JPH06267562A - Solid high polymer electrolyte fuel cell - Google Patents

Solid high polymer electrolyte fuel cell

Info

Publication number
JPH06267562A
JPH06267562A JP5053321A JP5332193A JPH06267562A JP H06267562 A JPH06267562 A JP H06267562A JP 5053321 A JP5053321 A JP 5053321A JP 5332193 A JP5332193 A JP 5332193A JP H06267562 A JPH06267562 A JP H06267562A
Authority
JP
Japan
Prior art keywords
oxidant
flow path
fuel
cathode
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5053321A
Other languages
Japanese (ja)
Inventor
Katsuo Hashizaki
克雄 橋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5053321A priority Critical patent/JPH06267562A/en
Publication of JPH06267562A publication Critical patent/JPH06267562A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enable cell reaction to be kept up stably by facilitating gas discharge while gas is being dispersed by means of steam of generated water and moving water even in the downstream of each oxidant flow path, and also facilitating discharge of generated water and moving water which are liquefied and/or formed into a state of droplets. CONSTITUTION:The fuel cell is equipped with a laminated body 31 where an anode and a cathode are disposed on both the surfaces of an electrolyte layer 32 respectively, a fuel distributing plate 37 which is provided for the anode side of the aforesaid layer 31 while being furnished with each fuel flow path 36 feeding fuel to the aforesaid anode, and with oxidant distributing plate 40 which is provided for the cathode side of the aforesaid laminated body 31 while being furnished with each oxidant flow path 39 feeding oxidant to the aforesaid cathode. And the percentage of voids of the cathode to which oxidant is fed is made gradually large along the flow path of oxidant from the upstream side to the downstream side, so that the percentage of voids is thereby changed along an oxidant flow path 39.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸化剤が供給される
側のカソード極に改良を施した固体高分子電解質燃料電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell having an improved cathode electrode on the side to which an oxidant is supplied.

【0002】[0002]

【従来の技術】固体高分子電解質燃料電池は、図1に示
すように、電解質1に高分子イオン交換膜(例えば、ス
ルホン酸基を持つフッ素樹脂イオン交換膜)を用い、両
側に触媒電極層(例えば白金)2,3及び多孔質カーボ
ン電極4,5を備えた電極接合体6構造をしている。ア
ノード極側に供給された加湿燃料中の水素は、触媒電極
(アノード極)2上で水素イオン化され、水素イオンは
電解質1中を水の介在もとH+ ・xH2 Oとして、カソ
ード極側へ水と共に移動する。
2. Description of the Related Art In a solid polymer electrolyte fuel cell, as shown in FIG. 1, a polymer ion exchange membrane (for example, a fluororesin ion exchange membrane having a sulfonic acid group) is used as an electrolyte 1 and catalyst electrode layers are provided on both sides. It has an electrode assembly 6 structure including (for example, platinum) 2 and 3 and porous carbon electrodes 4 and 5. Hydrogen in the humidified fuel supplied to the anode electrode side is hydrogen-ionized on the catalyst electrode (anode electrode) 2, and the hydrogen ions pass through the electrolyte 1 in the presence of water to form H +. As xH 2 O, it moves to the cathode side together with water.

【0003】移動した水素イオンは、触媒電極(カソー
ド電極)3上で酸化剤中の酸素及び外部回路7を流通し
てきた電子と反応して水を生成し、その生成水はカソー
ド極3より燃料電池外へ排出されることになる。この
時、外部回路7を流通した電子流れを直流の電気エネル
ギーとして利用できる。なお、電解質1となる高分子イ
オン交換膜において、前述のような水素イオン透過性を
実現させるためには、この膜を常に充分なる保水状態に
保持しておく必要があり、通常、燃料又は酸化剤に電池
の運転温度近辺相当の飽和水蒸気を含ませて、すなわち
加湿して燃料及び酸化剤を電極接合体6に供給し、膜の
保水状態を保つようにしている。以下に、上記固体高分
子電解質燃料電池における反応式を示す。 アノード側:H2 →2H+ +2e- カソード側:(1/2)O2 +2H+ +2e- →H2 O 全反応:H2 +(1/2)O2 →H2 O 図2は、従来の固体高分子電解質燃料電池の構成の一例
を示す。
The transferred hydrogen ions are transferred to the catalyst electrode (cassette).
Oxygen in the oxidizer and the external circuit 7
Reacts with the incoming electrons to produce water, and the produced water is caustic.
It is discharged from the cathode 3 to the outside of the fuel cell. this
At this time, the electric current flowing through the external circuit 7 is converted into a direct current energy
Available as a ghee. It should be noted that the polymer 1 that serves as the electrolyte 1
In the on-exchange membrane, hydrogen ion permeability as described above
In order to achieve this, keep this membrane in a state of sufficient water retention.
It must be kept in the fuel or oxidizer
Including saturated steam equivalent to the operating temperature of
Humidifying and supplying the fuel and the oxidant to the electrode assembly 6,
I try to keep water retention. Below, the high solid content
The reaction formula in the child electrolyte fuel cell is shown. Anode side: H2→ 2H+ + 2e-  Cathode side: (1/2) O2+ 2H+ + 2e- → H2O Total reaction: H2+ (1/2) O2→ H2O FIG. 2 shows an example of the configuration of a conventional solid polymer electrolyte fuel cell.
Indicates.

【0004】図中の11は、電解質12の上下に第1触媒電
極(アノード極)13,第2触媒電極(カソード極)14を
積層した積層体である。この積層体11の上側には、第1
カーボン電極(アノード電極)15,燃料流路16を有した
燃料配流板17が設けられている。前記積層体11の下側に
は、第2カーボン電極(アノード電極)18,酸化剤流路
19を有した酸化剤配流板20が設けられている。
Reference numeral 11 in the figure is a laminate in which a first catalyst electrode (anode electrode) 13 and a second catalyst electrode (cathode electrode) 14 are laminated on and under an electrolyte 12. On the upper side of this stack 11, the first
A fuel distribution plate 17 having a carbon electrode (anode electrode) 15 and a fuel flow path 16 is provided. A second carbon electrode (anode electrode) 18 and an oxidant channel are provided below the laminated body 11.
An oxidant distribution plate 20 having 19 is provided.

【0005】こうした燃料電池において、前記燃料流路
16を流れてきた燃料水素は、第1カーボン電極15を通過
し、第1触媒電極13上で水素イオン化され、水素イオン
は電解質12中を水の介在のもとH+ ・xH2 Oとして、
カソード極側へ水と共に移動する。この水素イオンによ
り、第2触媒電極14上で生成された水と、水素イオンと
共にアノード極側より電解質12中を移動してきた水は、
蒸気あるいは、一部液体のまま、酸化剤流路19に沿って
均一な空隙率構造をした第2カーボン電極18を通過し、
酸化剤が流れる酸化剤流路19に排出されるようになって
いる。
In such a fuel cell, the fuel passage
The fuel hydrogen flowing through 16 passes through the first carbon electrode 15 and is hydrogen-ionized on the first catalyst electrode 13, and the hydrogen ions are H + in the electrolyte 12 with the interposition of water. ・ As xH 2 O,
It moves to the cathode side together with water. The water generated on the second catalyst electrode 14 by this hydrogen ion and the water that has moved in the electrolyte 12 from the anode side together with the hydrogen ion are
Passing through the second carbon electrode 18 having a uniform porosity structure along the oxidant flow path 19 as vapor or a part of liquid,
The oxidant is discharged to the oxidant channel 19.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図2に
示すような酸化剤流路に沿ってその空隙率が均一な多孔
質なカーボン電極では、電池反応に伴って発生する生成
水、及び水素イオンと共にアノード極よりカソード極へ
移動する移動水が、酸化剤流路17の下流へ向かうほど、
その酸化剤雰囲気中の水蒸気分圧が上昇するため、蒸気
となってガス拡散排出されにくくなることになる。ま
た、一部液体化、液滴化した生成水や移動水が、カソー
ド極側の多孔質なカーボン電極中に詰まり、多孔質なカ
ーボン電極中の酸化剤のガス拡散が阻止され易い構造と
なっていた。このため、安定な電池反応が行われにくい
状況が起こっていた。
However, in a porous carbon electrode having a uniform porosity along the oxidant flow path as shown in FIG. 2, the generated water and hydrogen ions generated by the battery reaction are generated. Along with the moving water that moves from the anode electrode to the cathode electrode together with the downstream of the oxidant flow path 17,
Since the partial pressure of water vapor in the oxidant atmosphere increases, it becomes difficult for the gas to diffuse and be discharged as vapor. In addition, the partially liquefied or liquefied generated water or mobile water is clogged in the porous carbon electrode on the cathode electrode side, which makes it easy to prevent gas diffusion of the oxidant in the porous carbon electrode. Was there. Therefore, there has been a situation in which a stable battery reaction is difficult to be performed.

【0007】この発明はこうした事情に考慮してなされ
たもので、酸化剤が供給される側の多孔質なカーボン電
極を、酸化剤の上流流路域から下流流路域に沿って空隙
率を徐々に大きくすることにより、空隙率を酸化剤流路
に沿って変化させ、もって酸化剤流路の下流域でも生成
水や移動水の蒸気によるガス拡散排出が行われ易く、ま
た液体化や液滴化した生成水や移動水も排出され易くし
て、安定した電池反応を継続してなしえる固体高分子電
解質燃料電池を提供することを目的とする。
The present invention has been made in consideration of such circumstances, and the porous carbon electrode on the side to which the oxidant is supplied has a porosity of from the upstream flow channel region of the oxidant to the downstream flow channel region. By gradually increasing it, the porosity is changed along the oxidant flow path, so that gas diffusion and discharge due to the vapor of generated water or moving water can be easily performed in the downstream area of the oxidant flow path, and liquefaction or liquid It is an object of the present invention to provide a solid polymer electrolyte fuel cell in which droplets of produced water and mobile water can be easily discharged and a stable cell reaction can be continuously performed.

【0008】[0008]

【課題を解決するための手段】この発明は、電解質の両
面側にアノード極、カソード極を夫々配置した積層体
と、前記積層体のアノード極側に設けられ、前記アノー
ド極に燃料を供給する燃料流路を有した燃料配流板と、
前記積層体のカソード極側に設けられ、前記カソード極
に酸化剤を供給する酸化剤流路路を有した酸化剤配流板
とを具備し、酸化剤が供給される側のカソード極を、酸
化剤の上流流路域から下流流路域に沿って空隙率を徐々
に大きくし、空隙率を酸化剤流路に沿って変化させるこ
とを特徴とする固体高分子電解質燃料電池である。
According to the present invention, there is provided a laminated body in which an anode electrode and a cathode electrode are arranged on both surface sides of an electrolyte, and an anode electrode side of the laminated body, and fuel is supplied to the anode electrode. A fuel distribution plate having a fuel flow path,
An oxidant distribution plate having an oxidant flow channel for supplying an oxidant to the cathode electrode of the laminate, and oxidizing the cathode electrode on the oxidant supply side. The solid polymer electrolyte fuel cell is characterized in that the porosity is gradually increased from the upstream flow channel region of the agent to the downstream flow channel region, and the porosity is changed along the oxidant flow channel.

【0009】[0009]

【作用】酸化剤が供給される側の多孔質なカーボン電極
構造を、酸化剤流路の上流流路域から下流流路域に沿っ
て空隙率を徐々に大きくして、空隙率を酸化剤流路に沿
って変化させることで、酸化剤流路の下流流路域におい
て酸化剤雰囲気中の水蒸気分圧が上昇しても、生成水や
移動水が蒸気となってガス拡散排出されやすく、あるい
は、液体化や液滴化した生成水や移動水がカーボン電極
を通過して酸化剤流路中に排出されやすくなる。
[Function] In the porous carbon electrode structure on the side to which the oxidant is supplied, the porosity is gradually increased by gradually increasing the porosity from the upstream flow channel region to the downstream flow channel region of the oxidant flow channel. By changing along the flow path, even if the partial pressure of water vapor in the oxidant atmosphere rises in the downstream flow path area of the oxidant flow path, the generated water or moving water easily becomes vapor and is diffused and discharged by gas, Alternatively, liquefied or liquefied generated water or moving water easily passes through the carbon electrode and is discharged into the oxidant flow channel.

【0010】[0010]

【実施例】以下、この発明の一実施例を図3を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG.

【0011】図中の31は、高分子イオン交換膜(例え
ば、スルホン酸基を持つフッ素樹脂イオン交換膜)から
なる電解質32の上下に第1触媒電極(アノード極)33,
第2触媒電極(カソード極)34を夫々積層した積層体で
ある。この積層体31の上側には、第1カーボン電極(ア
ノード電極)35,及び燃料流路36を有した燃料配流板37
が設けられている。前記積層体31の下側には、第2カー
ボン電極(アノード電極)38,及び酸化剤流路39を有し
た酸化剤配流板40が設けられている。こうした燃料電池
において、酸化剤が供給される側の多孔質な第2カーボ
ン電極38は、酸化剤流路の上流流路域から下流流路域に
沿って(矢印方向)空隙率を徐々に大きくして、空隙率
を酸化剤流路39に沿って変化させた構造となっている。
Reference numeral 31 in the drawing denotes a first catalyst electrode (anode electrode) 33 above and below an electrolyte 32 made of a polymer ion exchange membrane (for example, a fluororesin ion exchange membrane having a sulfonic acid group).
It is a laminated body in which the second catalyst electrodes (cathode electrodes) 34 are laminated respectively. A fuel distribution plate 37 having a first carbon electrode (anode electrode) 35 and a fuel flow path 36 is provided above the stack 31.
Is provided. An oxidant distribution plate 40 having a second carbon electrode (anode electrode) 38 and an oxidant flow channel 39 is provided below the laminated body 31. In such a fuel cell, the porous second carbon electrode 38 on the side to which the oxidant is supplied has a porosity that gradually increases from the upstream flow channel region of the oxidant flow channel to the downstream flow channel region (arrow direction). The porosity is changed along the oxidant flow channel 39.

【0012】こうした構造の固体高分子電解質燃料電池
において、燃料流路36を流れてきた燃料水素は第1カー
ボン電極36を通過し、第1触媒電極33上で水素イオン化
され、水素イオンは電解質32中を水の介在のもとH+
xH2 Oとして、カソード極側へ水と共に移動する。こ
の水素イオンにより第2触媒電極34上で生成された水
と、水素イオンと共にアノード極側より電解質32中を移
動してきた水は、酸化剤雰囲気中の水蒸気分圧が高くて
も、蒸気あるいは、一部は液体のまま、第2カーボン電
極38を通過し、酸化剤が流れる酸化剤流路39に排出され
るようになっている。 上記実施例によれば、酸化剤が
供給される側の多孔質な第2カーボン電極38は、酸化剤
流路39の上流流路域から下流流路域に沿って空隙率を徐
々に大きくして、空隙率を酸化剤流路39に沿って変化さ
せた構造となっている。従って、酸化剤流路39の上流流
路域で排出された生成水や移動水により、酸化剤流路39
の下流流路域では、その酸化剤雰囲気中の水蒸気分圧が
上昇するが、多孔質な第2カーボン電極38の空隙率が大
きくなっていることから、酸化剤流路39の下流域でも生
成水や移動水の蒸気によるガス拡散排出が行われやす
く、また、液体化や液滴化した生成水や移動水も、第2
カーボン電極38を通過して酸化剤流路39中に排出されや
すくなっている。これにより、安定した電池反応を継続
して行なうことが可能となる。
In the solid polymer electrolyte fuel cell having such a structure, the fuel hydrogen flowing through the fuel flow path 36 passes through the first carbon electrode 36 and is hydrogen-ionized on the first catalyst electrode 33, and the hydrogen ion is converted into the electrolyte 32. H + under the presence of water
As xH 2 O, it moves to the cathode side together with water. The water generated on the second catalyst electrode 34 by the hydrogen ions and the water that has moved in the electrolyte 32 from the anode side together with the hydrogen ions are vapor or even if the water vapor partial pressure in the oxidant atmosphere is high. A part of the liquid remains as it is, passes through the second carbon electrode 38, and is discharged to the oxidant channel 39 through which the oxidant flows. According to the above-mentioned embodiment, the porous second carbon electrode 38 on the side to which the oxidant is supplied has the porosity gradually increased from the upstream flow channel region of the oxidant flow channel 39 to the downstream flow channel region. The porosity is changed along the oxidant channel 39. Therefore, due to the generated water or the moving water discharged in the upstream flow channel area of the oxidant flow channel 39, the oxidant flow channel 39
Although the partial pressure of water vapor in the oxidant atmosphere rises in the downstream flow passage region of, the porosity of the porous second carbon electrode 38 is large, so that it is also generated in the downstream region of the oxidant flow passage 39. It is easy for gas to be diffused and discharged by the vapor of water and moving water, and the liquefied and dropletized generated water and moving water are also
It easily passes through the carbon electrode 38 and is discharged into the oxidant channel 39. This makes it possible to continuously perform a stable battery reaction.

【0013】[0013]

【発明の効果】以上詳述した如くこの発明によれば、酸
化剤が供給される側の多孔質なカーボン電極を、酸化剤
の上流流路域から下流流路域に沿って空隙率を徐々に大
きくすることにより、空隙率を酸化剤流路に沿って変化
させ、もって酸化剤流路の下流域でも生成水や移動水の
蒸気によるガス拡散排出が行われ易く、また液体化や液
滴化した生成水や移動水も排出され易くして、安定した
電池反応を継続してなしえる固体高分子電解質燃料電池
を提供できる。
As described above in detail, according to the present invention, the porosity of the porous carbon electrode on the side to which the oxidant is supplied is gradually increased from the upstream flow channel region of the oxidant to the downstream flow channel region. By increasing the porosity, the porosity can be changed along the oxidant flow channel, so that gas diffusion and discharge due to vapor of generated water or moving water can be easily performed in the downstream region of the oxidant flow channel, and liquefaction or droplets It is possible to provide a solid polymer electrolyte fuel cell in which the produced water and the mobile water that have been turned into are easily discharged, and a stable cell reaction can be continued.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体高分子電解質燃料電池の機能を説明するた
めの図。
FIG. 1 is a diagram for explaining the function of a solid polymer electrolyte fuel cell.

【図2】従来の固体高分子電解質燃料電池の説明図。FIG. 2 is an explanatory view of a conventional solid polymer electrolyte fuel cell.

【図3】この発明の一実施例に係る固体高分子電解質燃
料電池の説明図。
FIG. 3 is an explanatory diagram of a solid polymer electrolyte fuel cell according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

31…積層体、 32…電解質、 33…
第1触媒電極、34…第2触媒電極、 35…第1カーボ
ン電極、 36…燃料流路、37…燃料配流板、 38…
第2カーボン電極、 39…酸化剤流路、40…酸化剤配流
板。
31 ... Laminated body, 32 ... Electrolyte, 33 ...
First catalyst electrode, 34 ... Second catalyst electrode, 35 ... First carbon electrode, 36 ... Fuel flow path, 37 ... Fuel distribution plate, 38 ...
Second carbon electrode, 39 ... Oxidizing agent flow path, 40 ... Oxidizing agent distribution plate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解質の両面側にアノード極、カソード
極を夫々配置した積層体と、前記積層体のアノード極側
に設けられ、前記アノード極に燃料を供給する燃料流路
を有した燃料配流板と、前記積層体のカソード極側に設
けられ、前記カソード極に酸化剤を供給する酸化剤流路
を有した酸化剤配流板とを具備し、酸化剤が供給される
側のカソード極を、酸化剤の上流流路域から下流流路域
に沿って空隙率を徐々に大きくし、空隙率を酸化剤流路
に沿って変化させることを特徴とする固体高分子電解質
燃料電池。
1. A fuel distribution system having a laminated body in which an anode electrode and a cathode electrode are arranged on both sides of an electrolyte, and a fuel flow path provided on the anode electrode side of the laminated body and for supplying fuel to the anode electrode. A plate and an oxidant distribution plate provided on the cathode side of the laminated body and having an oxidant flow channel for supplying an oxidant to the cathode electrode. The solid polymer electrolyte fuel cell is characterized in that the porosity is gradually increased along the oxidant from the upstream flow path area to the downstream flow path area, and the porosity is changed along the oxidant flow path.
JP5053321A 1993-03-15 1993-03-15 Solid high polymer electrolyte fuel cell Withdrawn JPH06267562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5053321A JPH06267562A (en) 1993-03-15 1993-03-15 Solid high polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5053321A JPH06267562A (en) 1993-03-15 1993-03-15 Solid high polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH06267562A true JPH06267562A (en) 1994-09-22

Family

ID=12939463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5053321A Withdrawn JPH06267562A (en) 1993-03-15 1993-03-15 Solid high polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH06267562A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176654A2 (en) * 2000-07-25 2002-01-30 Toyota Jidosha Kabushiki Kaisha Fuel cell
EP1298745A2 (en) * 2001-09-28 2003-04-02 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2005174648A (en) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd Fuel cell
JP2006012546A (en) * 2004-06-24 2006-01-12 Toyota Motor Corp Fuel cell
JP2006253038A (en) * 2005-03-11 2006-09-21 Equos Research Co Ltd Separator unit and fuel cell stack
WO2007089029A1 (en) * 2006-02-03 2007-08-09 Canon Kabushiki Kaisha Fuel cell
WO2011013711A1 (en) 2009-07-28 2011-02-03 ジャパンゴアテックス株式会社 Gas diffusion layer member for solid polymer fuel cells, and solid polymer fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176654A2 (en) * 2000-07-25 2002-01-30 Toyota Jidosha Kabushiki Kaisha Fuel cell
EP1176654A3 (en) * 2000-07-25 2002-08-14 Toyota Jidosha Kabushiki Kaisha Fuel cell
US6933067B2 (en) 2000-07-25 2005-08-23 Toyota Jidosha Kabushiki Kaisha Fuel cell
EP1298745A2 (en) * 2001-09-28 2003-04-02 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
EP1298745A3 (en) * 2001-09-28 2006-10-04 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2005174648A (en) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd Fuel cell
JP2006012546A (en) * 2004-06-24 2006-01-12 Toyota Motor Corp Fuel cell
JP4661103B2 (en) * 2004-06-24 2011-03-30 トヨタ自動車株式会社 Fuel cell
JP2006253038A (en) * 2005-03-11 2006-09-21 Equos Research Co Ltd Separator unit and fuel cell stack
WO2007089029A1 (en) * 2006-02-03 2007-08-09 Canon Kabushiki Kaisha Fuel cell
US8940449B2 (en) 2006-02-03 2015-01-27 Canon Kabushiki Kaisha Fuel cell
WO2011013711A1 (en) 2009-07-28 2011-02-03 ジャパンゴアテックス株式会社 Gas diffusion layer member for solid polymer fuel cells, and solid polymer fuel cell

Similar Documents

Publication Publication Date Title
JP3553101B2 (en) Solid polymer electrolyte fuel cell
EP1517392B1 (en) Solid high polymer type cell assembly
JP3530793B2 (en) Fuel cell and operating method thereof
US20020098397A1 (en) Catalytic humidifier and heater for the fuel stream of a fuel cell
JP3559693B2 (en) Solid polymer electrolyte fuel cell
US7790330B2 (en) Polymer fuel cell structure
JP3502508B2 (en) Direct methanol fuel cell
JPH11135133A (en) Solid polymer electrolyte fuel cell
JP2001006698A (en) Solid polymer electrolyte fuel cell and manufacture of its diffusion layer
JPH07320753A (en) Solid polymer electrolyte membrane type fuel cell
CA2403156C (en) A fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JP3999934B2 (en) Solid oxide fuel cell
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP3500086B2 (en) Fuel cell and fuel cell using the same
JP2001135326A (en) Solid high molecular electrolyte fuel cell and stack of the same
JP3342079B2 (en) Solid polymer electrolyte fuel cell
JP2001236977A (en) Solid high polymer fuel cell generator and method of operating solid high polymer fuel cell
JP3423241B2 (en) Cell unit for fuel cell and fuel cell
JPH08138697A (en) Fuel cell
JPH11111311A (en) Solid polymer type fuel cell
JP2003249243A (en) Fuel cell
JP2007051369A (en) Passive-type hydrogen production device and package-type fuel cell power generator using the same
JP2001185169A (en) Solid polymeric fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530