JP3553101B2 - Solid polymer electrolyte fuel cell - Google Patents

Solid polymer electrolyte fuel cell Download PDF

Info

Publication number
JP3553101B2
JP3553101B2 JP05367993A JP5367993A JP3553101B2 JP 3553101 B2 JP3553101 B2 JP 3553101B2 JP 05367993 A JP05367993 A JP 05367993A JP 5367993 A JP5367993 A JP 5367993A JP 3553101 B2 JP3553101 B2 JP 3553101B2
Authority
JP
Japan
Prior art keywords
oxidant
water
fuel
flow path
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05367993A
Other languages
Japanese (ja)
Other versions
JPH06267564A (en
Inventor
克雄 橋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP05367993A priority Critical patent/JP3553101B2/en
Publication of JPH06267564A publication Critical patent/JPH06267564A/en
Application granted granted Critical
Publication of JP3553101B2 publication Critical patent/JP3553101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、酸化剤配流板の酸化剤流路に改良を施した固体高分子電解質燃料電池に関する。
【0002】
【従来の技術】
固体高分子電解質燃料電池は、図3に示すように、電解質1に高分子イオン交換膜(例えば、スルホン酸基を持つフッ素樹脂系イオン交換膜)を用い、両側に触媒電極層(例えば白金)2,3及び多孔質カーボン電極4,5を備えた電極接合体6構造をしている。アノード極側に供給された加湿燃料中の水素は、触媒電極(アノード極)2上で水素イオン化され、水素イオンは電解質1中を水の介在もとH ・xHOとして、カソード極側へ水と共に移動する。
【0003】
移動した水素イオンは、触媒電極(カソード電極)3上で酸化剤中の酸素及び外部回路7を流通してきた電子と反応して水を生成し、その生成水はカソード極3より燃料電池外へ排出されることになる。この時、外部回路7を流通した電子流れを直流の電気エネルギーとして利用できる。なお、電解質1となる高分子イオン交換膜において、前述のような水素イオン透過性を実現させるためには、この膜を常に充分なる保水状態に保持しておく必要があり、通常、燃料又は酸化剤に電池の運転温度近辺相当の飽和水蒸気を含ませて、すなわち加湿して燃料及び酸化剤を電極接合体6に供給し、膜の保水状態を保つようにしている。以下に、上記固体高分子電解質燃料電池における反応式を示す。
アノード側:H→2H +2e
カソード側:(1/2)O+2H +2e →H
全反応:H+(1/2)O→H
図2(A),(B),(C)は、従来の固体高分子電解質燃料電池の構成の一例を示す。
【0004】
図中の11は、電解質12の上下に第1触媒電極(アノード極)13,第2触媒電極(カソード極)14を積層した積層体である。この積層体11の上側には、多孔質な第1カーボン電極(アノード極)15を介して燃料流路16を有した燃料配流板17が設けられている。前記積層体11の下側には、多孔質な第2カーボン電極(カソード電極)18を介して酸化剤流路19を有した酸化剤配流板20が夫々設けられている。ここで、酸化剤流路19は、溝幅が一定で、かつ溝深さも一定(d=d)で一定の断面積をもつ。なお、dは酸化剤入口側の溝の深さ、dは酸化剤出口側の深さを示す。
【0005】
かかる構成の燃料電池において、燃料流路16を流れてきた燃料水素は第1カーボン電極15を通過し、第1触媒電極13上で水素イオン化され、水素イオンは電解質12中を水の介在のもとH ・xHOとして、カソード極側へ水と共に移動する。この水素イオンにより第2触媒電極14上で生成された水と、水素イオンと共にアノード極側より電解質12中を移動してきた水は、蒸気あるいは、一部は液体のまま、第2カーボン電極18を通過し、上流流路域から下流流路域に向かって断面積が一定な酸化剤流路19を流れる酸化剤中に排出されるようになっている。
【0006】
【発明が解決しようとする課題】
しかしながら、図2に示すように上流流路域から下流流路域に向かってその流路溝幅一定、かつ溝深さ一定(d=d)の断面積が均一な流路をもつ酸化剤配流板20を持つ固体高分子電解質燃料電池においては、電池反応に伴って発生する生成水、及び水素イオンと共にアノード電極よりカソード電極へ移動してきた移動水より、酸化剤流路19の下流域へ向かうほど、その酸化剤雰囲気中の水蒸気分圧が上昇するため、蒸気となってガス拡散排出されにくくなる。そのため、その蒸気の一部液体化、液滴化した生成水や移動水が、カソード極側の多孔質な第2カーボン電極18中に詰まり、多孔質な第2カーボン電極18中での酸化剤のガス拡散が阻止されやすい状況に陥りやすい構造となっていた。
【0007】
この発明はこうした事情に考慮してなされたもので、酸化剤配流板の酸化剤流路の深さあるいは幅の少なくともいずれかを酸化剤の上流流路域から下流流路域に沿って徐々に小さくすることにより、酸化剤流路の下流流路域での流速が早くなり、蒸気となった生成水や移動水がガス拡散排出されやすく、あるいは一部液体化や液滴化して多孔質なカーボン電極中に存在する生成水や移動水を吹き飛ばすことができ、もってカソード極側での生成水や移動水の排出が良好になるとともに、酸化剤中の酸素のガス拡散も良好となり、安定した電池反応を継続して行なうことができる固体高分子電解質燃料電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明は、電解質の両面側にアノード極、カソード極を夫々配置した積層体と、前記積層体のアノード極側に設けられ、前記アノード極燃料供給する燃料流路を有した燃料配流板と、前記積層体のカソード極側に設けられ、前記カソード極に酸化剤を供給する酸化剤流路を有した酸化剤配流板とを具備し、
燃料と酸化剤に前記電解質膜を保水状態に保持するため飽和水蒸気を含ませるとともに、燃料と酸化剤の反応により生成する水分をカソード極側に移動させ、更に前記酸化剤配流板の酸化剤流路の深さあるいは幅の少なくともいずれかを酸化剤の上流流路域から下流流路域に沿って徐々に小さくして流速を増すことにより上記水分を排出させることを特徴とする固体高分子電解質燃料電池である。
【0009】
【作用】
固体高分子電解質燃料電池において、酸化剤が供給される酸化剤配流板の酸化剤流路の断面積を、上流流路域から下流流路域に向かって小さくすることにより、酸化剤の下流流路域での流速が早くなり、酸化剤雰囲気中の水蒸気分圧が上昇しても、蒸気となった生成水や移動水がガス拡散排出されやすく、あるいはその早い酸化剤ガス流速により、一部液体化や液滴化して多孔質なカーボン電極中に存在する生成水や移動水を吹き飛ばすことができるようになる。これらの佐用により、電池カソード極側での生成水や移動水の排出が良好になり、さらに酸化剤中の酸素のガス拡散も良好となり、安定した電池反応を維持できる。
【0010】
【実施例】
以下、本発明の一実施例を図1(A),(B),(C)を参照して説明する。ここで、図1(A)は固体高分子電解質燃料電池の正面図、図1(B)は酸化剤入口側から見た同燃料電池の側面図、図1(C)は酸化剤出口から見た同燃料電池の側面図を示す。
【0011】
図中の31は、電解質32の上下に第1触媒電極(アノード極)33,第2触媒電極(カソード極)34を積層した積層体である。この積層体31の上側には、多孔質な第1カーボン電極(アノード極)35を介して燃料流路36を有した燃料配流板37が設けられている。前記積層体31の下側には、多孔質な第2カーボン電極(カソード電極)38を介して酸化剤流路39を有した酸化剤配流板40が夫々設けられている。ここで、酸化剤流路39の深さは、酸化剤入口側で深さdで酸化剤出口側で深さdでd>dとなり、酸化剤入口側から酸化剤出口側に沿って徐々に小さくなっている。
【0012】
こうした構成の燃料電池において、燃料流路36を流れてきた燃料水素は第1カーボン電極35を通過し、第1触媒電極33上で水素イオン化され、水素イオンは電解質32中を水の介在のもとH ・xHOとして、カソード極側へ水と共に移動する。この水素イオンにより第2触媒電極34上で生成された水と、水素イオンと共にアノード極側より電解質32中を移動してきた水は、酸化剤雰囲気中の水蒸気分圧が高くても、酸化剤の早いガス流速により、蒸気あるいは、一部は液体のまま、第2カーボン電極38を通過し、酸化剤流路39中を流れる酸化剤中に排出されるようになっている。
【0013】
上記実施例によれば、酸化剤流路39の深さが、酸化剤入口側(深さd)から酸化剤出口側(深さd)に沿って徐々に小さくなる構造になっているため、酸化剤流路39の断面積は上流流路域から下流流路域に向かって小さくなる。従って、酸化剤流路39の上流流路域で排出された生成水や移動水により、酸化剤流路39の下流流路域では、その酸化剤雰囲気中の水蒸気分圧が上昇するが、酸化剤の下流流路域での流速が速くなり、蒸気となった生成水や移動水がガス拡散排出されやすく、あるいは、その速い酸化剤ガス流速により、一部液体化や液滴化して多孔質なカーボン電極中に存在する生成水や移動水を吹き飛ばすことができるようになる。これらの佐用により、電池のカソード極側での生成水や移動水の排出が良好になり、さらに酸化剤中の酸素のガス拡散も良好となり、安定した電池反応を継続して行なうことが可能である。
【0014】
なお、上記実施例では、酸化剤流路の深さを酸化剤入口側から酸化剤出口側に沿って徐々に小さくなる構成にした場合について述べたが、これに限らず、例えば酸化剤流路の幅を酸化剤入口側から酸化剤出口側に沿って徐々に小さくしたり、あるいは酸化剤流路の深さ及び幅を同時に酸化剤入口側から酸化剤出口側に沿って徐々に小さくする構成にしてもよい。
【0015】
【発明の効果】
以上詳述した如くこの発明によれば、酸化剤配流板の酸化剤流路の深さあるいは幅の少なくともいずれかを酸化剤の上流流路域から下流流路域に沿って徐々に小さくすることにより、酸化剤流路の下流流路域での流速が早くなり、蒸気となった生成水や移動水がガス拡散排出されやすく、あるいは一部液体化や液滴化して多孔質なカーボン電極中に存在する生成水や移動水を吹き飛ばすことができ、もってカソード極側での生成水や移動水の排出が良好になるとともに、酸化剤中の酸素のガス拡散も良好となり、安定した電池反応を継続して行なうことができる固体高分子電解質燃料電池を提供できる。
【図面の簡単な説明】
【図1】この発明の一実施例に係る固体高分子電解質燃料電池の説明図であり、図1 (A)は正面図、図1(B)は酸化剤入口側から見た側面図、図1(C)は酸化剤出口から見た側面図を示す。
【図2】従来の固体高分子電解質燃料電池の説明図であり、図2(A)は正面図、図2(B)は酸化剤入口側から見た側面図、図2(C)は酸化剤出口から見た側面図を示す。
【図3】固体高分子電解質燃料電池の機能を説明するための図。
【符号の説明】
31…積層体、 32…電解質、 33…第1触媒電極、
34…第2触媒電極、 35…第1カーボン電極、 36…燃料流路、
37…燃料配流板、 38…第2カーボン電極、 39…酸化剤流路、
40…酸化剤配流板。
[0001]
[Industrial applications]
The present invention relates to a solid polymer electrolyte fuel cell in which an oxidant flow path of an oxidant distribution plate is improved.
[0002]
[Prior art]
As shown in FIG. 3, the solid polymer electrolyte fuel cell uses a polymer ion-exchange membrane (for example, a fluororesin-based ion-exchange membrane having a sulfonic acid group) for the electrolyte 1 and a catalyst electrode layer (for example, platinum) on both sides. 2 and 3 and an electrode assembly 6 having porous carbon electrodes 4 and 5. Hydrogen in the humidified fuel supplied to the anode electrode is hydrogen-ionized on the catalyst electrode (anode electrode) 2, and the hydrogen ions pass through the electrolyte 1 through H + through water. · XH As 2 O, to the cathode side moves with water.
[0003]
The transferred hydrogen ions react with oxygen in the oxidant and electrons flowing through the external circuit 7 on the catalyst electrode (cathode electrode) 3 to generate water, and the generated water flows out of the fuel cell from the cathode 3. Will be discharged. At this time, the flow of electrons flowing through the external circuit 7 can be used as DC electric energy. In order to realize the above-mentioned hydrogen ion permeability in the polymer ion exchange membrane serving as the electrolyte 1, it is necessary to keep the membrane in a sufficiently water-retaining state at all times. A fuel and an oxidizing agent are supplied to the electrode assembly 6 by containing saturated steam corresponding to the vicinity of the operating temperature of the battery, that is, by humidifying the agent, so as to maintain the water retention state of the membrane. The reaction formula in the solid polymer electrolyte fuel cell is shown below.
Anode side: H 2 → 2H + + 2e
Cathode side: (1/2) O 2 + 2H + + 2e → H 2 O
Total reaction: H 2 + (1 /) O 2 → H 2 O
2A, 2B, and 2C show an example of the configuration of a conventional solid polymer electrolyte fuel cell.
[0004]
Reference numeral 11 in the figure denotes a laminate in which a first catalyst electrode (anode electrode) 13 and a second catalyst electrode (cathode electrode) 14 are laminated above and below an electrolyte 12. A fuel distribution plate 17 having a fuel flow path 16 is provided above the stacked body 11 via a porous first carbon electrode (anode electrode) 15. An oxidizing agent distribution plate 20 having an oxidizing agent flow path 19 is provided below the laminated body 11 via a porous second carbon electrode (cathode electrode) 18. Here, the oxidizing agent channel 19 has a constant cross-sectional area with a constant groove width and a constant groove depth (d 1 = d 2 ). Incidentally, d 1 is the groove depth of the oxidant inlet side, d 2 denotes the depth of the oxidizing agent outlet.
[0005]
In the fuel cell having such a configuration, the fuel hydrogen flowing through the fuel flow path 16 passes through the first carbon electrode 15 and is hydrogen-ionized on the first catalyst electrode 13. And H + · XH As 2 O, to the cathode side moves with water. The water generated on the second catalyst electrode 14 by the hydrogen ions and the water that has moved through the electrolyte 12 from the anode electrode side together with the hydrogen ions form the second carbon electrode 18 in the form of vapor or partially liquid. It passes through and is discharged into the oxidizing agent flowing through the oxidizing agent channel 19 having a constant cross-sectional area from the upstream channel region to the downstream channel region.
[0006]
[Problems to be solved by the invention]
However, as shown in FIG. 2, an oxidation having a flow path having a uniform cross-sectional area with a constant flow groove width and a constant groove depth (d 1 = d 2 ) from the upstream flow path area to the downstream flow path area. In the solid polymer electrolyte fuel cell having the agent distribution plate 20, the downstream region of the oxidizing agent flow path 19 is formed by the water generated along with the cell reaction and the moving water moving from the anode electrode to the cathode electrode together with the hydrogen ions. As the pressure increases, the partial pressure of water vapor in the oxidant atmosphere increases, so that the gas becomes difficult to be diffused and discharged as vapor. As a result, generated water or mobile water that has been partially liquefied or turned into droplets of the vapor is clogged in the porous second carbon electrode 18 on the cathode electrode side, and the oxidizing agent in the porous second carbon electrode 18 is clogged. Gas diffusion is easily prevented.
[0007]
The present invention has been made in view of such circumstances, and gradually reduces at least one of the depth and width of the oxidant flow path of the oxidant distribution plate from the upstream flow area to the downstream flow area of the oxidant. By making it smaller, the flow velocity in the downstream flow path area of the oxidant flow path becomes faster, and the generated water and moving water that has turned into vapor are easily diffused and discharged, or are partially liquefied or formed into liquid droplets to make it porous. The generated and moving water present in the carbon electrode can be blown off, so that the generated and moving water on the cathode electrode side can be discharged well, and the gas diffusion of oxygen in the oxidizing agent can be improved. It is an object of the present invention to provide a solid polymer electrolyte fuel cell capable of continuously performing a cell reaction.
[0008]
[Means for Solving the Problems]
The present invention, anode electrode on both sides of the electrolyte, and laminate the cathode electrode respectively disposed, is provided on the anode electrode side of the laminate, a fuel distribution plate having a fuel flow path for supplying fuel to the anode electrode And an oxidizing agent distribution plate provided on the cathode side of the laminate and having an oxidizing agent flow path for supplying an oxidizing agent to the cathode,
The fuel and the oxidant contain saturated steam in order to keep the electrolyte membrane in a water-retaining state, and the water generated by the reaction between the fuel and the oxidant is moved to the cathode side. Discharging the water by increasing the flow rate by gradually decreasing at least one of the depth and width of the passage from the upstream flow region to the downstream flow region of the oxidizing agent. It is a fuel cell.
[0009]
[Action]
In a solid polymer electrolyte fuel cell, the cross-sectional area of the oxidant flow path of the oxidant distribution plate to which the oxidant is supplied is reduced from the upstream flow path area to the downstream flow path area, so that the downstream flow of the oxidant is reduced. Even if the flow velocity in the road area becomes faster and the partial pressure of water vapor in the oxidant atmosphere rises, the generated water and mobile water that has turned into steam are easily diffused and discharged, or the high oxidant gas flow velocity causes It is possible to blow off generated water and moving water present in the porous carbon electrode by liquefaction or dropletization. By these uses, discharge of generated water and transfer water on the battery cathode side is improved, and gas diffusion of oxygen in the oxidizing agent is also improved, so that a stable battery reaction can be maintained.
[0010]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 (A), 1 (B) and 1 (C). Here, FIG. 1A is a front view of the solid polymer electrolyte fuel cell, FIG. 1B is a side view of the fuel cell viewed from the oxidant inlet side, and FIG. 1 shows a side view of the same fuel cell.
[0011]
In the figure, reference numeral 31 denotes a laminate in which a first catalyst electrode (anode electrode) 33 and a second catalyst electrode (cathode electrode) 34 are laminated above and below an electrolyte 32. A fuel distribution plate 37 having a fuel flow path 36 is provided above the stacked body 31 via a porous first carbon electrode (anode electrode) 35. An oxidizing agent distribution plate 40 having an oxidizing agent channel 39 is provided below the laminate 31 via a porous second carbon electrode (cathode electrode) 38. Here, the depth of the oxidizing agent flow path 39 is d 1 > d 2 at a depth d 1 at the oxidizing agent inlet side and a depth d 2 at the oxidizing agent outlet side, and from the oxidizing agent inlet side to the oxidizing agent outlet side. It is getting smaller gradually.
[0012]
In the fuel cell having such a configuration, the fuel hydrogen flowing through the fuel flow path 36 passes through the first carbon electrode 35 and is hydrogen-ionized on the first catalyst electrode 33, and the hydrogen ions are generated in the electrolyte 32 through water. And H + · XH As 2 O, to the cathode side moves with water. The water generated on the second catalyst electrode 34 by the hydrogen ions and the water that has moved from the anode electrode side together with the hydrogen ions into the electrolyte 32 are not affected by the oxidizing agent even if the partial pressure of water vapor in the oxidizing agent atmosphere is high. Due to the high gas flow velocity, the vapor or a part of the liquid is discharged into the oxidant flowing through the second carbon electrode 38 and flowing in the oxidant flow path 39 while remaining liquid.
[0013]
According to the above embodiment, the depth of the oxidizing agent flow path 39 is gradually reduced from the oxidizing agent inlet side (depth d 1 ) to the oxidizing agent outlet side (depth d 2 ). Therefore, the cross-sectional area of the oxidizing agent channel 39 decreases from the upstream channel region toward the downstream channel region. Therefore, in the downstream flow path area of the oxidant flow path 39, the partial pressure of water vapor in the oxidant atmosphere increases due to the generated water and the moving water discharged in the upstream flow path area of the oxidant flow path 39. The flow velocity of the agent in the downstream flow path area is increased, and the generated water and mobile water that has become vapor are easily diffused and discharged. This makes it possible to blow off generated water and moving water existing in the carbon electrode. These functions improve the discharge of generated water and mobile water on the cathode side of the battery, improve the gas diffusion of oxygen in the oxidant, and enable a stable battery reaction to be performed continuously. is there.
[0014]
In the above-described embodiment, the case where the depth of the oxidizing agent flow path is gradually reduced from the oxidizing agent inlet side to the oxidizing agent outlet side is described. The width of the oxidant is gradually reduced from the oxidant inlet side to the oxidant outlet side, or the depth and width of the oxidant flow path are simultaneously gradually reduced from the oxidant inlet side to the oxidant outlet side. It may be.
[0015]
【The invention's effect】
As described in detail above, according to the present invention, at least one of the depth and width of the oxidizing agent flow path of the oxidizing agent distribution plate is gradually reduced from the upstream flow area to the downstream flow area of the oxidizing agent. As a result, the flow velocity in the downstream flow path area of the oxidant flow path becomes faster, and the generated water or moving water that has turned into vapor is easily diffused and discharged, or is partially liquefied or formed into liquid droplets, thereby forming a porous carbon electrode. Generated water and moving water present at the cathode electrode side, so that the generated water and moving water can be discharged well on the cathode side, and the gas diffusion of oxygen in the oxidizing agent is also improved. A solid polymer electrolyte fuel cell that can be continuously performed can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a solid polymer electrolyte fuel cell according to one embodiment of the present invention, wherein FIG. 1 (A) is a front view, FIG. 1 (B) is a side view as viewed from an oxidant inlet side, and FIG. 1 (C) shows a side view as seen from the oxidant outlet.
2A and 2B are explanatory views of a conventional solid polymer electrolyte fuel cell, FIG. 2A is a front view, FIG. 2B is a side view as viewed from an oxidant inlet side, and FIG. FIG. 3 shows a side view as seen from the agent outlet.
FIG. 3 is a diagram illustrating functions of a solid polymer electrolyte fuel cell.
[Explanation of symbols]
31: laminate, 32: electrolyte, 33: first catalyst electrode,
34: second catalyst electrode, 35: first carbon electrode, 36: fuel flow path,
37: fuel distribution plate, 38: second carbon electrode, 39: oxidant channel,
40 ... oxidant distribution plate.

Claims (1)

電解質の両面側にアノード極、カソード極を夫々配置した積層体と、前記積層体のアノード極側に設けられ、前記アノード極燃料供給する燃料流路を有した燃料配流板と、前記積層体のカソード極側に設けられ、前記カソード極に酸化剤を供給する酸化剤流路を有した酸化剤配流板とを具備し、
燃料と酸化剤に前記電解質膜を保水状態に保持するため飽和水蒸気を含ませるとともに、燃料と酸化剤の反応により生成する水分をカソード極側に移動させ、更に前記酸化剤配流板の酸化剤流路の深さあるいは幅の少なくともいずれかを酸化剤の上流流路域から下流流路域に沿って徐々に小さくして流速を増すことにより上記水分を排出させることを特徴とする固体高分子電解質燃料電池。
Anode on both sides of the electrolyte, and laminate the cathode electrode respectively disposed, is provided on the anode electrode side of the laminate, a fuel distribution plate having a fuel flow path for supplying fuel to the anode electrode, the laminated An oxidant distribution plate provided on the cathode side of the body and having an oxidant flow path for supplying an oxidant to the cathode,
The fuel and the oxidant contain saturated steam in order to keep the electrolyte membrane in a water-retaining state, and the water generated by the reaction between the fuel and the oxidant is moved to the cathode side. Discharging the water by increasing the flow rate by gradually decreasing at least one of the depth and width of the passage from the upstream flow region to the downstream flow region of the oxidizing agent. Fuel cell.
JP05367993A 1993-03-15 1993-03-15 Solid polymer electrolyte fuel cell Expired - Lifetime JP3553101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05367993A JP3553101B2 (en) 1993-03-15 1993-03-15 Solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05367993A JP3553101B2 (en) 1993-03-15 1993-03-15 Solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH06267564A JPH06267564A (en) 1994-09-22
JP3553101B2 true JP3553101B2 (en) 2004-08-11

Family

ID=12949512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05367993A Expired - Lifetime JP3553101B2 (en) 1993-03-15 1993-03-15 Solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3553101B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138200B1 (en) 1997-12-18 2006-11-21 Toyota Jidosha Kabushiki Kaisha Fuel cell and separator for the same
JP4205774B2 (en) * 1998-03-02 2009-01-07 本田技研工業株式会社 Fuel cell
US6255011B1 (en) 1998-03-02 2001-07-03 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
FR2786027B1 (en) * 1998-11-12 2006-04-28 Commissariat Energie Atomique BIPOLAR PLATES FOR FUEL CELL AND FUEL CELL COMPRISING THESE PLATES
JP2003529195A (en) * 2000-03-28 2003-09-30 マンハッタン・サイエンティフィックス・インコーポレイテッド Fuel cell device and operation method thereof
US6551736B1 (en) * 2000-10-30 2003-04-22 Teledyne Energy Systems, Inc. Fuel cell collector plates with improved mass transfer channels
ATE329375T1 (en) 2001-02-12 2006-06-15 Morgan Crucible Co FLUID DISTRIBUTION PLATE GEOMETRIES
JP4598287B2 (en) 2001-03-06 2010-12-15 本田技研工業株式会社 FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
JP4516229B2 (en) * 2001-03-06 2010-08-04 本田技研工業株式会社 Solid polymer cell assembly
JP5098128B2 (en) * 2001-09-14 2012-12-12 トヨタ自動車株式会社 Fuel cell
US6756149B2 (en) * 2001-10-23 2004-06-29 Ballard Power Systems Inc. Electrochemical fuel cell with non-uniform fluid flow design
CA2380637C (en) * 2002-05-03 2003-12-23 Powerdisc Development Corporation Ltd. Fuel cell plates and assemblies
GB2387476B (en) 2002-06-24 2004-03-17 Morgan Crucible Co Flow field plate geometries
JP4292368B2 (en) 2002-12-12 2009-07-08 ソニー株式会社 Fuel cell and electronic device equipped with the same
US7479341B2 (en) * 2003-01-20 2009-01-20 Panasonic Corporation Fuel cell, separator plate for a fuel cell, and method of operation of a fuel cell
DE10323644B4 (en) * 2003-05-26 2009-05-28 Daimler Ag Fuel cell with adaptation of the local area-specific gas flows
JP5124900B2 (en) 2003-11-06 2013-01-23 トヨタ自動車株式会社 Fuel cell having a stack structure
JP4700918B2 (en) 2004-02-19 2011-06-15 本田技研工業株式会社 Fuel cell
JP4197514B2 (en) * 2004-02-25 2008-12-17 三星エスディアイ株式会社 Fuel cell system and stack
US7531264B2 (en) 2004-06-07 2009-05-12 Hyteon Inc. Fuel cell stack with even distributing gas manifolds
US7524575B2 (en) 2004-06-07 2009-04-28 Hyteon Inc. Flow field plate for use in fuel cells
US7314680B2 (en) 2004-09-24 2008-01-01 Hyteon Inc Integrated fuel cell power module
JP4507833B2 (en) * 2004-11-02 2010-07-21 トヨタ自動車株式会社 Fuel cell and manufacturing method thereof
DE102004056399A1 (en) * 2004-11-23 2006-05-24 Forschungszentrum Jülich GmbH Cathode diffusion layer of a fuel cell
US7479333B2 (en) 2004-12-13 2009-01-20 Hyteon, Inc. Fuel cell stack with multiple groups of cells and flow passes
CA2880560C (en) 2005-01-05 2017-03-28 Powerdisc Development Corporation Ltd. Fuel cell system with cathode flow field variation
US7960066B2 (en) 2006-01-25 2011-06-14 Canon Kabushiki Kaisha Fuel cell system
JP4531019B2 (en) * 2006-07-31 2010-08-25 京セラ株式会社 Fuel cell
WO2008126358A1 (en) 2007-03-15 2008-10-23 Panasonic Corporation Polymer electrolyte fuel cell and fuel cell stack having the same
JP5007622B2 (en) * 2007-08-03 2012-08-22 ソニー株式会社 Fuel cell and electronic device equipped with the same
JP4572252B2 (en) * 2008-10-30 2010-11-04 本田技研工業株式会社 Fuel cell stack
JP5123824B2 (en) * 2008-11-06 2013-01-23 本田技研工業株式会社 FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
EP2224524B1 (en) * 2009-02-12 2017-04-19 Belenos Clean Power Holding AG Fuel cell structure and separator plate for use therein
JP5180946B2 (en) * 2009-11-26 2013-04-10 本田技研工業株式会社 Fuel cell
JP4516630B2 (en) * 2010-03-25 2010-08-04 本田技研工業株式会社 Solid polymer cell assembly
US8835070B2 (en) 2010-05-11 2014-09-16 Ford Motor Company Fuel cell header wedge
WO2013005300A1 (en) 2011-07-05 2013-01-10 トヨタ自動車株式会社 Fuel cell
CN107579263B (en) 2012-08-14 2020-12-01 环能源公司 Fuel cell flow channel and flow field
WO2014026287A1 (en) 2012-08-14 2014-02-20 Powerdisc Development Corporation Ltd. Fuel cell components, stacks and modular fuel cell systems
US9644277B2 (en) 2012-08-14 2017-05-09 Loop Energy Inc. Reactant flow channels for electrolyzer applications
CN109075358B (en) 2016-03-22 2021-10-19 环能源公司 Fuel cell flow field design for thermal management

Also Published As

Publication number Publication date
JPH06267564A (en) 1994-09-22

Similar Documents

Publication Publication Date Title
JP3553101B2 (en) Solid polymer electrolyte fuel cell
JP3382708B2 (en) Gas separator for solid polymer electrolyte fuel cells
US7691511B2 (en) Fuel cell having coolant flow field wall
JP2002042823A (en) Fuel cell
JP4405097B2 (en) Fuel cell stack and operation method thereof
JP2003505824A (en) Humidifier for fuel cell power equipment
JP6745920B2 (en) Bipolar plate with variable width in the reaction gas channel in the inlet region of the active region, fuel cell stack, fuel cell system with such bipolar plate, and vehicle
US7811719B2 (en) PEM fuel cell with charging chamber
US7163760B2 (en) Fuel cell stack having a bypass flow passage
JP2004079245A (en) Fuel cell
JPH11135132A (en) Solid polymer electrolyte fuel cell
JP2003229144A (en) Fuel cell
JP3447875B2 (en) Direct methanol fuel cell
JP2009037759A (en) Fuel cell
JP4612977B2 (en) Fuel cell stack and reaction gas supply method thereof
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JP2001519080A (en) Cooling and humidification of polymer electrolyte fuel cells
CA2505262A1 (en) Electrochemical generator with asymmetric pressure profile
JP3342079B2 (en) Solid polymer electrolyte fuel cell
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JPH07288133A (en) Fuel cell
JP3736475B2 (en) Fuel cell
JP3575650B2 (en) Molten carbonate fuel cell
CN100464449C (en) Guiding polar plate capable of operating fuel battery pile under low-pressure or normal pressure
JPH11111311A (en) Solid polymer type fuel cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9