JP2002164057A - Solid high molecular fuel cell and method of manufacturing the same - Google Patents

Solid high molecular fuel cell and method of manufacturing the same

Info

Publication number
JP2002164057A
JP2002164057A JP2000360758A JP2000360758A JP2002164057A JP 2002164057 A JP2002164057 A JP 2002164057A JP 2000360758 A JP2000360758 A JP 2000360758A JP 2000360758 A JP2000360758 A JP 2000360758A JP 2002164057 A JP2002164057 A JP 2002164057A
Authority
JP
Japan
Prior art keywords
catalyst layer
gas
fuel cell
ion exchange
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000360758A
Other languages
Japanese (ja)
Inventor
Hajime Sudo
業 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000360758A priority Critical patent/JP2002164057A/en
Publication of JP2002164057A publication Critical patent/JP2002164057A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid high molecular fuel cell and its manufacturing method, capable of preventing excess or insufficient water content in the catalyst, and the gas diffusion inhibition, with respect to the fuel cell using a catalyst layer containing an ion exchange resin. SOLUTION: In this solid high molecular fuel cell comprising the catalyst layers 11 formed on both main faces through a solid high molecular catalyst film, a gas diffusion layer 3 and a separator having a reaction gas channel, the catalyst layers include the catalyst powder and the ion exchange resin, and EW of the ion exchange resin in the catalyst layers is changed along the thickness direction and the face direction of the catalyst layers. Most preferably, EW in the thickness direction of the catalyst layers 11 is large at the gas diffusion layer 3 side and small at the solid high molecular electrolytic film side, and EW in the face direction is large at an outlet side of the reaction gas, and small at its inlet side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体高分子型燃
料電池とその製造方法に関する。
The present invention relates to a polymer electrolyte fuel cell and a method for manufacturing the same.

【0002】[0002]

【従来の技術】燃料電池は水素と酸素を利用し、電解質
を介在して直流電気を発電する装置である。固体高分子
型燃料電池は、電解質として、高分子膜が含水すること
でイオン導電性を示す樹脂膜を用いたもので、その燃料
電池セルの構成の斜視図を図8に示し、その一部拡大断
面図を図7に示す。
2. Description of the Related Art A fuel cell is a device that generates direct current electricity using hydrogen and oxygen with an electrolyte interposed therebetween. The polymer electrolyte fuel cell uses a resin film that exhibits ionic conductivity when the polymer membrane contains water as an electrolyte. FIG. 8 is a perspective view of the structure of the fuel cell, and FIG. FIG. 7 is an enlarged sectional view.

【0003】図7および図8において、固体高分子電解
質膜1の両面には、触媒層2と、多孔質のガス拡散層3
とを備え、さらに、一方のガス拡散層に反応ガスとして
の水素を含む燃料ガスを供給・排出するための燃料ガス
流路を有し,他方の拡散層に反応ガスとしての酸化剤ガ
スを供給・排出するための酸化剤ガス流路を有してなる
セパレータ5とを備える。なお、図8においてセパレー
タは、一つのセパレータの両側に反応ガス流路を有する
ものを示したが、製造上の理由から、図7に示すように
片側に流路を有するものを背中合わせに積層する場合も
ある。上記セルを多数積層したものをスタックという。
[0003] In FIGS. 7 and 8, a catalyst layer 2 and a porous gas diffusion layer 3 are provided on both surfaces of a solid polymer electrolyte membrane 1.
And a fuel gas flow path for supplying / discharging a fuel gas containing hydrogen as a reaction gas to one gas diffusion layer, and supplying an oxidizing gas as a reaction gas to the other diffusion layer. And a separator 5 having an oxidizing gas flow path for discharging. In FIG. 8, the separator has a reaction gas flow path on both sides of one separator. However, for manufacturing reasons, a separator having a flow path on one side is stacked back to back as shown in FIG. In some cases. A stack of many of the above cells is called a stack.

【0004】固体高分子電解質膜1としては、パーフル
オロスルホン酸ポリマー膜(米国,デュポン社,商品名
Nafion膜)が用いられる。この膜は、飽和に含水させる
ことで、常温で20Ω・cm以下の比抵抗を示し、プロトン
伝導性電解質として機能する。膜の飽和含水量は温度に
よって可逆的に変化する。
As the solid polymer electrolyte membrane 1, a perfluorosulfonic acid polymer membrane (trade name, DuPont, USA)
Nafion membrane) is used. This membrane shows specific resistance of 20 Ω · cm or less at room temperature by being saturated with water, and functions as a proton conductive electrolyte. The saturated water content of the membrane changes reversibly with temperature.

【0005】固体高分子電解質膜1の両側に接合してい
るガス拡散層3の片方より水素、もう一方より酸素ある
いは空気を供給することにより、固体高分子電解質膜1
と触媒層2の界面における水素の酸化反応、酸素の還元
反応によってプロトン,電子の移動が起こり、電気を得
ることができる。
By supplying hydrogen from one side of the gas diffusion layer 3 bonded to both sides of the solid polymer electrolyte membrane 1 and oxygen or air from the other side, the solid polymer electrolyte membrane 1
Oxidation of hydrogen and reduction of oxygen at the interface between the catalyst and the catalyst layer 2 cause the transfer of protons and electrons to generate electricity.

【0006】触媒層2は、粒子状の白金黒あるいは白金
担持カーボンと撥水性を有するフッ素樹脂とから形成さ
れる。触媒層2としては、触媒の反応面積を拡大するた
め、触媒層の中にイオン交換樹脂、例えば固体高分子電
解質樹脂を混合した構成の電解質樹脂付触媒がよく用い
られる。
[0006] The catalyst layer 2 is formed of particulate platinum black or platinum-carrying carbon and a water-repellent fluororesin. As the catalyst layer 2, a catalyst with an electrolyte resin having a configuration in which an ion exchange resin, for example, a solid polymer electrolyte resin is mixed in the catalyst layer, is often used in order to increase the reaction area of the catalyst.

【0007】ガス拡散層3としては、導電性のカーボン
ペーパーあるいはカーボンクロスを用いる。通常、固体
高分子電解質膜1と触媒層2の接合体を作製した後、ガ
ス拡散層3をホットプレスにて接合するが、先に、ガス
拡散層3上に触媒層2を塗布して接合した後、固体高分
子電解質膜1との接合体を作製する場合もある。
As the gas diffusion layer 3, conductive carbon paper or carbon cloth is used. Normally, after forming a joined body of the solid polymer electrolyte membrane 1 and the catalyst layer 2, the gas diffusion layer 3 is joined by hot pressing. First, the catalyst layer 2 is applied on the gas diffusion layer 3 and joined. After that, a joined body with the solid polymer electrolyte membrane 1 may be produced.

【0008】ところで、前述のように、固体高分子電解
質型燃料電池に用いられる固体高分子電解質膜は、水を
含んだ湿潤状態において高いイオン(プロトン)伝導性
を示すため、反応ガスを水で加湿することにより高い電
池特性が得られる。
As described above, since the solid polymer electrolyte membrane used in the solid polymer electrolyte fuel cell exhibits high ionic (proton) conductivity in a wet state containing water, the reaction gas is water. High battery characteristics can be obtained by humidification.

【0009】単電池内部の反応ガスの出口に近い部分
は、ガス中に上流側の反応で生成した水(水蒸気)が多く
含まれるので固体高分子電解質膜を湿潤状態に保つこと
は、比較的容易である。これに対し反応ガスの入口近傍
では、特に、流通する反応ガスに持ち去られる水(水蒸
気)が反応による生成水よりも多くなり、固体高分子電
解質膜が乾燥して部分的な特性低下を引き起こす。
Since the gas near the outlet of the reaction gas inside the unit cell contains a large amount of water (steam) generated by the upstream reaction, it is relatively difficult to keep the solid polymer electrolyte membrane in a wet state. Easy. On the other hand, in the vicinity of the inlet of the reaction gas, in particular, the amount of water (steam) taken away by the flowing reaction gas becomes larger than the water produced by the reaction, and the solid polymer electrolyte membrane is dried to cause a partial deterioration in characteristics.

【0010】反応ガスを加湿する方法としては、スタッ
クの外部に設けた加湿用タンクなどで反応ガスを加湿し
てから供給する方法(外部加湿方式)や、単電池と類似
の寸法/形状の加湿セルをスタックの一部に組み込み、
加湿セルを通った反応ガスを発電部に供給する方法(内
部加湿方式)が考えられている。
As a method of humidifying the reaction gas, a method of humidifying the reaction gas in a humidification tank or the like provided outside the stack and then supplying the humidified gas (external humidification method), or a method of humidifying the same size / shape as the unit cell is used. Incorporate cells as part of the stack,
A method (internal humidification method) of supplying a reaction gas passing through a humidification cell to a power generation unit has been considered.

【0011】例えば、外部加湿方式としては、加湿用容
器に貯留された水の中に反応ガスを散気し、水中から脱
気した反応ガスを積層燃料電池へ通流するように構成し
たもの、また、内部加湿方式としては、ガス流通溝を有
するセパレータと、加湿水流通溝を有するセパレータと
で多孔質支持体を介して水透過膜を挟持し、全体で加湿
板を構成し、加湿膜としての水透過膜を介して反応ガス
の加湿を行うように構成したもの等である。
For example, as an external humidification system, a reaction gas is diffused in water stored in a humidification container, and the reaction gas degassed from the water is passed to the laminated fuel cell. In addition, as the internal humidification method, a separator having a gas circulation groove, and a separator having a humidification water circulation groove sandwich a water permeable membrane via a porous support, and constitute a humidification plate as a whole, as a humidification film And the like, in which the reaction gas is humidified via the water permeable membrane.

【0012】[0012]

【発明が解決しようとする課題】前述のように、固体高
分子型燃料電池において燃料電池を安定して運転する為
には、電解質中に常時適度な水分を保持する必要があ
る。通常、固体高分子型燃料電池においては、その運転
温度が70℃付近であることが多く、セル内で水分が水
蒸気および液体の両方の形で存在できる事から、反応ガ
スの利用率がある程度以上になると、反応ガスの流路に
沿って水蒸気濃度がかなり変化する。
As described above, in order to operate the fuel cell stably in the polymer electrolyte fuel cell, it is necessary to always keep an appropriate amount of water in the electrolyte. In general, the operating temperature of a polymer electrolyte fuel cell is often around 70 ° C., and since water can exist in both a water vapor and a liquid form in the cell, the utilization rate of the reaction gas is not less than a certain level. , The water vapor concentration changes considerably along the flow path of the reaction gas.

【0013】反応ガスの上流側において電解質に対して
十分に水分が供給可能なように加湿すると、下流側では
水蒸気が過剰となる。また逆に、加湿量を低減して、下
流側において水分供給は十分であるものの結露しないよ
うにすると、上流側では水分が不足し、電解質のイオン
伝導度が低下する。
When humidification is performed so that sufficient water can be supplied to the electrolyte on the upstream side of the reaction gas, the steam becomes excessive on the downstream side. Conversely, if the amount of humidification is reduced so that the supply of moisture is sufficient on the downstream side to prevent dew condensation, moisture is insufficient on the upstream side and the ionic conductivity of the electrolyte decreases.

【0014】上記のように、固体高分子型燃料電池にお
ける通常の加湿方法においては、電解質全体にわたって
適切な加湿状態を得ることが困難であり、燃料電池の出
力特性が低下する問題があった。燃料電池を長期継続運
転することにより、生成水が蓄積してガス拡散阻害が発
生し、燃料電池の出力特性はさらに低下する問題があっ
た。
As described above, in the conventional humidification method for the polymer electrolyte fuel cell, it is difficult to obtain an appropriate humidified state over the entire electrolyte, and there has been a problem that the output characteristics of the fuel cell deteriorate. When the fuel cell is operated continuously for a long period of time, the generated water accumulates and gas diffusion is hindered, and the output characteristics of the fuel cell are further reduced.

【0015】この発明は、上記の点に鑑みてなされたも
ので、この発明の課題は、触媒層中にイオン交換樹脂を
含む燃料電池において、電解質中水分の過不足とガス拡
散阻害の発生の防止を図った固体高分子型燃料電池とそ
の製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is an object of the present invention to provide a fuel cell including an ion exchange resin in a catalyst layer, in which excess or deficiency of water in an electrolyte and occurrence of gas diffusion inhibition occur. It is an object of the present invention to provide a polymer electrolyte fuel cell and a method of manufacturing the same, which are prevented.

【0016】[0016]

【課題を解決するための手段】前述の課題を解決するた
めに、この発明は、固体高分子電解質膜を挟んで両主面
に配設した触媒層と、この触媒層の両外側に配設した多
孔質のガス拡散層と、一方のガス拡散層に水素を含む燃
料ガスを供給・排出するための燃料ガス流路を有してな
る第1のセパレータと、他方のガス拡散層に酸化剤ガス
を供給・排出するための酸化剤ガス流路を有してなる第
2のセパレータとを備えた固体高分子型燃料電池におい
て、前記触媒層は、触媒粉末およびEW(イオン交換基
の当量重量)の異なる少なくとも2種類のイオン交換樹
脂を含むものとして構成し、この触媒層内におけるイオ
ン交換樹脂のEWを、触媒層の厚さ方向および面方向に
沿って変化させてなるものとする(請求項1の発明)。
In order to solve the above-mentioned problems, the present invention provides a catalyst layer disposed on both main surfaces with a solid polymer electrolyte membrane interposed therebetween, and a catalyst layer disposed on both outer sides of the catalyst layer. A porous gas diffusion layer, a first separator having a fuel gas flow path for supplying and discharging a fuel gas containing hydrogen to one of the gas diffusion layers, and an oxidizing agent for the other gas diffusion layer. In a polymer electrolyte fuel cell comprising a second separator having an oxidizing gas flow path for supplying and discharging gas, the catalyst layer comprises catalyst powder and EW (equivalent weight of ion exchange groups). ), And the EW of the ion exchange resin in the catalyst layer is changed along the thickness direction and the surface direction of the catalyst layer (claim). Item 1)).

【0017】上記における最も好適な実施態様として
は、請求項1記載の燃料電池において、前記触媒層の厚
さ方向のEWを、前記ガス拡散層側を大、固体高分子電
解質膜側を小とし、かつ、前記面方向のEWを、燃料ガ
スまたは酸化剤ガスの少なくとも一方の出口側を大、入
口側を小とする(請求項2の発明)。
In the fuel cell according to the first aspect of the present invention, the EW in the thickness direction of the catalyst layer is set to be large on the gas diffusion layer side and small on the solid polymer electrolyte membrane side. In addition, the EW in the plane direction is set large at the outlet side of at least one of the fuel gas and the oxidizing gas and small at the inlet side (the invention of claim 2).

【0018】なお、前記イオン交換樹脂としては、固体
高分子電解質と同じ樹脂、例えば前記パーフルオロスル
ホン酸ポリマーを用いることができる。
As the ion exchange resin, the same resin as the solid polymer electrolyte, for example, the perfluorosulfonic acid polymer can be used.

【0019】ここで、前記EWとは、プロトン伝導性を
有する交換基の当量重量(Equivalent Weight)を表
し、イオン交換基1当量あたりのイオン交換膜の乾燥重
量であり、「g/ew」の単位で表される。このEWが
小さいイオン交換樹脂程、相対的に高い親水性を有する
ので、EWの大小に応じて含水率に差を生じさせること
が可能となる。
Here, the EW indicates an equivalent weight of an exchange group having proton conductivity, and is a dry weight of the ion exchange membrane per equivalent of the ion exchange group. Expressed in units. Since the ion exchange resin having a smaller EW has a relatively higher hydrophilicity, it is possible to cause a difference in the water content according to the magnitude of the EW.

【0020】従って、上記発明の構成によれば、触媒層
のガス拡散層側のガス拡散性を良好に保ち、また燃料電
池の反応生成水によって水分過多となるガス出口側のガ
ス拡散阻害を良好に防止することができる。
Therefore, according to the configuration of the present invention, the gas diffusion property of the catalyst layer on the gas diffusion layer side is kept good, and the gas diffusion inhibition on the gas outlet side where the water produced by the reaction of the fuel cell becomes excessive is good. Can be prevented.

【0021】また、上記燃料電池の製造方法としては、
請求項3および4の発明が好適である。即ち、触媒とイ
オン交換樹脂と揮発性有機溶剤とを混合したスラリー
を、イオン交換樹脂のEWを変えて複数種類作製する工
程と、この複数種類のスラリーを、導電性のカーボンペ
ーパーあるいはカーボンクロスからなるガス拡散層上あ
るいは固体高分子電解質膜上に、触媒層内のイオン交換
樹脂のEWが触媒層の厚さ方向および/または面方向に
沿って変化するように触媒層として塗布形成する工程と
を含むこととする(請求項3の発明)。
The method for manufacturing the fuel cell includes the following:
The inventions of claims 3 and 4 are preferable. That is, a step of preparing a plurality of types of slurries in which a catalyst, an ion exchange resin, and a volatile organic solvent are mixed by changing the EW of the ion exchange resins, and converting the plurality of types of slurries from conductive carbon paper or carbon cloth. Forming a catalyst layer on the gas diffusion layer or the solid polymer electrolyte membrane such that the EW of the ion exchange resin in the catalyst layer changes along the thickness direction and / or the plane direction of the catalyst layer; (The invention of claim 3).

【0022】さらに、前記請求項3記載の製造方法にお
いて、前記触媒層の厚さ方向のEWを、前記ガス拡散層
側を大、固体高分子電解質膜側を小とし、および/また
は、前記面方向のEWを、燃料ガスまたは酸化剤ガスの
少なくとも一方の出口側を大、入口側を小とすることと
する(請求項4の発明)。
Further, in the manufacturing method according to claim 3, the EW in the thickness direction of the catalyst layer is set to be large on the gas diffusion layer side, small on the solid polymer electrolyte membrane side, and / or The EW in the direction is made larger at the outlet side of at least one of the fuel gas and the oxidizing gas and smaller at the inlet side (the invention of claim 4).

【0023】上記製造方法によれば、所望の複数のEW
を有する触媒層をあらかじめ製作し、ガス拡散層上また
は電解質膜上に塗布して順次触媒層を形成するので、触
媒層の厚さ方向、面方向を問わず、任意の部分において
触媒層中のEWを調整することができる。従って、ガス
拡散性を高めたい個所においてはイオン交換樹脂のEW
を大とする等、所望の触媒層が容易に形成できる。
According to the above manufacturing method, a plurality of desired EWs
The catalyst layer having in advance is prepared, and applied on the gas diffusion layer or the electrolyte membrane to form the catalyst layer in order, so that the catalyst layer may be formed in an arbitrary portion regardless of the thickness direction of the catalyst layer or the surface direction. The EW can be adjusted. Therefore, the EW of the ion exchange resin should be
Thus, a desired catalyst layer can be easily formed.

【0024】[0024]

【発明の実施の形態】図面に基づき、この発明の実施例
について以下にのべる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0025】(実施例1)図1は、この発明の実施例に
関わる触媒層の作製フローを示す図である。本実施例の
触媒層におけるイオン交換樹脂は、パーフルオロスルホ
ン酸ポリマーを用い、反応ガスの上流側のEWを90
0、下流側のEWを1100とし、触媒層の面方向のE
Wのみを変化させた。
(Example 1) FIG. 1 is a view showing a flow of manufacturing a catalyst layer according to an example of the present invention. As the ion exchange resin in the catalyst layer of this embodiment, a perfluorosulfonic acid polymer was used, and the EW on the upstream side of the reaction gas was 90%.
0, EW on the downstream side is 1100, and E in the surface direction of the catalyst layer is
Only W was changed.

【0026】図1により、本実施例の触媒層の作製手順
について、以下に述べる。カーボン粒子に、白金微粒子
を担持した触媒1gに対して、約3mlの割合で純水を
添加し、攪拌・分散する。さらにイオン交換樹脂(EW
=900)の9wt%エタノール溶液を触媒1gに対し
約7mlの割合で添加し、攪拌・分散する。
Referring to FIG. 1, the procedure for preparing the catalyst layer of this embodiment will be described below. Pure water is added to the carbon particles at a ratio of about 3 ml with respect to 1 g of the catalyst supporting the platinum fine particles, followed by stirring and dispersion. Furthermore, ion exchange resin (EW
= 900) in a ratio of about 7 ml to 1 g of the catalyst, followed by stirring and dispersion.

【0027】このようにして得られたスラリーを直接塗
布法あるいは転写法で電解質膜の上流側に塗布する。続
いて、同様の方法により、下流側を、イオン交換樹脂
(EW=1100)に代えて塗布形成する。
The slurry thus obtained is applied directly on the upstream side of the electrolyte membrane by a coating method or a transfer method. Subsequently, in the same manner, the downstream side is formed by coating instead of the ion exchange resin (EW = 1100).

【0028】上記により作製した燃料電池について、所
定の運転条件により運転し、従来方法により作製した燃
料電池との比較実験を行なった。図2は、その結果を示
す。図2において、縦軸はセル電圧(mV)を、横軸は
運転時間を示し、経時変化の曲線Aは、本実施例の燃料
電池を示す。また、曲線BおよびCは、触媒層の面方向
のEWを変化させない従来法による燃料電池であって、
曲線BおよびCのEWは、それぞれ、900および11
00としたものを示す。
The fuel cell manufactured as described above was operated under predetermined operating conditions, and a comparative experiment was performed with a fuel cell manufactured by a conventional method. FIG. 2 shows the result. In FIG. 2, the vertical axis indicates the cell voltage (mV), the horizontal axis indicates the operation time, and the curve A of the change over time indicates the fuel cell of this example. Curves B and C are fuel cells according to the conventional method without changing the EW in the surface direction of the catalyst layer,
The EW for curves B and C are 900 and 11 respectively.
00 is shown.

【0029】なお、運転条件としては、運転温度を80
℃、カソードを72℃飽和加湿、空気利用率を60%、
電流密度を400mA/cm2 とした。
As operating conditions, an operating temperature of 80
℃, 72 ° C saturated humidification of cathode, air utilization rate 60%,
The current density was 400 mA / cm 2 .

【0030】図2によれば、本実施例により作製した燃
料電池Aは、初期特性も高く、また長期運転に伴う電圧
の低下率も小さい。これに対して、従来法により作製し
た燃料電池B,Cは、共に、初期の特性が本実施例のも
のよりは低く、また低下率も大きい。
According to FIG. 2, the fuel cell A manufactured according to the present embodiment has a high initial characteristic and a small rate of voltage decrease due to long-term operation. On the other hand, both of the fuel cells B and C manufactured by the conventional method have lower initial characteristics than those of the present embodiment, and have a large reduction rate.

【0031】(実施例2)図3は、実施例2に関わる触
媒層の作製フローを、図4は、触媒層および電解質膜の
部分断面図を、図5は、当該燃料電池の図2と同様の実
験結果を示す。
(Embodiment 2) FIG. 3 is a flow chart of the preparation of the catalyst layer according to Embodiment 2, FIG. 4 is a partial cross-sectional view of the catalyst layer and the electrolyte membrane, and FIG. Similar experimental results are shown.

【0032】実施例2においては、触媒層の面方向のE
Wを変化させるとともに、触媒層の厚さ方向のEWも変
化させた点が、実施例1と異なり、それ以外の製造条件
や運転条件等は実施例1と同様である。
In Example 2, E was measured in the plane direction of the catalyst layer.
The point that EW in the thickness direction of the catalyst layer was changed together with W was changed, and other manufacturing conditions and operating conditions were the same as in Example 1.

【0033】図4に示すように、実施例2においては、
電解質膜1側の触媒層2aにおけるイオン交換樹脂のE
Wを900、図示しないガス拡散層側であって反応ガス
の上流側の触媒層2bにおけるイオン交換樹脂のEWを
1000、同下流側の触媒層2cにおけるイオン交換樹
脂のEWを1100とした。
As shown in FIG. 4, in the second embodiment,
E of the ion exchange resin in the catalyst layer 2a on the electrolyte membrane 1 side
W was 900, the EW of the ion exchange resin in the catalyst layer 2b on the gas diffusion layer side (not shown) upstream of the reaction gas was 1000, and the EW of the ion exchange resin in the catalyst layer 2c on the downstream side was 1100.

【0034】図3における触媒層の作製フローは、上記
3種類のEWに応じて、3段階となる点を除き、図1と
同様であるので、説明は省略する。
The flow of preparing the catalyst layer in FIG. 3 is the same as that in FIG. 1 except that it has three stages according to the above three types of EW, and therefore the description is omitted.

【0035】図5において、経時変化の曲線AAが実施
例2の場合を示し、曲線Aは、実施例1における曲線A
と同一である。実施例2により作製した燃料電池は、初
期特性が実施例1により作製した燃料電池より向上して
いるが、電圧の低下率は実施例1と同程度である。
In FIG. 5, the curve AA of the change over time shows the case of the second embodiment, and the curve A is the curve AA of the first embodiment.
Is the same as The fuel cell manufactured according to the second embodiment has improved initial characteristics as compared with the fuel cell manufactured according to the first embodiment, but the voltage reduction rate is almost the same as that of the first embodiment.

【0036】(実施例3)図6は、ガス拡散層の上に形
成された触媒層の一例を示す。図6において、ガス拡散
層3の上に形成された触媒層11は、触媒層の厚さ方向
で二分割、面方向で二分割し、それぞれイオン交換樹脂
のEWを変えたスラリーを塗布・積層して形成されてい
る。触媒層11の触媒層の厚さ方向のEWは、ガス拡散
層側を大、固体高分子電解質膜側を小とし、かつ、触媒
層の面方向のEWは、反応ガスの出口側を大、入口側を
小とする。上記によれば、実施例1や2に比較してさら
に好ましい触媒層が得られる。
Embodiment 3 FIG. 6 shows an example of a catalyst layer formed on a gas diffusion layer. In FIG. 6, the catalyst layer 11 formed on the gas diffusion layer 3 is divided into two parts in the thickness direction of the catalyst layer and two parts in the plane direction, and a slurry in which the EW of the ion exchange resin is changed is applied and laminated. It is formed. The EW in the thickness direction of the catalyst layer of the catalyst layer 11 is large on the gas diffusion layer side and small on the solid polymer electrolyte membrane side, and the EW in the plane direction of the catalyst layer is large on the exit side of the reaction gas. Make the entrance side small. According to the above, a more preferable catalyst layer can be obtained as compared with Examples 1 and 2.

【0037】[0037]

【発明の効果】上記のとおり、この発明によれば、固体
高分子電解質膜を挟んで両主面に配設した触媒層と、こ
の触媒層の両外側に配設した多孔質のガス拡散層と、一
方のガス拡散層に水素を含む燃料ガスを供給・排出する
ための燃料ガス流路を有してなる第1のセパレータと、
他方のガス拡散層に酸化剤ガスを供給・排出するための
酸化剤ガス流路を有してなる第2のセパレータとを備え
た固体高分子型燃料電池において、前記触媒層は、触媒
粉末およびEW(イオン交換基の当量重量)の異なる少
なくとも2種類のイオン交換樹脂を含むものとして構成
し、この触媒層内におけるイオン交換樹脂のEWを、触
媒層の厚さ方向および面方向に沿って変化させてなるも
のとし、最も好適な実施態様として、前記触媒層の厚さ
方向のEWを、前記ガス拡散層側を大、固体高分子電解
質膜側を小とし、かつ、前記面方向のEWを、燃料ガス
または酸化剤ガスの少なくとも一方の出口側を大、入口
側を小とすることにより、触媒層のガス拡散層側のガス
拡散性を良好に保ち、また燃料電池の反応生成水によっ
て水分過多となるガス出口側のガス拡散阻害を良好に防
止することができる。
As described above, according to the present invention, a catalyst layer disposed on both main surfaces with a solid polymer electrolyte membrane interposed therebetween, and a porous gas diffusion layer disposed on both outer sides of the catalyst layer And a first separator having a fuel gas flow path for supplying and discharging a fuel gas containing hydrogen to one of the gas diffusion layers,
In a polymer electrolyte fuel cell comprising: a second separator having an oxidizing gas flow path for supplying and discharging an oxidizing gas to the other gas diffusion layer, the catalyst layer includes a catalyst powder and It is configured to include at least two types of ion exchange resins having different EW (equivalent weight of ion exchange groups), and the EW of the ion exchange resin in the catalyst layer is changed along the thickness direction and the surface direction of the catalyst layer. In the most preferred embodiment, the EW in the thickness direction of the catalyst layer is large on the gas diffusion layer side, small on the solid polymer electrolyte membrane side, and the EW in the plane direction is small. By making the outlet side of at least one of the fuel gas and the oxidizing gas large and the inlet side small, the gas diffusion property of the catalyst layer on the gas diffusion layer side is kept good, and the water generated by the reaction water of the fuel cell is used. Be too much The gas diffusion inhibition of the scan outlet side can be effectively prevented.

【0038】さらに、上記燃料電池の製造方法として
は、触媒とイオン交換樹脂と揮発性有機溶剤とを混合し
たスラリーを、イオン交換樹脂のEWを変えて複数種類
作製する工程と、この複数種類のスラリーを、導電性の
カーボンペーパーあるいはカーボンクロスからなるガス
拡散層上あるいは固体高分子電解質膜上に、触媒層内の
イオン交換樹脂のEWが触媒層の厚さ方向および/また
は面方向に沿って変化するように触媒層として塗布形成
する工程とを含むこととしたので、触媒層の厚さ方向、
面方向を問わず、任意の部分において触媒層中のEWの
調整、ひいてはガス拡散性の調整が容易となり、所望の
触媒層が容易に形成できる。
Further, as a method of manufacturing the fuel cell, a plurality of types of slurries in which a catalyst, an ion exchange resin and a volatile organic solvent are mixed are prepared by changing the EW of the ion exchange resin. The slurry is placed on a gas diffusion layer made of conductive carbon paper or carbon cloth or on a solid polymer electrolyte membrane, and the EW of the ion exchange resin in the catalyst layer is applied along the thickness direction and / or the plane direction of the catalyst layer. And the step of coating and forming as a catalyst layer so as to change, the thickness direction of the catalyst layer,
Regardless of the plane direction, it is easy to adjust the EW in the catalyst layer in any part, and furthermore, to adjust the gas diffusivity, so that a desired catalyst layer can be easily formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1に関わる触媒層の作製フロ
ーを示す図
FIG. 1 is a diagram showing a production flow of a catalyst layer according to Embodiment 1 of the present invention.

【図2】実施例1に関わる燃料電池の出力特性を従来法
と比較して示す図
FIG. 2 is a diagram showing output characteristics of a fuel cell according to Example 1 in comparison with a conventional method.

【図3】この発明の実施例2に関わる触媒層の作製フロ
ーを示す図
FIG. 3 is a diagram showing a production flow of a catalyst layer according to Embodiment 2 of the present invention.

【図4】実施例2に関わる触媒層と電解質層の部分断面
FIG. 4 is a partial cross-sectional view of a catalyst layer and an electrolyte layer according to Example 2.

【図5】実施例2に関わる燃料電池の出力特性を実施例
1と比較して示す図
FIG. 5 is a diagram showing output characteristics of the fuel cell according to the second embodiment in comparison with the first embodiment.

【図6】実施例3に関わる触媒層とガス拡散層の部分断
面図
FIG. 6 is a partial cross-sectional view of a catalyst layer and a gas diffusion layer according to Example 3.

【図7】固体高分子型燃料電池セルの構成の斜視図FIG. 7 is a perspective view of a configuration of a polymer electrolyte fuel cell.

【図8】固体高分子型燃料電池セルの部分拡大断面図FIG. 8 is a partially enlarged cross-sectional view of a polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1:固体高分子電解質膜、2,2a,2b,2c,1
1:触媒層、3:ガス拡散層、5:セパレータ。
1: solid polymer electrolyte membrane, 2, 2a, 2b, 2c, 1
1: catalyst layer, 3: gas diffusion layer, 5: separator.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を挟んで両主面に配
設した触媒層と、この触媒層の両外側に配設した多孔質
のガス拡散層と、一方のガス拡散層に水素を含む燃料ガ
スを供給・排出するための燃料ガス流路を有してなる第
1のセパレータと、他方のガス拡散層に酸化剤ガスを供
給・排出するための酸化剤ガス流路を有してなる第2の
セパレータとを備えた固体高分子型燃料電池において、 前記触媒層は、触媒粉末およびEW(イオン交換基の当
量重量)の異なる少なくとも2種類のイオン交換樹脂を
含むものとして構成し、この触媒層内におけるイオン交
換樹脂のEWを、触媒層の厚さ方向および面方向に沿っ
て変化させてなることを特徴とする固体高分子型燃料電
池。
1. A catalyst layer provided on both main surfaces with a solid polymer electrolyte membrane interposed therebetween, a porous gas diffusion layer provided on both outer sides of the catalyst layer, and hydrogen gas supplied to one of the gas diffusion layers. A first separator having a fuel gas flow path for supplying and discharging a fuel gas containing the oxidizing gas flow path for supplying and discharging an oxidizing gas to the other gas diffusion layer; Wherein the catalyst layer comprises a catalyst powder and at least two types of ion exchange resins having different EWs (equivalent weights of ion exchange groups). A polymer electrolyte fuel cell characterized in that the EW of the ion exchange resin in the catalyst layer is changed along the thickness direction and the surface direction of the catalyst layer.
【請求項2】 請求項1記載の燃料電池において、前記
触媒層の厚さ方向のEWを、前記ガス拡散層側を大、固
体高分子電解質膜側を小とし、かつ、前記面方向のEW
を、燃料ガスまたは酸化剤ガスの少なくとも一方の出口
側を大、入口側を小とすることを特徴とする固体高分子
型燃料電池。
2. The fuel cell according to claim 1, wherein the EW in the thickness direction of the catalyst layer is large on the gas diffusion layer side, small on the solid polymer electrolyte membrane side, and EW in the plane direction.
Wherein at least one of the outlet side of the fuel gas or the oxidizing gas is large and the inlet side is small.
【請求項3】 触媒とイオン交換樹脂と揮発性有機溶剤
とを混合したスラリーを、イオン交換樹脂のEWを変え
て複数種類作製する工程と、この複数種類のスラリー
を、導電性のカーボンペーパーあるいはカーボンクロス
からなるガス拡散層上あるいは固体高分子電解質膜上
に、触媒層内のイオン交換樹脂のEWが触媒層の厚さ方
向および/または面方向に沿って変化するように触媒層
として塗布形成する工程とを含むことを特徴とする固体
高分子型燃料電池の製造方法。
3. A step of preparing a plurality of types of slurries in which a catalyst, an ion exchange resin and a volatile organic solvent are mixed by changing the EW of the ion exchange resins, and converting the plurality of types of slurries into conductive carbon paper or Formed as a catalyst layer on a gas diffusion layer composed of carbon cloth or a solid polymer electrolyte membrane such that the EW of the ion exchange resin in the catalyst layer changes along the thickness direction and / or the plane direction of the catalyst layer. A method of manufacturing a polymer electrolyte fuel cell.
【請求項4】 請求項3記載の製造方法において、前記
触媒層の厚さ方向のEWを、前記ガス拡散層側を大、固
体高分子電解質膜側を小とし、および/または、前記面
方向のEWを、燃料ガスまたは酸化剤ガスの少なくとも
一方の出口側を大、入口側を小とすることを特徴とする
固体高分子型燃料電池の製造方法。
4. The production method according to claim 3, wherein the EW in the thickness direction of the catalyst layer is large on the gas diffusion layer side, small on the solid polymer electrolyte membrane side, and / or in the plane direction. The method of manufacturing a polymer electrolyte fuel cell, wherein the EW of at least one of the fuel gas and the oxidant gas is large and the EW is small at the inlet side.
JP2000360758A 2000-11-28 2000-11-28 Solid high molecular fuel cell and method of manufacturing the same Pending JP2002164057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000360758A JP2002164057A (en) 2000-11-28 2000-11-28 Solid high molecular fuel cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360758A JP2002164057A (en) 2000-11-28 2000-11-28 Solid high molecular fuel cell and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002164057A true JP2002164057A (en) 2002-06-07

Family

ID=18832301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360758A Pending JP2002164057A (en) 2000-11-28 2000-11-28 Solid high molecular fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002164057A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1575105A2 (en) 2004-03-11 2005-09-14 Honda Motor Co., Ltd. Polymer electrolyte fuel cell
WO2006057139A1 (en) * 2004-11-25 2006-06-01 Nissan Motor Co., Ltd. Solid polymer type fuel cell
JP2006286330A (en) * 2005-03-31 2006-10-19 Equos Research Co Ltd Fuel cell and catalyst layer therefor
WO2007007859A1 (en) * 2005-07-08 2007-01-18 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and process for producing the same
WO2008153145A1 (en) * 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method
JP2009080967A (en) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd Membrane electrode assembly and fuel cell
EP2161771A1 (en) * 2007-06-15 2010-03-10 Sumitomo Chemical Company, Limited Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell
WO2011001981A1 (en) * 2009-06-29 2011-01-06 株式会社エクォス・リサーチ Reaction layer for fuel cell
JP2011029150A (en) * 2009-06-29 2011-02-10 Equos Research Co Ltd Reaction layer for fuel cell
JP2012513659A (en) * 2008-12-22 2012-06-14 スリーエム イノベイティブ プロパティズ カンパニー Fuel cell membrane electrode assembly having a multilayer cathode
JP2013187181A (en) * 2012-03-12 2013-09-19 Toyota Motor Corp Catalyst electrode layer for fuel battery, fuel battery, and manufacturing methods thereof
US8597854B2 (en) 2010-11-02 2013-12-03 Hitachi, Ltd. Polymer electrolyte membrane, and membrane electrode assembly and polymer electrolyte fuel cell using the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259525A (en) * 2004-03-11 2005-09-22 Honda Motor Co Ltd Solid polymer fuel cell
EP1575105A2 (en) 2004-03-11 2005-09-14 Honda Motor Co., Ltd. Polymer electrolyte fuel cell
US7601454B2 (en) 2004-03-11 2009-10-13 Honda Motor Co. Ltd. Polymer electrolyte fuel cell
US7901836B2 (en) 2004-11-25 2011-03-08 Nissan Motor Co., Ltd. Polymer electrolyte fuel cell
WO2006057139A1 (en) * 2004-11-25 2006-06-01 Nissan Motor Co., Ltd. Solid polymer type fuel cell
US8329359B2 (en) 2004-11-25 2012-12-11 Nissan Motor Co., Ltd. Polymer electrolyte fuel cell
JP2006286330A (en) * 2005-03-31 2006-10-19 Equos Research Co Ltd Fuel cell and catalyst layer therefor
WO2007007859A1 (en) * 2005-07-08 2007-01-18 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and process for producing the same
DE112006001746B4 (en) 2005-07-08 2019-06-27 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and process for its preparation
US9208921B2 (en) 2005-07-08 2015-12-08 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and process for producing the same
WO2008153145A1 (en) * 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method
EP2161771A4 (en) * 2007-06-15 2010-07-28 Sumitomo Chemical Co Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell
EP2161771A1 (en) * 2007-06-15 2010-03-10 Sumitomo Chemical Company, Limited Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell
JP2009080967A (en) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd Membrane electrode assembly and fuel cell
JP2012513659A (en) * 2008-12-22 2012-06-14 スリーエム イノベイティブ プロパティズ カンパニー Fuel cell membrane electrode assembly having a multilayer cathode
JP2011029150A (en) * 2009-06-29 2011-02-10 Equos Research Co Ltd Reaction layer for fuel cell
WO2011001981A1 (en) * 2009-06-29 2011-01-06 株式会社エクォス・リサーチ Reaction layer for fuel cell
CN102484255A (en) * 2009-06-29 2012-05-30 株式会社爱考斯研究 Reaction layer for fuel cell
US9325015B2 (en) 2009-06-29 2016-04-26 Kabushikikaisha Equos Research Reaction layer for fuel cell
US8597854B2 (en) 2010-11-02 2013-12-03 Hitachi, Ltd. Polymer electrolyte membrane, and membrane electrode assembly and polymer electrolyte fuel cell using the same
JP2013187181A (en) * 2012-03-12 2013-09-19 Toyota Motor Corp Catalyst electrode layer for fuel battery, fuel battery, and manufacturing methods thereof

Similar Documents

Publication Publication Date Title
JP4233208B2 (en) Fuel cell
JP3594533B2 (en) Fuel cell
US8202664B2 (en) Membrane electrode assembly, fuel cell stack and fuel cell system
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP7304524B2 (en) Fuel cell cathode catalyst layer and fuel cell
TWI389381B (en) Method of operating fuel cell with high power and high power fuel cell system
JP3459615B2 (en) Electrode for fuel cell and fuel cell
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
JP2002367655A (en) Fuel cell
JP2001319663A (en) Solid polymer type fuel cell and its manufacturing method
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP2001006708A (en) Solid high polymer fuel cell
JP2001006698A (en) Solid polymer electrolyte fuel cell and manufacture of its diffusion layer
JPH11135133A (en) Solid polymer electrolyte fuel cell
JPH08167416A (en) Cell for solid high polymer electrolyte fuel cell
JP3813406B2 (en) Fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP2001135326A (en) Solid high molecular electrolyte fuel cell and stack of the same
JP2006049115A (en) Fuel cell
TW202312544A (en) Catalyst ink compositions and methods for forming hydrogen pumping proton exchange membrane electrochemical cell
TW202308200A (en) Hydrogen pumping proton exchange membrane electrochemical cell with carbon monoxide tolerant anode and method of making thereof
JP2000251901A (en) Cell for fuel cell and fuel cell using it
US7811718B2 (en) Fuel cell
KR102176856B1 (en) Gas diffusion layer for fuel cell, membbrane electrode assembly comprising same, fuel cell comprising same and method for manufacturing the gas diffusion layer for fuel cell
JP2009043688A (en) Fuel cell