JPH04355061A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPH04355061A JPH04355061A JP3155418A JP15541891A JPH04355061A JP H04355061 A JPH04355061 A JP H04355061A JP 3155418 A JP3155418 A JP 3155418A JP 15541891 A JP15541891 A JP 15541891A JP H04355061 A JPH04355061 A JP H04355061A
- Authority
- JP
- Japan
- Prior art keywords
- fuel gas
- path
- gas
- passage
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims description 18
- 239000007789 gas Substances 0.000 claims abstract description 101
- 239000002737 fuel gas Substances 0.000 claims abstract description 95
- 239000007800 oxidant agent Substances 0.000 claims abstract description 59
- 230000001590 oxidative effect Effects 0.000 claims description 89
- 239000003792 electrolyte Substances 0.000 claims description 16
- 230000007423 decrease Effects 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 abstract 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、溶融炭酸塩型の燃料電
池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell.
【0002】0002
【従来の技術】以下、従来の燃料電池を図3〜図7を用
いて説明する。2. Description of the Related Art A conventional fuel cell will be explained below with reference to FIGS. 3 to 7.
【0003】例えば炭酸リチウムや炭酸カリウムなどの
炭酸塩を多孔性材に浸み込ませたり、上記炭酸塩を保持
材と一緒にプレス成型した矩形状の電解質板1を設け、
該電解質板1をアノード2(陽極)とカソード3(陰極
)で挟み、アノード2とカソード3をパンチによって多
数の孔を穿孔されたパンチプレート4で挟み、電解質板
1とアノード2とカソード3及びパンチプレート4を波
板状のコルゲート5とセパレータ27を介して多層に積
層することによりスタック6を構成する。[0003] For example, a rectangular electrolyte plate 1 is provided by impregnating a porous material with a carbonate such as lithium carbonate or potassium carbonate, or by press-molding the carbonate together with a holding material.
The electrolyte plate 1 is sandwiched between an anode 2 (anode) and a cathode 3 (cathode), and the anode 2 and cathode 3 are sandwiched between a punch plate 4 in which a large number of holes are punched. A stack 6 is constructed by laminating punch plates 4 in multiple layers with corrugated corrugates 5 and separators 27 interposed therebetween.
【0004】この時、図7に示すように、波板状のコル
ゲート5と各層のアノード2及びパンチプレート4との
間に水素と一酸化炭素を主成分とする燃料ガスaが流通
可能な燃料ガス流路7が形成されると共に、波板状のコ
ルゲート5と各層のカソード3及びパンチプレート4と
の間に酸素と二酸化炭素を主成分とする酸化剤ガスbが
流通可能な酸化剤ガス流路8が形成され、燃料ガス流路
7とパンチプレート4とアノード2と電解質板1とカソ
ード3とパンチプレート4と酸化剤ガス流路8によって
セル9と呼ばれるスタック6の構成単位が形成される。At this time, as shown in FIG. 7, the fuel gas a containing hydrogen and carbon monoxide as main components can flow between the corrugated corrugate 5 and the anodes 2 and punch plates 4 of each layer. A gas flow path 7 is formed, and an oxidizing gas flow that allows oxidizing gas b mainly composed of oxygen and carbon dioxide to flow between the corrugated corrugated plate 5 and the cathode 3 and punch plate 4 of each layer. A channel 8 is formed, and a structural unit of the stack 6 called a cell 9 is formed by the fuel gas channel 7, punch plate 4, anode 2, electrolyte plate 1, cathode 3, punch plate 4, and oxidant gas channel 8. .
【0005】前記アノード2とカソード3並びにパンチ
プレート4は、電解質板1よりも小さく形成されて、図
4に平面形状を示すような、枠状のマスクプレート10
に収容されている。The anode 2, cathode 3, and punch plate 4 are formed into a frame-shaped mask plate 10 that is smaller than the electrolyte plate 1 and whose planar shape is shown in FIG.
is housed in.
【0006】上記構造のスタック6には、各層のセル9
における燃料ガス流路7及び酸化剤ガス流路8の一端側
に、図6・図7に示すように、電解質板1とマスクプレ
ート10及びセパレータ27を上下に貫通し、燃料ガス
流路7と連通される燃料ガス供給路11、及び、酸化剤
ガス流路8と連通される酸化剤ガス供給路12が交互に
(図4参照)形成されている。The stack 6 having the above structure includes cells 9 in each layer.
As shown in FIGS. 6 and 7, one end of the fuel gas flow path 7 and the oxidant gas flow path 8 is formed by vertically penetrating the electrolyte plate 1, the mask plate 10, and the separator 27. Fuel gas supply passages 11 communicating with each other and oxidizing gas supply passages 12 communicating with the oxidizing gas passage 8 are formed alternately (see FIG. 4).
【0007】同様に、各層のセル9における燃料ガス流
路7及び酸化剤ガス流路8の他端側に、電解質板1とマ
スクプレート10及びセパレータ27を上下に貫通し燃
料ガス流路7と連通される燃料ガス排出路13、及び、
酸化剤ガス流路8と連通される酸化剤ガス排出路14が
交互に(図4参照)形成されている。Similarly, on the other end side of the fuel gas flow path 7 and the oxidant gas flow path 8 in the cells 9 of each layer, there is a fuel gas flow path 7 and a fuel gas flow path that vertically penetrate the electrolyte plate 1, the mask plate 10, and the separator 27. A fuel gas discharge path 13 that is communicated with, and
Oxidizing gas discharge passages 14 communicating with the oxidizing gas passages 8 are formed alternately (see FIG. 4).
【0008】又、燃料ガス供給路11と酸化剤ガス供給
路12、及び、燃料ガス排出路13と酸化剤ガス排出路
14の流路断面積は、図3に示すように、各層のセル9
に対して同一の大きさとなっており、スタック6の下側
にそれぞれ燃料ガスaと酸化剤ガスbを供給し及び排出
する燃料ガス供給口15と酸化剤ガス供給口16、及び
、燃料ガス排出口17と酸化剤ガス排出口18が形成さ
れている。[0008]Furthermore, as shown in FIG.
The fuel gas supply port 15 and the oxidant gas supply port 16, which supply and discharge fuel gas a and oxidant gas b, respectively, to the lower side of the stack 6, and the fuel gas exhaust port An outlet 17 and an oxidizing gas outlet 18 are formed.
【0009】そして、スタック6下側の燃料ガス供給口
15から燃料ガス供給路11へ供給された燃料ガスaは
、各層のセル9における燃料ガス流路7へ分配され、各
層の燃料ガス流路7でマスクプレート10の孔を通して
アノード2に接触し、アノード2における反応に寄与し
た後、各層のセル9における燃料ガス流路7から燃料ガ
ス排出路13へ集められて、スタック6下側の燃料ガス
排出口17から排出され、又、スタック6下側の酸化剤
ガス供給口16から酸化剤ガス供給路12へ供給された
酸化剤ガスbは、各層のセル9における酸化剤ガス流路
8へ分配され、各層の酸化剤ガス流路8でマスクプレー
ト10の孔を通してカソード3に接触し、カソード3に
おける反応に寄与した後、各層のセル9における酸化剤
ガス流路8から酸化剤ガス排出路14へ集められて、ス
タック6下側の酸化剤ガス排出口18から排出され、こ
の時、アノード2における燃料ガスのa反応とカソード
3における酸化剤ガスbの反応によりアノード2とカソ
ード3の間に生じた電位差によって発電が行われる。Then, the fuel gas a supplied from the fuel gas supply port 15 on the lower side of the stack 6 to the fuel gas supply path 11 is distributed to the fuel gas flow path 7 in the cell 9 of each layer, and the fuel gas flow path of each layer is 7 contacts the anode 2 through the hole in the mask plate 10 and contributes to the reaction at the anode 2, and then is collected from the fuel gas flow path 7 in the cells 9 of each layer to the fuel gas discharge path 13, and the fuel in the lower side of the stack 6 The oxidizing gas b discharged from the gas exhaust port 17 and supplied to the oxidizing gas supply path 12 from the oxidizing gas supply port 16 on the lower side of the stack 6 is sent to the oxidizing gas flow path 8 in the cells 9 of each layer. The oxygen-containing gas is distributed, contacts the cathode 3 through the hole in the mask plate 10 in the oxidant gas flow path 8 of each layer, and contributes to the reaction at the cathode 3, and then flows from the oxidant gas flow path 8 in the cell 9 of each layer to the oxidant gas discharge path. 14 and is discharged from the oxidizing gas outlet 18 on the lower side of the stack 6, and at this time, the reaction between the anode 2 and the cathode 3 is caused by the reaction a of the fuel gas at the anode 2 and the reaction of the oxidizing gas b at the cathode 3. Electricity is generated by the potential difference created between the two.
【0010】0010
【発明が解決しようとする課題】しかしながら、上記従
来の燃料電池には、以下のような問題があった。[Problems to be Solved by the Invention] However, the above conventional fuel cells have the following problems.
【0011】即ち、燃料ガス供給路11や酸化剤ガス供
給路12などの各供給路、及び、燃料ガス排出路13や
酸化剤ガス排出路14などの各排出路では、各層のセル
9への分配前の燃料ガスaや各層のセル9からの集合後
の酸化剤ガスbが多量に流れる入口部(燃料ガス供給口
15、酸化剤ガス供給口16、及び、燃料ガス排出口1
7、酸化剤ガス排出口18側)近傍と、反対に、各層の
セル9へ分配した後の燃料ガスaや各層のセル9から集
合する前の酸化剤ガスbが僅かに流れる奥部近傍とで、
燃料ガスa及び酸化剤ガスbの流量が異なるにも拘らず
、各供給路11,12及び各排出路13,14の流路断
面積が入口部から奥部まで均一とされていたので、各供
給路11,12及び各排出路13,14の圧力が入口部
側が高く奥部側が低くなってしまい、各層のセル9の燃
料ガス流路7や酸化剤ガス流路8の入出側の圧力が不均
一になって、燃料ガスaや酸化剤ガスbが各層のセル9
の燃料ガス流路7や酸化剤ガス流路8に均一に流れなく
なってしまうという問題があり、セル9の積層数を増や
して燃料電池の容量を大きくする上での障害となってい
た。That is, each supply path such as the fuel gas supply path 11 and the oxidizing gas supply path 12, and each exhaust path such as the fuel gas exhaust path 13 and the oxidizing gas exhaust path 14, are used to supply the cells 9 of each layer. An inlet portion (fuel gas supply port 15, oxidant gas supply port 16, and fuel gas discharge port 1) through which a large amount of fuel gas a before distribution and oxidant gas b after gathering from cells 9 of each layer flows
7) near the oxidizing gas discharge port 18 side) and, conversely, near the inner part where the fuel gas a after being distributed to the cells 9 of each layer and the oxidizing gas b before collecting from the cells 9 of each layer flow slightly. in,
Although the flow rates of fuel gas a and oxidizing gas b were different, the cross-sectional area of each supply path 11, 12 and each discharge path 13, 14 was made uniform from the inlet to the inner part, so that each The pressure in the supply channels 11 and 12 and the discharge channels 13 and 14 is high on the inlet side and low on the inner side, and the pressure on the inlet and outlet sides of the fuel gas flow path 7 and oxidant gas flow path 8 of the cells 9 in each layer is The fuel gas a and the oxidizing gas b become non-uniform, and the fuel gas a and the oxidizing gas b are distributed in the cells 9 of each layer.
There is a problem in that the fuel gas does not flow uniformly through the fuel gas flow path 7 and the oxidizing gas flow path 8, which is an obstacle to increasing the number of stacked cells 9 and increasing the capacity of the fuel cell.
【0012】本発明は、上述の実情に鑑み、燃料ガス供
給路や酸化剤ガス供給路などの各供給路、及び、燃料ガ
ス排出路や酸化剤ガス排出路などの各排出路の内部の圧
力を均一にすることにより、各層のセルの燃料ガス流路
や酸化剤ガス流路に燃料ガスや酸化剤ガスが均一に流れ
得るようにした燃料電池を提供することを目的とするも
のである。In view of the above-mentioned circumstances, the present invention has been developed to reduce the pressure inside each supply path such as a fuel gas supply path and an oxidant gas supply path, and each exhaust path such as a fuel gas discharge path and an oxidant gas discharge path. The object of the present invention is to provide a fuel cell in which the fuel gas and the oxidant gas can flow uniformly through the fuel gas flow path and the oxidant gas flow path of the cells in each layer.
【0013】[0013]
【課題を解決するための手段】本発明は、電解質板の一
側面にアノードを配置すると共に、電解質板の他側面に
カソードを配置し、アノードの反電解質板側の面に燃料
ガス流路を形成すると共にカソードの反電解質板側の面
に酸化剤ガス流路を形成してセルを構成し、該セルを多
層に積層してスタックを構成し、スタックにおける燃料
ガス流路及び酸化剤ガス流路の一端側にスタックの積層
方向へ延びて各層の燃料ガス流路と連通する燃料ガス供
給路及び各層の酸化剤ガス流路と連通する酸化剤ガス供
給路を形成し、スタックにおける燃料ガス流路及び酸化
剤ガス流路の他端側にスタックの積層方向へ延びて各層
の燃料ガス流路と連通する燃料ガス排出路及び各層の酸
化剤ガス流路と連通する酸化剤ガス排出路を形成した燃
料電池において、燃料ガス供給路と酸化剤ガス供給路の
それぞれに入口部から奥部へ進むに従い断面積が減少す
る傾斜部を設け、燃料ガス排出路と酸化剤ガス排出路の
それぞれに出口部から奥部へ進むに従い断面積が減少す
る傾斜部を設けたことを特徴とする燃料電池にかかるも
のである。[Means for Solving the Problems] In the present invention, an anode is arranged on one side of an electrolyte plate, a cathode is arranged on the other side of the electrolyte plate, and a fuel gas flow path is provided on the side of the anode opposite to the electrolyte plate. At the same time, an oxidant gas flow path is formed on the surface of the cathode opposite to the electrolyte plate to form a cell, and the cells are laminated in multiple layers to form a stack, and the fuel gas flow path and oxidant gas flow in the stack are A fuel gas supply passage extending in the stacking direction of the stack and communicating with the fuel gas passage of each layer and an oxidizing gas supply passage communicating with the oxidizing gas passage of each layer are formed at one end side of the passage, and the fuel gas flow in the stack is A fuel gas exhaust passage that extends in the stacking direction of the stack and communicates with the fuel gas passage of each layer, and an oxidant gas exhaust passage that communicates with the oxidant gas passage of each layer are formed on the other end side of the passage and the oxidizing gas passage. In the fuel cell, each of the fuel gas supply path and the oxidant gas supply path is provided with an inclined portion whose cross-sectional area decreases as it goes deeper from the inlet, and the fuel gas discharge path and the oxidant gas discharge path are each provided with an inclined portion whose cross-sectional area decreases as it goes deeper. The present invention relates to a fuel cell characterized in that it is provided with an inclined part whose cross-sectional area decreases as it goes from one part to the other part.
【0014】[0014]
【作用】本発明によれば、燃料ガス供給路に燃料ガスを
供給すると、燃料ガスは燃料ガス供給路から各層の燃料
ガス流路へ分散されて燃料ガス流路を流れ、アノードに
接触されてアノードにおける反応に寄与した後、燃料ガ
ス排出路へ集められて排出される。[Operation] According to the present invention, when fuel gas is supplied to the fuel gas supply path, the fuel gas is dispersed from the fuel gas supply path to the fuel gas flow path of each layer, flows through the fuel gas flow path, and is brought into contact with the anode. After contributing to the reaction at the anode, it is collected and discharged into the fuel gas exhaust channel.
【0015】又、酸化剤ガス供給路に酸化剤ガスを供給
すると、酸化剤ガスは酸化剤ガス供給路から各層の酸化
剤ガス流路へ分散されて酸化剤ガス流路を流れ、カソー
ドに接触されてカソードにおける反応に寄与した後、酸
化剤ガス排出路へ集められて排出される。Furthermore, when the oxidant gas is supplied to the oxidant gas supply path, the oxidant gas is dispersed from the oxidant gas supply path to the oxidant gas flow path of each layer, flows through the oxidant gas flow path, and comes into contact with the cathode. After contributing to the reaction at the cathode, it is collected and discharged to the oxidant gas discharge path.
【0016】そして、アノードにおける燃料ガスの反応
とカソードにおける酸化剤ガスの反応によりアノードと
カソードの間に生じた電位差によって発電が行われる。[0016] Electric power is generated by the potential difference generated between the anode and the cathode due to the reaction of the fuel gas at the anode and the reaction of the oxidant gas at the cathode.
【0017】この際、燃料ガス供給路と酸化剤ガス供給
路のそれぞれに設けた入口部から奥部へ進むに従い断面
積が減少する傾斜部及び、燃料ガス排出路と酸化剤ガス
排出路のそれぞれに設けた出口部から奥部へ進むに従い
断面積が減少する傾斜部によって、燃料ガス供給路と酸
化剤ガス供給路と燃料ガス排出路と酸化剤ガス排出路内
部を流れる燃料ガス及び酸化剤ガスの入口部及び出口部
から奥部までの圧力差がなくなる或いは少なくなるので
、各層の燃料ガス流路や各層の酸化剤ガス流路に燃料ガ
ス及び酸化剤ガスが均等に流れるようになる。[0017] At this time, an inclined part whose cross-sectional area decreases as it goes deeper from the inlet part provided in each of the fuel gas supply passage and the oxidant gas supply passage, and a slope part which is provided in each of the fuel gas supply passage and the oxidant gas discharge passage, and whose cross-sectional area decreases as it goes deeper The fuel gas and oxidant gas flowing inside the fuel gas supply path, the oxidant gas supply path, the fuel gas discharge path, and the oxidant gas discharge path are Since the pressure difference from the inlet and outlet to the inner part is eliminated or reduced, the fuel gas and the oxidizing gas flow evenly into the fuel gas passages of each layer and the oxidizing gas passages of each layer.
【0018】[0018]
【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.
【0019】図1は、本発明の第一の実施例である。FIG. 1 shows a first embodiment of the present invention.
【0020】又、図中、図3〜図7と同一の構成部分に
ついては同一の符号を付すことにより説明を省略するも
のとし、以下、本発明に特有の構成についてのみ説明し
て行く。Further, in the drawings, the same components as those in FIGS. 3 to 7 are given the same reference numerals, and the explanation thereof will be omitted, and only the structures unique to the present invention will be explained below.
【0021】燃料ガス供給路11や酸化剤ガス供給路1
2などの各供給路19における、セル9中央側の部分に
、入口部21側から奥部22側へ進むに従い燃料ガスa
及び酸化剤ガスbの流量の変化に応じて流路断面積を減
少させる傾斜部23を設ける。[0021] Fuel gas supply path 11 and oxidant gas supply path 1
In each supply path 19 such as 2, the fuel gas a is added to the central part of the cell 9 as it progresses from the inlet part 21 side to the inner part 22 side.
and an inclined portion 23 that reduces the cross-sectional area of the flow path according to changes in the flow rate of the oxidant gas b.
【0022】同様に、燃料ガス排出路13や酸化剤ガス
排出路14などの各排出路20における、セル9中央側
の部分に、出口部24側から奥部25側へ進むに従い燃
料ガスa及び酸化剤ガスbの流量の変化に応じて流路断
面積を減少させる傾斜部26を設ける。Similarly, in each discharge passage 20 such as the fuel gas discharge passage 13 and the oxidant gas discharge passage 14, the fuel gas a and A slope portion 26 is provided to reduce the cross-sectional area of the flow path according to a change in the flow rate of the oxidant gas b.
【0023】そして、各供給路19は入口部21を下側
に、奥部22を上側にすると共に、各排出路20は出口
部24を上側に、奥部25を下側にする。Each supply path 19 has an inlet portion 21 on the bottom side and a deep portion 22 on the top side, and each discharge path 20 has an outlet portion 24 on the top side and a deep portion 25 on the bottom side.
【0024】次に、作動について説明する。Next, the operation will be explained.
【0025】燃料電池を運転する過程については図3〜
図7と同様であるので説明を省略する。The process of operating the fuel cell is shown in FIGS.
Since it is the same as FIG. 7, the explanation will be omitted.
【0026】燃料ガス供給路11や酸化剤ガス供給路1
2などの各供給路19に燃料ガスaや酸化剤ガスbを供
給する際、及び、燃料ガス排出路13や酸化剤ガス排出
路14などの各排出路20から燃料ガスaや酸化剤ガス
bを排出する際に、各供給路19及び各排出路20にお
けるセル9中央側の部分に傾斜部23,26を設けて、
入口部21及び出口部24側から奥部22,25側へ進
むに従い燃料ガスa及び酸化剤ガスbの流量の変化に応
じて流路断面積を減少させるようにしたので、各供給路
19及び各排出路20内部の圧力が均一化され、従って
、各層のセル9の燃料ガス流路7や酸化剤ガス流路8の
入出側の圧力が均一化されて、燃料ガスaや酸化剤ガス
bが各層のセル9の燃料ガス流路7や酸化剤ガス流路8
に均一に流れるようになる。Fuel gas supply path 11 and oxidant gas supply path 1
When supplying fuel gas a and oxidant gas b to each supply path 19 such as 2, etc., and from each exhaust path 20 such as fuel gas discharge path 13 and oxidant gas discharge path 14, fuel gas a and oxidant gas b are When discharging, slope portions 23 and 26 are provided in the central portion of the cell 9 in each supply path 19 and each discharge path 20,
Since the flow passage cross-sectional area is reduced in accordance with the change in the flow rate of fuel gas a and oxidizing gas b as it advances from the inlet part 21 and outlet part 24 side to the inner parts 22 and 25 side, each supply path 19 and The pressure inside each discharge passage 20 is equalized, and therefore the pressure on the inlet and outlet sides of the fuel gas passage 7 and oxidant gas passage 8 of the cells 9 of each layer is equalized, so that the fuel gas a and the oxidant gas b are equalized. are the fuel gas passages 7 and oxidant gas passages 8 of the cells 9 in each layer.
It will flow evenly.
【0027】これによって、セル9の積層数を任意に増
やすことにより小型で大容量の高性能な燃料電池を製造
することが可能となる。[0027] This makes it possible to manufacture a compact, large-capacity, high-performance fuel cell by arbitrarily increasing the number of stacked cells 9.
【0028】又、各供給路19における入口部21を下
側に、奥部22を上側にすると共に、各排出路20にお
ける出口部24を上側に、奥部25を下側にしているの
で、各層のセル9の燃料ガス流路7や酸化剤ガス流路8
の長さが一定となり、量産化の上でも有利となる。Furthermore, since the inlet portion 21 of each supply path 19 is placed on the lower side and the inner portion 22 is placed on the upper side, the outlet portion 24 of each discharge path 20 is placed on the upper side and the inner portion 25 is placed on the lower side. Fuel gas passages 7 and oxidant gas passages 8 of cells 9 in each layer
The length becomes constant, which is advantageous for mass production.
【0029】図2は、本発明の第二の実施例であり、排
出路20における出口部24を下側に、奥部25を上側
にした他は、前記実施例と同様の構成を備えており、セ
ル9の積層数を任意に増やすことにより小型で大容量の
高性能な燃料電池を製造することが可能となる。FIG. 2 shows a second embodiment of the present invention, which has the same structure as the previous embodiment except that the outlet 24 of the discharge passage 20 is placed on the lower side and the inner part 25 is placed on the upper side. Therefore, by arbitrarily increasing the number of stacked cells 9, it becomes possible to manufacture a small-sized, large-capacity, high-performance fuel cell.
【0030】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、本発明の要旨を逸脱しない範囲内に
おいて種々変更を加え得ることは勿論である。It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.
【0031】[0031]
【発明の効果】以上説明したように、本発明の燃料電池
によれば、燃料ガス供給路や酸化剤ガス供給路などの各
供給路、及び、燃料ガス排出路や酸化剤ガス排出路など
の各排出路の内部の圧力を均一にすることにより、各層
のセルの燃料ガス流路や酸化剤ガス流路に燃料ガスや酸
化剤ガスを均一に流し得るという優れた効果を奏し得る
。Effects of the Invention As explained above, according to the fuel cell of the present invention, each supply path such as a fuel gas supply path and an oxidant gas supply path, as well as a fuel gas discharge path and an oxidant gas discharge path, By making the pressure inside each discharge path uniform, an excellent effect can be achieved in that the fuel gas and the oxidant gas can be uniformly flowed through the fuel gas flow path and the oxidant gas flow path of the cells in each layer.
【図1】本発明の第一の実施例の全体概略側面図である
。FIG. 1 is an overall schematic side view of a first embodiment of the present invention.
【図2】本発明の第二の実施例の全体概略側面図である
。FIG. 2 is an overall schematic side view of a second embodiment of the present invention.
【図3】従来例の全体概略側面図である。FIG. 3 is an overall schematic side view of a conventional example.
【図4】図3に設けられるマスクプレートの平面図であ
る。FIG. 4 is a plan view of the mask plate provided in FIG. 3;
【図5】図4のV−V方向から見た燃料電池の部分断面
図である。5 is a partial cross-sectional view of the fuel cell seen from the V-V direction in FIG. 4. FIG.
【図6】図4のVI−VI方向から見た燃料電池の部分
断面図である。6 is a partial cross-sectional view of the fuel cell seen from the direction VI-VI in FIG. 4. FIG.
【図7】図5・図6のVII−VII方向から見た燃料
電池の部分断面図である。7 is a partial cross-sectional view of the fuel cell seen from the direction VII-VII in FIGS. 5 and 6. FIG.
1 電解質板 2 アノード 3 カソード 6 スタック 7 燃料ガス流路 8 酸化剤ガス流路 9 セル 11 燃料ガス供給路 12 酸化剤ガス供給路 13 燃料ガス排出路 14 酸化剤ガス排出路 21 入口部 22,25 奥部 23,26 傾斜部 24 出口部 1 Electrolyte plate 2 Anode 3 Cathode 6 Stack 7 Fuel gas flow path 8 Oxidizing gas flow path 9 cell 11 Fuel gas supply path 12 Oxidizing gas supply path 13 Fuel gas exhaust path 14 Oxidizing gas discharge path 21 Entrance section 22, 25 Back 23, 26 Slope part 24 Exit part
Claims (1)
ると共に、電解質板の他側面にカソードを配置し、アノ
ードの反電解質板側の面に燃料ガス流路を形成すると共
にカソードの反電解質板側の面に酸化剤ガス流路を形成
してセルを構成し、該セルを多層に積層してスタックを
構成し、スタックにおける燃料ガス流路及び酸化剤ガス
流路の一端側にスタックの積層方向へ延びて各層の燃料
ガス流路と連通する燃料ガス供給路及び各層の酸化剤ガ
ス流路と連通する酸化剤ガス供給路を形成し、スタック
における燃料ガス流路及び酸化剤ガス流路の他端側にス
タックの積層方向へ延びて各層の燃料ガス流路と連通す
る燃料ガス排出路及び各層の酸化剤ガス流路と連通する
酸化剤ガス排出路を形成した燃料電池において、燃料ガ
ス供給路と酸化剤ガス供給路のそれぞれに入口部から奥
部へ進むに従い断面積が減少する傾斜部を設け、燃料ガ
ス排出路と酸化剤ガス排出路のそれぞれに出口部から奥
部へ進むに従い断面積が減少する傾斜部を設けたことを
特徴とする燃料電池。Claim 1: An anode is disposed on one side of the electrolyte plate, a cathode is disposed on the other side of the electrolyte plate, a fuel gas flow path is formed on the surface of the anode on the side opposite to the electrolyte plate, and the anti-electrolyte plate of the cathode is disposed on the opposite side of the electrolyte plate. A cell is formed by forming an oxidizing gas flow path on a side surface, a stack is formed by laminating the cells in multiple layers, and the stack is stacked on one end side of the fuel gas flow path and the oxidant gas flow path in the stack. A fuel gas supply passage extending in the direction and communicating with the fuel gas passage of each layer and an oxidizing gas supply passage communicating with the oxidizing gas passage of each layer are formed, and the fuel gas passage and the oxidizing gas passage in the stack are formed. In a fuel cell in which a fuel gas exhaust passage extending in the stacking direction of the stack and communicating with the fuel gas passage of each layer and an oxidizing gas exhaust passage communicating with the oxidizing gas passage of each layer are formed on the other end side, the fuel gas is supplied. Each of the fuel gas discharge passage and the oxidant gas supply passage is provided with an inclined part whose cross-sectional area decreases as it progresses from the inlet to the inner part, and the fuel gas discharge passage and the oxidant gas discharge passage are each provided with an inclined part that decreases in cross-sectional area as they proceed from the outlet to the inner part. A fuel cell characterized by having a sloped portion whose area decreases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3155418A JPH04355061A (en) | 1991-05-31 | 1991-05-31 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3155418A JPH04355061A (en) | 1991-05-31 | 1991-05-31 | Fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04355061A true JPH04355061A (en) | 1992-12-09 |
Family
ID=15605569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3155418A Pending JPH04355061A (en) | 1991-05-31 | 1991-05-31 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04355061A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0999605A2 (en) * | 1998-11-06 | 2000-05-10 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack |
EP0981175A3 (en) * | 1998-08-20 | 2000-07-26 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell stack |
WO2000048262A1 (en) * | 1999-02-11 | 2000-08-17 | Forschungszentrum Jülich GmbH | Fuel cell stack with fuel admission through a perforated plate |
WO2002037592A1 (en) * | 2000-10-30 | 2002-05-10 | Teledyne Energy Systems, Inc. | Fuel cell collector plates with improved mass transfer channels |
EP1239530A2 (en) | 2001-03-06 | 2002-09-11 | Honda Giken Kogyo Kabushiki Kaisha | Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in the fuel cell assembly |
EP1241726A2 (en) * | 2001-03-06 | 2002-09-18 | Honda Giken Kogyo Kabushiki Kaisha | Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly |
WO2004006370A3 (en) * | 2002-07-04 | 2004-12-16 | Forschungszentrum Juelich Gmbh | Low-temperature fuel-cell stack |
FR2874129A1 (en) * | 2004-08-04 | 2006-02-10 | Helion Sa | Fluid e.g. fuel, distributing system for e.g. fuel cell stack, has main inlet and outlet manifolds perforated with same number of holes, where inlet manifold has inner convergent section and outlet manifold has inner divergent section |
JP2007141574A (en) * | 2005-11-16 | 2007-06-07 | Paloma Ind Ltd | Fuel cell stack |
JP2007141709A (en) * | 2005-11-21 | 2007-06-07 | Nec Corp | Fuel cell system |
JP2007220371A (en) * | 2006-02-14 | 2007-08-30 | Toshiba Fuel Cell Power Systems Corp | Fuel cell |
JP2007311074A (en) * | 2006-05-16 | 2007-11-29 | Nissan Motor Co Ltd | Fuel cell stack, fuel cell separator, and its manufacturing method |
JP2009094058A (en) * | 2007-09-21 | 2009-04-30 | Casio Comput Co Ltd | Fuel cell device, and electronic equipment |
US7638224B2 (en) * | 2006-02-13 | 2009-12-29 | Canon Kabushiki Kaisha | Fuel cell stack |
JP2010129266A (en) * | 2008-11-26 | 2010-06-10 | Kyocera Corp | Fuel battery cell stack device, fuel battery module, and fuel battery device |
JP2011216350A (en) * | 2010-03-31 | 2011-10-27 | Eneos Celltech Co Ltd | Fuel cell system |
US8257878B2 (en) | 2005-10-20 | 2012-09-04 | Samsung Sdi Co., Ltd. | Semi-passive type fuel cell system |
US9118041B2 (en) | 2006-01-27 | 2015-08-25 | Samsung Sdi Co., Ltd. | Direct liquid feed fuel cell system |
JP2018092838A (en) * | 2016-12-06 | 2018-06-14 | 日本碍子株式会社 | Manifold and fuel cell stack |
DE102020209051A1 (en) | 2020-07-20 | 2022-01-20 | Robert Bosch Gesellschaft mit beschränkter Haftung | Fuel cell stack, method of manufacturing a fuel cell stack |
WO2022171481A1 (en) * | 2021-02-15 | 2022-08-18 | Robert Bosch Gmbh | Cell stack for a fuel cell system, and production thereof |
-
1991
- 1991-05-31 JP JP3155418A patent/JPH04355061A/en active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0981175A3 (en) * | 1998-08-20 | 2000-07-26 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell stack |
US6329093B1 (en) | 1998-08-20 | 2001-12-11 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell stack |
EP0999605A2 (en) * | 1998-11-06 | 2000-05-10 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack |
EP0999605A3 (en) * | 1998-11-06 | 2001-03-14 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack |
US6416899B1 (en) | 1998-11-06 | 2002-07-09 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack |
WO2000048262A1 (en) * | 1999-02-11 | 2000-08-17 | Forschungszentrum Jülich GmbH | Fuel cell stack with fuel admission through a perforated plate |
WO2002037592A1 (en) * | 2000-10-30 | 2002-05-10 | Teledyne Energy Systems, Inc. | Fuel cell collector plates with improved mass transfer channels |
EP1241726A2 (en) * | 2001-03-06 | 2002-09-18 | Honda Giken Kogyo Kabushiki Kaisha | Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly |
US7465515B2 (en) | 2001-03-06 | 2008-12-16 | Honda Giken Kogyo Kabushiki Kaisha | Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly |
EP1241726A3 (en) * | 2001-03-06 | 2005-10-26 | Honda Giken Kogyo Kabushiki Kaisha | Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly |
EP1239530A3 (en) * | 2001-03-06 | 2005-10-26 | Honda Giken Kogyo Kabushiki Kaisha | Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in the fuel cell assembly |
EP1239530A2 (en) | 2001-03-06 | 2002-09-11 | Honda Giken Kogyo Kabushiki Kaisha | Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in the fuel cell assembly |
US7687165B2 (en) | 2001-03-06 | 2010-03-30 | Honda Giken Kogyo Kabushiki Kaisha | Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of operating cell assembly |
WO2004006370A3 (en) * | 2002-07-04 | 2004-12-16 | Forschungszentrum Juelich Gmbh | Low-temperature fuel-cell stack |
FR2874129A1 (en) * | 2004-08-04 | 2006-02-10 | Helion Sa | Fluid e.g. fuel, distributing system for e.g. fuel cell stack, has main inlet and outlet manifolds perforated with same number of holes, where inlet manifold has inner convergent section and outlet manifold has inner divergent section |
US8257878B2 (en) | 2005-10-20 | 2012-09-04 | Samsung Sdi Co., Ltd. | Semi-passive type fuel cell system |
JP2007141574A (en) * | 2005-11-16 | 2007-06-07 | Paloma Ind Ltd | Fuel cell stack |
JP2007141709A (en) * | 2005-11-21 | 2007-06-07 | Nec Corp | Fuel cell system |
US9118041B2 (en) | 2006-01-27 | 2015-08-25 | Samsung Sdi Co., Ltd. | Direct liquid feed fuel cell system |
US7638224B2 (en) * | 2006-02-13 | 2009-12-29 | Canon Kabushiki Kaisha | Fuel cell stack |
JP2007220371A (en) * | 2006-02-14 | 2007-08-30 | Toshiba Fuel Cell Power Systems Corp | Fuel cell |
JP2007311074A (en) * | 2006-05-16 | 2007-11-29 | Nissan Motor Co Ltd | Fuel cell stack, fuel cell separator, and its manufacturing method |
JP2009094058A (en) * | 2007-09-21 | 2009-04-30 | Casio Comput Co Ltd | Fuel cell device, and electronic equipment |
US8101323B2 (en) | 2007-09-21 | 2012-01-24 | Casio Computer Co., Ltd. | Fuel cell device and electronic equipment using fuel cell device |
JP2010129266A (en) * | 2008-11-26 | 2010-06-10 | Kyocera Corp | Fuel battery cell stack device, fuel battery module, and fuel battery device |
JP2011216350A (en) * | 2010-03-31 | 2011-10-27 | Eneos Celltech Co Ltd | Fuel cell system |
JP2018092838A (en) * | 2016-12-06 | 2018-06-14 | 日本碍子株式会社 | Manifold and fuel cell stack |
DE102020209051A1 (en) | 2020-07-20 | 2022-01-20 | Robert Bosch Gesellschaft mit beschränkter Haftung | Fuel cell stack, method of manufacturing a fuel cell stack |
WO2022171481A1 (en) * | 2021-02-15 | 2022-08-18 | Robert Bosch Gmbh | Cell stack for a fuel cell system, and production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04355061A (en) | Fuel cell | |
EP0940868B1 (en) | Fuel cell stack | |
US6350540B1 (en) | Fuel cell with gas diffusion layer flow passage | |
CA2503796C (en) | Fuel cell employing solid ion exchange polymer electrolyte membrane | |
JPH03276569A (en) | Fuel cell | |
JP2510676B2 (en) | Fuel cell | |
JPH11233126A (en) | Solid high polymer type fuel cell | |
JPS5893170A (en) | Molten carbonate type fuel cell | |
JPS63119166A (en) | Fuel battery | |
JPS62163264A (en) | Separator for fuel cell | |
JP3055227B2 (en) | Fuel cell | |
JP2004171824A (en) | Fuel cell | |
JPS61148766A (en) | Fused carbonate type fuel cell | |
JPH01151163A (en) | Fuel cell | |
JP2004186139A (en) | Fuel cell | |
JP4344584B2 (en) | Fuel cell | |
JPH07161365A (en) | Separator for fuel cell | |
JPH0656765B2 (en) | Molten carbonate fuel cell | |
JPS61248364A (en) | Fused carbonate type fuel cell | |
JPH0752651B2 (en) | Molten carbonate fuel cell | |
JP3063204B2 (en) | Molten carbonate fuel cell | |
JPH033958Y2 (en) | ||
JPS6113576A (en) | Internal reformed type fuel cell | |
JPH0142936Y2 (en) | ||
JPH0782873B2 (en) | Molten carbonate fuel cell |