JPS61148766A - Fused carbonate type fuel cell - Google Patents

Fused carbonate type fuel cell

Info

Publication number
JPS61148766A
JPS61148766A JP59269973A JP26997384A JPS61148766A JP S61148766 A JPS61148766 A JP S61148766A JP 59269973 A JP59269973 A JP 59269973A JP 26997384 A JP26997384 A JP 26997384A JP S61148766 A JPS61148766 A JP S61148766A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
fuel gas
fuel
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59269973A
Other languages
Japanese (ja)
Other versions
JPH0775166B2 (en
Inventor
Hakaru Ogawa
斗 小川
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59269973A priority Critical patent/JPH0775166B2/en
Publication of JPS61148766A publication Critical patent/JPS61148766A/en
Publication of JPH0775166B2 publication Critical patent/JPH0775166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent leakage of fuel gas, especially hydrogen gas, and improve the utilization factor of oxidizer gas by supplying oxidizer gas to the main body of a fuel cell through an external manifold and supplying fuel gas through an internal manifold. CONSTITUTION:When fuel gas P reaches an internal manifold pipe 26b on the exhaust side, it is taken into the pipe 26b. Fuel gas P, taken into the pipe 26b, advances downward through a fuel gas exhaust passage C2 and is discharged out of the cell. Meanwhile, when oxidizer gas Q is led through an inlet pipe 35a to an external manifold 34b, oxidizer gas Q advances in a direction running counter to the flow of fuel gas P and is discharged out through the opposing manifold 34b. By means of a wet seal, fuel gas P and oxidizer gas Q are completely separated. Since the two kinds of reaction gas flow in opposite directions, it is possible to even electric current distribution and thereby improve the utilization factor.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、溶融炭酸塩型燃料電池の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to improvements in molten carbonate fuel cells.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、次世代の燃料電池として溶融炭酸塩型燃料電池の
開発が進められている。溶融炭酸塩型燃料電池は、炭酸
塩からなる電解質をa部下で溶融状態にし、電極反応を
生起させるもので、リン酸型、固体電解賀型等の他の燃
料電池に比べ、電極反応が起り易く、発電熱効率が高い
うえ、高価な貴金属触媒を必要としない等の特長を有し
ている。
In recent years, molten carbonate fuel cells have been developed as next-generation fuel cells. A molten carbonate fuel cell is one in which an electrolyte made of carbonate is brought to a molten state under a to cause an electrode reaction.Compared to other fuel cells such as phosphoric acid type and solid electrolyte type, electrode reactions occur more easily. It has features such as being easy to use, has high heat generation efficiency, and does not require expensive precious metal catalysts.

ところで、このような溶融炭酸塩型燃料電池では1つの
燃料電池で得られる起電力が1■と低いため、^出力の
発電プラントを構成するには、複数の単位電池を直列に
積層して燃料電池本体を構成し、各単位電池の加算出力
を得るようにしなければならない。したがって、この種
の燃料電池は、次のように構成される。
By the way, in such a molten carbonate fuel cell, the electromotive force obtained by one fuel cell is as low as 1, so in order to construct a power generation plant with a high output, multiple unit cells must be stacked in series to generate the fuel. The battery body must be configured to obtain the summed output of each unit battery. Therefore, this type of fuel cell is constructed as follows.

すなわち、各単位電池は一対の多孔質電極板〈アノード
電極とカンード電極)と、これらの間に介在されたアル
カリ炭酸塩からなる電解質層とで構成される。これら単
位電池は、セパレータを介して積層される。セパレータ
は、各単位電池間の電気的な接続機能と、各電極板への
反応ガスの通路を形成する機能とを兼備えたものである
That is, each unit cell is composed of a pair of porous electrode plates (an anode electrode and a cand electrode) and an electrolyte layer made of an alkali carbonate interposed between them. These unit batteries are stacked with separators in between. The separator has both the function of electrical connection between each unit cell and the function of forming a passage for reaction gas to each electrode plate.

燃料電池本体の4つの側面には、反応ガスの分配、回収
機能を有するマニホールドが当てがわれでいる。そして
、これらマニホールドのうちの一つに酸化剤ガスを供給
するとともに隣接するマニホールドに燃料ガスを供給し
、単位電池の両面に両ガスを直交するように通流させ、
アノード側電極において、 H2+CO32−−*H20+CO2+2e−なる反応
を、またカソード側電極において、1/202 +CO
2+2e−−+GO3z−なる反応を生起せしめ、直流
出力を得た後、それぞれの対向するマニホールドからガ
スを排出させるようにしている。なお、各単位電池の周
縁部には、上記両反応ガスの燃料電池本体内部における
交差混合を防止するため溶融炭酸塩によるウェットシー
ルが形成される。また、燃料電池本体とマニホールドと
の間にも、上記両ガスの漏洩を防止するためのウェット
シールが形成される。
Manifolds with reactive gas distribution and recovery functions are placed on four sides of the fuel cell body. Then, oxidizing gas is supplied to one of these manifolds and fuel gas is supplied to the adjacent manifold, and both gases are made to flow orthogonally to both sides of the unit cell.
At the anode side electrode, the reaction is H2+CO32--*H20+CO2+2e-, and at the cathode side, the reaction is 1/202 +CO
After the reaction 2+2e--+GO3z- is caused and a direct current output is obtained, the gas is discharged from each opposing manifold. A wet seal made of molten carbonate is formed on the peripheral edge of each unit cell to prevent cross-mixing of both of the reaction gases inside the fuel cell main body. Further, a wet seal is also formed between the fuel cell main body and the manifold to prevent leakage of both of the above gases.

ところが、このように構成された燃料電池には次のよう
な欠点があった。
However, the fuel cell configured in this manner has the following drawbacks.

すなわち、上記の構成では燃料ガスと酸化剤ガスとを直
交する方向で流すようにしているため、単位電池内の電
流密度分布や温度分布のばらつきが大きい。このため、
局所的な効率低下を招き全体の電流密度も低くなってし
まう。また、このように温度が場所的に不均一であると
、積層構造の燃料電池本体に熱応力が作用してクリープ
が発生したり、積層体が変形したりして反応ガスが漏洩
してしまうという問題があった。特に、燃料ガス中の水
素のリークがコスト上から問題となった。
That is, in the above configuration, since the fuel gas and the oxidizing gas are made to flow in orthogonal directions, there are large variations in the current density distribution and temperature distribution within the unit cell. For this reason,
This results in a localized decrease in efficiency and a decrease in the overall current density. In addition, if the temperature is uneven in places like this, thermal stress acts on the stacked structure of the fuel cell body, causing creep or deformation of the stack, resulting in leakage of reactant gas. There was a problem. In particular, leakage of hydrogen in the fuel gas became a problem from a cost standpoint.

また、燃料電池本体は上記の化学反応によって電力と同
時に熱を発生する。この熱を除去しないと、溶融炭酸塩
燃料電池の運転温度範囲である600〜700°Cを超
えてしまい、効果的な電極反応を促すことが不可能にな
る。ところが、上記のような構造であると、燃料電池本
体の4つの側面がマニホールドで覆われているため熱除
去能力が低く、しかも構造上、外部冷却手段を付加する
ことも困難である。このため、酸化剤ガスを冷却材とし
ても用い、この酸化剤ガスを燃料電池本体の内部に過剰
に通流させなければならないため、酸化剤ガスの利用率
が低いという問題もあった。
Further, the fuel cell main body generates heat as well as electric power through the above chemical reaction. If this heat is not removed, the operating temperature range of molten carbonate fuel cells, 600-700°C, will be exceeded, making it impossible to promote effective electrode reactions. However, with the above structure, the four sides of the fuel cell body are covered with manifolds, so the heat removal ability is low, and furthermore, it is difficult to add external cooling means due to the structure. For this reason, the oxidant gas must also be used as a coolant and the oxidant gas must be passed through the interior of the fuel cell body in excess, resulting in a problem that the utilization rate of the oxidant gas is low.

〔発明の目的〕[Purpose of the invention]

本発明はこのような問題に鑑みなされたものであり、そ
の目的とするところは、単位電池内部の電流密度分布、
温度分布のばらつきを小さくすることができ、燃料ガス
、特に水素のリークを効果的に防止できるともに、酸化
剤ガスの利用率を高め得る溶融炭酸塩型燃料電池を提供
することにある。
The present invention was made in view of these problems, and its purpose is to improve current density distribution inside a unit battery,
It is an object of the present invention to provide a molten carbonate fuel cell that can reduce variations in temperature distribution, effectively prevent leakage of fuel gas, particularly hydrogen, and increase the utilization rate of oxidant gas.

〔発明の概要〕[Summary of the invention]

本発明は、単位電池に対し、燃料ガスと酸化剤ガスとを
直交する方向ではなく向流させるようにするため、酸化
剤ガスは外部マニホールドによって燃料電池本体に供給
し、燃料ガスは内部マニホールドによって燃料電池本体
に供給するようにしている。
In the present invention, in order to cause the fuel gas and the oxidant gas to flow counter-currently to each unit cell, rather than in a perpendicular direction, the oxidant gas is supplied to the fuel cell main body by an external manifold, and the fuel gas is supplied by an internal manifold. The fuel is supplied to the fuel cell itself.

すなわち、本発明は、複数の単位電池と、これら各単位
電池間に介挿されて前記複数の単位電池とで積層構造の
燃料電池本体を構成するとともに一方の前記単位電池と
の隣接面に燃料ガス流路を形成し他方の前記単位電池と
の隣接面に酸化剤ガス流路を形成しかつ前記燃料ガス流
路形成面の周縁部に前記燃料ガス流路を前記燃料電池本
体の側面部から遮断する突周壁を設けたセパレータと、
前記燃料電池本体の一側面に当てがわれ前記酸化剤ガス
流路に酸化剤ガスを導入する導入側外部マ二ホールドと
、前記燃料電池本体の前記一側面と対向する側面に当て
がわれ前記酸化剤ガス流路に導入された前記酸化剤ガス
を外部に導く排出側外部マニホールドと、前記燃料電池
本体の内部でかつ前記排出側外部マニホールドが当てが
われた側面の近傍位置を積層方向に貫通するとともに前
記燃料ガス流路に燃料ガスを導く導入側内部マニホール
ドと、前記燃料電池本体の内部でかつ前記導入側外部マ
ニホールドが当てがわれた側面の近傍位置を積層方向に
貫通するとともに前記燃料ガス流路に導入された燃料ガ
スを外部に導く排出側内部マニホールドとを具備してな
ることを特徴としている。
That is, the present invention constitutes a fuel cell main body having a stacked structure with a plurality of unit cells and the plurality of unit cells inserted between these unit cells, and a fuel cell body is formed on a surface adjacent to one of the unit cells. forming a gas flow path, forming an oxidizing gas flow path on a surface adjacent to the other unit cell, and extending the fuel gas flow path from a side surface of the fuel cell main body to a peripheral edge of the fuel gas flow path forming surface; a separator provided with a protruding peripheral wall for blocking;
an introduction-side external manifold that is applied to one side of the fuel cell main body and introduces the oxidant gas into the oxidant gas flow path; Penetrating in the stacking direction an exhaust-side external manifold that guides the oxidant gas introduced into the agent gas flow path to the outside, and a position inside the fuel cell main body and near a side surface to which the exhaust-side external manifold is applied. and an inlet-side internal manifold that guides the fuel gas to the fuel gas flow path, and a position inside the fuel cell main body and near the side surface to which the inlet-side external manifold is applied, in the stacking direction, and the fuel gas flow path. It is characterized by being equipped with an internal discharge side manifold that guides the fuel gas introduced into the passageway to the outside.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、単位電池に対し燃料ガスと酸化剤ガス
とを向流させるようにしているので、単位電池内の電流
密度分布、温度分布を均一にすることができる。したが
って、積層構造の燃料電池本体の熱応力による変形やク
リープを回避することができ、反応ガスの漏洩を防止で
きる。特に燃料ガスは内部マニホールドによって供給さ
れるよので、外部への漏洩や水素のリークが生じ難い。
According to the present invention, since the fuel gas and the oxidant gas flow countercurrently to the unit cell, the current density distribution and temperature distribution within the unit cell can be made uniform. Therefore, deformation and creep due to thermal stress of the fuel cell main body having a stacked structure can be avoided, and leakage of reaction gas can be prevented. In particular, since the fuel gas is supplied through the internal manifold, leakage to the outside or leakage of hydrogen is unlikely to occur.

また、燃料ガス用の外部マニホールドが必要なくなるの
で、燃料電池本体の1つの対向する側面を燃料電池本体
の外部冷却用に利用できる。このため、従来のように酸
化剤ガスを冷却のために大量に流す必要がなくなり、酸
化剤ガスの利用率を高めることができる。
Also, since an external manifold for fuel gas is not required, one opposing side of the fuel cell body can be used for external cooling of the fuel cell body. Therefore, it is no longer necessary to flow a large amount of oxidizing gas for cooling as in the conventional case, and the utilization rate of the oxidizing gas can be increased.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の一実施例に係る溶融炭酸
塩型燃料電池について説明する。
Hereinafter, a molten carbonate fuel cell according to an embodiment of the present invention will be described with reference to the drawings.

第1図において、1は全体が長方形でかつ積層構造の燃
料電池本体である。この燃料電池本体上は、エンドプレ
ート3a、 3bの間に複数の単位電池4をセパレータ
5を介して積層して構成されている。また、以後、説明
を簡単にするため、燃料電池本体上p側面で後述すると
ころの外部マニホールドが取付けられる一対の対向面を
それぞれA。
In FIG. 1, reference numeral 1 denotes a fuel cell main body which is rectangular in its entirety and has a laminated structure. On this fuel cell main body, a plurality of unit cells 4 are stacked with separators 5 interposed between end plates 3a and 3b. In order to simplify the explanation hereinafter, a pair of opposing surfaces to which an external manifold, which will be described later, is attached on the upper p side of the fuel cell main body will be referred to as A, respectively.

A2面と定義し、これらに隣接する一対の対向面を8.
87面と定義する。
Define the A2 surface and the pair of opposing surfaces adjacent to these as 8.
It is defined as 87 sides.

単位電池上は、第2図にも示すように、ニッケル合金系
からなる一対の多孔質電極板、即ちアノード電極板7a
とカソード電極板7bとの間に電解質板8を介挿し、さ
らにアノード電極板7aにアノード側集電板9aを添設
するとともにカソード電極板7b側にカソード側集電板
9bを添設して構成されている。電解質板8は、例えば
炭酸リチウムや炭酸カリウム等を混合してなる炭酸塩電
解質をリチウムアルミネートなどのセラミック系保持材
で保持してなるものであり、A、A’面を構成する両端
部の近傍位置に等間隔で複数の貫通孔10を設けたもの
となっている。また、アノード側集電板9aは例えばニ
ッケルの海綿状金属からなり、カソード側集電板9bは
例えばステンレス鋼(SLJS316等ンの海綿状金属
からなるものである。
On the unit cell, as shown in FIG. 2, a pair of porous electrode plates made of a nickel alloy, namely an anode electrode plate 7a.
An electrolyte plate 8 is inserted between the anode electrode plate 7b and the anode electrode plate 7b, and an anode side current collector plate 9a is attached to the anode electrode plate 7a, and a cathode side current collector plate 9b is attached to the cathode electrode plate 7b side. It is configured. The electrolyte plate 8 is made by holding a carbonate electrolyte made of a mixture of lithium carbonate, potassium carbonate, etc. with a ceramic holding material such as lithium aluminate, and the electrolyte plate 8 is formed by holding a carbonate electrolyte made by mixing lithium carbonate, potassium carbonate, etc. with a ceramic holding material such as lithium aluminate. A plurality of through holes 10 are provided at equal intervals in the vicinity. Further, the anode side current collector plate 9a is made of a spongy metal such as nickel, and the cathode side current collector plate 9b is made of a spongy metal such as stainless steel (SLJS316).

セパレータ5は、第3図に示すように構成されている。The separator 5 is constructed as shown in FIG.

すなわち、図中21は導電性材料で形成され、電解質層
8の貫通孔10と同軸関係にある燃料ガス通流用の貫通
孔22を有した薄板である。この薄板21のカソード側
集電板9bに対向する面の8゜B′面側の縁部には、A
面からA2面へと酸化剤ガスを通流させる酸化剤ガス流
路りを形成するための段付きの突条23が設けられてい
る。この突条23はまた、その段部でカソード側集電板
9bを支持し、その上端部でカソード電極板7bを支持
するものである。一方、上記薄板21のアノード側集電
板9aと対向する面の周縁部には、上記A′面側の貫通
孔22からA面側の貫通孔22へと燃料ガスを通流させ
る燃料ガス流路を形成するとともに燃料電池本体1の側
面から燃料ガスが漏洩するのを防止するための環状突周
壁24が設けられている。この環状突周壁24は、その
内周面で7ノード側集電根9aおよびアノード電極板7
aの位置を規制するが、燃料ガスの通流を妨げないよう
に貫通孔22の部分に切欠部25を形成したものとなっ
ている。WI板21のA′面側の貫通孔22が形成され
た位置には、燃料ガス導入用の複数の内部マニホールド
管26aが突設されており、同A面側の貫通孔22が形
成された位置には、燃料ガス排出用の複数の内部マニホ
ールド管26bが突設されている。この内部マニホール
ド管26a 、 26bは、例えばアルミナ等の絶縁性
部材で形成されており、その長さは、カソード側集電板
9bとカソード電極板7bと電解質層8の厚みを加えた
長さに設定されている。
That is, numeral 21 in the figure is a thin plate made of a conductive material and having a through hole 22 for fuel gas flow coaxial with the through hole 10 of the electrolyte layer 8. A
A stepped protrusion 23 is provided to form an oxidizing gas flow path that allows the oxidizing gas to flow from the surface to the A2 surface. This protrusion 23 also supports the cathode-side current collector plate 9b at its stepped portion, and supports the cathode electrode plate 7b at its upper end. On the other hand, at the peripheral edge of the surface of the thin plate 21 facing the anode side current collector plate 9a, there is provided a fuel gas flow that allows the fuel gas to flow from the through hole 22 on the A' side to the through hole 22 on the A side. An annular projecting peripheral wall 24 is provided to form a passageway and to prevent fuel gas from leaking from the side surface of the fuel cell main body 1. This annular projecting peripheral wall 24 has a seventh node side current collector root 9a and an anode electrode plate 7 on its inner peripheral surface.
A notch 25 is formed in the through hole 22 so as to restrict the position of a, but not to obstruct the flow of fuel gas. A plurality of internal manifold pipes 26a for introducing fuel gas are protruded at the positions where the through holes 22 on the side A' of the WI plate 21 are formed, and the through holes 22 on the side A' of the WI plate 21 are formed. A plurality of internal manifold pipes 26b for discharging fuel gas are protruded from the position. The internal manifold tubes 26a and 26b are made of an insulating material such as alumina, and their length is the sum of the thicknesses of the cathode side current collector plate 9b, cathode electrode plate 7b, and electrolyte layer 8. It is set.

燃料電池本体上のA、A’面には、溶融炭酸塩との間で
ウェットシール部を構成する例えば角型環状のジルコニ
アフェルト33a 、 33bを介して酸化剤ガスを導
くための外部マニホールド34a。
On the A and A' faces on the fuel cell main body, there is an external manifold 34a for guiding the oxidant gas through, for example, rectangular annular zirconia felts 33a and 33b that form a wet seal with the molten carbonate.

34bが当てがわれている。外部マニホールド34aに
は、酸化剤ガスQの導入管35aが設けられており、外
部マニホールド34bには、酸化剤ガスQの排出管35
bが設けられている。
34b is applied. The external manifold 34a is provided with an oxidant gas Q introduction pipe 35a, and the external manifold 34b is provided with an oxidant gas Q discharge pipe 35.
b is provided.

また、前述したエンドプレート3a、 3bのうち図中
下端部に位置するエンドプレート3bは、内部マニホー
ルド管26aに燃料ガスPを導く燃料ガス導入路37a
を内部に形成するとともに、内部マニホールド管26b
から排出される燃料ガスPを外部に導く燃料ガス排出路
37bを内部に形成したものとなっている。そして、上
記エンドプレート3bのA′面側の端部には上記燃料ガ
ス導入路37aに燃料ガスPを導く導入管38aが接続
されており、同A面側の端部には上記燃料ガス排出路3
7bからの排出ガスを外部に導く排出管38bが接続さ
れている。また、エンドプレート3bの内側の面の中央
部には導入ガスと排出ガスとの間の分離を図るべくセパ
レータ5の下面に密着する凸部39が突設されている。
Furthermore, among the aforementioned end plates 3a and 3b, the end plate 3b located at the lower end in the figure has a fuel gas introduction path 37a that guides the fuel gas P to the internal manifold pipe 26a.
is formed inside the internal manifold pipe 26b.
A fuel gas discharge path 37b is formed inside to guide the fuel gas P discharged from the fuel gas P to the outside. An inlet pipe 38a for guiding the fuel gas P to the fuel gas inlet passage 37a is connected to the end of the end plate 3b on the A' side, and an inlet pipe 38a for guiding the fuel gas P to the A' side is connected to the end of the end plate 3b on the A' side. Road 3
An exhaust pipe 38b is connected to guide exhaust gas from 7b to the outside. Further, a protrusion 39 is provided in the center of the inner surface of the end plate 3b to protrude from the lower surface of the separator 5 in order to separate the introduced gas and the exhaust gas.

このエンドプレート3bはガスケット40を介してセパ
レータ5に接続されている。
This end plate 3b is connected to the separator 5 via a gasket 40.

このように構成された燃料電池の組立て状態を第4図に
断面で示す。
The assembled state of the fuel cell thus constructed is shown in cross section in FIG.

いま、燃料電池を所定の動作温度まで昇温させると電解
質が溶融し、突周壁24〜電解質層8の間。
Now, when the temperature of the fuel cell is raised to a predetermined operating temperature, the electrolyte melts and forms a part between the projecting peripheral wall 24 and the electrolyte layer 8.

内部マニホールド管26a 、 26b〜電解賀層8の
間がウェットシールされる。この状態で、燃料ガスPを
導入管38a、燃料ガス導入路37aを介してセパレー
タ5の貫通孔22に導くと、燃料ガスPは、第4図に示
すように、貫通孔22と導入側内部マニホールド管26
aとで形成された積層方向に延びる導入側流路C’sを
図中上向きに進行する。この進行の過程で燃料ガスPは
、アノード側集電板9aに分離導入され、該集電板9a
を図中左向きに進行する。燃料ガスPが排出側内部マニ
ホールド管26bに達すると、排出側内部マニホールド
管26bの内部に取込まれる。排出側内部マニホールド
管26bの内部に取込まれた燃料ガスPは、貫通孔22
と排出側内部マニホールド管26bとで形成された積層
方向に延びる排出側流路C2を図中下向きに進行し、燃
料ガス排出路37b、排出管38bを介して外部に排出
される。一方、酸化剤ガスQを導入管35aを介してマ
ニホールド34bに導くと、酸化剤ガスQは、セパレー
タ5の酸化剤ガス流路りに導入され、カソード側集電板
9b内を燃料ガスPに対して向流する向き、即ち図中右
向きに進行し、対向する外部マニホールド34b排出管
35bを介して外部に排出される。このように両ガスP
、Qが集電板9a、 9b内をそれぞれ通流すると、各
電極板7a。
A wet seal is established between the internal manifold pipes 26a and 26b and the electrolytic layer 8. In this state, when the fuel gas P is introduced into the through hole 22 of the separator 5 through the introduction pipe 38a and the fuel gas introduction path 37a, the fuel gas P is transferred between the through hole 22 and the inside of the introduction side, as shown in FIG. Manifold pipe 26
The introduction side channel C's extending in the stacking direction formed by A and A advances upward in the figure. In the process of this progress, the fuel gas P is separated and introduced into the anode side current collector plate 9a, and the fuel gas P is separated and introduced into the anode side current collector plate 9a.
Proceed to the left in the diagram. When the fuel gas P reaches the discharge-side internal manifold pipe 26b, it is taken into the discharge-side internal manifold pipe 26b. The fuel gas P taken into the discharge side internal manifold pipe 26b is transferred to the through hole 22.
The fuel gas travels downward in the drawing through a discharge side flow path C2 extending in the stacking direction formed by the fuel gas discharge passage 37b and the discharge side internal manifold pipe 26b, and is discharged to the outside via the fuel gas discharge passage 37b and the discharge pipe 38b. On the other hand, when the oxidizing gas Q is introduced into the manifold 34b through the introduction pipe 35a, the oxidizing gas Q is introduced into the oxidizing gas flow path of the separator 5, and the inside of the cathode side current collector plate 9b is turned into the fuel gas P. The gas flows in a countercurrent direction, that is, to the right in the figure, and is discharged to the outside via the opposing external manifold 34b and discharge pipe 35b. In this way, both gases P
, Q flow through the current collector plates 9a and 9b, respectively, each electrode plate 7a.

1bでは前述した電気化学的反応が生起され、電気エネ
ルギが発生する。
At 1b, the electrochemical reaction described above occurs and electrical energy is generated.

この実施例によれば、前述したウェットシールによって
燃料ガスPと酸化剤ガスQとの間は完全にシールされ、
かつ燃料ガスPが外部に漏れることもない、そして、こ
の場合には、両反応ガスが向流するように流れるので、
電流密度分布、温度分布を従来の方式に比べて均一にす
ることができる。また、この実施例では8.8’面に外
部冷却手段を付加することができるので、酸化剤ガスの
有効利用を図ることができる。
According to this embodiment, the space between the fuel gas P and the oxidizing gas Q is completely sealed by the wet seal described above,
In addition, the fuel gas P does not leak to the outside, and in this case, both reaction gases flow countercurrently.
Current density distribution and temperature distribution can be made more uniform compared to conventional methods. Further, in this embodiment, an external cooling means can be added to the 8.8' surface, so that the oxidizing gas can be used effectively.

本発明者らの実験によっても、この実施例の効果を確認
することができた。すなわち、本実施例の燃料電池に燃
料ガスとしてl ow−8TLJ、 II化剤ガスとし
てair /CO2−70/30を用い、入口ガス温度
を800に、燃料ガス利用率を25%、平均単セル電圧
を0.85Vの条件で運転した。その結果、電流密度の
ばらつきが小さくなり、その平均電流密度が従来は19
8fflA/mであったのに対し、本実施例では227
mA/dと約15V%も向上した。
The effects of this example could also be confirmed through experiments conducted by the present inventors. That is, in the fuel cell of this example, low-8TLJ was used as the fuel gas, air/CO2-70/30 was used as the II agent gas, the inlet gas temperature was 800, the fuel gas utilization rate was 25%, and the average single cell It was operated at a voltage of 0.85V. As a result, the variation in current density is reduced, and the average current density is now 19
While it was 8fflA/m, in this example it was 227
The mA/d was improved by about 15V%.

また、従来は酸化剤ガスの入口部で810K、出口部で
1020にと210にの温度差があったのに対し、本実
施例では入口部で810K、出口部で980にとその温
度差は170にとなり、従来に比べ温度差を約19%も
低下させることができた。 なお、本発明は上記した実
施例に限定さるものではない。たとえば上記実施例では
反応ガスを拡散するとともに集電機能を有した隼電板9
a、 9bとして海綿状金属を用いたが、たとえばセパ
レータ5に同様の機能を有する溝を形成するようにして
も良い。
In addition, in the past, there was a temperature difference of 810K at the inlet of the oxidant gas and 1020K and 210K at the outlet, but in this embodiment, the temperature difference is 810K at the inlet and 980K at the outlet. 170, making it possible to reduce the temperature difference by about 19% compared to conventional methods. Note that the present invention is not limited to the above embodiments. For example, in the above embodiment, the Hayabusa electric plate 9 has a current collecting function as well as diffusing a reactive gas.
Although spongy metal is used for a and 9b, for example, grooves having similar functions may be formed in the separator 5.

【図面の簡単な説明】[Brief explanation of drawings]

第1図i本発明の一実施例に係るia炭酸塩型燃料電池
の概略構成を示す斜視図、第2図は上記燃料電池の燃料
電池本体を示す分解斜視図、第3図は上記燃料電池のセ
パレータを示す斜視図であり、同図(a)は上面を、同
図(b)は下面をそれぞれ示す図、第4図は同燃料電池
の部分断面図である。 工・・・燃料電池本体、3a、 3b・・・エンドプレ
ート、4・・・単位電池、5・・・セパレータ、7a・
・・アノード電極板、7b・・・カソード電極板、8・
・・電解質層、9a・・・アノード側集電板、9b・・
・カソード側集電板、23・・・突条、24・・・突周
壁、26a 、 26b・・・内部マニホールド管、3
3a 〜33d ・・・ジルコニア7xルト、34a。 34b・・・外部マニホールド、P・・・燃料ガス、Q
・・・酸化剤ガス。 出願人代理人 弁理士 鈴江武彦 第2図 第3図 (a) (b)
FIG. 1 is a perspective view showing a schematic configuration of an ia carbonate fuel cell according to an embodiment of the present invention, FIG. 2 is an exploded perspective view showing the fuel cell main body of the fuel cell, and FIG. 3 is a perspective view showing the fuel cell main body of the fuel cell. FIG. 4 is a perspective view showing the separator of the fuel cell, in which FIG. 4(a) shows the upper surface, FIG. Engineering...Fuel cell main body, 3a, 3b...End plate, 4...Unit cell, 5...Separator, 7a...
... Anode electrode plate, 7b... Cathode electrode plate, 8.
... Electrolyte layer, 9a... Anode side current collector plate, 9b...
- Cathode side current collector plate, 23... Projection, 24... Projection peripheral wall, 26a, 26b... Internal manifold pipe, 3
3a to 33d...zirconia 7x rut, 34a. 34b...External manifold, P...Fuel gas, Q
...oxidant gas. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3 (a) (b)

Claims (1)

【特許請求の範囲】[Claims] 複数の単位電池と、これら各単位電池間に介挿されて前
記複数の単位電池とで積層構造の燃料電池本体を構成す
るとともに一方の前記単位電池との隣接面に燃料ガス流
路を形成し他方の前記単位電池との隣接面に酸化剤ガス
流路を形成しかつ前記燃料ガス流路形成面の周縁部に前
記燃料ガス流路を前記燃料電池本体の側面部から遮断す
る突周壁を設けたセパレータと、前記燃料電池本体の一
側面に当てがわれ前記酸化剤ガス流路に酸化剤ガスを導
入する導入側外部マニホールドと、前記燃料電池本体の
前記一側面と対向する側面に当てがわれ前記酸化剤ガス
流路に導入された前記酸化剤ガスを外部に導く排出側外
部マニホールドと、前記燃料電池本体の内部でかつ前記
排出側外部マニホールドが当てがわれた側面の近傍位置
を積層方向に貫通するとともに前記燃料ガス流路に燃料
ガスを導く導入側内部マニホールドと、前記燃料電池本
体の内部でかつ前記導入側外部マニホールドが当てがわ
れた側面の近傍位置を積層方向に貫通するとともに前記
燃料ガス流路に導入された燃料ガスを外部に導く排出側
内部マニホールドとを具備してなることを特徴とする溶
融炭酸塩型燃料電池。
A plurality of unit cells and the plurality of unit cells inserted between these unit cells constitute a fuel cell main body having a stacked structure, and a fuel gas flow path is formed on a surface adjacent to one of the unit cells. An oxidant gas flow path is formed on a surface adjacent to the other unit cell, and a projecting peripheral wall is provided at a peripheral edge of the fuel gas flow path forming surface to block the fuel gas flow path from a side surface of the fuel cell main body. an inlet-side external manifold that is applied to one side of the fuel cell main body and introduces the oxidant gas into the oxidant gas flow path; and an introduction side external manifold that is applied to the side opposite to the one side of the fuel cell main body. A discharge-side external manifold that guides the oxidant gas introduced into the oxidant gas flow path to the outside, and a position in the vicinity of a side surface of the fuel cell main body to which the discharge-side external manifold is applied in the stacking direction. an inlet-side internal manifold that penetrates and guides the fuel gas to the fuel gas flow path; and an inlet-side internal manifold that penetrates the fuel cell main body at a position near the side surface to which the inlet-side external manifold is applied in the stacking direction; A molten carbonate fuel cell characterized by comprising an internal discharge side manifold that guides fuel gas introduced into a gas flow path to the outside.
JP59269973A 1984-12-21 1984-12-21 Molten carbonate fuel cell Expired - Fee Related JPH0775166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59269973A JPH0775166B2 (en) 1984-12-21 1984-12-21 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59269973A JPH0775166B2 (en) 1984-12-21 1984-12-21 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS61148766A true JPS61148766A (en) 1986-07-07
JPH0775166B2 JPH0775166B2 (en) 1995-08-09

Family

ID=17479802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59269973A Expired - Fee Related JPH0775166B2 (en) 1984-12-21 1984-12-21 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0775166B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518538A (en) * 2003-02-20 2006-08-10 ベバスト・アクチィエンゲゼルシャフト Fuel cell stack
US8962219B2 (en) 2011-11-18 2015-02-24 Bloom Energy Corporation Fuel cell interconnects and methods of fabrication
US8986905B2 (en) 2008-11-11 2015-03-24 Bloom Energy Corporation Fuel cell interconnect
US9478812B1 (en) 2012-10-17 2016-10-25 Bloom Energy Corporation Interconnect for fuel cell stack
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9673457B2 (en) 2012-11-06 2017-06-06 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155669A (en) * 1982-03-11 1983-09-16 Kansai Electric Power Co Inc:The Reaction-gas supplying and exhausting device provided in fuel cell
JPS58146363U (en) * 1982-03-26 1983-10-01 富士電機株式会社 Fuel cell block structure
JPS5912572A (en) * 1982-06-28 1984-01-23 Sanyo Electric Co Ltd Fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155669A (en) * 1982-03-11 1983-09-16 Kansai Electric Power Co Inc:The Reaction-gas supplying and exhausting device provided in fuel cell
JPS58146363U (en) * 1982-03-26 1983-10-01 富士電機株式会社 Fuel cell block structure
JPS5912572A (en) * 1982-06-28 1984-01-23 Sanyo Electric Co Ltd Fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518538A (en) * 2003-02-20 2006-08-10 ベバスト・アクチィエンゲゼルシャフト Fuel cell stack
US8986905B2 (en) 2008-11-11 2015-03-24 Bloom Energy Corporation Fuel cell interconnect
US9461314B2 (en) 2008-11-11 2016-10-04 Bloom Energy Corporation Fuel cell interconnect
US8962219B2 (en) 2011-11-18 2015-02-24 Bloom Energy Corporation Fuel cell interconnects and methods of fabrication
US9478812B1 (en) 2012-10-17 2016-10-25 Bloom Energy Corporation Interconnect for fuel cell stack
US9673457B2 (en) 2012-11-06 2017-06-06 Bloom Energy Corporation Interconnect and end plate design for fuel cell stack
US9502721B2 (en) 2013-10-01 2016-11-22 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US10593962B2 (en) 2013-10-01 2020-03-17 Bloom Energy Corporation Pre-formed powder delivery to powder press machine
US9993874B2 (en) 2014-02-25 2018-06-12 Bloom Energy Corporation Composition and processing of metallic interconnects for SOFC stacks

Also Published As

Publication number Publication date
JPH0775166B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US7799482B2 (en) Stack of generators and fuel cell system having the same
JPS61148766A (en) Fused carbonate type fuel cell
US8053125B2 (en) Fuel cell having buffer and seal for coolant
JPS625569A (en) Molten carbonate type fuel cell stack
JPS63119166A (en) Fuel battery
KR101313382B1 (en) Metal seperator for fuel cell including and fuel cell stack having the same
CN117039091A (en) Tower-shaped SOFC (solid oxide Fuel cell) stack module
KR100645190B1 (en) Molten carbonate fuel cell with direct internal reforming separator
JPS6298567A (en) Fuel cell
KR102098628B1 (en) The separator for fuel cell
JP2610255B2 (en) Molten carbonate fuel cell
JPS62202465A (en) Molten carbonate fuel cell
JPH04370664A (en) Fuel cell
JP3102052B2 (en) Solid oxide fuel cell
JPH07161365A (en) Fuel cell separator
JPH08185884A (en) Solid oxide fuel cell
JP7237043B2 (en) Electrochemical reaction cell stack
JPS6160547B2 (en)
JPS61148768A (en) Fused carbonate type fuel cell
JPH0343962A (en) Fuel cell
JP2001202974A (en) Solid polymer fuel cell stack
JP2603964B2 (en) Fuel cell
JP4228895B2 (en) Solid oxide fuel cell
JPH0756808B2 (en) Molten carbonate fuel cell
JPS61148767A (en) Fused carbonate type fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees