JP4601893B2 - Fuel cell separator - Google Patents

Fuel cell separator Download PDF

Info

Publication number
JP4601893B2
JP4601893B2 JP2002208394A JP2002208394A JP4601893B2 JP 4601893 B2 JP4601893 B2 JP 4601893B2 JP 2002208394 A JP2002208394 A JP 2002208394A JP 2002208394 A JP2002208394 A JP 2002208394A JP 4601893 B2 JP4601893 B2 JP 4601893B2
Authority
JP
Japan
Prior art keywords
inlet
groove
outlet
gas
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002208394A
Other languages
Japanese (ja)
Other versions
JP2004055220A (en
Inventor
勝蔵 粉川
一仁 羽藤
弘樹 日下部
伸介 竹口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002208394A priority Critical patent/JP4601893B2/en
Publication of JP2004055220A publication Critical patent/JP2004055220A/en
Application granted granted Critical
Publication of JP4601893B2 publication Critical patent/JP4601893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子電解質型燃料電池のセパレータに関する。
【0002】
【従来の技術】
従来、この種の燃料電池は、イオン導電性が付与された固体高分子電解質膜の両面に触媒を担持したガス拡散電極を両面に重ね合わせて発電セルを構成している。そして、この発電セルは複数個を接続して所定の電圧を得る。このため、発電セル間にセパレータを介在させ発電セルを積層してスタック化する。そして、セパレータの両側にそれぞれ燃料ガス及び酸化ガスを供給してそれぞれのガス拡散電極に燃料ガス及び酸化ガスを供給すると、固体高分子膜でのイオン導電と各ガス拡散電極の電気化学反応が進行して一対のガス拡散電極間に電圧が発生し、集電電極の機能を持つ両端側の一対のセパレータを介して外部回路に給電する。この様な発電においては、供給ガスを出来るだけ均等にガス拡散電極の電極面に供給することがガス利用率を高め、発電効率と出力性能を良くする。
【0003】
しかし、ガス拡散電極の全面に供給ガスが供給されるようにすると、セパレータとガス拡散電極との接触面積が無くなり、発生した電流の効率的な集電やガス拡散電極で発生する熱の除去が難しくなる。このため、セパレータとガス拡散電極の境界部分に、供給ガスの通流方向を規制する流路溝が設けられ、セパレータとガス拡散電極とをある割合に接触面積を保っている。セパレータ側に形成したこの流路溝部は、蛇行したサーペンタイン構成、あるいは複数本構成が特公昭50−8777号公報、特開平7−263003号公報等に記載されている。
そして、固体高分子電解質型燃料電池は、固体高分子電解質のイオン導電性を十分に発揮させて発電効率を高く維持するためには、供給するガスを加湿して供給ガス中の水蒸気濃度を高める必要があり、さらに、水素と酸素から水を生成する電気化学反応のエネルギーを電気量に変換するものであるため、カソード側において水が生成する。
【0004】
このため、供給ガスの流路溝には、反応上生成される水が下流側、特に出口側に多量に含有し、気液二相状態となってガス流路溝を塞いでしまい(この現象をフラッディングという)終には、ガス流れが停止して発電を停止する。このフラッディングを防止する技術の従来例としては、特開平10−106594号公報に記載されたものが知られている。図6は従来の固体高分子電解質型燃料電池の酸化ガスセパレータを示す。セパレータ1の溝部材2は、ガス拡散電極に対応した方形状でガス不透過性と導電性をして構成される。入口マニホールド3から酸化ガスが流入され、流路溝材2の溝を経た酸化ガスを出口マニホールド4より導出する。燃料ガスのセパレータ1も酸化ガスの入口マニホールド3および出口マニホールド4と互違いの位置に形成された入口マニホールド5及び出力マニホールド6より燃料ガスの流入と導出が行われる。流路溝材2の溝は、入口マニホールド3に直接に連通した入口側流路溝7Aと、上記出口マニホールド4に直接に連通した出口側流路溝8Bと、上記入口側流路溝7A及び出口側流路溝8Bとを連通した中間流路溝9とから構成されている。入口側流路溝7Aと出口側流路溝8Bとは格子状に形成され、中間流路溝9は、複数回折返した曲折形態に形成され、複数本の直線状に延びる独立流路群9A〜9Eと、折返し部に形成された格子状溝10A〜10Dとから構成されている。すなわち、入口側流路溝7Aと出口側流路溝8Bは、縦横に整列して形成された孤立突起a以外の領域がガス流路溝であり、独立流路群9A〜9Eは長延突起b以外の領域がガス流路溝である。また、折返し部の格子状溝10A〜10Dは、孤立突起c以外の領域がガス流路溝である。
【0005】
反応生成水によるフラッディングにより供給ガスの停滞を防止するため、過去より種々のガス流路溝が工夫され、ガス流路が格子状となるタイプと、入口から出口まで1本の流路とするタイプがあるが、格子状タイプは、フラッディングに達するような水溜まりは生じないが、全体に均一となるガス拡散性能、一部が閉塞するなど排水性能に劣る。また、1本流路タイプは、拡散性が良いが、流れ抵抗が増えてガス供給装置側の元圧を高くする必要を生じ補機動力が増加してシステム効率が低下する。
【0006】
そして、特開平10−106594号公報に記載されたものは、供給ガスの入口側流路溝部及び出口側流路溝部が縦横に整列して形成された孤立突起a以外の領域がガス流路溝であり格子状をなすため、電極へのガスの接触面積が広くなると共に、ガスが自由に移動でき、時間的に速く電極と接触する。従って、入口側流路溝部では供給ガスと電極との接触効率(面積的に広く及び時間的に速く接触)が高く入口側におけるガス拡散性の損失を回避し得る。また、出口側流路溝部では、入口側と同様のガス拡散性の損失を回避し、かつ流路断面積が広くなるため排水性を確保してフラッディングを防止することができると記述してある。
【0007】
【発明が解決しようとする課題】
しかしながらこの従来構成においては、入口側流路溝部ではガス拡散性を高め、この部分の反応を促進して全体の電気変換エネルギー効率を高めたため、入口側流路溝部での反応が集中し固体高分子電解質の膜やガス拡散電極の触媒層の劣化が進み耐久性に課題が残った。また、出口側流路溝部では、流路断面積が広くして排水性を確保してフラッディングを防止してあるが、流路断面積が広いためガスの流れが偏在し一様でなく、流速の遅い部分では生成水が流路溝の一部を閉塞した状態を発生し、この部分にはガスが供給できなく完全にフラッディングを防止できなかった。
【0008】
本発明は、前記従来の課題を解決するもので、入り口から出口に至る反応量を均一化させて耐久信頼性の向上と全体の電気変換エネルギー効率を高め、かつフラッディングを防止して信頼性を高めた燃料電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の燃料電池は、固体高分子電解質を挟持する一対のガス拡散電極と、前記ガス拡散電極のおのおのの面に、燃料ガスと酸化ガスとをそれぞれの入口側から出口側に導く流路溝が形成されたセパレータと、を有しており、 少なくとも一方の前記セパレータの前記流路溝は、前記入口側に位置する入口側流路溝部と、前記出口側に位置する出口側流路溝部と、前記入口側流路溝部と前記出口側流路溝部との間に位置する合流部と、からなり、前記セパレータの前記流路溝の前記入口側には入口マニホールドが形成されており、前記セパレータの前記流路溝の前記出口側には出口マニホールドが形成されており、前記入口側流路溝部は、一端が前記入口マニホールドに連通されており他端が前記合流部に連通される複数の流路で構成されており、前記出口側流路溝部は、一端が前記出口マニホールドに連通されており他端が前記合流部に連通される複数の流路で構成されており、一端が前記入口マニホールドに連通されており他端が前記合流部に連通されるバイパス流路溝部が更に形成されており、 前記バイパス流路溝部の少なくとも一部を前記ガス拡散電極から隔離して、当該少なくとも一部でガス拡散による電気化学反応の発生を防ぐパッキン部材が配置されている。
【0010】
これによって、各々の入口側から入った燃料ガスおよび酸化ガスは、途中で水となり順次質量を減じながら出口側にいたる、そのため、入口側における燃料ガスおよび酸化ガスのガス量は、出口側に比較して大変多くなる。
【0011】
前記入口側から前記出口側に連通するバイパス流路溝部を構成したことにより、入口側流路に入るガス量の一部は入口側流路部を通らずに直接出口側流路に流れる。そのため、流量の多い入口部でのガスの流速を小さく設計できるため拡散電極へのガス拡散を小さくでき、入口側部での過大な反応促進を低減できると共に、供給ガス流量が最も多く流れ抵抗が大きい入口側流路部の流速が小さいため全体の損失抵抗を小さくすることが可能となる。
【0012】
また、入口側と出口側の流速が近似でき電流密度の均一化と流れの損失抵抗の低減できる流路を構成できるものである。特に、負荷に合わせて、供給するガス流量を変化した場合も、この均一性が維持でき、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0013】
そして、出口側流路溝部では、ガスの流速を大きく設計できるため、内部で発生した生成水をガスの動圧により外部に排出できる。このため、流路が水により閉塞するフラッディングを防止することが可能となる。
【0014】
【発明の実施の形態】
参考の形態1に係る発明は、固体高分子電解質を挟持する一対のガス拡散電極と、前記ガス拡散電極のおのおのの面に燃料ガスと酸化ガスをそれぞれの入口側から出口側に導く流路溝を形成したセパレータより構成し、少なくとも一方の前記セパレータの前記流路溝は、前記入口側に位置する入口側流路溝部と前記出口側に位置する出口側流路溝部とからなり、前記入口側流路溝部から前記出口側流路溝部に連通するバイパス流路溝部を構成してある。
【0015】
これによって、前記入口側から前記出口側に連通するバイパス流路溝部を構成したことにより、入口側流路に入るガス量の一部は入口側流路部を通らずに直接出口側流路に流れる。そのため、流量の多い入口部でのガスの流速を小さく設計できるため拡散電極へのガス拡散を小さくでき、入口側部での過大な反応促進を低減できると共に、供給ガス流量が最も多く流れ抵抗が大きい入口側流路部の流速が小さいため全体の損失抵抗を小さくすることが可能となる。
【0016】
また、入口側と出口側の流速が近似でき電流密度の均一化と流れの損失抵抗の低減できる流路を構成できるものである。特に、負荷に合わせて、供給するガス流量を変化した場合も、この均一性が維持でき、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0017】
そして、出口側流路溝部では、ガスの流速を大きく設計できるため、内部で発生した生成水をガスの動圧により外部に排出できる。このため、流路が水により閉塞するフラッディングを防止することが可能となる。そして、供給ガス流量が最も多く流れ抵抗が大きい入口側流路部の流速が小さいため全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。
また、このバイパス流路部では、反応を生じることがなく、入口流路部と出口流路部で全ての反応を行う。このため、バイパス流路部の冷却や電流密度を考慮する必要がなく、電流密度を小さく均一となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができ、流路の設計自由度が向上し、加工も容易で安価となる。
【0018】
参考の形態2に係る発明は、特に参考の形態1記載の燃料電池のセパレータに関し、供給ガスの出口側流路溝部の流路断面積は、入口側流路溝部とバイパス流路溝部の和の流路断面積よりも小さく構成してあるため、流量の少ない出口部でのガスの流速を大きく設計できるためガス拡散電極へのガス拡散を大きくでき、出口側部での反応促進を増大できる。このため、供給ガスの入口から出口に至る反応量を均一化させて各部分の電流密度を一定となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる
【0019】
参考の形態3に係る発明は、特に参考の形態1〜2の燃料電池のセパレータを入口側流路溝部の入口側から出口側流路溝部の入口側にバイパス流路溝部を連通して構成したことにより、流量の最も多い入口側流路溝部の入口側でのガスの流速を小さく設計しガス拡散電極へのガス拡散を小さくしながら、発電のためには必ず流す必要のある出口側流路溝部の入口側から全部のガスを流すことにより設計どおりの電気化学反応が可能となる。このため、電流密度を小さく均一となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0020】
参考の形態4に係る発明は、特に参考の形態1〜3の燃料電池のセパレータを入口側流路溝部は少なくとも複数の流路で構成し、前記入口側流路溝部の少なくとも一部を合流後出口側流路溝部に連通したことにより、入口側流路溝部の流路パターンが同じでも、入口側流路溝部は出口側流路溝部に対して単位流路当りのガス拡散電極の面積を大幅に増加できるため、電流密度を小さく均一となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができ、流路の設計自由度が向上し、加工も容易で安価となる。
【0021】
参考の形態5に係る発明は、特に参考の形態4の燃料電池のセパレータを入口側流路溝部の合流箇所を複数としたことにより、電流密度と電気化学反応により減少するガス流れの損失抵抗の分布に応じで最適な流路を構成できるものである。
【0022】
参考の形態6に係る発明は、特に参考の形態1〜5の燃料電池のセパレータを少なくとも一部のバイパス流路部をガス拡散電極と隔離して構成したことにより、このバイパス流路部では、反応を生じることがなく、入口流路部と出口流路部で全ての反応を行う。このため、バイパス流路部の冷却や電流密度を考慮する必要がなく、電流密度を小さく均一となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができ、流路の設計自由度が向上し、加工も容易で安価となる。
【0023】
参考の形態7に係る記載の発明は、特に参考の形態1〜6の燃料電池のセパレータを入口側流路溝部の流路断面積を出口側流路溝部の流路断面積よりも大きく構成してある。
【0024】
これによって、供給ガスの流量の多い入口側流路溝部でのガスの流速をより小さく設計できるため拡散電極へのガス拡散をさらに小さくでき、過大な反応促進を低減できると共に、供給ガス流量が最も多く流れ抵抗が大きい入口側流路部の流速が小さいため全体の損失抵抗を小さくすることが可能となる。また、供給ガスの出口側流路溝部の流路断面積入口側流路溝部の流路断面積よりも小さく構成してあるため、流量の少ない出口部でのガスの流速をさらに大きく設計できるため拡散電極へのガス拡散を大きくでき、出口側部での反応促進を増大できる。このため、供給ガスの入口から出口に至る反応量をさらに均一化させて各部分の電流密度が一定となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0025】
さらに、出口側流路溝部では、ガスの流速をさらに大きく設計できるため、内部で発生した生成水をガスの動圧により外部に排出できる。このため、流路が水により閉塞するフラッディングを防止することが可能となる。そして、供給ガス流量全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。
【0026】
参考の形態8に係る発明は、特に参考の形態7の燃料電池のセパレータを入口側流路溝部の溝幅を出口側流路溝部の溝幅より大きく構成して、前記入口側流路溝部の流路断面積は前記出口側流路溝部の流路断面積よりも大きくしたことにより、流量の多い入口部でのガスの流速を小さく設計し拡散電極へのガス拡散を小さくしながら、かつ、流路幅を拡大して広い拡散電極で反応することが可能となる。このため、電流密度を小さく均一となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。また、セパレータはカーボン、または金属の薄板をプレス、射出成型等によりセパレータの一部の流路溝幅を大きく加工することは容易である。
【0027】
参考の形態9に係る発明は、特に参考の形態7の燃料電池のセパレータを入口側流路溝部の溝深さを出口側流路溝部の溝深さより大きく構成して、前記入口側流路溝部の流路断面積は前記出口側流路溝部の流路断面積よりも大きくし、流路を大幅に大きくすることが可能であり、流量の多い入口部でのガスの流速を小さく設計し拡散電極へのガス拡散を小さくしながら、かつ、流路に対抗して主に反応する拡散電極面積を供給ガスの入口から出口に至るまで均一な面積とでき、各部分の電流密度を一定とし耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。また、セパレータはカーボン、または金属の薄板をプレス、射出成型等によりセパレータの一部の流路溝深さを大きく加工することは容易である。
【0028】
参考の形態10に係る発明は、特に参考の形態7〜9の燃料電池のセパレータを入口側流路溝部または出口側流路溝部の少なくとも一方の流路断面積を順次小さく構成したことにより、反応により減少するガス流量に応じて流路断面積を順次小さくして、流量の多い入口部から流量の最も少ない出口部まで、ガスの流速を一定に設計できる。このため、供給ガスの入口から出口に至る反応量を均一化させて各部分の電流密度を一定とし耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0029】
また、流路内を流れるガスは2H2+O2→2H2Oの反応によりガス流量は、順次減少する。流路断面積を順次小さく構成したことにより、供給ガス流量が最も多く流れ抵抗が大きい入口側流路部の流速が小さいため全体の損失抵抗を小さくすることが可能となる。そして、出口側流路溝部では、ガスの流速を大きく設計できるため、内部で発生した生成水をガスの動圧により外部に排出できるため、流路が水により閉塞するフラッディングを防止することができ、供給ガス流量が最も多く流れ抵抗が大きい入口側流路部の流速が小さいため全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。
【0030】
参考例1)
図1は、本発明の第1の参考例における燃料電池のセパレータの全体構成図、図2は燃料電池全体の断面図を示す。図2において、固体高分子型の燃料電池は、イオン伝導性が付与された固体高分子電解質の膜11の両面に触媒を担持したガス拡散電極12を両面に重ね合わせて発電セルを構成している。そして、この発電セルは複数個を接続して所定の電圧を得る。このため、発電セル間にセパレータ1を介在させ発電セルを積層してスタック化する。そして、セパレータの両側にそれぞれ燃料ガス及び酸化ガスを供給してそれぞれのガス拡散電極12に燃料ガス及び酸化ガスを供給すると、固体高分子膜11でのイオン導電と各ガス拡散電極の電気化学反応が進行して一対のガス拡散電極12間に電圧が発生し、集電電極の機能を持つ両端側の一対のセパレータ1を介して外部回路(図示せず)に給電する。この様な発電においては、供給ガスを出来るだけ均等にガス拡散電極12の電極面に供給することがガス利用率を高め、発電効率と出力性能を良くする。
【0031】
図1に示すセパレータ1は、セパレータ1の流路溝2は、ガス拡散電極12に対応した形状としガス不透過性と導電性有するカーボン、表面処理をした金属を用いて構成する。入口マニホールド3から燃料または酸化ガスが流入され、流路溝2の溝を経た前記ガスを出口マニホールド4より流出する。他方酸化ガスまたは燃料ガスのセパレータ1はこのセパレータ1の背面側に同様の流れる構成を設け入口マニホールド5及び出力マニホールド6よりガスの流入と導出が行われる。これにより、固体高分子電解質の膜11を挟持する一対のガス拡散電極12のおのおのの面に燃料ガスと酸化ガスをそれぞれの入口側から出口側に導く流路溝2を形成したセパレータ1を構成している。
【0032】
そして、流路溝材2の溝は、入口側の入口マニホールド3に直接に連通した入口側流路溝部13と出口マニホールド4に直接に連通した出口側流路溝部14と、入口側流路溝部13から出口側流路溝部14に連通するバイパス流路溝部15を構成してある。入口側流路溝部13は、複数の溝で構成し入口マニホールド3に直接に連通し蛇行しなからバイパス流路溝部15との合流部16に至る。出口側流路溝部14も、複数の溝で構成し合流部16に連通し蛇行しなから出口マニホールド4に至る。バイパス流路溝部15は、複数の溝で構成し入口マニホールド3に直接に連通し出口側流路溝部14との合流部16に至る。
【0033】
以上のように構成された燃料電池のセパレータについて、以下その動作、作用を説明する。
【0034】
まず、入口マニホールド3から入口側流路溝部13に入った燃料ガスおよび酸化ガスは、途中の入口側流路溝部13と出口側流路溝部14を流れる時、ガス拡散電極に拡散して電気化学反応を行い、燃料ガスは消費され、酸化ガスは水となり順次質量を減じながら出口側流路溝部14に至り排出される。そのため、入口側における燃料ガスおよび酸化ガスのガス量は、出口側に比較して大変多くなる。
【0035】
入口マニホールド3から入るガス量の一部は入口側流路部13を流れ、残りのガスは入口側流路部13を通らずにバイパス流路溝部15を通って合流部16に流れ、この合流部16で入口側流路部13を流れたガスとバイパス流路溝部15を流れたガスが合流し、出口側流路溝部14から出口マニホールド4に至り排出する。このため、流量の多い入口部の入口側流路部13でのガスの流速を小さく設計できる。ガスのガス拡散電極12へのガス拡散はガスの流速が早くなると増加する。このため、ガス拡散電極12へのガス拡散を小さくでき、入口側の入口側流路部13での過大な反応促進を低減できると共に、供給ガス流量が最も多く流れ抵抗が大きい入口側流路溝部13の流速が小さいため全体の損失抵抗を小さくすることが可能となる。また、供給ガスの出口側流路溝部14の流路断面積は、入口側流路溝部13とバイパス流路溝部15の和の流路断面積よりも小さく構成できるため、(最適値は0.5〜0.7)流量の少ない出口部の出口側流路溝部14でのガスの流速を入口側と同じほど大きく設計できるためガス拡散電極12へのガス拡散を大きくでき、出口側の出口側流路溝部14での電気化学反応促進を増大できる。このため、供給ガスの入口から出口に至る電気化学反応量を均一化させて各部分の電流密度を一定となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0036】
また、発電する電気量は、実使用実態に合わせて増減コントロールする必要がある。そのため、負荷に応じて燃料ガスおよび酸化ガスのガス量を増減して調整する必要がある。入口側の入口側流路溝部13と出口側の出口側流路溝部14の流速が近似でき電流密度の均一化と流れの損失抵抗の低減できる流路を構成できるものであり、特に、負荷に合わせて供給するガス流量を変化した場合も、この均一性は維持できるため、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0037】
そして、出口側流路溝部14では、ガスの流速を大きく設計できるため、内部で発生した生成水をガスの動圧により外部に排出できる。このため、流路が水により閉塞するフラッディングを防止することが可能となり、良好な運転範囲が拡大し安定性が向上する。
【0038】
そして、供給ガス流量が最も多く流れ抵抗が大きい入口側流路部の流速が小さいため全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。
【0039】
また、セパレータ1を入口側流路溝部13の入口側である入口マニホールド3から出口側流路溝部14の入口側である合流部16にバイパス流路溝部15をそれぞれ連通して構成したことにより、流量の最も多い入口側流路溝部13の入口側でのガスの流速を最も小さく設計しガス拡散電極12へのガス拡散を小さくしながら、発電のためには必ず流す必要のある出口側流路溝部14の入口側から全部のガスが流すことができ設計どおりの電気化学反応が可能となる。このため、電流密度を小さく均一となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。
【0040】
参考例2)
図3は、本発明の第2の参考例における燃料電池のセパレータの全体構成を示す。参考例1と異なるところは、セパレータ1を入口側流路溝部13は6流路13a〜fの複数で構成し、入口側流路溝部13の流路13a〜fを合流部16a16b16cでおのおの合流して後、出口側流路溝部14の流路14a〜cに連通してある。このことにより、入口側流路溝部13の流路パターンが同じでも、入口側流路溝部13は出口側流路溝部14に対して単位流路当りのガス拡散電極の面積を大幅に増加できる。このため、電流密度を小さく均一となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができ、流路の設計自由度が向上し、加工も容易で安価となる。また、電気変換エネルギー効率が高いことは、セパレータを小さくできコンパクト化が可能となる。
【0041】
参考例3)
図4は、本発明の第3の参考例における燃料電池のセパレータの全体構成を示す。参考例2と異なるところは、燃料電池のセパレータ1を入口側流路溝部13の合流箇所を16d、16eの2箇所と複数に構成してある。入口側流路溝部13、出口側流路溝部14のそれぞれの出口側のガス量は電気化学反応により入口側減少する。そのため、合流箇所16d、16eを複数として、順次流速を調整したことにより、電流密度と電気化学反応により減少するガス流れの損失抵抗の分布に応じで最適な流路を構成できるものである。合流箇所は数を増やすほど性能は向上する。
【0042】
(実施
図5は、本発明の実施例における燃料電池のセパレータの全体構成を示す。参考例1と異なるところは、燃料電池のセパレータ1のバイパス流路部15を流れる燃料ガスまたは酸化ガスを拡散させるガス拡散電極12と離し隔離して構成してある。具体的には、ガス拡散電極12は、入口側流路溝部13、出口側流路溝部14と、合流箇所15である流路部2に対向して構成し、バイパス流路部15はパッキン部材17で片面を閉塞してある。このため、バイパス流路部15では、ガス拡散せず電気化学反応を生じることがない。そのため、バイパス流路部15の冷却や電流密度分布の均一化を考慮する必要がなく、電流密度を小さく均一となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができ、流路の設計自由度が向上し、加工も容易で安価となる。
【0043】
また、セパレータ1のガスが流れる溝形状の断面積を順次小さくしてフラッディングを防止する方法は、特許第3272980号公報や特開平6−267564号公報に記載があるが、本発明の構成を加えることにより、電流密度の均一化とフラッディング抑制に対して効果がある。実施例1〜4において、セパレータ1を入口側流路溝部13の流路断面積を出口側流路溝部14の流路断面積よりも大きく構成することによって、供給ガスの流量の多い入口側流路溝部13でのガスの流速をより小さく設計できるためガス拡散電極12へのガス拡散をさらに小さくでき、過大な反応促進を低減できると共に、供給ガス流量が最も多く流れ抵抗が大きい入口側流路部13の流速が小さいため全体の損失抵抗を小さくすることが可能となる。また、供給ガスの出口側流路溝部14の流路断面積を入口側流路溝部の流路断面積よりも小さく構成してあるため、流量の少ない出口部でのガスの流速をさらに大きく設計できるためガス拡散電極12へのガス拡散を大きくでき、出口側部での反応促進を増大できる。このため、供給ガスの入口から出口に至る反応量をさらに均一化させて各部分の電流密度を一定となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。そして、出口側流路溝部14では、ガスの流速をさらに大きく設計できるため、内部で発生した生成水をガスの動圧により外部に排出できる。このため、流路が水により閉塞するフラッディングを防止することが可能となる。そして、供給ガス流量全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。
【0044】
さらに、セパレータ1を入口側流路溝部13は出口側流路溝部14より溝幅を大きく構成して、入口側流路溝部13の流路断面積は出口側流路溝部14の流路断面積よりも大きくしたことにより、流量の多い入口部でのガスの流速を小さく設計しガス拡散電極12へのガス拡散を小さくしながら、かつ、流路幅を拡大して広い拡散電極で反応することが可能となる。このため、電流密度を小さく均一となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。また、セパレータ1はカーボン、または金属の薄板をプレス、射出成型等によりセパレータの一部の流路溝幅を大きく加工することは容易である。
【0045】
また、セパレータ1を入口側流路溝部13は出口側流路溝部14の溝深さを大きく構成して、入口側流路溝部13の流路断面積は出口側流路溝部14の流路断面積よりも大きくし、流路を大幅に大きくすることが可能であり、流量の多い入口部でのガスの流速を小さく設計しガス拡散電極12へのガス拡散を小さくしながら、かつ、流路に対抗して主に反応する拡散電極面積を供給ガスの入口から出口に至るまで均一な面積とでき、各部分の電流密度を一定とし耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。また、セパレータはカーボン、または金属の薄板をプレス、射出成型等によりセパレータの一部の流路溝深さを大きく加工することは容易である。
【0046】
そして、セパレータ1を入口側流路溝部13または出口側流路溝部14の少なくとも一方の流路断面積を順次小さく構成したことにより、反応により減少するガス流量に応じて流路断面積を順次小さくして、流量の多い入口部から流量の最も少ない出口部まで、ガスの流速を一定に設計できる。このため、供給ガスの入口から出口に至る反応量を均一化させて各部分の電流密度を一定となり耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。そして、流路内を流れるガスは2H2+O2→2H2Oの反応によりガス流量は、順次減少する。流路断面積を順次小さく構成したことにより、供給ガス流量が最も多く流れ抵抗が大きい入口側流路部13の流速が小さいことにより全体の損失抵抗を小さくすることが可能となる。そして、出口側流路溝部14では、ガスの流速を大きく設計できるため、内部で発生した生成水をガスの動圧により外部に排出できるため、流路が水により閉塞するフラッディングを防止することができ、供給ガス流量が最も多く流れ抵抗が大きい入口側流路部13の流速が小さいため全体の損失抵抗を小さくすることが可能となるため、送風機の動力も小さくて済み、補機の動力が低減できシステム全体の効率が向上できる。
【0047】
【発明の効果】
以上のように本発明によれば、流量の多い入口側部での過大な反応促進を低減できると共に、全体の損失抵抗を小さくすることが可能となる。また、流量の少ない出口部でのガスの流速を大きく設計できるため反応促進を増大でき、反応量を均一化させて電流密度を一定とし耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。そして、負荷に合わせてこの均一性が維持でき、耐久信頼性の向上と全体の電気変換エネルギー効率を高めることができる。また、出口側流路溝部では、ガスの流速を大きく設計できるため、内部で発生した生成水をガスの動圧により外部に排出できる。このため、流路が水により閉塞するフラッディングを防止することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1 の参考例における燃料電池のセパレータを示す全体構成図
【図2】本発明の第1 の参考例における燃料電池全体の断面図
【図3】本発明の第2 の参考例における燃料電池のセパレータを示す全体構成図
【図4】本発明の第3 の参考例における燃料電池のセパレータを示す全体構成図
【図5】本発明の実施例における燃料電池のセパレータを示す全体構成図
【図6】従来の燃料電池のセパレータを示す全体構成図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator for a solid polymer electrolyte fuel cell.
[0002]
[Prior art]
Conventionally, this type of fuel cell constitutes a power generation cell by superposing gas diffusion electrodes carrying a catalyst on both surfaces of a solid polymer electrolyte membrane to which ion conductivity is imparted. A plurality of power generation cells are connected to obtain a predetermined voltage. For this reason, a separator is interposed between the power generation cells, and the power generation cells are stacked to form a stack. When the fuel gas and the oxidizing gas are supplied to both sides of the separator and the fuel gas and the oxidizing gas are supplied to the respective gas diffusion electrodes, the ionic conduction in the solid polymer film and the electrochemical reaction of each gas diffusion electrode proceed. Thus, a voltage is generated between the pair of gas diffusion electrodes, and power is supplied to the external circuit through the pair of separators on both end sides having the function of current collecting electrodes. In such power generation, supplying the supply gas to the electrode surface of the gas diffusion electrode as evenly as possible increases the gas utilization rate and improves the power generation efficiency and output performance.
[0003]
However, if the supply gas is supplied to the entire surface of the gas diffusion electrode, the contact area between the separator and the gas diffusion electrode is eliminated, and the generated current is efficiently collected and the heat generated in the gas diffusion electrode is removed. It becomes difficult. For this reason, a channel groove for regulating the flow direction of the supply gas is provided at the boundary between the separator and the gas diffusion electrode, and the contact area between the separator and the gas diffusion electrode is maintained at a certain ratio. This channel groove formed on the separator side has a serpentine serpentine configuration or a plurality of configurations described in Japanese Patent Publication No. 50-8777, Japanese Patent Laid-Open No. 7-263003, and the like.
In order to sufficiently maintain the power generation efficiency by fully exhibiting the ionic conductivity of the solid polymer electrolyte, the solid polymer electrolyte fuel cell increases the water vapor concentration in the supplied gas by humidifying the supplied gas. In addition, since the energy of an electrochemical reaction that generates water from hydrogen and oxygen is converted into an electric quantity, water is generated on the cathode side.
[0004]
For this reason, a large amount of water produced in the reaction is contained in the flow channel groove of the supply gas on the downstream side, particularly on the outlet side, and it becomes a gas-liquid two-phase state and closes the gas flow channel groove (this phenomenon). In the end, the gas flow stops and power generation stops. As a conventional example of a technique for preventing this flooding, one described in Japanese Patent Laid-Open No. 10-106594 is known. FIG. 6 shows an oxidant gas separator of a conventional solid polymer electrolyte fuel cell. The groove member 2 of the separator 1 has a rectangular shape corresponding to the gas diffusion electrode and is configured to be gas-impermeable and conductive. Oxidizing gas is introduced from the inlet manifold 3, and the oxidizing gas that has passed through the grooves of the channel groove material 2 is led out from the outlet manifold 4. The fuel gas separator 1 also flows in and out of the fuel gas from the inlet manifold 5 and the output manifold 6 formed at positions different from the inlet manifold 3 and outlet manifold 4 for the oxidizing gas. The groove of the flow channel member 2 includes an inlet-side flow channel 7A directly communicating with the inlet manifold 3, an outlet-side flow channel 8B directly communicating with the outlet manifold 4, the inlet-side flow channel 7A, It is comprised from the intermediate flow path groove 9 which connected the exit side flow path groove 8B. The inlet-side channel groove 7A and the outlet-side channel groove 8B are formed in a lattice shape, and the intermediate channel groove 9 is formed in a bent shape that is folded back multiple times, and a plurality of linear channel groups 9A that extend in a straight line shape. To 9E and lattice-like grooves 10A to 10D formed in the folded portion. That is, in the inlet-side channel groove 7A and the outlet-side channel groove 8B, a region other than the isolated projection a formed in vertical and horizontal directions is a gas channel groove, and the independent channel groups 9A to 9E are elongated projections b. The area other than is a gas flow path groove. Moreover, as for the grid | lattice-like groove | channels 10A-10D of a folding | turning part, area | regions other than the isolated protrusion c are gas flow path grooves.
[0005]
In order to prevent stagnation of the supply gas by flooding with reaction product water, various gas flow channel grooves have been devised from the past, and the gas flow channel has a lattice shape, and the type that has one flow channel from the inlet to the outlet However, the grid type does not cause a water pool to reach flooding, but is inferior in drainage performance such as uniform gas diffusion performance and partial blockage. In addition, the single channel type has good diffusibility, but the flow resistance increases, and it is necessary to increase the source pressure on the gas supply device side, resulting in an increase in auxiliary power and a decrease in system efficiency.
[0006]
Japanese Patent Application Laid-Open No. 10-106594 discloses that a region other than the isolated protrusion a in which the inlet-side channel groove portion and the outlet-side channel groove portion of the supply gas are aligned vertically and horizontally is a gas channel groove. Since it has a lattice shape, the contact area of the gas to the electrode is widened, the gas can move freely, and it contacts the electrode quickly in time. Therefore, in the inlet-side channel groove portion, the contact efficiency between the supply gas and the electrode (wide contact in area and fast in time) is high, and loss of gas diffusibility on the inlet side can be avoided. Further, it is described that in the outlet side channel groove portion, loss of gas diffusibility similar to that on the inlet side can be avoided, and since the channel cross-sectional area becomes wide, drainage can be secured and flooding can be prevented. .
[0007]
[Problems to be solved by the invention]
However, in this conventional configuration, the gas diffusibility is increased in the inlet-side channel groove part, and the reaction in this part is promoted to increase the overall electric conversion energy efficiency. The deterioration of the molecular electrolyte membrane and the catalyst layer of the gas diffusion electrode has progressed, and there remains a problem in durability. In addition, in the outlet side channel groove, the channel cross-sectional area is wide to ensure drainage and prevent flooding, but because the channel cross-sectional area is wide, the gas flow is unevenly distributed and the flow rate is not uniform. In the slow part, the generated water closed a part of the channel groove, and gas could not be supplied to this part, and flooding could not be prevented completely.
[0008]
The present invention solves the above-mentioned conventional problems, and makes the reaction amount from the inlet to the outlet uniform, improves the durability reliability and the overall electric energy conversion efficiency, and prevents flooding to improve reliability. Increased fuelbatteryThe purpose is to provide.
[0009]
[Means for Solving the Problems]
In order to solve the conventional problems, the fuel cell of the present invention isA pair of gas diffusion electrodes sandwiching the solid polymer electrolyte, and separators each having a channel groove formed on each surface of the gas diffusion electrodes for guiding the fuel gas and the oxidizing gas from the respective inlet side to the outlet side; The flow channel groove of at least one of the separators includes an inlet side flow channel groove portion located on the inlet side, an outlet side flow channel groove portion located on the outlet side, and the inlet side flow channel An inlet manifold is formed on the inlet side of the flow channel groove of the separator, and an inlet manifold is formed on the inlet side of the flow channel groove of the separator. An outlet manifold is formed on the outlet side, and the inlet-side channel groove portion is composed of a plurality of channels whose one end communicates with the inlet manifold and the other end communicates with the merging portion. , Outlet side flow path The groove portion is composed of a plurality of flow paths having one end communicating with the outlet manifold and the other end communicating with the merging portion, one end communicating with the inlet manifold, and the other end serving as the merging portion. A packing member is further formed to communicate with the bypass channel groove, and at least a part of the bypass channel groove is isolated from the gas diffusion electrode, and at least a part of the packing member prevents an electrochemical reaction due to gas diffusion. Is arranged.
[0010]
As a result, the fuel gas and the oxidizing gas entering from each inlet side become water on the way to the outlet side while reducing the mass sequentially, so the amount of fuel gas and oxidizing gas on the inlet side is compared with the outlet side And so much.
[0011]
By configuring the bypass channel groove that communicates from the inlet side to the outlet side, part of the gas amount entering the inlet side channel flows directly to the outlet side channel without passing through the inlet side channel. Therefore, the gas flow velocity at the inlet portion where the flow rate is high can be designed to be small, so that gas diffusion to the diffusion electrode can be reduced, excessive reaction promotion at the inlet side portion can be reduced, and the flow rate of the supply gas is the highest and the flow resistance is the highest. Since the flow velocity of the large inlet-side channel portion is small, it is possible to reduce the overall loss resistance.
[0012]
Further, it is possible to construct a flow path that can approximate the flow velocity on the inlet side and the outlet side, make the current density uniform, and reduce the flow loss resistance. In particular, even when the gas flow to be supplied is changed in accordance with the load, this uniformity can be maintained, and the durability reliability can be improved and the overall electric conversion energy efficiency can be increased.
[0013]
And since the flow velocity of gas can be designed large in an exit side channel groove part, the produced | generated water generated inside can be discharged | emitted outside by the dynamic pressure of gas. For this reason, it becomes possible to prevent flooding in which the flow path is blocked by water.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
According to reference form 1The invention comprises a pair of gas diffusion electrodes sandwiching a solid polymer electrolyte, and a separator formed with a channel groove on each surface of the gas diffusion electrode for guiding fuel gas and oxidizing gas from the inlet side to the outlet side. The channel groove of at least one of the separators includes an inlet-side channel groove portion located on the inlet side and an outlet-side channel groove portion located on the outlet side, from the inlet-side channel groove portion to the outlet A bypass channel groove portion communicating with the side channel groove portion is configured.
[0015]
As a result, the bypass channel groove portion communicating from the inlet side to the outlet side is configured, so that a part of the gas amount entering the inlet side channel directly enters the outlet side channel without passing through the inlet side channel portion. Flowing. Therefore, the gas flow velocity at the inlet portion where the flow rate is high can be designed to be small, so that gas diffusion to the diffusion electrode can be reduced, excessive reaction promotion at the inlet side portion can be reduced, and the flow rate of the supply gas is the highest and the flow resistance is the highest. Since the flow velocity of the large inlet-side channel portion is small, it is possible to reduce the overall loss resistance.
[0016]
Further, it is possible to construct a flow path that can approximate the flow velocity on the inlet side and the outlet side, make the current density uniform, and reduce the flow loss resistance. In particular, even when the gas flow to be supplied is changed in accordance with the load, this uniformity can be maintained, and the durability reliability can be improved and the overall electric conversion energy efficiency can be increased.
[0017]
  And since the flow velocity of gas can be designed large in an exit side channel groove part, the produced | generated water generated inside can be discharged | emitted outside by the dynamic pressure of gas. For this reason, it becomes possible to prevent flooding in which the flow path is blocked by water. And since the flow rate of the inlet-side channel section with the largest supply gas flow rate and the largest flow resistance is small, the overall loss resistance can be reduced, so the power of the blower can be small and the power of the auxiliary machine is reduced. And the efficiency of the entire system can be improved.
Moreover, in this bypass channel part, no reaction occurs, and all reactions are performed in the inlet channel part and the outlet channel part. For this reason, there is no need to consider the cooling of the bypass flow path and the current density, the current density can be made small and uniform, the durability reliability can be improved, and the overall electrical conversion energy efficiency can be increased. Improved, easy to process and inexpensive.
[0018]
According to reference form 2The invention is particularlyReference form 1With respect to the separator of the fuel cell described above, the flow passage cross-sectional area of the outlet-side flow groove portion of the supply gas is configured to be smaller than the flow passage cross-sectional area of the sum of the inlet-side flow passage groove portion and the bypass flow passage groove portion. Since the gas flow velocity at the outlet portion with a small amount can be designed to be large, gas diffusion to the gas diffusion electrode can be increased, and the reaction promotion at the outlet side portion can be increased. For this reason, the amount of reaction from the inlet to the outlet of the supply gas is made uniform, the current density of each part becomes constant, and the durability reliability can be improved and the overall electrical conversion energy efficiency can be improved.
[0019]
According to reference form 3The invention is particularlyReference formThe separator of the fuel cell of 1 to 2 is configured such that the bypass channel groove portion communicates from the inlet side of the inlet side channel groove portion to the inlet side of the outlet side channel groove portion. Designed by flowing all the gas from the inlet side of the outlet side channel groove, which must be flowed for power generation, while designing the gas flow velocity at the inlet side to be small and reducing gas diffusion to the gas diffusion electrode. The same electrochemical reaction is possible. For this reason, the current density can be made small and uniform, durability reliability can be improved, and the overall electric conversion energy efficiency can be increased.
[0020]
According to reference form 4The invention is particularlyReference form1 to 3, the inlet-side channel groove portion is composed of at least a plurality of channels, and at least a part of the inlet-side channel groove portion is communicated with the outlet-side channel groove portion after joining. Even if the channel pattern of the channel groove is the same, the inlet side channel groove can greatly increase the area of the gas diffusion electrode per unit channel compared to the outlet side channel groove, making the current density small and uniform and reliable. And the efficiency of electrical conversion energy can be improved, the degree of freedom in designing the flow path is improved, and the processing is easy and inexpensive.
[0021]
According to reference form 5The invention is particularlyReference formThe fuel cell separator can be configured to have an optimum flow path according to the current density and the distribution of the loss resistance of the gas flow that decreases due to the electrochemical reaction. is there.
[0022]
According to Reference Form 6The invention is particularlyReference formSince the separators of the fuel cells 1 to 5 are configured by separating at least a part of the bypass flow path portion from the gas diffusion electrode, the bypass flow path section does not cause a reaction, and the inlet flow path section and the outlet All reactions are carried out in the channel section. For this reason, there is no need to consider the cooling of the bypass flow path and the current density, the current density can be made small and uniform, the durability reliability can be improved, and the overall electrical conversion energy efficiency can be increased. Improved, easy to process and inexpensive.
[0023]
According to reference form 7The described invention is particularlyReference formThe separators of the fuel cells 1 to 6 are configured such that the channel cross-sectional area of the inlet-side channel groove is larger than the channel cross-sectional area of the outlet-side channel groove.
[0024]
As a result, the gas flow rate in the inlet-side channel groove portion where the flow rate of the supply gas is large can be designed to be smaller, so that the gas diffusion to the diffusion electrode can be further reduced, the excessive reaction promotion can be reduced, and the supply gas flow rate is the highest. Since the flow velocity of the inlet-side flow path portion, which has a large flow resistance, is small, it is possible to reduce the overall loss resistance. In addition, since the flow passage cross-sectional area of the supply gas outlet-side flow groove portion is configured to be smaller than the flow passage cross-sectional area of the inlet-side flow groove portion, the gas flow velocity at the outlet portion with a low flow rate can be designed to be larger. Gas diffusion to the diffusion electrode can be increased, and reaction promotion at the outlet side can be increased. For this reason, the reaction amount from the inlet to the outlet of the supply gas is made more uniform, the current density of each part becomes constant, and the durability reliability can be improved and the overall electrical conversion energy efficiency can be increased.
[0025]
Further, since the gas flow velocity can be designed to be larger at the outlet-side channel groove portion, the generated water generated inside can be discharged to the outside by the dynamic pressure of the gas. For this reason, it becomes possible to prevent flooding in which the flow path is blocked by water. And since it becomes possible to make small the loss resistance of the whole supply gas flow volume, the motive power of an air blower is also small, the motive power of an auxiliary machine can be reduced and the efficiency of the whole system can be improved.
[0026]
According to reference form 8The invention is particularlyReference formThe separator of the fuel cell 7 is configured such that the groove width of the inlet-side channel groove is larger than the groove width of the outlet-side channel groove, and the channel cross-sectional area of the inlet-side channel groove is the flow of the outlet-side channel groove. By making it larger than the cross-sectional area of the road, the gas flow rate at the inlet with a large flow rate is designed to be small, gas diffusion to the diffusion electrode is reduced, and the channel width is expanded to react with a wide diffusion electrode. It becomes possible. For this reason, the current density can be made small and uniform, durability reliability can be improved, and the overall electric conversion energy efficiency can be increased. In addition, it is easy to process a part of the channel groove width of the separator to be large by pressing, injection molding, or the like on a carbon or metal thin plate.
[0027]
According to reference form 9The invention is particularlyReference formThe separator of the fuel cell 7 is configured such that the groove depth of the inlet-side channel groove is larger than the groove depth of the outlet-side channel groove, and the channel cross-sectional area of the inlet-side channel groove is equal to that of the outlet-side channel groove. The flow path cross-sectional area can be made larger, and the flow path can be greatly increased. The flow rate of the gas at the inlet with a large flow rate is designed to be small so that the gas diffusion to the diffusion electrode is small, and The area of the diffusion electrode that reacts mainly against the road can be made uniform from the inlet to the outlet of the supply gas, and the current density of each part is constant, improving the durability reliability and increasing the overall electric conversion energy efficiency be able to. In addition, it is easy to process a part of the channel groove depth of the separator to be large by pressing, injection molding, or the like on a carbon or metal thin plate.
[0028]
According to reference form 10The invention is particularlyReference formSince the separators of the fuel cells 7 to 9 are configured so that at least one of the inlet-side channel groove portion and the outlet-side channel groove portion has a sequentially smaller channel cross-sectional area, the channel cross-sectional area can be reduced according to the gas flow rate reduced by the reaction. The gas flow rate can be designed to be constant from the inlet portion with a high flow rate to the outlet portion with the lowest flow rate by gradually decreasing it. For this reason, the reaction amount from the inlet of the supply gas to the outlet can be made uniform, the current density of each portion can be made constant, the durability reliability can be improved, and the overall electrical conversion energy efficiency can be increased.
[0029]
The gas flowing in the flow path is 2H2+ O2→ 2H2The gas flow rate decreases sequentially due to the reaction of O. Since the flow passage cross-sectional area is sequentially reduced, the flow rate of the inlet side flow passage portion with the largest supply gas flow rate and the large flow resistance is small, so that the overall loss resistance can be reduced. Since the flow rate of the gas can be designed to be large at the outlet side channel groove portion, the generated water generated inside can be discharged to the outside by the dynamic pressure of the gas, so that the flooding that blocks the channel with water can be prevented. Since the flow rate of the inlet-side flow path section with the largest supply gas flow rate and the largest flow resistance is small, the overall loss resistance can be reduced, so the power of the blower can be small and the power of the auxiliary equipment can be reduced. The efficiency of the entire system can be improved.
[0030]
(referenceExample 1)
FIG. 1 shows the first aspect of the present invention.referenceFIG. 2 is a cross-sectional view of the entire fuel cell. In FIG. 2, a solid polymer fuel cell has a power generation cell in which gas diffusion electrodes 12 carrying a catalyst are superimposed on both sides of a solid polymer electrolyte membrane 11 imparted with ion conductivity. Yes. A plurality of power generation cells are connected to obtain a predetermined voltage. For this reason, the separator 1 is interposed between the power generation cells, and the power generation cells are stacked to form a stack. When the fuel gas and the oxidizing gas are supplied to both sides of the separator and the fuel gas and the oxidizing gas are supplied to the respective gas diffusion electrodes 12, the ionic conduction in the solid polymer film 11 and the electrochemical reaction of each gas diffusion electrode. As a result, a voltage is generated between the pair of gas diffusion electrodes 12, and power is supplied to an external circuit (not shown) through the pair of separators 1 at both ends having the function of current collecting electrodes. In such power generation, supplying the supply gas to the electrode surface of the gas diffusion electrode 12 as evenly as possible increases the gas utilization rate and improves the power generation efficiency and the output performance.
[0031]
In the separator 1 shown in FIG. 1, the flow channel 2 of the separator 1 has a shape corresponding to the gas diffusion electrode 12, and is configured using gas impervious and conductive carbon, and surface-treated metal. Fuel or oxidizing gas is introduced from the inlet manifold 3 and flows out from the outlet manifold 4 through the groove of the flow path groove 2. On the other hand, the oxidizing gas or fuel gas separator 1 is provided with a similar flow structure on the back side of the separator 1, and gas is introduced and led out from the inlet manifold 5 and the output manifold 6. As a result, the separator 1 in which the flow channel 2 for guiding the fuel gas and the oxidizing gas from the respective inlet side to the outlet side is formed on each surface of the pair of gas diffusion electrodes 12 sandwiching the solid polymer electrolyte membrane 11 is formed. is doing.
[0032]
The groove of the flow channel member 2 includes an inlet-side flow groove 13 that communicates directly with the inlet-side inlet manifold 3, an outlet-side flow groove 14 that communicates directly with the outlet manifold 4, and an inlet-side flow groove. A bypass flow channel groove 15 communicating with the outlet side flow channel groove 14 from 13 is formed. The inlet-side channel groove portion 13 is constituted by a plurality of grooves and does not directly communicate with the inlet manifold 3 and does not meander to reach the junction 16 with the bypass channel groove portion 15. The outlet-side channel groove portion 14 is also constituted by a plurality of grooves, communicates with the merging portion 16 and does not meander to reach the outlet manifold 4. The bypass flow channel groove portion 15 is constituted by a plurality of grooves, communicates directly with the inlet manifold 3, and reaches the junction 16 with the outlet side flow channel groove portion 14.
[0033]
About the separator of the fuel cell comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
[0034]
First, when the fuel gas and the oxidizing gas that have entered the inlet-side channel groove 13 from the inlet manifold 3 flow in the middle of the inlet-side channel groove 13 and the outlet-side channel groove 14, they diffuse into the gas diffusion electrode and are electrochemical. The reaction is performed, the fuel gas is consumed, and the oxidizing gas becomes water, and reaches the outlet side channel groove portion 14 while being gradually reduced in mass and discharged. Therefore, the amount of fuel gas and oxidizing gas on the inlet side is much larger than that on the outlet side.
[0035]
A part of the amount of gas entering from the inlet manifold 3 flows through the inlet-side channel portion 13, and the remaining gas flows through the bypass channel groove portion 15 to the merging portion 16 without passing through the inlet-side channel portion 13. The gas that has flowed through the inlet-side flow path portion 13 and the gas that has flowed through the bypass flow-path groove portion 15 merge at the section 16 and are discharged from the outlet-side flow path groove portion 14 to the outlet manifold 4. For this reason, the flow velocity of the gas in the inlet side flow path part 13 of an inlet part with much flow volume can be designed small. Gas diffusion into the gas diffusion electrode 12 increases as the gas flow rate increases. For this reason, gas diffusion to the gas diffusion electrode 12 can be reduced, excessive reaction acceleration in the inlet-side flow passage portion 13 on the inlet side can be reduced, and the inlet-side flow passage groove portion having the largest supply gas flow rate and the large flow resistance. Since the flow rate of 13 is small, it is possible to reduce the overall loss resistance. Further, the flow passage cross-sectional area of the supply gas outlet-side flow groove portion 14 can be configured to be smaller than the sum of the flow-port cross-sectional areas of the inlet-side flow passage groove portion 13 and the bypass flow passage groove portion 15 (the optimum value is 0. 5 to 0.7) Since the flow velocity of the gas in the outlet side channel groove 14 of the outlet portion with a small flow rate can be designed to be as large as the inlet side, the gas diffusion to the gas diffusion electrode 12 can be increased, and the outlet side on the outlet side The promotion of the electrochemical reaction in the flow channel groove 14 can be increased. For this reason, the amount of electrochemical reaction from the inlet to the outlet of the supply gas is made uniform, the current density of each portion becomes constant, and the durability reliability can be improved and the overall electrical conversion energy efficiency can be increased.
[0036]
In addition, the amount of electricity to be generated needs to be controlled to increase or decrease according to the actual usage. Therefore, it is necessary to adjust by increasing / decreasing the amount of fuel gas and oxidizing gas according to the load. The flow rate of the inlet-side channel groove 13 on the inlet side and the outlet-side channel groove 14 on the outlet side can be approximated, and a channel that can equalize the current density and reduce the loss resistance of the flow can be configured. Even when the gas flow rate to be supplied is changed, the uniformity can be maintained, so that the durability reliability can be improved and the overall electric conversion energy efficiency can be improved.
[0037]
And in the exit side channel groove part 14, since the flow velocity of gas can be designed large, the produced | generated water generated inside can be discharged | emitted outside by the dynamic pressure of gas. For this reason, it becomes possible to prevent flooding in which the flow path is blocked by water, and an excellent operating range is expanded and stability is improved.
[0038]
And since the flow rate of the inlet-side channel section with the largest supply gas flow rate and the largest flow resistance is small, the overall loss resistance can be reduced, so the power of the blower can be small and the power of the auxiliary machine is reduced. And the efficiency of the entire system can be improved.
[0039]
In addition, by configuring the separator 1 by connecting the bypass channel groove portion 15 from the inlet manifold 3 which is the inlet side of the inlet side channel groove portion 13 to the merging portion 16 which is the inlet side of the outlet side channel groove portion 14, respectively. An outlet-side channel that must be flowed for power generation while designing the smallest gas flow velocity on the inlet side of the inlet-side channel groove 13 having the highest flow rate to reduce gas diffusion to the gas diffusion electrode 12. All the gas can flow from the inlet side of the groove part 14, and the electrochemical reaction as designed becomes possible. For this reason, the current density can be made small and uniform, durability reliability can be improved, and the overall electric conversion energy efficiency can be increased.
[0040]
(referenceExample 2)
FIG. 3 shows a second embodiment of the present invention.referenceThe whole structure of the separator of the fuel cell in an example is shown.referenceThe difference from Example 1 is that the separator 1 is composed of a plurality of six flow paths 13a to 13f, and the flow paths 13a to 13f of the inlet flow path groove 13 are joined together at the merging sections 16a16b16c. After that, it communicates with the channels 14 a to 14 c of the outlet side channel groove 14. As a result, even if the flow path pattern of the inlet-side flow groove 13 is the same, the inlet-side flow groove 13 can greatly increase the area of the gas diffusion electrode per unit flow with respect to the outlet-side flow groove 14. For this reason, the current density can be made small and uniform, the durability reliability can be improved and the overall electric conversion energy efficiency can be improved, the design freedom of the flow path is improved, and the processing is easy and inexpensive. In addition, the high efficiency of electrical conversion energy enables the separator to be made smaller and more compact.
[0041]
(referenceExample 3)
FIG. 4 shows the third aspect of the present invention.referenceThe whole structure of the separator of the fuel cell in an example is shown.referenceThe difference from Example 2 is that the separator 1 of the fuel cell is configured to have a plurality of joining locations of the inlet-side channel groove 13 such as 16d and 16e. The amount of gas on the outlet side of each of the inlet side channel groove portion 13 and the outlet side channel groove portion 14 decreases on the inlet side due to an electrochemical reaction. For this reason, by adjusting the flow rate sequentially by using a plurality of joining points 16d and 16e, an optimum flow path can be configured according to the current density and the distribution of loss resistance of the gas flow that decreases due to the electrochemical reaction. The performance increases as the number of merge points increases.
[0042]
(ImplementationExample)
FIG. 5 illustrates the present invention.ImplementationThe whole structure of the separator of the fuel cell in an example is shown.referenceThe difference from Example 1 is that it is separated and separated from the gas diffusion electrode 12 for diffusing the fuel gas or the oxidizing gas flowing through the bypass flow path portion 15 of the separator 1 of the fuel cell. Specifically, the gas diffusion electrode 12 is configured to face the inlet side channel groove portion 13, the outlet side channel groove portion 14, and the channel portion 2 that is the junction 15, and the bypass channel portion 15 is a packing member. 17 is closed on one side. For this reason, in the bypass flow path part 15, gas diffusion does not occur and an electrochemical reaction does not occur. Therefore, there is no need to consider cooling of the bypass flow path section 15 or equalization of the current density distribution, the current density can be made smaller and uniform, durability reliability can be improved, and the overall electrical conversion energy efficiency can be increased. Design flexibility is improved, machining is easy and inexpensive.
[0043]
Further, a method for preventing flooding by sequentially reducing the cross-sectional area of the groove shape through which the gas of the separator 1 flows is described in Japanese Patent No. 3272980 and Japanese Patent Laid-Open No. 6-267564, but the configuration of the present invention is added. As a result, the current density is uniform and flooding is suppressed. In Examples 1 to 4, the separator 1 is configured such that the flow passage cross-sectional area of the inlet-side flow groove portion 13 is larger than the flow passage cross-sectional area of the outlet-side flow passage groove portion 14, so Since the flow velocity of the gas in the channel groove portion 13 can be designed to be smaller, the gas diffusion to the gas diffusion electrode 12 can be further reduced, the excessive reaction promotion can be reduced, and the supply gas flow rate is the largest and the flow resistance is large. Since the flow rate of the part 13 is small, it is possible to reduce the overall loss resistance. In addition, since the flow passage cross-sectional area of the supply gas outlet-side flow groove portion 14 is smaller than the flow passage cross-sectional area of the inlet-side flow groove portion, the gas flow rate at the outlet portion with a small flow rate is designed to be larger. Therefore, gas diffusion to the gas diffusion electrode 12 can be increased, and reaction promotion at the outlet side can be increased. For this reason, the amount of reaction from the inlet to the outlet of the supply gas is made more uniform, the current density of each part becomes constant, and the durability reliability can be improved and the overall electrical conversion energy efficiency can be increased. And in the exit side channel groove part 14, since the flow velocity of gas can be designed still larger, the produced | generated water generated inside can be discharged | emitted outside by the dynamic pressure of gas. For this reason, it becomes possible to prevent flooding in which the flow path is blocked by water. And since it becomes possible to make small the loss resistance of the whole supply gas flow volume, the motive power of an air blower is also small, the motive power of an auxiliary machine can be reduced and the efficiency of the whole system can be improved.
[0044]
Furthermore, the separator 1 is configured such that the inlet-side channel groove 13 has a larger groove width than the outlet-side channel groove 14, and the channel cross-sectional area of the inlet-side channel groove 13 is equal to the channel cross-sectional area of the outlet-side channel groove 14. The gas flow rate at the inlet with a large flow rate is designed to be small so that the gas diffusion to the gas diffusion electrode 12 is reduced and the flow width is widened to react with a wide diffusion electrode. Is possible. For this reason, the current density can be made small and uniform, durability reliability can be improved, and the overall electric conversion energy efficiency can be increased. In addition, it is easy to process the separator 1 with a large flow groove width by pressing, injection molding, or the like on a thin plate of carbon or metal.
[0045]
Further, the separator 1 is configured such that the inlet-side flow groove 13 has a larger groove depth of the outlet-side flow groove 14, and the flow-sectional cross-sectional area of the inlet-side flow groove 13 is less than that of the outlet-side flow groove 14. The area can be made larger than the area and the flow path can be greatly increased. The flow speed of the gas at the inlet portion where the flow rate is large is designed to be small so that the gas diffusion to the gas diffusion electrode 12 is reduced. The diffusion electrode area that reacts mainly against the gas can be made uniform from the inlet to the outlet of the supply gas, the current density of each part is constant, the durability reliability is improved, and the overall electrical conversion energy efficiency is increased. Can do. In addition, it is easy to process a part of the channel groove depth of the separator to be large by pressing, injection molding, or the like on a carbon or metal thin plate.
[0046]
The separator 1 is configured so that at least one of the inlet-side channel groove portion 13 and the outlet-side channel groove portion 14 has a channel cross-sectional area that is sequentially reduced, so that the channel cross-sectional area is sequentially reduced according to the gas flow rate that is reduced by the reaction. Thus, the gas flow rate can be designed to be constant from the inlet portion with a high flow rate to the outlet portion with the lowest flow rate. For this reason, the amount of reaction from the inlet to the outlet of the supply gas is made uniform, the current density of each part becomes constant, and the durability reliability can be improved and the overall electrical conversion energy efficiency can be increased. And the gas flowing in the flow path is 2H2+ O2→ 2H2The gas flow rate decreases sequentially due to the reaction of O. Since the flow passage cross-sectional area is sequentially reduced, the overall loss resistance can be reduced because the flow rate of the inlet-side flow passage portion 13 having the largest supply gas flow rate and the large flow resistance is small. In the outlet-side channel groove portion 14, the flow rate of the gas can be designed to be large, so that the generated water generated inside can be discharged to the outside by the dynamic pressure of the gas, thereby preventing flooding where the channel is blocked by water. In addition, since the flow rate of the inlet-side flow passage portion 13 having the largest supply gas flow rate and the largest flow resistance is small, the overall loss resistance can be reduced. Therefore, the power of the blower can be reduced, and the power of the auxiliary device can be reduced. And the efficiency of the entire system can be improved.
[0047]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce excessive reaction promotion at the inlet side portion where the flow rate is large, and to reduce the overall loss resistance. In addition, since the gas flow rate at the outlet with a small flow rate can be designed to be large, the acceleration of the reaction can be increased, the reaction amount is made uniform, the current density is constant, the durability reliability is improved, and the overall electrical conversion energy efficiency is increased. Can do. This uniformity can be maintained in accordance with the load, and the durability reliability can be improved and the overall electrical conversion energy efficiency can be increased. In addition, since the gas flow velocity can be designed to be large in the outlet side channel groove, the generated water generated inside can be discharged to the outside by the dynamic pressure of the gas. For this reason, it becomes possible to prevent flooding in which the flow path is blocked by water.
[Brief description of the drawings]
FIG. 1 shows the first of the present invention.referenceOverall configuration diagram showing a separator of a fuel cell in an example
FIG. 2 shows the first of the present invention.referenceCross section of the entire fuel cell in the example
FIG. 3 shows the second of the present invention.referenceOverall configuration diagram showing a separator of a fuel cell in an example
FIG. 4 is a third view of the present invention.referenceOverall configuration diagram showing a separator of a fuel cell in an example
FIG. 5 shows the present invention.ImplementationOverall configuration diagram showing a separator of a fuel cell in an example
FIG. 6 is an overall configuration diagram showing a separator of a conventional fuel cell.

Claims (6)

固体高分子電解質を挟持する一対のガス拡散電極と、
前記ガス拡散電極のおのおのの面に、燃料ガスと酸化ガスとをそれぞれの入口側から出口側に導く流路溝が形成されたセパレータと、
を有しており、
少なくとも一方の前記セパレータの前記流路溝は、前記入口側に位置する入口側流路溝部と、前記出口側に位置する出口側流路溝部と、前記入口側流路溝部と前記出口側流路溝部との間に位置する合流部と、からなり、
前記セパレータの前記流路溝の前記入口側には入口マニホールドが形成されており、
前記セパレータの前記流路溝の前記出口側には出口マニホールドが形成されており、
前記入口側流路溝部は、一端が前記入口マニホールドに連通されており他端が前記合流部に連通される複数の流路で構成されており、
前記出口側流路溝部は、一端が前記出口マニホールドに連通されており他端が前記合流部に連通される複数の流路で構成されており、
一端が前記入口マニホールドに連通されており他端が前記合流部に連通されるバイパス流路溝部が更に形成されており、
前記バイパス流路部の少なくとも一部を前記ガス拡散電極から隔離して、当該少なくとも一部でガス拡散による電気化学反応の発生を防ぐパッキン部材が配置されている、
ことを特徴とする燃料電池。
A pair of gas diffusion electrodes sandwiching the solid polymer electrolyte;
On each surface of the gas diffusion electrode, a separator formed with a channel groove for guiding the fuel gas and the oxidizing gas from the respective inlet side to the outlet side;
Have
The flow path groove of at least one of the separators includes an inlet side flow path groove part positioned on the inlet side, an outlet side flow path groove part positioned on the outlet side, the inlet side flow path groove part, and the outlet side flow path. A merging portion located between the groove portion,
An inlet manifold is formed on the inlet side of the flow channel of the separator,
An outlet manifold is formed on the outlet side of the flow channel of the separator,
The inlet-side channel groove portion is composed of a plurality of channels whose one end communicates with the inlet manifold and the other end communicates with the merging portion.
The outlet-side channel groove is composed of a plurality of channels whose one end is communicated with the outlet manifold and the other end is communicated with the merging portion,
A bypass channel groove is formed, one end of which communicates with the inlet manifold and the other end of which communicates with the merge portion;
Wherein at least a portion of the bypass flow path groove to isolate from the gas diffusion electrode, the at least partially in preventing the occurrence of an electrochemical reaction by gas diffusion packing member is disposed,
A fuel cell characterized by the above.
出口側流路溝部の流路断面積が入口側溝部とバイパス流路溝部との和の流路断面積より小さいことを特徴とする請求項1記載の燃料電池。  2. The fuel cell according to claim 1, wherein a flow passage cross-sectional area of the outlet side flow passage groove is smaller than a flow passage cross-sectional area of the sum of the inlet side groove and the bypass flow passage groove. 前記入口側流路溝部の流路断面積が前記出口側流路溝部の流路断面積よりも大きいことを特徴とする請求項1又は2に記載の燃料電池。  3. The fuel cell according to claim 1, wherein a flow passage cross-sectional area of the inlet-side flow groove portion is larger than a flow passage cross-sectional area of the outlet-side flow groove portion. 前記入口側流路溝部の溝幅が前記出口側流路溝部の溝幅より大きく、前記入口側流路溝部の流路断面積が前記出口側流路溝部の流路断面積よりも大きいことを特徴とする請求項3に記載の燃料電池。  The groove width of the inlet-side channel groove is larger than the groove width of the outlet-side channel groove, and the channel cross-sectional area of the inlet-side channel groove is larger than the channel cross-sectional area of the outlet-side channel groove. The fuel cell according to claim 3. 前記入口側流路溝部の溝深さが前記出口側流路溝部の溝深さより大きく、前記入口側流路溝部の流路断面積が前記出口側流路溝部の流路断面積よりも大きいことを特徴とする請求項3に記載の燃料電池。  The groove depth of the inlet-side channel groove is larger than the groove depth of the outlet-side channel groove, and the channel cross-sectional area of the inlet-side channel groove is larger than the channel cross-sectional area of the outlet-side channel groove. The fuel cell according to claim 3. 前記入口側流路溝部または前記出口側流路溝部の少なくとも一方の流路断面積を順次小さく構成したことを特徴とする請求項3〜5のいずれか1項に記載の燃料電池。  6. The fuel cell according to claim 3, wherein at least one of the inlet-side channel groove portion and the outlet-side channel groove portion is configured to have a smaller channel cross-sectional area sequentially.
JP2002208394A 2002-07-17 2002-07-17 Fuel cell separator Expired - Fee Related JP4601893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208394A JP4601893B2 (en) 2002-07-17 2002-07-17 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208394A JP4601893B2 (en) 2002-07-17 2002-07-17 Fuel cell separator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008184442A Division JP5056637B2 (en) 2008-07-16 2008-07-16 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2004055220A JP2004055220A (en) 2004-02-19
JP4601893B2 true JP4601893B2 (en) 2010-12-22

Family

ID=31932553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208394A Expired - Fee Related JP4601893B2 (en) 2002-07-17 2002-07-17 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP4601893B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972759B2 (en) 2002-07-24 2007-09-05 トヨタ自動車株式会社 Fuel cell separator
US7524575B2 (en) 2004-06-07 2009-04-28 Hyteon Inc. Flow field plate for use in fuel cells
JP5017780B2 (en) * 2005-02-04 2012-09-05 住友金属工業株式会社 Flow path design method for fuel cell separator
KR100821773B1 (en) * 2006-11-01 2008-04-14 현대자동차주식회사 A separator for a fuel-cell which has channels possible self humidifing
JP5125275B2 (en) 2007-02-05 2013-01-23 トヨタ自動車株式会社 Fuel cell and vehicle equipped with fuel cell
JP4469415B2 (en) * 2007-03-15 2010-05-26 パナソニック株式会社 POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL STACK HAVING THE SAME
JP2007227398A (en) * 2007-04-26 2007-09-06 Toyota Motor Corp Separator for fuel cell
US11289728B2 (en) 2017-09-01 2022-03-29 Stryten Critical E-Storage Llc Segmented frames for redox flow batteries

Also Published As

Publication number Publication date
JP2004055220A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US5998055A (en) Gas-passage plates of a fuel cell
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
KR100831463B1 (en) Flow Field Plate for Use in Fuel Cells
US5686199A (en) Flow field plate for use in a proton exchange membrane fuel cell
EP1100140B1 (en) Fuel cell and separator for the same
US7022430B2 (en) Compact fuel cell with improved fluid supply
US20030186106A1 (en) Fuel cell flow field plate
US20070298311A1 (en) Fuel cell separator
JP3980194B2 (en) Fuel cell
JP2003142126A (en) Fuel cell
JP4601893B2 (en) Fuel cell separator
JP5056637B2 (en) Fuel cell separator
JP2006114387A (en) Fuel cell
US20040265675A1 (en) Fuel Cell Flow Field Design
KR101315622B1 (en) Fuelcell stack using branched channel
JP3509180B2 (en) Fuel cell
JP2004146230A (en) Separator for fuel cell
CN1330029C (en) Fuel cell system and stack used therein
JP2005056671A (en) Fuel cell
JP2006114386A (en) Fuel cell
JP2007504601A (en) Gas supply panel for fuel cell and fuel cell having gas supply panel
JP2003217615A (en) Separator for fuel cell
JP2002100380A (en) Fuel cell and fuel cell stack
JPH1021944A (en) Solid polymer electrolyte fuel cell
JP2004146309A (en) Fuel cell separator, and fuel cell using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080808

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees