transfer plate 24 Hot water passage chamber 25 Solid polymer electrolyte 26 Fuel electrode 27 Oxidant electrode 28 Water circulation system 29 Humidification tank 30 Pump 31 Fuel supply device 32 Pressure reducing valve

Claims (8)

固体高分子電解質を挟んで一側に燃料電極を配置し、他側に酸化剤電極を配置するとともに、各電極の外側にセパレータを配置した単位セルを軸方向に沿って列状に配置して単位セル積層体に構成した燃料電池積層構造体において、前記単位セル積層体を上流側単位セル積層体と下流側単位セル積層体とに区分けし、区分けした前記上流側単位セル積層体と前記下流側単位セル積層体とのそれぞれを筒状のケーシングに収容して区画する隔離板を備えるとともに、前記上流側単位セル積層体および下流側単位セル積層体のそれぞれの縁端側の両側に前記ケーシングの軸線と平行に入口側マニホールドと出口側マニホールドとを備え、
隔離板は、上流側単位セル積層体の出口側マニホールドと下流側単位セル積層体の入口側マニホールドとを連通させる通路孔を備え、カーボン材およびカーボン粉末に樹脂を加えた混合材のうち、いずれか一方で作製したことを特徴とする燃料電池積層構造体。
A fuel electrode is placed on one side with a solid polymer electrolyte in between, an oxidizer electrode is placed on the other side, and unit cells with separators placed outside each electrode are placed in a row along the axial direction. In the fuel cell stacked structure configured as a unit cell stack, the unit cell stack is divided into an upstream unit cell stack and a downstream unit cell stack, and the divided upstream unit cell stack and the downstream provided with a separator for partitioning accommodates each of the side unit cell laminate in a cylindrical casing, said casing on both sides of each of the edge side of the upstream unit cell laminate and the downstream unit cell stack With an inlet side manifold and an outlet side manifold parallel to the axis of
The separator includes a passage hole that communicates the outlet side manifold of the upstream unit cell stack and the inlet side manifold of the downstream unit cell stack, and any of the carbon material and the mixed material obtained by adding a resin to the carbon powder. On the other hand, a fuel cell laminate structure produced by the method.
固体高分子電解質を挟んで一側に燃料電極を配置し、他側に酸化剤電極を配置するとともに、各電極の外側にセパレータを配置した単位セルを軸方向に沿って列状に配置して単位セル積層体に構成した燃料電池積層構造体において、前記単位セル積層体を上流側単位セル積層体と下流側単位セル積層体とに区分けし、区分けした前記上流側単位セル積層体と前記下流側単位セル積層体とのそれぞれを筒状のケーシングに収容して区画する隔離板を備えるとともに、前記上流側単位セル積層体および下流側単位セル積層体のそれぞれの縁端側の両側に前記ケーシングの軸線と平行に入口側マニホールドと出口側マニホールドとを備え、
隔離板は、上流側単位セル積層体の出口側マニホールドと下流側単位セル積層体の入口側マニホールドとを連通させる通路孔を備え、
上流側単位セル積層体の出口側マニホールド、隔離板の通路孔および下流側単位セル積層体の入口側マニホールドのうち、少なくとも一方には多孔質体を収容したことを特徴とする燃料電池積層構造体。
A fuel electrode is placed on one side with a solid polymer electrolyte in between, an oxidizer electrode is placed on the other side, and unit cells with separators placed outside each electrode are placed in a row along the axial direction. In the fuel cell stacked structure configured as a unit cell stack, the unit cell stack is divided into an upstream unit cell stack and a downstream unit cell stack, and the divided upstream unit cell stack and the downstream A separator that accommodates and partitions each of the side unit cell stacks in a cylindrical casing, and the casings on both sides of each of the upstream unit cell stack and the downstream unit cell stack. With an inlet side manifold and an outlet side manifold parallel to the axis of
The separator includes a passage hole that communicates the outlet side manifold of the upstream unit cell stack and the inlet side manifold of the downstream unit cell stack,
At least one of the outlet side manifold of the upstream unit cell stack, the passage hole of the separator plate, and the inlet side manifold of the downstream unit cell stack contains a porous body. .
固体高分子電解質を挟んで一側に燃料電極を配置し、他側に酸化剤電極を配置するとともに、各電極の外側にセパレータを配置した単位セルを軸方向に沿って列状に配置して単位セル積層体に構成した燃料電池積層構造体において、前記単位セル積層体を上流側単位セル積層体と下流側単位セル積層体とに区分けし、区分けした前記上流側単位セル積層体と前記下流側単位セル積層体とのそれぞれを筒状のケーシングに収容して区画する隔離板を備えるとともに、前記上流側単位セル積層体および下流側単位セル積層体のそれぞれの縁端側の両側に前記ケーシングの軸線と平行に入口側マニホールドと出口側マニホールドとを備え、
隔離板は、上流側単位セル積層体の出口側マニホールドと下流側単位セル積層体の入口側マニホールドとを連通させる通路孔を備え、
下流側単位セル積層体の入口側マニホールドは、貯水タンクを備えたことを特徴とする燃料電池積層構造体。
A fuel electrode is placed on one side with a solid polymer electrolyte in between, an oxidizer electrode is placed on the other side, and unit cells with separators placed outside each electrode are placed in a row along the axial direction. In the fuel cell stacked structure configured as a unit cell stack, the unit cell stack is divided into an upstream unit cell stack and a downstream unit cell stack, and the divided upstream unit cell stack and the downstream A separator that accommodates and partitions each of the side unit cell stacks in a cylindrical casing, and the casings on both sides of each of the upstream unit cell stack and the downstream unit cell stack. With an inlet side manifold and an outlet side manifold parallel to the axis of
The separator includes a passage hole that communicates the outlet side manifold of the upstream unit cell stack and the inlet side manifold of the downstream unit cell stack,
A fuel cell stack structure, wherein an inlet side manifold of a downstream unit cell stack includes a water storage tank.
上流側単位セル積層体は、下流側単位セル積層体に較べて単位セルの枚数を多くしたことを特徴とする請求項1記載の燃料電池積層構造体。  The fuel cell stack structure according to claim 1, wherein the upstream unit cell stack has a larger number of unit cells than the downstream unit cell stack. 固体高分子電解質を挟んで一側に燃料電極を配置し、他側に酸化剤電極を配置するとともに、各電極の外側にセパレータを配置した単位セルを軸方向に沿って列状に配置して単位セル積層体に構成した燃料電池積層構造体において、前記単位セル積層体を上流側単位セル積層体と下流側単位セル積層体とに区分けし、区分けした前記上流側単位セル積層体と前記下流側単位セル積層体とのそれぞれを筒状のケーシングに収容して区画する隔離板を備えるとともに、前記上流側単位セル積層体および下流側単位セル積層体のそれぞれの縁端側の両側に前記ケーシングの軸線と平行に入口側マニホールドと出口側マニホールドとを備える一方、前記上流側単位セル積層体の上流側に配置した反応ガス案内プレートの外側に反応ガス通路室と乾燥ガス通路室とを区画する水蒸気透過膜を備え、前記反応ガス通路室で反応ガスに含まれる水蒸気を少なくとも一部分以上を取り除いた後の反応ガスを前記隔離板を介して下流側単位セル積層体の入口側マニホールドに供給する連絡管を備えたことを特徴とする燃料電池積層構造体。A fuel electrode is placed on one side with a solid polymer electrolyte in between, an oxidizer electrode is placed on the other side, and unit cells with separators placed outside each electrode are placed in a row along the axial direction. In the fuel cell stacked structure configured as a unit cell stack, the unit cell stack is divided into an upstream unit cell stack and a downstream unit cell stack, and the divided upstream unit cell stack and the downstream provided with a separator for partitioning accommodates each of the side unit cell laminate in a cylindrical casing, said casing on both sides of each of the edge side of the upstream unit cell laminate and the downstream unit cell stack The reaction gas passage chamber and the drying gas are disposed outside the reaction gas guide plate disposed on the upstream side of the upstream unit cell stack. A water vapor permeable membrane partitioning the passage chamber, and the reaction gas after removing at least a part of the water vapor contained in the reaction gas in the reaction gas passage chamber is passed through the separator to the downstream unit cell stack inlet A fuel cell laminate structure comprising a connecting pipe for supplying to the side manifold. 固体高分子電解質を挟んで一側に燃料電極を配置し、他側に酸化剤電極を配置するとともに、各電極の外側にセパレータを配置した単位セルを軸方向に沿って列状に配置して単位セル積層体に構成した燃料電池積層構造体において、前記単位セル積層体を上流側単位セル積層体と下流側単位セル積層体とに区分けし、区分けした前記上流側単位セル積層体と前記下流側単位セル積層体とのそれぞれを筒状のケーシングに収容して区画する隔離板を備えるとともに、前記上流側単位セル積層体および下流側単位セル積層体のそれぞれの縁端側の両側に前記ケーシングの軸線と平行に入口側マニホールドと出口側マニホールドとを備える一方、前記上流側単位セル積層体の上流側に配置した反応ガス案内プレートの外側に反応ガス通路室と温水通路室とを区画する伝熱プレートを備え、前記反応ガス通路室で反応ガスに含まれる水蒸気を少なくとも一部分以上を取り除いた後の反応ガスを前記隔離板を介して下流側単位セル積層体の入口側マニホールドに供給する連絡管を備えたことを特徴とする燃料電池積層構造体。A fuel electrode is placed on one side with a solid polymer electrolyte in between, an oxidizer electrode is placed on the other side, and unit cells with separators placed outside each electrode are placed in a row along the axial direction. In the fuel cell stacked structure configured as a unit cell stack, the unit cell stack is divided into an upstream unit cell stack and a downstream unit cell stack, and the divided upstream unit cell stack and the downstream provided with a separator for partitioning accommodates each of the side unit cell laminate in a cylindrical casing, said casing on both sides of each of the edge side of the upstream unit cell laminate and the downstream unit cell stack The reaction gas passage chamber and the hot water flow are provided outside the reaction gas guide plate disposed upstream of the upstream unit cell stack. A reaction plate after separating at least a portion of water vapor contained in the reaction gas in the reaction gas passage chamber, and passing the reaction gas through the separator on the inlet side of the downstream unit cell stack A fuel cell laminate structure comprising a connecting pipe for supplying to a manifold. 反応ガス案内プレートは、上流側単位セル積層体の入口側マニホールドに接続する供給口と、上流側単位セル積層体の出口側マニホールドと反応ガス通路室とを互いに連通させる連絡通路とを備えたことを特徴とする請求項5または6記載の燃料電池積層構造体。The reactive gas guide plate has a supply port connected to the inlet side manifold of the upstream unit cell stack, and a communication passage that allows the outlet side manifold of the upstream unit cell stack and the reactive gas passage chamber to communicate with each other. The fuel cell stack structure according to claim 5 or 6 . 隔離板は、連絡管を下流側単位セル積層体の入口側マニホールドに接続させる通路を備えたことを特徴とする請求項5または6記載の燃料電池積層構造体。7. The fuel cell stack structure according to claim 5, wherein the separator includes a passage for connecting the connecting pipe to the inlet side manifold of the downstream unit cell stack.
JP2001055947A 2001-02-28 2001-02-28 Fuel cell stack structure Expired - Lifetime JP4621370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001055947A JP4621370B2 (en) 2001-02-28 2001-02-28 Fuel cell stack structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001055947A JP4621370B2 (en) 2001-02-28 2001-02-28 Fuel cell stack structure

Publications (2)

Publication Number Publication Date
JP2002260708A JP2002260708A (en) 2002-09-13
JP4621370B2 true JP4621370B2 (en) 2011-01-26

Family

ID=18916054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001055947A Expired - Lifetime JP4621370B2 (en) 2001-02-28 2001-02-28 Fuel cell stack structure

Country Status (1)

Country Link
JP (1) JP4621370B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639583B2 (en) 2003-03-06 2011-02-23 トヨタ自動車株式会社 Fuel cell
JP4956882B2 (en) 2003-07-22 2012-06-20 トヨタ自動車株式会社 Fuel cell
JP2005158403A (en) 2003-11-25 2005-06-16 Nissan Motor Co Ltd Ventilation system of fuel cell water tank
JP4956890B2 (en) * 2003-11-25 2012-06-20 トヨタ自動車株式会社 Fuel cell
JP4614120B2 (en) * 2004-03-31 2011-01-19 トヨタ自動車株式会社 Fuel cell stack
CA2528689C (en) 2004-03-31 2009-05-12 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
KR101342662B1 (en) 2012-01-10 2013-12-16 지에스칼텍스 주식회사 Fuel cell system having high hydrogen utilization efficiency
KR101822771B1 (en) * 2013-12-11 2018-01-26 니혼도꾸슈도교 가부시키가이샤 Fuel cell stack and fuel cell module
JP6294134B2 (en) * 2014-04-16 2018-03-14 日本特殊陶業株式会社 Fuel cell stack
KR102514144B1 (en) * 2018-04-26 2023-03-24 주식회사 엘지화학 Fuel cell stack
CN117999683A (en) * 2021-09-30 2024-05-07 罗伯特·博世有限公司 Power unit, end structure and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154523A (en) * 1997-11-19 1999-06-08 Fuji Electric Co Ltd Cell and stack of solid polymer electrolyte fuel cell
JP2001256993A (en) * 2000-03-13 2001-09-21 Fuji Electric Co Ltd Fuel cell laminate using high-concentration hydrogen gas
JP2002134155A (en) * 2000-10-23 2002-05-10 Matsushita Seiko Co Ltd Fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154523A (en) * 1997-11-19 1999-06-08 Fuji Electric Co Ltd Cell and stack of solid polymer electrolyte fuel cell
JP2001256993A (en) * 2000-03-13 2001-09-21 Fuji Electric Co Ltd Fuel cell laminate using high-concentration hydrogen gas
JP2002134155A (en) * 2000-10-23 2002-05-10 Matsushita Seiko Co Ltd Fuel cell

Also Published As

Publication number Publication date
JP2002260708A (en) 2002-09-13

Similar Documents

Publication Publication Date Title
US5200278A (en) Integrated fuel cell power generation system
US8304123B2 (en) Ambient pressure fuel cell system employing partial air humidification
US6783878B2 (en) Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
KR100558223B1 (en) Mass and heat recovery system for a fuel cell power plant
US20030091880A1 (en) Novel unitized regenerative fuel cell with bifunctional fuel cell humidifier and water electrolyzer
WO1995025357A1 (en) Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section
JPH08273687A (en) Supply gas humidifier of fuel cell
WO2004004055A1 (en) Solid high polymer type cell assembly
KR101724454B1 (en) Fuel cell system and humidification device of the same
JP2000090954A (en) Fuel cell stack
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
JP4621370B2 (en) Fuel cell stack structure
JP2002170584A (en) Solid polymer type fuel battery
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
EP1935046B1 (en) Modified fuel cells with internal humidification and/or temperature control systems
US7090941B2 (en) Fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP3276175B2 (en) Solid polymer electrolyte fuel cell
JP2008108473A (en) Humidifying system for fuel cell
JP2000277128A (en) Solid polymer type fuel cell
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
JP3575650B2 (en) Molten carbonate fuel cell
JPH08306375A (en) Solid polymer type fuel sell
JPH0992308A (en) Solid polymer electrolyte fuel cell
JP4737874B2 (en) Polymer electrolyte fuel cell system
JP4000971B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4621370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

EXPY Cancellation because of completion of term